On Class Two p-Group G satisfying $G / Z(G) \simeq C_{p^{2}} \times C_{p^{2}}$

André Luiz Martins Pereira

Universidade Federal Rural do Rio de Janeiro

Algebra: celebrating Paulo Ribenboim's ninetieth birthday

Index

- Introduction

André Luiz Martins Pereira
On Class Two p-Group G satisfying $G / Z(G) \simeq C_{p^{2}} \times C_{p^{2}}$

Index

- Introduction
- An upper bound of $\mathbf{r}(\mathbf{Z}(\mathbf{G}))$

Index

- Introduction
- An upper bound of $\mathbf{r}(\mathbf{Z}(\mathbf{G}))$
- The Simple Components of QG

Index

- Introduction
- An upper bound of $\mathbf{r}(\mathbf{Z}(\mathbf{G}))$
- The Simple Components of QG
- Necessary and Sufficient condictions to $\mathbf{Q G} \simeq \mathbf{Q H}$

Introduction

- G is a finite p-group

Introduction

- G is a finite p-group
- $G=\langle x, y, Z(G)\rangle$ where $x^{p 2}, y^{p 2} \in Z(G)$

$$
G / Z(G) \simeq C_{p^{2}} \times C_{p^{2}}
$$

Introduction

- G is a finite p-group
- $G=\langle x, y, Z(G)\rangle$ where $x^{p 2}, y^{p 2} \in Z(G)$

$$
G / Z(G) \simeq C_{p^{2}} \times C_{p^{2}}
$$

- $G^{\prime} \simeq C_{p^{2}}$ and $c l(G)=2$

Introduction

- G is a finite p-group
- $G=\langle x, y, Z(G)\rangle$ where $x^{p 2}, y^{p 2} \in Z(G)$

$$
G / Z(G) \simeq C_{p^{2}} \times C_{p^{2}}
$$

- $G^{\prime} \simeq C_{p^{2}}$ and $c l(G)=2$
- The case $n=1$ was considered by Leal and Milies

Leall Guilherme; Polcino Milies, C. Isomorphic group (and loop) algebras. J. Algebra 155 (1993), no. 1, 195-210

An upper bound of $r(\mathbf{Z}(\mathbf{G}))$

Upper Bound of $r(Z(G))$

Let G be a finite indecomposable p-group. If

$$
G=\left\langle x, y, Z(G): x^{p^{2}}, y^{p^{2}} \in Z(G)\right\rangle \text { then } r(Z(G)) \leqslant 5
$$

An upper bound of $r(\mathbf{Z}(\mathbf{G}))$

Upper Bound of $r(Z(G))$

Let G be a finite indecomposable p-group. If
$G=\left\langle x, y, Z(G): x^{p^{2}}, y^{p^{2}} \in Z(G)\right\rangle$ then $r(Z(G)) \leqslant 5$.

- $G_{1}=<x^{p}, y, Z(G): x^{p^{2}}, y^{p} \in Z\left(G_{1}\right)>$, so $\frac{G_{1}}{Z\left(G_{1}\right)} \simeq C_{p} \times C_{p}$.

An upper bound of $r(\mathbf{Z}(\mathbf{G}))$

Upper Bound of $r(Z(G))$

Let G be a finite indecomposable p-group. If
$G=\left\langle x, y, Z(G): x^{p^{2}}, y^{p^{2}} \in Z(G)\right\rangle$ then $r(Z(G)) \leqslant 5$.

- $G_{1}=<x^{p}, y, Z(G): x^{p^{2}}, y^{p} \in Z\left(G_{1}\right)>$, so $\frac{G_{1}}{Z\left(G_{1}\right)} \simeq C_{p} \times C_{p}$.
- $G_{1}=D_{1} \times A_{1}$, where D_{1} is an indecomposable p-group such that $\frac{D_{1}}{Z\left(D_{1}\right)} \simeq C_{p} \times C_{p}$ and A_{1} is a central abelian subgroup of G_{1}

An upper bound of $r(\mathbf{Z}(\mathbf{G}))$

Upper Bound of $r(Z(G))$

Let G be a finite indecomposable p-group. If
$G=\left\langle x, y, Z(G): x^{p^{2}}, y^{p^{2}} \in Z(G)\right\rangle$ then $r(Z(G)) \leqslant 5$.

- $G_{1}=<x^{p}, y, Z(G): x^{p^{2}}, y^{p} \in Z\left(G_{1}\right)>$, so $\frac{G_{1}}{Z\left(G_{1}\right)} \simeq C_{p} \times C_{p}$.
- $G_{1}=D_{1} \times A_{1}$, where D_{1} is an indecomposable p-group such that $\frac{D_{1}}{Z\left(D_{1}\right)} \simeq C_{p} \times C_{p}$ and A_{1} is a central abelian subgroup of G_{1}
- $r\left(Z\left(D_{1}\right)\right) \leqslant 3$

An upper bound of $r(\mathbf{Z}(\mathbf{G}))$

- $G_{1} \triangleleft G$

An upper bound of $r(\mathbf{Z}(\mathbf{G}))$

- $G_{1} \triangleleft G$
- $x^{p}=x_{d} a_{1}$ and $y=y_{d} a_{2}$ where

$$
x_{d}, y_{d} \in D_{1}=<x_{d}, y_{d}, Z(D): x_{d}^{p}, y_{d}^{p} \in Z(D)>\text { and } a_{1}, a_{2} \in A_{1}
$$

An upper bound of $\mathbf{r}(\mathbf{Z}(\mathbf{G}))$

- $G_{1} \triangleleft G$
- $x^{p}=x_{d} a_{1}$ and $y=y_{d} a_{2}$ where $x_{d}, y_{d} \in D_{1}=<x_{d}, y_{d}, Z(D): x_{d}^{p}, y_{d}^{p} \in Z(D)>$ and $a_{1}, a_{2} \in A_{1}$.
- $y \longrightarrow y a_{2}^{-1}$ in G, we have $y a_{2}^{-1}=y_{d} \in D_{1}$

