Fortran routines
for testing unconstrained optimization software
with derivatives up to third-order*

E. G. Birgin' J. L. Gardenghi’ J. M. Martinez? S. A. Santos?

April 20, 2018

Contents
1 Introduction 1
2 Getting Started 2
3 Compiling the code 2
4 Using the module and compiling code 3
5 Using the drivers 4
6 Routines description 4
6.1 New routines e 4
6.2 Algorithm 566 Routines + Third derivative computation 6

1 Introduction

This document gives details about the implementation and usage of a Fortran package that im-
plements the computation of objective function and its first-, second-, and third-order derivatives
for the well-known 35 problems proposed by Moré, Garbow and Hillstrom [2, 3].

*This work has been partially supported by FAPESP (grants 2013/03447-6, 2013/05475-7, 2013/07375-
0, 2013/23494-9, 2016/01860-1, and 2017/03504-0) and CNPq (grants 309517/2014-1, 303750,/2014-6, and
302915/2016-8).

tDepartment of Computer Science, Institute of Mathematics and Statistics, University of Sao Paulo, Rua do
Matéo, 1010, Cidade Universitaria, 05508-090, Sdo Paulo, SP, Brazil. e-mail: {egbirgin | john}@ime.usp.br

#Department of Applied Mathematics, Institute of Mathematics, Statistics, and Scientific Computing, Univer-
sity of Campinas, Campinas, SP, Brazil. e-mail: {martinez | sandra}@ime.unicamp.br

Originally, Moré, Garbow, and Hilltrom proposed 35 test problems for unconstrained optimiza-
tion and code for computing the objective function and its first-derivative. The problems were
divided into three categories: (a) 14 systems of nonlinear equations, cases where m = n and one
searches for z* such that f;(z*) =0, ¢ = 1,2,...,m; (b) 18 nonlinear least-squares problems,
cases where m > n and one is interested in Solvmg the problem

Mlnelmlze f(z Z Az (1)

by exploring its particular structure; and (c) 18 wunconstrained minimization problems, where
one is interested in solving (1) just by applying a general unconstrained optimization solver.

In 1994, Averbukh, Figueroa, and Schlick [1] added code to compute the second-order derivative
for the 18 unconstrained minimization problems.

We now propose a package that considers (1) for all the 35 test problems and implements its
first-, second-, and third-order derivatives.

2 Getting Started

When unzipping the code, the user must get the following directories and files:

SMMGH) . oo root directory.
Makefile
mgh_doc.pdf il documentation PDF file.
driverl.f08 il driver with new routines.
driver2.f08 il driver with alg 566 routines.
mgh.£08 all the new routines.
mgh_wrapper.f08 wrapper with alg 566 routines.
set_precision.f08 precision definitions file.

After compiling the code, the user must get the binaries driver1l and driver2 and the object
files inside $ (MGH).

3 Compiling the code
To compile the main code,

1. The user must have a Fortran compiler installed and must configure in $ (MGH) /Makefile
the variables FC with the Fortran compiler command-line and FFLAGS with the desired flags
for the chosen Fortran compiler. We tested gfortran and nagfor compilers. Other Fortran
compilers were not tested, but they may work as well.

2. Using the terminal, type make in the root directory.

To clean the compiled code, use make clean.

4 Using the module and compiling code
To use the module, the user must make the following modifications in the code.

1. Choose the precision you want to use in module $ (MGH) /set_precision.f08. For this, set
the parameter rk as kind_s for single-precision, kind_d for double-precision, and kind_q
for quad-precision.

2. Implement the desired routines (see Section 6.1).

3. Compile your code

$(FC) -I $(MGH) -o your_bin your_code.f08
$ (MGH) /mgh. o
$ (MGH) /set_precision.o

replacing $(FC) by the Fortran compiler you are using. You may need to ajust command-
line option -I, that stands for the directory where .mod files are.

