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Abstract We describe finite sets of points, called sentinels, whictmalls to decide if isometric copies of
polygons, convex or not, intersect. As an example of the ealpility of the concept of sentinel, we explain how
they can be used to formulate an algorithm based on the optionzait differentiable models to pack polygons
in convex sets.
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1 Introduction

In [1] we propose a nonlinear programming approach to pack arbitrdygqaos in convex sets (not necessarily
polygons). This approach is based on the observation that ihtegor of translated and rotated copigsand

Q of the polygonsP andQ in Figure 1 intersect then either the interior@fcontains one of the pointg or
the interior ofQ’ contains some/. Motivated by this fact, we say that thppandg; aresentinelsfor {P,Q} with
respect to translations and rotations.

Fig. 1 The pointsp; andg; are sentinels: they detect if translated and rotated cagi#ise interior ofP andQ intersect. In this
examplep, is in the interior ofQ'.

The observation above leads to the following algorithm to peasksiated and rotated copiesrafPs, ..., Py
on a convex set:

1. We parameterizB by the coordinate&;, y;) of its barycenter and its rotation andle

2. We define differentiable function; (x,yi, 6,X;,y;, 8;) based on the distance of the sentinel§db P; so
thatW; (xi,yi, 6,%;,yj, 6j) is zero if all the sentinels ¢} are outside the interior & and¥; (X, Vi, 6,X;,Yj, 6))
is positive otherwise. (See [1] for an exampledgf-functions for identical rectangles.)
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3. We find approximations to the solution of the feasibility pesl
Wi (%i,Yi,6,%j,yj,6;) =0 and vertices oR C C. )

For each solution of problem (1) we obtain a packingegP, ..., By in C.

In [1] we describe the nonlinear programming aspects of the appralaave in detail, from the theoretical
and practical perspectives. In [5], [7] and [8], Stoya#@sfunctions are introduced. &-function for a pair of
polygons is defined as a function whose value is positive ipthiggons overlap and zero otherwise. Our func-
tions ¥ are analogous to Stoyan®-functions in the sense that they abefunctions defined through the usage
of sentinels. Sentinels can also be used to detect the intiensef rotated and translated copies of polygons [6].
Finally, the concept of sentinel leads to packings which atenecessarily lattice-like [3].

In the present work we focus on the geometric aspects of the nomekpbof sentinel. We formalize this
concept for arbitrary families of polygons and discuss theistexice and complexity. Sentinel is a neat concept,
but unfortunately some polygons require an infinite number ahtHeor instance, if instead of the polygoRs
andQ in Figure 1 we consider translated and rotated copies of a siriglegle T then no finite set of points
{t1,...,tn}, no matter how large, would be enough to detect all the intéises of T and a translated copy of
it: see Figure 2; we can always translate(maintaining the overlapping witl) in order to have; outsideT
andt; outside ofT’ no matter how near we defitgfromt, andt; fromt}.

Fig. 2 There are no finite sets of sentinels for triangles. No méuber near we defing, andt, for T andt; andt} for T', it will
always be possible to overlapandT’ havingt, ¢ T andt, ¢ T'.

Small internal angles are the main reason why we may need artenfimnber of sentinels. More precisely,
in the next section we show that4P is a finite family of convex and non-convex polygadsuch that all the
internal angles oP are bigger than or equal tw/2 then we can assign a finite &P) c R? to eachP € & in
such way that iff,U : R? — R? are isometries?, Q € & and the interior off (P) andU (Q) intersect then either
T(S(P)) intersects the interior df (Q) or U(S(Q)) intersects the interior of (P). In Section 2 we also define
the terms we use throughout the paper and present basic resultslad existence of sentinels. In Section 3 we
discuss sentinel assignments for rectangles, which are thremmivation behind [1].We present minimal sets
of sentinels for the families of rectangles that motivated [id &ad us to define the concept of sentinel. The
last section contains concluding remarks.

2 Sentinels

In this section we formalize the concept of sentinel and provexistence of finite sets of sentinels for relevant
families of polygons. We start by defining the basic terms we use

Notation 1 If u,v € R? then we call the segment with extremes u and v by uv. O

Convention 1 A polygon P is defined in terms of an integer 18 and vertices pe R?, for i € Z, such that

(@) p4+n=piforalliand pj # pi if j is not a multiple of n.