An upper bound of $r(\mathbf{Z}(\mathbf{G}))$

- $G_{1} \triangleleft G$
- $x^{p}=x_{d} a_{1}$ and $y=y_{d} a_{2}$ where $x_{d}, y_{d} \in D_{1}=<x_{d}, y_{d}, Z(D): x_{d}^{p}, y_{d}^{p} \in Z(D)>$ and $a_{1}, a_{2} \in A_{1}$.
- $y \longrightarrow y a_{2}^{-1}$ in G, we have $y a_{2}^{-1}=y_{d} \in D_{1}$
- As $x^{p}=x_{d} a_{1}, a_{1} \in A_{1}, x_{d} \in D_{1}$. Let's analyze two cases:

An upper bound of $\mathbf{r}(\mathbf{Z}(\mathbf{G}))$

- $G_{1} \triangleleft G$
- $x^{p}=x_{d} a_{1}$ and $y=y_{d} a_{2}$ where $x_{d}, y_{d} \in D_{1}=<x_{d}, y_{d}, Z(D): x_{d}^{p}, y_{d}^{p} \in Z(D)>$ and $a_{1}, a_{2} \in A_{1}$.
- $y \longrightarrow y a_{2}^{-1}$ in G, we have $y a_{2}^{-1}=y_{d} \in D_{1}$
- As $x^{p}=x_{d} a_{1}, a_{1} \in A_{1}, x_{d} \in D_{1}$. Let's analyze two cases:

Case 1: $\exists \widetilde{a} \in G$ such that $\widetilde{a}^{p}=a_{1}$.

An upper bound of $\mathbf{r}(\mathbf{Z}(\mathbf{G}))$

- $G_{1} \triangleleft G$
- $x^{p}=x_{d} a_{1}$ and $y=y_{d} a_{2}$ where
$x_{d}, y_{d} \in D_{1}=<x_{d}, y_{d}, Z(D): x_{d}^{p}, y_{d}^{p} \in Z(D)>$ and $a_{1}, a_{2} \in A_{1}$.
- $y \longrightarrow y a_{2}^{-1}$ in G, we have $y a_{2}^{-1}=y_{d} \in D_{1}$
- As $x^{p}=x_{d} a_{1}, a_{1} \in A_{1}, x_{d} \in D_{1}$. Let's analyze two cases:

Case 1: $\exists \widetilde{a} \in G$ such that $\widetilde{a}^{p}=a_{1}$.
Case $2: \nexists \widetilde{a} \in G$ such that $\widetilde{a}^{p}=a_{1}$.

Case 1

- Auxiliary Result: $\left[Z\left(G_{1}\right): Z(G)\right]=p$

Case 1

- Auxiliary Result: $\left[Z\left(G_{1}\right): Z(G)\right]=p$
- we need to include the contribution of $G^{\prime} \simeq C_{p^{2}}$. We have two possibilities:

Case 1

- Auxiliary Result: $\left[Z\left(G_{1}\right): Z(G)\right]=p$
- we need to include the contribution of $G^{\prime} \simeq C_{p^{2}}$. We have two possibilities:
- First Possibility: $G^{\prime} \not \equiv D_{1}$. As $G^{\prime} \simeq C_{p^{2}}, \exists C_{p^{\alpha_{1}}} \leqslant A_{1}$ such that $G^{\prime} \leqslant C_{p^{\alpha_{1}}} \times Z\left(D_{1}\right)$. In this case

$$
r(Z(G)) \leqslant r\left(Z\left(D_{1}\right)\right)+1 \leqslant 3+1 \leqslant 5
$$

Case 1

- Auxiliary Result: $\left[Z\left(G_{1}\right): Z(G)\right]=p$
- we need to include the contribution of $G^{\prime} \simeq C_{p^{2}}$. We have two possibilities:
- First Possibility: $G^{\prime} \not \equiv D_{1}$. As $G^{\prime} \simeq C_{p^{2}}, \exists C_{p^{\alpha_{1}}} \leqslant A_{1}$ such that $G^{\prime} \leqslant C_{p^{\alpha_{1}}} \times Z\left(D_{1}\right)$. In this case

$$
r(Z(G)) \leqslant r\left(Z\left(D_{1}\right)\right)+1 \leqslant 3+1 \leqslant 5
$$

- Second Possibility: $G^{\prime} \leqslant D_{1}$. Then $r(Z(G)) \leqslant r\left(Z\left(D_{1}\right)\right) \leqslant 3 \leqslant 5$.

Case 2

- $a_{1} \in A_{1} \leqslant Z\left(G_{1}\right)$

Case 2

- $a_{1} \in A_{1} \leqslant Z\left(G_{1}\right)$
- $a_{1}=\widetilde{a_{1}} \widetilde{a_{2}} \ldots \widetilde{a}_{r}, \widetilde{a}_{i} \in<a_{i}>\simeq C_{p^{\alpha_{i}}}$

Case 2

- $a_{1} \in A_{1} \leqslant Z\left(G_{1}\right)$
- $a_{1}=\widetilde{a_{1}} \widetilde{a_{2}} \ldots \widetilde{a}_{r}, \widetilde{a}_{i} \in<a_{i}>\simeq C_{p^{\alpha_{i}}}$
- $\exists \widetilde{a_{i}} \in A_{1}$ such that $<\widetilde{a}_{i}>\simeq C_{p^{\alpha_{i}}}$ for some $i, 1 \leqslant i \leqslant r$.

Case 2

- $a_{1} \in A_{1} \leqslant Z\left(G_{1}\right)$
- $a_{1}=\widetilde{a_{1}} \widetilde{a_{2}} \ldots \widetilde{a_{r}}, \widetilde{a_{i}} \in<a_{i}>\simeq C_{p^{\alpha_{i}}}$
- $\exists \widetilde{a_{i}} \in A_{1}$ such that $<\widetilde{a}_{i}>\simeq C_{p^{\alpha_{i}}}$ for some $i, 1 \leqslant i \leqslant r$.
- Define $\widetilde{A}=\left\{\widetilde{a}_{i}:<\widetilde{a}_{i}>\simeq C_{p^{\alpha_{i}}}, 1 \leqslant i \leqslant r\right\}$ and take $\prod_{\widetilde{a}_{i} \in \widetilde{A}} \widetilde{a}_{i}$.

