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ü Steiner Ratio definition and some examples

Let M be a finite subset of a metric space (X, r).

Recall that 
smt(M) denotes the length of the shortest tree (of Steiner Minimal Tree) joining M,
mst(M) denotes the length of Minimal Spanning Tree (MST) for M.

Definition.
sr(M) = smt(M) / mst(M) is called the Steiner ratio for M 
  (it measures the precision of MST-approximation)

sr(X, r) = sr(X) = inf {sr(M) | M Õ X, M is finite} is the Steiner Ratio for (X, r) (it measures the worst precision over all
MST-approximations of SMTs for finite M Õ X)

Example. Let M be a regular triangle in 2, whose sides are of the length 1, then 

ü Steiner Ratio for n-points sets

srn(X, r) = inf { sr (M) | M Õ X , #M § n } is the Steiner ratio of order n. 

Clearly, sr(X, r) = inf  srn (X, r).

Besides that, sr2(X, r) = 1 if X consists of at least 2 points.

In 1990 Du and Hwang (Bell Labs., USA) announced a proof of Gilbert-Pollak Conjecture. However, it turns out that their
proof has serious gaps.

Theorem (Gilbert, Pollak).The following equality holds :

sr3 2 
3

2
.

Proof.The Steiner ratio of a triangle with an angle of at most 120 ° equals 1 because in this case SMT = MST.

Consider a triangle whose angles are less than 120 °.
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ü Basic Properties of Steiner ratio

Observation (E.F.Moore). For any metric space (X, r) we have 1

2
 § sr (X, r) § 1.

Proof. Since smt(M) § mst(M), then  sr(X, r) = inf 
smtM 
mstM   § 1. 

Now, let G be an arbitraty tree in X joining M. Let us draw G in the plane as a planar tree G',  consider a tour around G', and
corresponding "polygonal line" L.

We pass each edge twice, thus 2 r(G) ¥ r(L) ¥ mst(M), therefore 
r G

mstM   ¥ 1

2
. This holds for any G, and smt(M) = inf r(G),

thus sr(M) ¥ 1

2
. 

Observation. For any real number 1

2
 § a § 1 there exists a metric space (X, r) such that sr (X, r) = a. Moreover, for any 1

2
  <

a  § 1 the set X can be chosen finite, but for a = 
1

2
 can not. 

Exercise. Prove the Observation. 

Definition. A metric space (X, r) is called ultrametric if for any x, y, and z from X we have r (x, z) § max {r (x, y), r (y,
z)}.

Observation. Let (X, r) be an ultrametric space. Then sr (X, r) = 1.

A = {a1, … , an} is a finite set of letters called alphabet,  A*is the set of all possible words constructed in alphabet A

For x and y from A* let r (x, y) be the minimal number of editorial operations (deletions, insertions, and substitutions)
necessary for passing from x to y.The function r is Levenshtein distance. 

The metric space (A*, r) is called phylogenetic space. 

Observation. For any phylogenetic space (X, r) we have sr (X, r) = 
1

2
.

ü General properties of Steiner ratio

è Isometric spaces have equal Steiner ratios

è If (Y, r) is a subspace in (X, r), then sr (Y, r) ¥ sr (X, r)
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Let r1 and r2 be two metrics on a set X, and suppose that there exist constants c1 and c2 such that for any x and y from X we have c1 r2 
(x, y) § r1 (x, y) § c2 r2 (x, y). Then

c1

c2

sr X , 2  sr X , 1 
c2

c1

sr X , 2.
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ü Steiner ratios of surfaces 

Theorem (Cieslik, Ivanov, Tuzhilin). The Steiner ratio of any k-dimensional surface does not exceed the one for k .

Corollary. The Steiner ratio of any 2-dimensional surface does not exceed 
3

2
.

Let f : W Ø M is a mapping between surfaces.

The mapping f is called a k-leaved covering if for any x œ M there exists a neighborhood U such that f -1 (U) is a union of k

non-intersecting "copies" V1, ... , Vk  of  U (each Vi is homeomorphic to U). 