(b) p & pi—1pita foralli.
(c) If the segments;pi;1 and pp;j1 intersect then either
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(i) i =j modn, or
(i) i = j+1modnand ppi+1Np;jpj+1={pi}, or
(i) i +1=j modn and ppi+1NP;jPj+1 = {Pj}-
These conditions imply that P is a Jordan curve. We denottlgor of this curve bynt(P) and its border by
bordefP). Moreover, we assume that the pointsaae in counterclockwise order and uséR) to denote n. O

Notation 2 Sub(R?) denotes the set whose elements are the subsBfs of O

Using this terminology we can formalize the concept of serntinel

Definition 1 Let 22 be a family of polygons and le¥ be a family of transformations TR? — R? such that
T(P) is a polygon for all Pe 2. We say that a function S — Sul(R?) is a sentinel assignment fo®
with respect ta7 if for all T, U € & and P, Qe & such thatint(T(P)) Nnint(U(Q)) # 0 we have that either
int(T(P))NU(S(Q)) # 0 orint(U(Q))NT(S(P)) # 0. In this context, we say that the elements @¥)Sare the
sentinels of P. O

In this paper we care only about two familigs of transformations:

Notation 3 The isometries dk? are transformations of the form(X) = Qx+d, where Q is & x 2 orthogonal
matrix and de R?. We call the set of such isometries byWe definej as the set of transformations T above
with detQ = 1. g

In this section we provide sufficient conditions on the fami of polygons to guarantee the existence of
a sentinel assignme®for &7 with respect tdz such thatS(P) is finite for all P € 2. In the next section we
discuss the analogous question wh#ris a family of rectangles and the family of transformationkjisThese
conditions are expressed in terms of the paranee(ey:

Notation 4 We call the smallest internal angle of the polygon Pol{). O

The relevance of (P) is illustrated in Figure 3. According to this figure, we can deeithetherb is inside, over
or outside the circle with diameterc by looking at the angler. This figure is the motivation for the condition
a(P) > /2 used throughout this paper.

b

o T T

ae ® C

a<mn/2 a=mn/2 a>mn/2

Fig. 3 The anglea and the position ob with respect to the circle with diametac.

Besides (P) our results are formulated using the s&($):

Definition 2 Let P be a polygon with & 4 vertices (remember that we are dealing with convex and nomoon
polygons). We defin&(P) as the set formed by the positig&s such that every segment uv connecting disjoint
sides of P has length bigger than O

Unfortunately,A (P) is not as simple aa (P), starting with the fact that it is a set and not a number. Plgzse
much attention to this fact, because it does not follow thepuatational geometry tradition of using numbers to
characterize properties of polygons. For instance, the supreshonr setsA(P) could be related to the several
attempts to quantify the fatness of a polygon (see [4]) but ourcemh is different: we look at the whole set
A(P), not only at its supremum.

If Pis convex andx(P) > 11/2 thenA(P) = (0, u(P)], wherepu(P) is the length of’s shortest side. In this
particular case the arguments below could be rephrased in térp(®n However, in [1] we care mainly about
rectangles and iR is a rectangle theA(R) = (0, u(R)) does not contaip(R). Therefore, in order to unify the
treatment of rectangles and polygons with bigger internalesgke chose to use(P).
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Using a(P) andA(P) we can state the key results behind most arguments in this.gajen a family %
of polygons and a functio8: &2 — Sub(R?), Theorems 1 and 2 give sufficient conditions 1o be a sentinel
assignment for”Z with respect td,. Lemmas 1, 2 and 3 present technical results used to prove theths.

Lemma 1 Let P and Q be polygons witih(P) > /2 anda(Q) > 11/2. Suppose u, Vv, W gx0k.1 are such that
Ju— k|| < [Iv—akl < [[w—akl| and

(a) u,w ¢ int(P), (b)veint(P) and (c) lu—w| € A(P)NA(Q).

If no vertex of P is in the interior of Q then there exists a wegof P with p_1pjNuv= {x} and g p;1Nvw=
{y} (see Figure 4). Moreover, x and y are such thatx{x,y} C int(P),

[[pj — X[ < flu—w]| and l[Pj =Yl < flu—wl|. )
qk-_1 DAL s qk-.1 £ Qs
4 u P Pivt w o Tkt L X v y p‘j+1

- v TN Al W e
Pisq R DNR

Fig. 4 The conceivable situations fare p;pi+1 N p;jpj+1- Actually, only the right one is valid.