Case 2

- $a_{1} \in A_{1} \leqslant Z\left(G_{1}\right)$
- $a_{1}=\widetilde{a_{1}} \widetilde{a_{2}} \ldots \widetilde{a_{r}}, \widetilde{a_{i}} \in<a_{i}>\simeq C_{p^{\alpha_{i}}}$
- $\exists \widetilde{a_{i}} \in A_{1}$ such that $<\widetilde{a}_{i}>\simeq C_{p^{\alpha_{i}}}$ for some $i, 1 \leqslant i \leqslant r$.
- Define $\widetilde{A}=\left\{\widetilde{a}_{i}:<\widetilde{a}_{i}>\simeq C_{p^{\alpha_{i}}}, 1 \leqslant i \leqslant r\right\}$ and take $\prod_{\widetilde{a}_{i} \in \widetilde{A}} \widetilde{a}_{i}$.
$0<\prod_{\widetilde{a}_{i} \in \widetilde{A}} \widetilde{a}_{i}>\simeq C_{p^{\beta}}$, with $\beta=\max \left\{\alpha_{i}:<\widetilde{a}_{i}>\simeq C_{p^{\alpha_{i}}}, \widetilde{a}_{i} \in \widetilde{A}\right\}$.

Case 2

- Let $\widetilde{\tilde{A}}=\left(\left\{\widetilde{a}_{1}, \widetilde{a_{2}}, \ldots, \widetilde{a}_{r}\right\}-\widetilde{A}\right)$.

Case 2

- Let $\widetilde{\widetilde{A}}=\left(\left\{\widetilde{a_{1}}, \widetilde{a_{2}}, \ldots, \widetilde{a}_{r}\right\}-\widetilde{A}\right)$.
- Then $\forall \widetilde{a}_{i} \in \widetilde{\widetilde{A}}, \exists \widetilde{\widetilde{a}}_{i} \in Z(G)$ such that $\left(\widetilde{\widetilde{a}}_{i}\right)^{p}=a^{\star} \in A_{1}$, falling in case 1.

Case 2

- Let $\widetilde{\widetilde{A}}=\left(\left\{\widetilde{a_{1}}, \widetilde{a_{2}}, \ldots, \widetilde{a}_{r}\right\}-\widetilde{A}\right)$.
- Then $\forall \widetilde{a}_{i} \in \widetilde{\widetilde{A}}, \exists \widetilde{\widetilde{a}}_{i} \in Z(G)$ such that $\left(\widetilde{\widetilde{a}}_{i}\right)^{p}=a^{\star} \in A_{1}$, falling in case 1.
- Replacing $x \longrightarrow x \prod_{\widetilde{\tilde{a}}_{i} \in \widetilde{\tilde{A}}^{2}} \widetilde{\widetilde{a}}^{-1}$

Case 2

- Let $\widetilde{\widetilde{A}}=\left(\left\{\widetilde{a_{1}}, \widetilde{a_{2}}, \ldots, \widetilde{a_{r}}\right\}-\widetilde{A}\right)$.
- Then $\forall \widetilde{a}_{i} \in \widetilde{\widetilde{A}}, \exists \widetilde{\widetilde{a}}_{i} \in Z(G)$ such that $\left(\widetilde{\widetilde{a}}_{i}\right)^{p}=a^{\star} \in A_{1}$, falling in case 1.
- Replacing $x \longrightarrow x \prod_{\widetilde{\tilde{a}}_{i} \in \widetilde{\tilde{A}}^{2}} \tilde{\widetilde{a}}^{-1}$
- $x^{p}=x_{d}\left(\prod_{\widetilde{a}_{i} \in \widetilde{A}} \widetilde{a}_{i}\right),<\prod_{\widetilde{a}_{i} \in \widetilde{A}}>\simeq C_{p^{\beta}} \Rightarrow x^{p} \in D_{1} \times C_{p^{\beta}}, \beta \geqslant 1$

Case 2

- Let $\widetilde{\widetilde{A}}=\left(\left\{\widetilde{a_{1}}, \widetilde{a_{2}}, \ldots, \widetilde{a_{r}}\right\}-\widetilde{A}\right)$.
- Then $\forall \widetilde{a}_{i} \in \widetilde{\widetilde{A}}, \exists \widetilde{\widetilde{a}}_{i} \in Z(G)$ such that $\left(\widetilde{\widetilde{a}}_{i}\right)^{p}=a^{\star} \in A_{1}$, falling in case 1.
- Replacing $x \longrightarrow x \prod_{\widetilde{\widetilde{a}}_{i} \in \widetilde{\widetilde{A}}^{2}} \widetilde{\widetilde{a}}_{i}^{-1}$
- $x^{p}=x_{d}\left(\prod_{\widetilde{a}_{i} \in \widetilde{A}} \widetilde{a}_{i}\right),<\prod_{\widetilde{a}_{i} \in \widetilde{A}}>\simeq C_{p^{\beta}} \Rightarrow x^{p} \in D_{1} \times C_{p^{\beta}}, \beta \geqslant 1$
$0<x^{p^{2}}>,<y^{p^{2}}>, G^{\prime} \leqslant Z\left(D_{1}\right) \times C_{p^{\beta}} \times C_{p^{\gamma}}$

