On the distribution of suitable totients

celebrating P. Ribenboim's 90th birthday - IME USP

A. Contiero (UFMG) & D. Lima (UFAL)

October 26, 2018

Introduction

Euler's totient function:

$$\phi(n) := |\{1 \le a \le n : mdc(a, n) = 1\}|$$

- ullet the elements in the image of ϕ are called totients;
- $\phi(\mathbb{N}) \subsetneq \{1\} \cup \{\text{even numbers}\},$

$$\mathcal{V} := \phi(\mathbb{N}) = \{1, 2, 4, 6, 8, 10, 12, 16, 18, 20, 22, 26, \dots\}.$$

multiplicity:

$$A(m) := |\phi^{-1}(m)|$$

Examples:

- $\phi^{-1}(1) = \{1, 2\}, A(1) = 2;$
- $\phi^{-1}(14) = \emptyset = \phi^{-1}(90)$, A(14) = 0 = A(90);
- $A(4 \cdot 3^{66}) = 33;$

as usual:

given a subset $U \subseteq \mathbb{N}$, for any $1 < x \in \mathbb{R}$, set

$$U(x) := \{ n \in U \mid n \le x \} = U \cap [1, x]$$

Main classical questions:

- the order of $|\mathcal{V}(x)|$? (K. Ford theorem)
- What multiplicities are possible? (Sierpiński's Conjecture solved by K. Ford).
- Carmichael's conjecture: $\nexists m$ with A(m) = 1;
- Set $V_k := \{ m \in V ; A(m) = k \}$. What is the order of $|V_k(x)|$?
- $\lim_{x\to\infty} \frac{|\mathcal{V}_k(x)|}{|\mathcal{V}(x)|} = C_k$, for some constant C_k ?

Our own questions

totients are even numbers!

$$\forall n \exists k, \phi(n) \equiv 2^{k-1} \mod 2^k$$

simplest case: k = 2

Lemma A

Let r be an odd positive integer. It follows that $A(2r) \in \{0,2,4\}$. If A(2r) = 2, then $\phi^{-1}(2r) = \{p^n, 2p^n\}$, with p an odd prime, n > 0. If A(2r) = 4, then 2r + 1 is a prime number and $\phi^{-1}(2r) = \{2r + 1, q^m, 4r + 2, 2q^m\}$ with q a prime number and m > 1.

Lemma B

Given an integer number t > 0, let us consider the set

$$\mathcal{R}_t := \{k \in \mathbb{N} : p^i \in \phi^{-1}(k) \text{ with } i \ge t+1, \ p \in \mathcal{P}, \ p > 2\} \subset \mathcal{V}.$$

We have

$$|\mathcal{R}_t(x)| = \mathrm{o}(\pi(\sqrt[t]{x})).$$

Proof.

For every $k \in \mathcal{R}_t(x)$ we can see that $q \leq \sqrt[t]{x/2}$ and $t \leq \lceil \log x / \log 3 \rceil$. Now, let us take the set $\mathcal{U}(x) := \{q^j \leq x; q \text{ is prime}\}$. We can see that $|\mathcal{R}_t(x)| \leq |\mathcal{U}(x)|$. Hence

$$|\mathcal{U}(x)| \leq \pi(\sqrt[t]{x}) + \sum_{i=t+1}^{\lceil \log x/\log 3 \rceil} \pi(\sqrt[t]{x}).$$

Now, by the Prime Number Theorem follows

$$\frac{\pi(\sqrt[t]{x})}{\sqrt[t]{x}} = O\left(\frac{t}{\sqrt[t(t+1)]{x}\log x}\right), \ \forall i > t.$$
 (1)

Hence we can write

$$\sum_{i=t+1}^{\lceil \log x/\log 3\rceil} \pi(\sqrt[i]{x}) = O\left(\sum_{i=t+1}^{\lceil \log x/\log 3\rceil} \frac{i}{\sqrt[t(t+1)]{x}\log x}\right) = O\left(\frac{\log x}{\sqrt[t(t+1)]{x}}\right).$$

Since
$$\pi(\sqrt[t]{x}) = o(\sqrt[t]{x})$$
, $|\mathcal{U}(x)| = o(\sqrt[t]{x})$. Finally $\lim_{x \to \infty} \frac{|\mathcal{R}_t(x)|}{\sqrt[t]{x}} = 0$.

On the distribution

Let us start by taking the following useful sets

$$T_k = \{2r; r \text{ odd and } A(2r) = k\} \quad (k = 0, 2, 4).$$

Table 1: The number of totients 2 mod $4 \le x$ with a fixed multiplicity

Х	$\pi(x)$	$ \mathcal{T}_2(x) $	$ \mathcal{T}_4(x) $	$ \mathcal{T}_2(x) /\pi(x)$
$10^3 + 2$	168	87	5	0.517857
$10^4 + 2$	1229	625	8	0.508543
$10^5 + 2$	9592	4831	14	0.503648
$10^6 + 2$	78498	39400	20	0.501923
$10^7 + 2$	664579	332606	34	0.500476
$10^8 + 2$	5761455	2881495	78	0.500133

Corollary

$$\lim_{x \to \infty} \frac{|\mathcal{T}_4(x)|}{\sqrt{x}} = 0.$$

Proof.