Proof of Lemma 1 Let xy be the biggest segment containedjiak 1 such that € xy andxy— {x,y} C int(P)
and consider the sidggpi+1 and pjpj;1 such thatx € pipi11 andy € pjpj;+1. Items (a) and (b) imply that
Xy C uw. Item (c) shows thaix —y|| < |[u—w|| € A(P). Sincex € pipi+1 andy € pjpj+1, the definition ofA
implies thatp; pi+1 N pjpj+1 # 0. Letp € {pj, pj+1} be the common vertex qf i1 andp;j pj+1. According to
Figure 3,p belongs to the disk? = {z€ R? with ||2z— (x+Y)|| < |x—Y||}. If £ andZ are the open half planes
on the left and right sides of the lirggk 1 then, in principle, we have the two possibilities regardirdescribed
in Figure 4. However, the situation on the left side of this figdioes not occur, becausen . C int(Q) and
there is no vertex oP in int(Q) by hypothesis. In fact, notice th& N _Z cannot intersect sides €J which
are nonconsecutive gy 1 because (c) implies that the distances from such sidegdia 1 is bigger than
the radius of7. Moreover,2 N.Z does not intersect the sidgs 10k andgk, 10k 2 either, because the internal
angles ofQ are at leastr/2. This implies thatZ? N .Z is contained in the interior d@ and, thusp ¢ 2N.Z as
we claimed. Therefore, we must hape= p; = piy1 € ZNZ as described in the right side of Figure 4 and the
bounds in (2) holds because the diamete#zat at most|u— w||. (For further reference, g%.1 = p;, we will
refer topipi;1 aspj-1p;.) O

Lemma 2 Let P, Q and{x} = gkOk+1 M Pj—1P; as in Lemma 1. Assume thatqy and let ce border(P) N
border(Q) be the first point different from x encountered when walkipg x from x to p_; (see Figure 5).
Then, either
CE -1k — {a} and |x—cf > max{{lc—al, lox — x|}, 3)
or
C¢ Ok—10kUOkOk+1 and [x—cf > supA(Q). “4)

Proof of Lemma 2 Let gm0m+1 be the side ofQ containingc. We will first show thatgmgm+1 7# 0kOk.1 and
OmOm+1 7 Ok+10kr2- SinCex € gkGk+1 — {Ak}» € € GmAmy+-1 and 0+ xc— {x,c} C int(Q) we have thak andc are
in different sides ofQ and, in consequenc@mdm:1 7 Okdk+1. Considering the triangle with verticap;y (right
hand side of Figure 4) and knowing thatpjy = Zp;j_1p; pj+1 > 11/2 we have tha¥'quxc= Zpjxy < 11/2. Then
Zgexe < 1/2 implies thatZqy1xc > 11/2. This andZ0k0k+10k+2 > T7/2 imply that the half linex+ y1(c — X)

andd;1+ Y2(Ok+2 — Ok+1), Vi, Y2 > O, never intersect. Thus & G 10k+2 aNd0m0my 1 7 Ok410k+2-
Therefore, we have only these two possibilities regardipgy, . 1:

1 Note thatpj_1pj Nuv= pj_1p; N Gkk1 = {X} # Gk implies that the segmentkdx.1 and pj_1p; are not colinear and the
pointcis well defined.
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qr—1 dr—1

Pj-1 ¢
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ar Qi qk qr+1

pj
0] (ii)

Fig. 5 The situations (i) and (ii) described in Lemma 2.

— OmOm+1 = Ok—10k- In this case||x — c|| > max{||c — k||, ||ak — X||} becausexc is the biggest side in the
(nonempty) triangle with verticesyc, since the angle’xggc is equal to/ gk 10k0k—1, Which is at leastt/2.

— OmOm+1 7 Ok—10k- In this case, by definition d, ||x—c|| > o for all € A(Q). This implies that|x—c|| >
supA(Q). D

Clearly, a symmetric result can be obtainedf@f = gx_10x N p; pj+1 defined in Lemma 1.

Part of the hypothesis of the main theorem in this section resjtiva each polygon it#? has an internal
sentinel outside théorbidden region P, ) that we now describe. SuppoBés a polygon and > 0 satisfies
0 < ||pi+1 — pi|| for all i. For each vertex; of P we define the forbidden cornEIC(Pi,d) as

FC(Pi,0)={x=Au+(1—A)v for A € (0,1), u€ pi_1pi, V€ PiPi+1, uv—{u,v} C int(P) and|lu—v|| < &}

(see Figure 6) and we define the forbidden region

FRo)= |J  FC(Ri,9). (5)

iZPi_1PiPi+1<TT

Di+1 Di ) Pi+1
(b) (©

Pi+1

Fig. 6 The forbidden cornefFC(PR,i, 9d).