Case 2

- Let $\widetilde{\widetilde{A}}=\left(\left\{\widetilde{a_{1}}, \widetilde{a_{2}}, \ldots, \widetilde{a_{r}}\right\}-\widetilde{A}\right)$.
- Then $\forall \widetilde{a}_{i} \in \widetilde{\widetilde{A}}, \exists \widetilde{\widetilde{a}}_{i} \in Z(G)$ such that $\left(\widetilde{\widetilde{a}}_{i}\right)^{p}=a^{\star} \in A_{1}$, falling in case 1.
- Replacing $x \longrightarrow x \prod_{\widetilde{\widetilde{a}}_{i} \in \widetilde{\widetilde{A}}^{2}} \widetilde{\widetilde{a}}_{i}^{-1}$
- $x^{p}=x_{d}\left(\prod_{\widetilde{a}_{i} \in \widetilde{A}} \widetilde{a}_{i}\right),<\prod_{\widetilde{a}_{i} \in \widetilde{A}}>\simeq C_{p^{\beta}} \Rightarrow x^{p} \in D_{1} \times C_{p^{\beta}}, \beta \geqslant 1$
- $<x^{p^{2}}>,<y^{p^{2}}>, G^{\prime} \leqslant Z\left(D_{1}\right) \times C_{p^{\beta}} \times C_{p^{\gamma}}$
- $r(Z(G)) \leqslant r\left(Z\left(D_{1}\right)\right)+1+1 \leqslant 3+1+1=5$

Example that upper limit is reached

$$
\begin{aligned}
G & =<x, y, Z(G): x^{p^{2}}, y^{p^{2}} \in Z(G)>, \text { where } \\
\bullet & x^{p^{4}}=y^{p^{4}}=1, a^{p^{3}}=b^{p}=e^{p^{3}}=1 . \\
\bullet & {[x, y]=z, z=a^{p} b, x^{p^{2}}=c^{p} d, y^{p^{2}}=e^{p} d } \\
\bullet & {\left[x^{p}, y\right]=\left[x, y^{p}\right]=z^{p} } \\
\bullet & {\left[x^{p^{2}}, y\right]=\left[x, y^{p^{2}}\right]=\left[x^{p}, y^{p}\right]=1 } \\
\bullet & {[a, b]=[a, c][a, d]=[a, e]=[b, c]=[b, d]=[b, e]=[c, d]=} \\
& {[c, e]=[d, e]=1 } \\
\bullet & {[a, x]=[a, y]=[b, x]=[b, y]=[c, x]=[c, y]=[d, x]=[d, y]=} \\
& {[e, x]=[e, y]=1 }
\end{aligned}
$$

Example that upper limit is reached

$$
\begin{array}{rlllllllll}
Z(G) & \simeq & C_{p^{3}} & \times & C_{p} & \times & C_{p^{3}} & \times & C_{p} & \times
\end{array} C_{p^{3}}
$$

- $<a^{p} b>=G^{\prime},<x^{p^{2}}>=<c^{p} d>$ and $<y^{p^{2}}>=<e^{p} d>$

Example that upper limit is reached

$$
\begin{array}{rccccccccc}
Z(G) \simeq & C_{p^{3}} & \times & C_{p} & \times & C_{p^{3}} & \times & C_{p} & \times & C_{p^{3}} \\
\| & & \| & & \| & & \| & & \| \\
& <a> & & & & <c> & & <d> & & <d
\end{array}
$$

- $\left\langle a^{p} b\right\rangle=G^{\prime},\left\langle x^{p^{2}}\right\rangle=<c^{p} d>$ and $\left.<y^{p^{2}}\right\rangle=<e^{p} d>$
- $|G|=p^{15},|Z(G)|=p^{11}$

The Simple Components of QG

Degree of Simple Components

Let G a finite p-group. If $G=\left\langle x_{1}, x_{2}, Z(G): x_{1}^{p^{2}}, x_{2}^{p^{2}} \in Z(G)\right\rangle$ then $\left\{1, p, p^{2}\right\}$ are exactly the set of the degrees of the absolutely irreducible representation coming from the primitive central indempotents of $Q G_{i}=Q\left(G /\left\langle z_{i}\right\rangle\right), i=1,2$, where $C_{p^{2}} \simeq G^{\prime}=\left\langle z_{2}\right\rangle \geqslant\left\langle z_{1}\right\rangle \geqslant\left\langle z_{0}\right\rangle=\{1\}$, $\left\langle z_{i}\right\rangle \simeq C_{p^{i}}$.

The Simple Components of QG

- $\hat{z}_{i}\left(1-\widehat{z_{i+1}}\right)=\underset{s=1}{\oplus} \widehat{K_{s}}\left(1-\widehat{z_{i+1}}\right)$,

The Simple Components of QG

- $\hat{z}_{i}\left(1-\widehat{z_{i+1}}\right)=\underset{s=1}{b} \widehat{K_{s}}\left(1-\widehat{z_{i+1}}\right)$,
- $e_{s}=\widehat{K_{s}}\left(1-\widehat{z_{i+1}}\right)$ is a primitive central idempotent of $Q G\left(\widehat{z_{i}}\left(1-\widehat{z_{i+1}}\right)\right.$

The Simple Components of QG

- $\hat{z}_{i}\left(1-\widehat{z_{i+1}}\right)=\underset{s=1}{b} \widehat{K_{s}}\left(1-\widehat{z_{i+1}}\right)$,
- $e_{s}=\widehat{K_{s}}\left(1-\widehat{z_{i+1}}\right)$ is a primitive central idempotent of $Q G\left(\widehat{z_{i}}\left(1-\widehat{z_{i+1}}\right)\right.$
- (1) $Q G_{i}\left(\left(1-\widehat{z_{i+1}}\right) \simeq \underset{s=1}{b} Q\left(G_{i} / K_{s}\right)\left(1-\widehat{z_{i+1}}\right)=\sum_{s=1}^{b} M_{t_{s} \times t_{s}}\left(F_{s}\right)\right.$

The Simple Components of QG

- $\hat{z}_{i}\left(1-\widehat{z_{i+1}}\right)=\underset{s=1}{b} \widehat{K_{s}}\left(1-\widehat{z_{i+1}}\right)$,
- $e_{s}=\widehat{K_{s}}\left(1-\widehat{z_{i+1}}\right)$ is a primitive central idempotent of $Q G\left(\widehat{z_{i}}\left(1-\widehat{z_{i+1}}\right)\right.$
- (1) $Q G_{i}\left(\left(1-\widehat{z_{i+1}}\right) \simeq \underset{s=1}{b} Q\left(G_{i} / K_{s}\right)\left(1-\widehat{z_{i+1}}\right)=\sum_{s=1}^{b} M_{t_{s} \times t_{s}}\left(F_{s}\right)\right.$
-(2) $Z\left(G_{i}\right) \simeq C_{p^{\beta_{i}}} \times K_{s}$