The surface M is called the base, and the surface W the total space of the covering f.

A covering f is called locally isometric if all the mappings f : Vi Ø U preserves the distances between points. 

Examples.

è Torus
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è Klein Bottle
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Theorem (Cieslik, Ivanov, Tuzhilin). Let f : W Ø M be a locally isometric covering. Then sr (W) § sr (M).

Corollary. If n is the standard Euclidean n-dimensional space, and f : n Ø M is a locally isometric covering, then sr (M) =
sr (n). 
In particular,  sr (flat 2-dim cylinder) = sr (flat 2-dim torus)  = sr (flat Klein bottle) = sr  2).      
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ü Steiner ratio of Euclidean n

 If Gilbert-Pollak conjecture is true, then the Steiner Ratio of 2 is attained on vertices of regular triangle.

However, for any n ¥ 3, if  M Õ n is the vertices set of a regular simplex, then sr(M) > sr(n).

Also, the best known estimation of the Steiner Ratio for 3 is attained at infinite set, namely,

Conjecture (W.D.Smith & J.M.Smith). The Steiner ratio for 3 is attained at the “sausage” infinite points boundary:

If so, the Steiner ratio of 3 equals

283

700


3 21

700


9 11  21 2

140
 0.78419 ...

Theorem (Graham, Hwang). For any n  ¥  2 we have sr( n)  ¥ 1

3
.

Theorem (Cieslik). For any n ¥ 2 we have sr( n) § 1

2
+ 1

2 n
.

D.Z.Du and W.D.Smith (1996) proved that if the Steiner ratio is attained on a finite subset M Õ n, then the number of
points in M can not be less than the value of a rapidly increasing function f(n). 

For example, f (50) = 53, f (200) = 3 481 911, etc.

This also motivates the interest to generalize SMT theory to infinite boundary sets (see paragraph "Fine sets").
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ü Steiner ratio of normed spaces

Definition of a norm. A norm on a vector space V is a function which takes each vector v œ V to a non-negative real
number || v || and satisfies the following properties

(1)  || v || = 0 ñ v = 0;
(2)  for any real number l we have  || l v || = |l|  || v ||;

(3)  || v + w || §  || v || +  || w ||.

Exercise. Prove thet r(v, w) =  || w - v || is a metric on V. 

The set B = { v œ V |  || v || § 1 } is called the unit ball of the norm. It's easy to see that each norm is uniquely defined by its
unit ball B. Namely, to reconstruct the norm by its ball B, one can put

 v B = inf { l œ   |  v / l œ B }.

Exercise. Prove that the function  • B conicides with the initial norm  • .
The later motivates that the Steiner ratio of a normed space with the unit ball B is usually denoted by sr (B).We refer to B as
Banach-Minkowski ball or BM-ball.

Observation.
1) If f : n Ø n is a linear transformation, and B is a BM-ball, then sr (B) = sr (f (B)).
2) If L Õ n is a linear subspace, B is a BM-ball in n, and B' = B ∩ L is the corresponding BM-ball in L, then sr (B) § sr
(B').

3) For any BM-balls B and B' and any positive numbers c and c' such that B

c
 Õ B' Õ B

c'
 we have

c

c'
sr B  sr B' 

c'

c
sr B.

For a BM-ball B Õ n we put [B] = { T (B)  |  Tœ GL (n,) }.

Define
    d ([B], [B']) = inf {h ¥ 1 | there exists T œ GL (n,) : B Õ T (B') Õ h B}.
Notice that log d is a metric which is called the Banach - Mazur metric.

Theorem (Cieslik). For any BM-balls B and B' in n we have

    d ([B], [B'])  sr (B)  ¥  sr (B')  ¥  
sr B

d B,B'  .

Corollary (Du, Gao, Graham, Liu, Wan). 

1) Since, by John, d ([B], Dn]) § n  for any BM-ball B Õ n, where Dn is the standard Euclidean ball in n, we have sr

(B) ¥ sr Dn
n

.