The next lemma shows that we can always find internal sentmdlside the forbidden regions for any
polygon withn > 3 vertices.

Lemma 3 If P is a polygon with n> 3 vertices and € A(P) then the seint(P) — F (P, d) is not empty.

Proof of Lemma 3. We analyze convex and non-convex polygons separately.
Let us start with? convex. For each=0,...,n— 1 letR be the convex polygon with verticégo, ..., pn—1} —
{pi}. Note that

ROPNAD {po,-.-, Pn-1} — {Pi; Pj, Pk} # O
for every tripleti, j,k. Therefore, Radon’s theorem implies that

n-1
A= (1R #0.
i=0
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Pi+1 =Pj !

Pi+1

Pj—1

(@ (b)

Fig. 7 The two cases that illustrates the proof of Lemma 3.

The setA does not contain vertices or sidesPofThus,A C int(P). Moreover, the interior of the ears Bfdo not
intersectA. It is clear then that irfP) — F (P, 8) D A+ 0 and we are done with the convex case.

If P is not convex then there exists at least arsich that the angle/pi_1pipi+1 is bigger thanr. Let
€ €(0,0/4) be such that

Pi+1— Pi Pi-1— Pi )
IPiea—Rill - [P —pill

belongs to intP). Geometrically (see Figure @js a point in the bisectrix of the anglép;_1pipi+1 very close
to pi:

S_Sa_pi—5<

Pi+1—Pi Pi-1—Pi
[Pisa=pill  lIpi-1—Pi
To complete this proof we will show thate int(P) — F(P,d), i.e., it does not belong to any forbidden corner
FC(P, j,0) with Zpj_1pjpj+1 < 7. Consider a forbidden corn&C(P, j, 5) as above. Leti € p;_1p; andv €
PjPj+1 be such thas € uv, uv— {u,v} € int(P). To prove thas ¢ FC(P, j, §) is enough to show thau—vi|| > 4.
Noticing thatZpj_1pjpj+1 < < Zpi—1pipi+1 impliesi # j, we are left with the three cases:

(i) j =141 (described in Figure 7a),
(i) j=1i—1 (described, after reflection, in Figure 7a),
(i) j & {i—1,i,i+1} (described in Figure 7b).

Cases (i) and (ii) differ only by a reflection and we will threat bathcase (i).
Let us start with case (i). Sinde has more than three vertices, we have that p; and pi-1pi+2 are not
consecutive. Thus, by definition 4f(P) we have thaf| p; — v|| > J. Now,

Ipi—sl<e

” H <2e<9d/2

ZVpU > ZSpu= Zpi_1piPi+1/2 > 1T/2.

This implies thatju—v|| > ||pi — V|| > & and we are done with cases (i) and (ii).
Finally, let us handle case (iii). In this case the sigg$,1 andp; pj+1 are not consecutive. Thus, by defini-
tion of J, ||pi — V|| > 4. As a consequence,

IV=sl| = [lpi = VI —lls—pil| >5-6/2=5/2. (6)
Analogously, since the sidg®_1 p; andp;_1p; are not consecutive we get thg — u|| > & and then
l[s—ull = [[pi—ull = [ls—pil| >6—-06/2=6/2. )
Combining (6) and (7) we get
lu=v||=|lu=9|+|s—V| >d/24+5/2=19



Using sentinels to detect intersections of convex and norecopolygons 7

and the proof is complete. O
Now we can address the main question of this section: Givem#yfaZ? of polygons and a functiofs:
2 — Sul(R?), give sufficient conditions foBto be a sentinel assignment & with respect td.

Theorem 1 Let & be a family of polygons such that, for eackeRP?, a (P) > /2. Let S be a function fron?’
to Sul(R?). Assume that for all B &

(a) SP) contains the vertices of P;

and that there existd € (pc» A(P) for which

(b) for each side i1 of P there existine Nand § = pi+ (y;/ ) (pi+1— pi) € S(P), wherel" = || pi11— pil|,
§uch thaty; € [0,/ ] for j=1,...,m;, ifnj #0thenyy =dandy, =T — 93, y; < yj+1 and|y; — yj+1| < o for

(c) ihe ive.t. éDr;I co}{tains a point innt(P) — F(P,d).

Then S is a sentinel assignment f&r with respect to4.