The Simple Components of QG

- $\hat{z}_{i}\left(1-\widehat{z_{i+1}}\right)=\underset{s=1}{\oplus} \widehat{K_{s}}\left(1-\widehat{z_{i+1}}\right)$,
- $e_{s}=\widehat{K_{s}}\left(1-\widehat{z_{i+1}}\right)$ is a primitive central idempotent of $Q G\left(\widehat{z_{i}}\left(1-\widehat{z_{i+1}}\right)\right.$
- (1) $Q G_{i}\left(\left(1-\widehat{\bar{z}_{i+1}}\right) \simeq \underset{s=1}{b} Q\left(G_{i} / K_{s}\right)\left(1-\widehat{\bar{z}_{i+1}}\right)=\sum_{s=1}^{b} M_{t_{s} \times t_{s}}\left(F_{s}\right)\right.$
-(2) $Z\left(G_{i}\right) \simeq C_{p^{\beta_{i}}} \times K_{s}$
- $G_{i}^{\prime} \leqslant C_{p^{\beta_{i}}}, G_{i} \cap \overline{K_{s}}=\{1\}$

The Simple Components of QG

- $\hat{z}_{i}\left(1-\widehat{z_{i+1}}\right)=\underset{s=1}{\oplus} \widehat{K_{s}}\left(1-\widehat{z_{i+1}}\right)$,
- $e_{s}=\widehat{K_{s}}\left(1-\widehat{z_{i+1}}\right)$ is a primitive central idempotent of $Q G\left(\widehat{z_{i}}\left(1-\widehat{z_{i+1}}\right)\right.$
- (1) $Q G_{i}\left(\left(1-\widehat{\bar{z}_{i+1}}\right) \simeq \underset{s=1}{b} Q\left(G_{i} / K_{s}\right)\left(1-\widehat{\bar{z}_{i+1}}\right)=\sum_{s=1}^{b} M_{t_{s} \times t_{s}}\left(F_{s}\right)\right.$
-(2) $Z\left(G_{i}\right) \simeq C_{p^{\beta_{i}}} \times K_{s}$
- $G_{i}^{\prime} \leqslant C_{p^{\beta_{i}}}, G_{i} \cap \overline{K_{s}}=\{1\}$
- Using (1), (2) and calculating the dimension

The Simple Components of QG

- $\hat{z}_{i}\left(1-\widehat{z_{i+1}}\right)=\underset{s=1}{\oplus} \widehat{K_{s}}\left(1-\widehat{z_{i+1}}\right)$,
- $e_{s}=\widehat{K_{s}}\left(1-\widehat{z_{i+1}}\right)$ is a primitive central idempotent of $Q G\left(\widehat{z_{i}}\left(1-\widehat{z_{i+1}}\right)\right.$
- (1) $Q G_{i}\left(\left(1-\widehat{\bar{z}_{i+1}}\right) \simeq \underset{s=1}{b} Q\left(G_{i} / K_{s}\right)\left(1-\widehat{\bar{z}_{i+1}}\right)=\sum_{s=1}^{b} M_{t_{s} \times t_{s}}\left(F_{s}\right)\right.$
- (2) $Z\left(G_{i}\right) \simeq C_{p^{\beta_{i}}} \times K_{s}$
- $G_{i}^{\prime} \leqslant C_{p^{\beta_{i}}}, G_{i} \cap \overline{K_{s}}=\{1\}$
- Using (1), (2) and calculating the dimension
- The degrees of the absolutely irreducible representations are $1, p, p^{2}$

The Simple Components of QG

Center of Simple Components

The center of the irreducible components of $Q G\left(1-\hat{G}^{\prime}\right)$ are isomorphic to $Q Z(G / K)$ where K is the kernel of the irreducible representation $G \rightarrow G e$ and e is a primitive central idempotent of $Q G\left(1-\hat{G}^{\prime}\right)$.

The Simple Components of QG

- $c l(G)=2$

The Simple Components of QG

- $c l(G)=2$
- $e=\sum_{g \in G}(\xi(K, \tilde{Z}))^{g}=\prod_{\bar{M} \in \mathcal{M}(\tilde{Z} / K)} \widehat{K}(1-\widehat{\bar{M}})$

The Simple Components of QG

- $c l(G)=2$
- $e=\sum_{g \in G}(\xi(K, \tilde{Z}))^{g}=\prod_{\bar{M} \in \mathcal{M}(\tilde{Z} / K)} \widehat{K}(1-\widehat{\bar{M}})$
- K is the Kernel of irreducible representation given by $G \rightarrow G e$

The Simple Components of QG

- $c l(G)=2$
- $e=\sum_{g \in G}(\xi(K, \tilde{Z}))^{g}=\prod_{\bar{M} \in \mathcal{M}(\tilde{Z} / K)} \widehat{K}(1-\widehat{\bar{M}})$
- K is the Kernel of irreducible representation given by $G \rightarrow G e$
- and $\widetilde{Z} / K=C_{G / K}\left(Z_{2}(G / K)\right)=Z(G / K)$.

The Simple Components of QG

- $c l(G)=2$
- $e=\sum_{g \in G}(\xi(K, \tilde{Z}))^{g}=\prod_{\bar{M} \in \mathcal{M}(\tilde{Z} / K)} \widehat{K}(1-\widehat{\bar{M}})$
- K is the Kernel of irreducible representation given by $G \rightarrow G e$
- and $\widetilde{Z} / K=C_{G / K}\left(Z_{2}(G / K)\right)=Z(G / K)$.
- The primitive central idempotent of $Q G\left(1-\widehat{G^{\prime}}\right)$

The Simple Components of QG

- $c l(G)=2$
- $e=\sum_{g \in G}(\xi(K, \tilde{Z}))^{g}=\prod_{\bar{M} \in \mathcal{M}(\tilde{Z} / K)} \widehat{K}(1-\widehat{\bar{M}})$
- K is the Kernel of irreducible representation given by $G \rightarrow G e$
- and $\widetilde{Z} / K=C_{G / K}\left(Z_{2}(G / K)\right)=Z(G / K)$.
- The primitive central idempotent of $Q G\left(1-\widehat{G^{\prime}}\right)$
- $e=\widehat{K}(1-\widehat{z})$, where $o(\bar{z})=p,\langle\bar{z}\rangle \leq \tilde{Z} / K$ and $<\bar{z}>\leq\left(G^{\prime} K\right) / K \simeq G^{\prime} /\left(G^{\prime} \cap K\right)$.