We just have to observe that $\mathcal{T}_4(x) \subset \mathcal{R}_2(x)$.

Proposition

Let l>1 be a positive integer. Let us consider $\mathcal{V}_k^l:=\mathcal{T}_t\cap\mathcal{V}_k$ be the set of totients with multiplicity k such that there is a power of a prime p^l in its inverse image by ϕ . With this

$$\lim_{x \to \infty} \frac{|\mathcal{V}_k^I(x)|}{|\mathcal{V}_k(x)|} = 0$$

Proof.

From Lemma A we get $|\mathcal{V}_k^l(x)| = o(\sqrt[l]{x})$. By the Prime Number Theorem we have $\sqrt[l]{x} = o(\pi(x))$. Now, a theorem of K. Ford implies that $\pi(x) = O(|\mathcal{V}_k(x)|)$. Hence $|\mathcal{V}_k^l(x)| = o(|\mathcal{V}_k(x)|)$.

Theorem

$$|\mathcal{T}_2(x)| = \frac{\pi(x)}{2} + O\left(\frac{1}{\log x}\right).$$

7

Proof.

$$\mathcal{T}_2'(x) = \{2r \in \mathcal{T}_2(x); \ 2r+1 \in \mathcal{P}\} \text{ and } \mathcal{T}_2^*(x) = \{2r \in \mathcal{T}_2(x); \ 2r+1 \notin \mathcal{P}\}.$$

$$\mathcal{T}_2(x) = \mathcal{T}_2'(x) \cup \mathcal{T}_2^*(x) \text{ and } \frac{|\mathcal{T}_2(x)|}{\pi(x)} = \frac{|\mathcal{T}_2'(x)|}{\pi(x)} + \frac{|\mathcal{T}_2^*(x)|}{\pi(x)}.$$

$$\liminf_{x\to\infty}\frac{|\mathcal{T}_2(x)|}{\pi(x)}=\liminf_{x\to\infty}\frac{|\mathcal{T}_2'(x)|}{\pi(x)}\text{ and }\limsup_{x\to\infty}\frac{|\mathcal{T}_2(x)|}{\pi(x)}=\limsup_{x\to\infty}\frac{|\mathcal{T}_2'(x)|}{\pi(x)}.$$

$${2r+1 \in \mathcal{P}(x+1;4,3)} = \mathcal{T}_2'(x) \cup {2r+1 \in \mathcal{P}(x+1;4,3); A(2r) = 4}.$$

By the Prime Number Theorem in Arithmetic Progression

$$\frac{1}{2} = \lim_{x \to \infty} \frac{\pi(x; 4, 3)}{\pi(x)} = \liminf_{x \to \infty} \frac{T_2'(x)}{\pi(x)} \le \limsup_{x \to \infty} \frac{T_2'(x)}{\pi(x)} = \lim_{x \to \infty} \frac{\pi(x; 4, 3)}{\pi(x)}.$$

Thus

$$|\mathcal{T}_2(x)| = \frac{\pi(x)}{2} + O\left(\frac{1}{\log x}\right).$$

Corollary

$$|\mathcal{T}_4(x)| = \mathrm{o}(|\mathcal{T}_2(x)|).$$

our preprint:

On the distribution of totients $2 \equiv \mod 4$, https://arxiv.org/pdf/1803.01396.pdf (2018).

you should read:

- R. D. Carmichael, Note on Euler's ϕ -function, *Bull. Amer. Math. Soc.*, 28 (1922)109110.
- P. Erdös and R.R.Hall, On the values of Eulers-function, Acta Arith.
 22 (1973)201-206.
- P. Erdös and C. Pomerance, On the normal number of prime factors of $\phi(n)$, Rocky Mountain J. of Math. 15 (1985) 343352.
- K. Ford, The distribution of totients, *The Ramanujan Journal*, 2 (1998)179.
- K. Ford, The number of solutions of $\phi(x) = m$, Annals of math., 159 (1999) 129.

The next case: k=3. Working in progress

Theorem

Let r be an odd interger, we have

$$\limsup_r \mathrm{A}(4r) = \infty$$

Table 2: density of totients $\equiv 2^2 \mod 2^3$

x - 4	$ \mathcal{T}_4(x) $	$ \mathcal{V}(x) $	$ \mathcal{T}_4(x) / \mathcal{V}(x) $
10 ⁶	54, 172	180, 184	0.300648
$5 \cdot 10^6$	250,824	840, 178	0.298536
10 ⁷	486, 400	1,634,372	0.297606
$25 \cdot 10^{6}$	1, 169, 810	3, 946, 810	0.296393
$125 \cdot 10^6$	5, 490, 855	18, 657, 532	0.294296
$3 \cdot 10^{8}$	12,763,093	43, 525, 579	0.293232
$5 \cdot 10^{8}$	20, 892, 814	71, 399, 659	0.292617

Corollary

For every $k \ge 2$ it follows

$$\limsup_{r} A(2^{k}r) = \infty$$

Conjecture (Strong Sierpiński Conjecture)

Every multiplicity bigger than 1 is realized by a totient $\equiv 4 \mod 8$.