2) For any BM-ball B we have 2

3
 § sr (B) § 13 - 1

3
.

ü The case of lp - spaces

Let us put

Bp
n  x1, ... , xn x1

p  ...  xn
p  1, p  1.

Corollary (Cieslik). Since, by Gurarii, Kadec, Macaev, 

d Bp
n , Bq

n   n
1

p


1

q
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for any 1 § p § q § 2, or 2 § p § q § , we have

n
1

p


1

q sr Bp
n   sr Bq

n  
1

n
1

p


1

q

sr Bp
n .

Theorem (Hwang).The following equalities hold : 

sr B1
2   sr B

2  
2

3
.

So, the lower bound on the Steiner ratios for lp -spaces is achieved.

Theorem (Du, Liu). For p, q ¥ 1 such that 
1

p
 + 

1

q
 = 1 we have

sr Bq
2  

2p  1
1

p  2q  1
1

q

4
.

Thus, the Steiner ratio for lp  -spaces does not exceed 
3

2
, and the equality holds just for p = 2 (modulo Hilbert - Pollak

Conjecture).

ü l - geometries

For positive integer l we denote by Bl a BM-ball on the plane which is a regular 2l-gon. The obtained normed plane is said
to be l-geometry.

Theorem. For any integer l ¥ 2 we have

sr 2 1

cos 

2 

 sr B  sr 2 cos


2 
.

Theorem (Lee, Shen). 

1) For l ª 3 (mod 6) we have  sr B  sr 2 cos 

2 
.

2) For l ª 0 (mod 6) we have  sr B  sr 2.
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ü Steiner ratio and Yung Number

Let ( n, ║.║ ) be a normed space with the unit ball B, and X Õ n be a bounded set.

The diameter of X is DB(X) = sup {║v – w║ : v, w œ X}.

The radius of X is RB(X)  =  inf {r > 0 : X Õ v + r B for some v œ n}.

The Yung number is Jn (B) = sup { 
RBX 
DBX    |  X Õ n,  X is bounded }.

Observation (Leichtweiss). If B Õ n is a BM-ball, then 

1

2
 Jn B 

n

n  1
.

Theorem (Cieslik). 

1) For any B Õ 2 we have sr (B) § 3

2
 J2(B).

2) For any B Õ 3 we have sr (B) § 4

3
 J3(B).

(V.V.Makeev 2008: http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=znsl&paperid=1637&option_lang=rus)

3) If there exists a regular (n + 1)-simplex in  n, ║.║ ), then sr (B) § n+1

n
 Jn(B).

Dekster  :  for any BM-ball sufficiently close to Euclidean ball in the sense of Banach-Mazur distance there do exists a
regular (n + 1)-simplex.
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ü Packing and covering

Packing is a collection of convex bodies with mutually disjoint interiors. 
Covering is a family of subsets of n whose union is n.

For a convex compact body K  and some V = { vi } Õ n, we put

M (V, K) = { vi + K },  

Mr(V, K) = { vi + (1 + r) K },
1

c V ,K  = inf { r  |  Mr(V, K) is a covering },

V (K) = { V  |  M (V, K)  is a packing },
C (K) =  sup { c (V, K)  |  V œ V (K) } is called closeness.

Theorem (Cieslik). For any BM-ball B Õ n we have

sr B 
3

4
1  1  C K.
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ü Tammes’ Problem

Let (X, r) be a metric space and M Õ X.  Assuming that sup{«} = 0 and inf{«} = ¶ , we put

s(M)  =  inf {r(x, y) | x, y œ M,  x ∫ y},

ek(M) = sup{s(A) | A Õ M,  #A = k}.

Let B Õ n be a BM-ball and S =  ∑B  be the boundary of B. 

 We put rk
n(B) = ek(S), and if B is Euclidean ball, the value  rk

n(B) we denote by rk
n .

Tammes’ Problem : To calculate  rk
n.  The solution is known only for k § 13 and k  =  24 (k = 13 - Musin and Tarasov,

2010).