The Simple Components of QG

$$
\text { - } \begin{aligned}
& \underset{i=1}{\oplus} Z\left(Q G\left(1-\widehat{G^{\prime}}\right)\right)=Z\left(M _ { i = 1 } ^ { \oplus } Q G \widehat { K } _ { i } \left(1-\hat{z}_{i}\right.\right. \\
&\left.\left.\stackrel{s}{z_{i}}\right)\right)\left.\simeq\left(\rho^{\beta}\right)\right)
\end{aligned}
$$

The Simple Components of QG

- $Z\left(Q G\left(1-\widehat{G^{\prime}}\right)\right)=Z\left(\stackrel{\oplus}{i=1}_{s} Q G \widehat{K}_{i}\left(1-\hat{\bar{z}}_{i}\right)\right) \simeq{ }_{i=1}^{s} Z\left(Q\left(G / K_{i}\right)\left(1-\hat{\bar{z}}_{i}\right)\right) \simeq$ ${ }_{i=1}^{S} Z\left(M_{t_{i}+t_{i}}\left(Q\left(\rho^{\beta}\right)\right)\right.$
- $Q\left(\rho^{\beta}\right) \simeq Q Z\left(G / K_{i}\right)$

Necessary and Sufficient condictions to $\mathbf{Q G} \simeq \mathbf{Q H}$

Necessary Condictions

If $Q G=Q H$ then $G^{\prime}=H^{\prime} \simeq C_{p^{2}},|Z(G)|=|Z(H)|$ and
$G / Z(G) \simeq H / Z(H) \simeq C_{p^{2}} \times C_{p^{2}}$, in particular $c l(H)=2$.
Moreover we have:
(i) $\exp (Z(G))=\exp (Z(H))$,
(ii) $\exp \left(Z\left(G /<z_{1}>\right)\right)=\exp \left(Z\left(H /<h_{1}>\right)\right)$, where $<z_{1}>=O_{p}\left(G^{\prime}\right)$
and $\left\langle h_{1}\right\rangle=O_{p}\left(H^{\prime}\right)$.

Necessary and Sufficient condictions to $\mathbf{Q G} \simeq \mathbf{Q H}$

- Split the demonstration in two cases:

Necessary and Sufficient condictions to $\mathbf{Q G} \simeq \mathbf{Q H}$

- Split the demonstration in two cases:
- Case $1: C l(H)=2$
- Direct application of the Theorem 1 (Gonçalves and Pereira)

Necessary and Sufficient condictions to $\mathbf{Q G} \simeq \mathbf{Q H}$

- Split the demonstration in two cases:
- Case $1: C l(H)=2$
- Direct application of the Theorem 1 (Gonçalves and Pereira)

Theorem 1
Let G and H be p-groups of nilpotent class 2. If $Q G=Q H$, then:
(1) $G^{\prime}=H^{\prime}$;
(2) $|Z(G)|=|Z(H)|$;
(3) The biggest central cyclic components of $Z(G)$ and $Z(H)$ are isomorphic.

Necessary and Sufficient condictions to $\mathbf{Q G} \simeq \mathbf{Q H}$

- Case $2: C l(H) \geq 3$

Necessary and Sufficient condictions to $\mathbf{Q G} \simeq \mathbf{Q H}$

- Case $2: C l(H) \geq 3$
- $H^{\prime \prime}=\left[H, H^{\prime}\right]=<h_{1}>=H^{\prime} \cap Z(H)$

Necessary and Sufficient condictions to $\mathbf{Q G} \simeq \mathbf{Q H}$

- Case $2: C l(H) \geq 3$
- $H^{\prime \prime}=\left[H, H^{\prime}\right]=<h_{1}>=H^{\prime} \cap Z(H)$
- $\bar{H}=H / Z(H)$ is a nilpotency class 2 p-group, having a cyclic commutator group $\overline{H^{\prime}}=\bar{H}^{\prime}$ of order p.

Necessary and Sufficient condictions to $\mathbf{Q G} \simeq \mathbf{Q H}$

- Case $2: C l(H) \geq 3$
- $H^{\prime \prime}=\left[H, H^{\prime}\right]=<h_{1}>=H^{\prime} \cap Z(H)$
- $\bar{H}=H / Z(H)$ is a nilpotency class 2 p-group, having a cyclic commutator group $\overline{H^{\prime}}=\bar{H}^{\prime}$ of order p.
- $\bar{H}=H / Z(H)$ is a capable class 2 p-group having a cyclic commutator subgroup of order p. By Theorem A of Yadav

Necessary and Sufficient condictions to $\mathbf{Q G} \simeq \mathbf{Q H}$

- Case $2: C l(H) \geq 3$
- $H^{\prime \prime}=\left[H, H^{\prime}\right]=<h_{1}>=H^{\prime} \cap Z(H)$
- $\bar{H}=H / Z(H)$ is a nilpotency class 2 p-group, having a cyclic commutator group $\overline{H^{\prime}}=\bar{H}^{\prime}$ of order p.
- $\bar{H}=H / Z(H)$ is a capable class 2 p-group having a cyclic commutator subgroup of order p. By Theorem A of Yadav

Theorem A

Let G be a finite capable p-group of nilpotency class 2 with cyclic comutator subgroup G^{\prime}. Then $G / Z(G)$ is generated by 2 elements and $|G / Z(G)|=\left|G^{\prime}\right|^{2}$.