Proof of Theorem 1 Consider membera andB of &2 andT, U € I,. DefineP = T(A), Q=U(B), S(P) =
T(S(A)) andS(Q) =U(S(B)). SinceT andU are isometries, hypotheses (a), (b) and (c) also apphetedS(P)
andQ andS(Q). To prove Theorem 1, we assume that there exists a gairint(P) N int(Q) and show that

either

S(P) N'int(Q) #0 or S(Q) N int(P) #£ 0. (8)
Hypothesis (c) implies that there exists S(P) N (int(P) — F(P,d)). If s€ int(Q) then the first condition in (8)
is satisfied and we are done. Thus, we assumestatt(Q). Sincesandz are in the interior of the Jordan curve
P, there exists a continuous path contained in the interié* ednnectings to z. This path intersects bord€p)
at some point becauses ¢ int(Q) andz € int(Q). If v e S(Q) then the second condition in (8) is satisfied and
we are done again. Thus, we only need to care about the casedhweiS(Q) andv is the first intersection of
the path above and bord€)), that is, there exists a continuous functipn[0, 1] — R? such that

¢0)=s @1)=v, ¢(01)cint(P) and ¢([0,1))NQ=0. (9)

If gkQk.1 is the side ofQ that containsy, then by hypotheses (a) and (b) there exist € S(Q) N gkGk.1 such
thatv € uw, Ju—w|| < d and|lu—gk|| < |[w—gk||. If uorw belong to in{P) then the second condition in (8)
is satisfied and we are done. To complete this proof, let us nowedartontradiction from the assumption that
hypothesis (c) holds and neithemor w belong to intP). In this case Lemma 1 implies that there exjgt 1,

pj andpj41, vertices ofP, and{x} = uvN pj_1p;, {y} = vwn p;pj+1 andxy— {x,y} C int(P) like the ones in
Figure 8. This figure is also accurate regarding the factsisain the interior of the triangle = xp;y. In fact, (9)

. pj_1 Interior of Q oy /pl+‘
k

u X . 5=¢(0) v=¢(1) y w Ay

Pj

Fig. 8 The relative position opj, s, u, vandw when{u,w} nint(P) = 0.

implies that the patlp([0, 1]) does not crosgp; nor p;y and([0,1)) does not touclyx. Moreover, ife is small
@(1—¢) is close tov and outsideQ. This implies thatp(1— ¢€) € int(1) for £ small. Sincep([0,1)] does not
touch bordeft) we have thatp([0,1)) C int(7). In particular,s = ¢(0) € int(t). However, equation (2) shows
that||x— pj|| < é and||pj —y|| < 8. This implies that intt) C FC(P, j, &) and we deduce thatc F (P, ). This
conclusion contradicts our choice &t the beginning of this proof. O

Theorem 1 implies that i is a finite family of polygons® with o (P) > 11/2 then there exists a sentinel
assignmens for & with respect td, such thatS(P) is finite for all P € &2: take an arbitrary choice a¥ €
Npec» A(P), for example,

1
o= 35uP ﬂ A(P) >0,
Pey
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and for eaclP € &2 choose a finite se¥(P) of sentinels that satisfy the conditions (a)—(c) in Theorem 1.tham
3 guarantees that it is possible to find a point satisfying d¢ad{c) of Theorem 1.

Using Theorem 1 you can prove the following corollary to justify alaim regarding the intersections of
rotated and translated copies of the pentagon and the hexaglumfirst page of this paper:

Corollary 1 Letd > 0and let# be a family of convex polygons such that, for alt PZ we have thatr (P) >
/2 and all sides of P have length For P€ & take sc int(P) — F (P, ) and define &) = {s, p1, p2, .-, Pap) }-
The function S is a sentinel assignmentf8rregarding b. (S satisfies hypotheses (a) and (c) by definition and
hypothesis (b) with;n=0.) O

We have seen that Theorem 1 can be used to construct sentigehasats for certain families of polygons or
to verify that a given assignmeS8that satisfies the hypotheses of Theorem 1 is a sentinel assignHowever,
there is a simple and important case that is not covered by Thebr@wonsider a family? of identical squares
P of sided. In this case we have that(P) = (0,d) for all P € #. Let 5 = 1d. Consider a sentinel assignméht
for &7 such that, for each € &2, S(P) is given by a sentinel in each vertex®fa sentinel in the middle of each
side ofP and a sentinel in ifP) — F (P, 8). This Ssatisfies hypotheses (a) and (b) but does not satisfy hypothesis
(c) of Theorem 1. Therefore, Theorem 1 can not be used to certifiSthgtin fact, a sentinel assignment for
2. The theorem below is similar to Theorem 1 except for the fadthipothesis (c) is replaced by a couple of
other hypotheses satisfied by the sentinel assignment ded@above.