If the user prefer, it is possible to use the classic Algorithm 566 routines, to which we added a
new one to compute third-order derivatives. In this case,

1. Choose the precision you want to use in module $ (MGH) /set_precision.f08. For this, set
the parameter rk as kind_s for single-precision, kind_d for double-precision, and kind_q
for quad-precision.

2. Implement the desired routines in the code (see Section 6.2).

3. Compile your code

$(FC) -I $(MGH) -o your_bin you_code.f08
$ (MGH) /mgh. o
$ (MGH) /mgh_wrapper .o
$ (MGH) /set_precision.o

replacing $(FC) by the Fortran compiler you are using. You may need to ajust command-
line option -I, that stands for the directory where .mod files are.

5 Using the drivers
Two drivers are available to test and validate the code:

1. $(MGH) /driverl implements the new routines module. It runs all the 35 problems from
the test set. The output is given in driverl.out file.

2. $(MGH) /driver2 implements the algorithm 566 routines. It runs all the 18 unconstrained
minimization problems (see [3]). The output is given in driver2.out file.

6 Routines description

6.1 New routines

In order to use the new routines, first of all the user must

1. set the number of problem to work with, between 1 and 35, using mgh_set_problem,

2. customize m and n using mgh_set_dims or retrieve default values using mgh_get_dims,

After that, the user is able to retrieve the initial point using mgh_get_x0 and compute the
objective function and its first-, second-, and third-order derivatives using mgh_evalf, mgh_evalg,
mgh_evalh, and mgh_evalt, respectively. A detailed description of each routine follows.

subroutine mgh_set_problem(user_problem, flag)

Sets the problem number. When the user set the problem number, default dimensions (n
and m) for it are automatically set. The subroutines arguments are

user_problem is an input integer argument that should contain the problem number
between 1 and 35.

flag is an output integer argument that contains 0 if the problem number was
successfully set or -1 if the user_problem is out of the range.

subroutine mgh_set_dims(n, m, flag)

Sets the dimensions for the problem.

n is an input optional integer argument, sets the number of variables for the problem
set.

m is an input optional integer argument, sets the number of equations for the prob-
lem set.

flag is an output optional integer, in the return contains 0 if the dimensions were set
successfully, -1 if n is not valid, -2 if m is not valid, or -3 if both are not valid.

4

subroutine mgh_get_dims(n, m)

Gets the dimension for the problem.

n is an output optional integer argument with the number of variables for the problem.

m is an output optional integer argument with the number of equations for the problem.

subroutine mgh_get_x0(x0, factor)

Gets the initial point for the problem.

x0 is an output array of length n that contains the initial point.

factor is an optional real scalar that scales the initial point returned at x0.

subroutine mgh_evalf(x, f, flag)
Computes the objective function evaluated at x.
X is an input real array of length n, contains the point in which the objective
function must be evaluated.
f is an output real that contains the objective function evaluated at x.

flag is an output integer that contains 0 is the computation was made successfully, -1
if problem is not between 1 and 35, or -3 if a division by zero was made.

subroutine mgh_evalg(x, g, flag)
Computes the gradient of the objective function evaluated at x.
X is an input real array of length n, contains the point in which the gradient must
be evaluated.
g is an output real array of length n that contains the gradient evaluated at x.

flag is an output integer that contains 0 is the computation was made successfully, -1
if problem is not between 1 and 35, or -3 if a division by zero was made.

subroutine mgh_evalh(x, h, flag)
Computes the Hessian of the objective function evaluated at x.
X is an input real array of length n, contains the point in which the Hessian must
be evaluated.

h is an output real array of length n x n that contains the upper triangle of the
Hessian evaluated at x.

flag is an output integer that contains 0 is the computation was made successfully, -1
if problem is not between 1 and 35, or -3 if a division by zero was made.

subroutine mgh_evalt(x, t, flag)
Computes the third-order derivative tensor of the objective function evaluated at x.
X is an input real array of length n, contains the point in which the third-order
derivative must be evaluated.

t is an output real array of length n X n x n that contains the upper part of the
third-derivative evaluated at x.

flag is an output integer that contains 0 is the computation was made successfully, -1
if problem is not between 1 and 35, or -3 if a division by zero was made.

subroutine mgh_get_name(name)

Returns the problem name

name is a character(len=60) output parameter that contains the problem name.