Necessary and Sufficient condictions to $\mathbf{Q G} \simeq \mathbf{Q H}$

- $H / Z_{2}(H) \simeq \frac{\bar{H}}{Z(\bar{H})} \simeq C_{p} \times C_{p}$, giving $\frac{H}{Z_{2}(H)} \simeq C_{p} \times C_{p}$

Necessary and Sufficient condictions to $\mathbf{Q G} \simeq \mathbf{Q H}$

- $H / Z_{2}(H) \simeq \frac{\bar{H}}{Z(\bar{H})} \simeq C_{p} \times C_{p}$, giving $\frac{H}{Z_{2}(H)} \simeq C_{p} \times C_{p}$
- the degree of the absolutely irreducible representations of $Q G=Q H$ are $1, p$ or p^{2}, where the degree p^{2} appear in $Q H\left(1-\widehat{h_{1}}\right)$

Necessary and Sufficient condictions to $\mathbf{Q G} \simeq \mathbf{Q H}$

- $H / Z_{2}(H) \simeq \frac{\bar{H}}{Z(\bar{H})} \simeq C_{p} \times C_{p}$, giving $\frac{H}{Z_{2}(H)} \simeq C_{p} \times C_{p}$
- the degree of the absolutely irreducible representations of $Q G=Q H$ are $1, p$ or p^{2}, where the degree p^{2} appear in $Q H\left(1-\widehat{h_{1}}\right)$
- The degree p appearing in $Q G \widehat{z_{1}}\left(1-\widehat{G^{\prime}}\right)$ and p^{2} in $Q G\left(1-\widehat{z_{1}}\right)$

Necessary and Sufficient condictions to $\mathbf{Q G} \simeq \mathbf{Q H}$

- $H / Z_{2}(H) \simeq \frac{\bar{H}}{Z(\bar{H})} \simeq C_{p} \times C_{p}$, giving $\frac{H}{Z_{2}(H)} \simeq C_{p} \times C_{p}$
- the degree of the absolutely irreducible representations of $Q G=Q H$ are $1, p$ or p^{2}, where the degree p^{2} appear in $Q H\left(1-\widehat{h_{1}}\right)$
- The degree p appearing in $Q G \widehat{z_{1}}\left(1-\widehat{G^{\prime}}\right)$ and p^{2} in $Q G\left(1-\widehat{z_{1}}\right)$
- $Q G \widehat{z_{1}}\left(1-\widehat{G^{\prime}}\right)=Q H \widehat{h_{1}}\left(1-\widehat{H^{\prime}}\right)$ and $Q G\left(1-\widehat{z_{1}}\right)=Q H\left(1-\widehat{h_{1}}\right)$

Necessary and Sufficient condictions to $\mathbf{Q G} \simeq \mathbf{Q H}$

- $H / Z_{2}(H) \simeq \frac{\bar{H}}{Z(\bar{H})} \simeq C_{p} \times C_{p}$, giving $\frac{H}{Z_{2}(H)} \simeq C_{p} \times C_{p}$
- the degree of the absolutely irreducible representations of $Q G=Q H$ are $1, p$ or p^{2}, where the degree p^{2} appear in $Q H\left(1-\widehat{h_{1}}\right)$
- The degree p appearing in $Q G \widehat{z_{1}}\left(1-\widehat{G^{\prime}}\right)$ and p^{2} in $Q G\left(1-\widehat{z_{1}}\right)$
- $Q G \widehat{z_{1}}\left(1-\widehat{G^{\prime}}\right)=Q H \widehat{h_{1}}\left(1-\widehat{H^{\prime}}\right)$ and $Q G\left(1-\widehat{z_{1}}\right)=Q H\left(1-\widehat{h_{1}}\right)$
- $\widehat{z_{1}}=\widehat{h_{1}}$, and $Q\left(G /<z_{1}>\right) \simeq Q G \widehat{z_{1}}=Q H \widehat{h_{1}} \simeq Q\left(H /<h_{1}>\right)$

Necessary and Sufficient condictions to $\mathbf{Q G} \simeq \mathbf{Q H}$

- $H / Z_{2}(H) \simeq \frac{\bar{H}}{Z(\bar{H})} \simeq C_{p} \times C_{p}$, giving $\frac{H}{Z_{2}(H)} \simeq C_{p} \times C_{p}$
- the degree of the absolutely irreducible representations of $Q G=Q H$ are $1, p$ or p^{2}, where the degree p^{2} appear in $Q H\left(1-\widehat{h_{1}}\right)$
- The degree p appearing in $Q G \widehat{z_{1}}\left(1-\widehat{G^{\prime}}\right)$ and p^{2} in $Q G\left(1-\widehat{z_{1}}\right)$
- $Q G \widehat{z_{1}}\left(1-\widehat{G^{\prime}}\right)=Q H \widehat{h_{1}}\left(1-\widehat{H^{\prime}}\right)$ and $Q G\left(1-\widehat{z_{1}}\right)=Q H\left(1-\widehat{h_{1}}\right)$
- $\widehat{z_{1}}=\widehat{h_{1}}$, and $Q\left(G /<z_{1}>\right) \simeq Q G \widehat{z_{1}}=Q H \widehat{h_{1}} \simeq Q\left(H /<h_{1}>\right)$
- $<z_{1}>=<h_{1}>$ and $H^{\prime} \simeq G^{\prime}$.