Theorem (Cieslik). For k  ¥  3 and any BM-ball B Õ n we have

sr B 
k

k  1 rk
n B .
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ü Some problems

1) Fill the gap in Du-Hwang approach to investigation of Steiner ratio.

2) For which spaces the Steiner ratio is achieved at finite subsets?

3)  For any BM-ball B Õ n define the dual ball B' Õ n as B' = {x  œ n | < x, y >  § 1 for any y œ B}, where < , > is the

standard scalar product in  n.For example, the dual ball for Bp
2  is Bq

2, where   1

p
 + 1

q
 = 1. Describe the relation between the

Steiner ratios of dual BM-balls.
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Fine sets
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ü  Defenition of fine sets

Definition.A set M of a metric space X is called fine if it can be joined by a finite length tree. 

Remark. Any fine set is at most countable.
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ü Constructions

ü Recall definition of the function enM

Let M be a subset of a metric space (X, r).  Assuming that sup{«} = 0 and inf{«} = ¶, we put

s(M)  =  inf {r(x, y) | x, y œ M,  x ∫ y},

en(M) = sup{s(A) | A Õ M,  #A = n}.

ü Some properties of en(M) and some examples.

(1) en(M) = sup {s (A) | A Õ M,  # A ¥ n},

 (2) en(M) does not increase when n increases.

 Examples.

(1) Let M = {1/a, 1

a2
, 1

a3
, …}, a ¥ 2. Then  en(M)  = 1

an-2
 .

(2) Let M =  ∩[0, 1]. Then en(M)  = 
1

n-1
.

(3) Let M = {1, 1

2
, 1

3
, 1

4
, …}.Then e2(M) = 1, e3(M) = 1

2
, e4(M) = 1

4
, e5(M) = 1

6
, e6(M) = 1

10
, …

Exercise. In the previous example, obtain a formula for general en(M). 

Observation. Let M be a fine subset of a metric space. Then en(M) n Ø 0 as n Ø ¶.

Example. The set  ∩ [0, 1] is not fine because 
en(M) n = n

n-1
 Ø 1 as n Ø ¶.

Example. Let 0 <  a < b, and

      M =  1

p
,

1

q
 p, q œ , a §

p

q
§ b, 

then en(M) n does not tend to 0, thus M is not fine.

Let (X, r) be a metric space, M Õ X,  l ¥ 0.

Let U (l, M) be the open l-neighborhood of the set M, i.e., U (l, M) is the union of all open balls of radius centered at points
from M.

Let Ual, M  be the family of connected components of U (l, M).

We put Ma = M  Ua(l, M). 

So {Ma} is a partition of M which will be denoted by Pl(M).
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For any subset N of  X we put diam(N) = sup {r(x, y) | x, y œ }.

For any subset M of  X and any l ¥ 0 we put Diaml(M) = S diam(c) over all c œ Pl(M).

Example. Let M = {1, 1

2
, 1

3
, 1

4
, …} and 1

12
 < l § 1

6
.

Then Pl(M) = { {1}, { 1

2
},  M \ {1, 1

2
} },  thus Diam(M) = 1

2
.
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ü Fine sets in 

Recall that the outer Jordan measure m(M) of a set M œ  is defined as follows :

 M  inf 
k1

N

bk  ak M  
k1

N

ak, bk.

Observation. Let M Õ  be bounded and countable.Then
(M is fine) ñ 
       ( en(M) n Ø 0 as n Ø ¶ ) ñ 

                  ( Diaml(M) Ø 0 as l Ø 0 ) ñ 

                                           ( m(M) = 0 ).
Moreover, for a fine set M Õ  we have mst (M) = diam (M).
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ü Fine sets criterion

Main Theorem (A.Ivanov, I.Nikonov, A.Tuzhilin). Let M be a bounded countable subset of a metric space, and we put

pl(M) = #Pl(M). Then M is fine iff

1 
0

diam M
 M   , and

2 Diam M  0 as   0.

Moreover, for a fine set M we can calculate the length mst(M) of Minimal Spanning Tree on M as follows:

mst M  
0

diam M
 M   diam M.
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