6.2 Algorithm 566 Routines + Third derivative computation

subroutine initpt(n, x, nprob, factor)

Returns the initial point for a given problem.

n is an integer input argument, should contain the dimension of the problem.
X is a real output array of length n, contains the initial point.
nprob is an integer input, contains the number of the problem betwen 1 and 18.

factor is a real input, contains the factor by which the initial point will be scaled.

subroutine objfcn(n, x, £, nprob)

Compute the objective function value for a given problem at x.

n is an integer input argument, should contain the dimension of the problem.

X is a real input array of length n, contains the point in which the objective function
will be evaluated.

f is a real output argument that contains the objective function value.

nprob is an integer input, contains the number of the problem between 1 and 18.

subroutine grdfcn(n, x, g, nprob)

Compute the gradient of the objective function, for a given problem, evaluated at x.

n is an integer input argument, should contain the dimension of the problem.

X is a real input array of length n, contains the point in which the objective function
will be evaluated.

g is a real output array of length n, contains the gradient of the objective function
value evaluated at x.

nprob is an integer input, contains the number of the problem between 1 and 18.

subroutine hesfcn(n, x, hesd, hesu, nprob)

Compute the Hessian of the objective function, for a given problem, evaluated at x.

n is an integer input argument, should contain the dimension of the problem.

X is a real input array of length n, contains the point in which the objective function
will be evaluated.

hesd is a real output array of length n, contains the diagonal of the Hessian.
hesu is a real output array of length
n(n —1)
2)
contains the strict upper triangle of the Hessian stored by columns. The ¢, j term
of the Hessian, i < j, is located at the position

1\ (i —

G- 2)+i
2

at hesu.

nprob is an integer input, contains the number of the problem between 1 and 18.

subroutine trdfcn(n, x, td, tu, nprob)

Compute the third-order derivative tensor of the objective function, for a given problem,
evaluated at x.

n is an integer input argument, should contain the dimension of the problem.

X is a real input array of length n, contains the point in which the objective function
will be evaluated.

td is a real output array of length n, contains the diagonal of the tensor.

tu is a real output array of length

n—1
6

(n—=2)(n—3)+9(n—2)+12),

contains the strict upper part of the tensor stored by columns. The i, j, k term
of the tensor, 1 < j7 < k but not i = j = k, is located at the position

kg2((k—3)(k—4)+9(k—3)+12)+j(j2_1) +i
at tu.

nprob is an integer input, contains the number of the problem between 1 and 18.

References

[1] V. Z. Averbukh, S. Figueroa, and T. Schlick, Remark on Algorithm 566, ACM Transactions
on Mathematical Software, 20(3):282-285, 1994. DOI 10.1145/192115.192128.

[2] J. J. Moré, B. S. Garbow, and K. E. Hillstrom, Algorithm 566: FORTRAN Subroutines for
Testing Unconstrained Optimization Software, ACM Transactions on Mathematical Software,
7(1):136-140, 1981. DOT 10.1145/355934.355943.

[3] J.J. Moré, B. S. Garbow, and K. E. Hillstrom, Testing Unconstrained Optimization Software,
ACM Transactions on Mathematical Software, 7(1):17-41, 1981. DOI 10.1145/355934.355936.

https://dx.doi.org/10.1145/192115.192128
https://dx.doi.org/10.1145/355934.355943
https://dx.doi.org/10.1145/355934.355936

	Introduction
	Getting Started
	Compiling the code
	Using the module and compiling code
	Using the drivers
	Routines description
	New routines
	Algorithm 566 Routines + Third derivative computation