Necessary and Sufficient condictions to $\mathbf{Q G} \simeq \mathbf{Q H}$

- $H / Z_{2}(H) \simeq \frac{\bar{H}}{Z(\bar{H})} \simeq C_{p} \times C_{p}$, giving $\frac{H}{Z_{2}(H)} \simeq C_{p} \times C_{p}$
- the degree of the absolutely irreducible representations of $Q G=Q H$ are $1, p$ or p^{2}, where the degree p^{2} appear in $Q H\left(1-\widehat{h_{1}}\right)$
- The degree p appearing in $Q G \widehat{z_{1}}\left(1-\widehat{G^{\prime}}\right)$ and p^{2} in $Q G\left(1-\widehat{z_{1}}\right)$
- $Q G \widehat{z_{1}}\left(1-\widehat{G^{\prime}}\right)=Q H \widehat{h_{1}}\left(1-\widehat{H^{\prime}}\right)$ and $Q G\left(1-\widehat{z_{1}}\right)=Q H\left(1-\widehat{h_{1}}\right)$
- $\widehat{z_{1}}=\widehat{h_{1}}$, and $Q\left(G /<z_{1}>\right) \simeq Q G \widehat{z_{1}}=Q H \widehat{h_{1}} \simeq Q\left(H /<h_{1}>\right)$
- $<z_{1}>=<h_{1}>$ and $H^{\prime} \simeq G^{\prime}$.
- force $c l(H)=2$, contradiction

Necessary and Sufficient condictions to $\mathbf{Q G} \simeq \mathbf{Q H}$

Sufficient Condictions

Let p be an odd prime and suppose G and Hare two p - groups of same order satisfying the following conditions:
(i) $G / Z(G) \simeq C_{p^{2}} \times C_{p^{2}} \simeq H / Z(H)$
(ii) $G / G^{\prime} \simeq H / H^{\prime}$
(iii) $\exp (Z(G))=\exp (Z(H))$
(iv) $\exp \left(Z\left(G /<z_{1}>\right)\right)=\exp \left(Z\left(H /<h_{1}>\right)\right)$

Then $Q G \simeq Q H$.

Necessary and Sufficient condictions to $\mathbf{Q G} \simeq \mathbf{Q H}$

- Remark In the case $p=2$, The above theorem remains true, if we add in condition (iii) the hypotesis $\exp (Z(G)) \geq 2^{3}$

Necessary and Sufficient condictions to $\mathbf{Q G} \simeq \mathbf{Q H}$

- Remark In the case $p=2$, The above theorem remains true, if we add in condition (iii) the hypotesis $\exp (Z(G)) \geq 2^{3}$
- two models of $2-$ groups that satisfy the hypotheses of previous theorem with $\exp (Z(G))=\exp (Z(H))=2^{2}$ but $Q G \not \equiv Q H$

Necessary and Sufficient condictions to $\mathbf{Q G} \simeq \mathbf{Q H}$

- Remark In the case $p=2$, The above theorem remains true, if we add in condition (iii) the hypotesis $\exp (Z(G)) \geq 2^{3}$
- two models of $2-$ groups that satisfy the hypotheses of previous theorem with $\exp (Z(G))=\exp (Z(H))=2^{2}$ but $Q G \not \equiv Q H$
- In the first appears $M_{2 \times 2}(Q)$ and in the second the Quaternion $\mathbb{H}(Q)$.

Necessary and Sufficient condictions to $\mathbf{Q G} \simeq \mathbf{Q H}$

- $\mathbf{G}_{\mathbf{1}}=<\mathbf{x}, \mathbf{y}, \mathbf{Z}\left(\mathbf{G}_{\mathbf{1}}\right): \mathbf{x}^{\mathbf{4}}, \mathbf{y}^{\mathbf{4}} \in \mathbf{Z}\left(\mathbf{G}_{\mathbf{1}}\right)>$, where $x^{8}=y^{8}=1,[x, y]=z$, $[x, z]=[y, z]=1, z^{4}=1, x^{4}=a, y^{4}=b$, $[a, x]=[a, y]=[b, x]=[b, y]=[a, z]=[b, z]=1$.

Necessary and Sufficient condictions to $\mathbf{Q G} \simeq \mathbf{Q H}$

- $\mathbf{G}_{\mathbf{1}}=<\mathbf{x}, \mathbf{y}, \mathbf{Z}\left(\mathbf{G}_{\mathbf{1}}\right): \mathbf{x}^{\mathbf{4}}, \mathbf{y}^{\mathbf{4}} \in \mathbf{Z}\left(\mathbf{G}_{\mathbf{1}}\right)>$, where $x^{8}=y^{8}=1,[x, y]=z$, $[x, z]=[y, z]=1, z^{4}=1, x^{4}=a, y^{4}=b$, $[a, x]=[a, y]=[b, x]=[b, y]=[a, z]=[b, z]=1$.
- $Z\left(G_{1}\right)=<z>\times<a>\times\simeq C_{4} \times C_{2} \times C_{2}$

Necessary and Sufficient condictions to $\mathbf{Q G} \simeq \mathbf{Q H}$

- $\mathbf{G}_{\mathbf{2}}=<\mathbf{x}, \mathbf{y}, \mathbf{Z}\left(\mathbf{G}_{2}\right): \mathbf{x}^{\mathbf{4}}, \mathbf{y}^{\mathbf{4}} \in \mathbf{Z}\left(\mathbf{G}_{\mathbf{2}}\right)>$, where $x^{8}=y^{8}=1,[x, y]=z$, $[x, z]=[y, z]=1, z^{4}=1, x^{4}=a z^{2}, y^{4}=b z^{2}$, $[a, x]=[a, y]=[b, x]=[b, y]=[a, z]=[b, z]=1$.

Necessary and Sufficient condictions to $\mathbf{Q G} \simeq \mathbf{Q H}$

- $\mathbf{G}_{\mathbf{2}}=<\mathbf{x}, \mathbf{y}, \mathbf{Z}\left(\mathbf{G}_{2}\right): \mathbf{x}^{\mathbf{4}}, \mathbf{y}^{\mathbf{4}} \in \mathbf{Z}\left(\mathbf{G}_{\mathbf{2}}\right)>$, where $x^{8}=y^{8}=1,[x, y]=z$, $[x, z]=[y, z]=1, z^{4}=1, x^{4}=a z^{2}, y^{4}=b z^{2}$, $[a, x]=[a, y]=[b, x]=[b, y]=[a, z]=[b, z]=1$.
- $Z\left(G_{2}\right)=\langle z\rangle \times\langle a\rangle \times\langle b\rangle \simeq C_{4} \times C_{2} \times C_{2}$

Thank you

Thank You