Theorem 2 Let &2 be a family of polygons such that, for allPZ?, a(P) > /2. Let S be a function fromy’
to Sul(R?). Assume that for all B &

(a) SP) contains the vertices of P;
and that there exist8 € Mpc » A(P) that satisfies

(b) for each side i1 of P there existine Nand 5 = pi+ (y;/ ) (pi+1— pi) € S(P), wherel" = || pi11 — pil|,
suchthaty; € [0, ] for j=1,...,n;,ifnj#Othenyy =d andy, =1 — 9, yj < yj+1 and|y; — yj+1| < 6 for
j=1...,n—-1

(c) SP)Nint(P) #0; and

(d) [|pii1—pil| > 25 foralli € Z.

Then S is a sentinel assignment f&#rwith respect toJ.

Proof of Theorem 2 This proof follows very closely the proof of Theorem 1. Thus, wd adlsume that there
exists a poing € int(P) N int(Q) and show that either

S(P) N int(Q) #0 or S(Q) N int(P) # 0. (10)

By hypothesis (c), there exists= S(P) Nint(P) and letv € int(P) be the first point that belongs to bor@@)
encountered when walking the continuous path feimz trought the interior of. If s € int(Q) or if ve Q)
then (10) holds and we are done. Therefore, we only need to carethbaaise in which there exists a continuous
functiong: [0,1] — R? such that

0 =s o1)=v, @(01)cint(P) and ¢([0,1))NQ=0. (11)

Let g1 be the side of that contains/. Then, hypotheses (a) and (b) imply that there exjst € S(Q) N
OkOk.1 Such thatv € uw, lu—w|| < & and ||u— qk|| < ||lw— gkl|. If S(Q) Nint(P) # 0 we are done. So, we
assume that,w ¢ int(P). In this case Lemma 1 implies that there expgt, p; and pj.1, vertices ofP, and
{x} = uvn pj_1p; and{y} = vwnN p;pj+1 like the ones in right hand side of Figure 4. Hypothesis (d) aed th
fact that|ju—w]|| < 6 imply that eitheru # gy or w # gx..1. By symmetry, assume that# gy which implies that

X # O (in fact, it implies that|x — gk|| > ). In this case, by Lemma 2, there exists bordernP) NborderQ),

the first point different fronx encountered when walkingp;_1 from x to pj_1 (see Figure 5), such that either (3)
or (4) holds. By (3) and the fact thik— qx|| > J or by (4) and the fact thal € A(Q), we have thajx—c|| > d.
So, we havexc C int(Q) N pj_1p;j and||x—c|| > 3. By hypothesis (b) there existse xcn S(P) and, thus, we
have verified (10). O
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3 Sentinels for rectangles

In this section we present optimal sentinel assignments foamgtgs with respect ttj. We assume that =
a(R) = ||ro —r1| is the longest side of the rectand®andb = b(R) = ||ro — r3|| is the smallest side. We define
sentinel assignments that depend on two paramétarglp: given a rectangl® we defineSs, (R) as the set of
points indicated by circles in Figure 9. Formally, given a regtafR andd andp with 0 < 8,p < |[r3—ro|| we

=5 —

o

54%&4%&4?*/14%/14%5*
o

— o —

— s —

s

N >—(5—;
Trs s ANl
s ? Y
I a8
b 3 t1 t2 t3 b4
— 0 i A A T A A i 6**
S
X 1
1 0 5
W% | a8
—§ —

Fig. 9 The sentinel$;, (R). In the top left rectangla > 25 > b> & andA = (a—25)/n, for ny = [(a—20)/d]. For the bottom
rectangleb > 25 andy = (b—d)/n, with n, = [(b— 6)/]. In the top right rectangla < 26 andb < 24.

defineS;, (R) as the set formed by:

The verticesg, 1, 2, r3 of R.

The points =rj + d(ri;1—ri)/||ri-1—ri|| fori=0,1,2 and 3.

If b > 24, the points = s3+i(ro—sg)/ny andy; = s, +i(r2—s1)/ny for 1 <i < ny, withn, = [(b—5)/9].
If a> 29, the points; = p(rz3—rg)/b+ (So—ro) +id/ng, for 1 <i < ng, withA =r1—ro—2(sp—rp) and
ne = [1|A]1/5].

If a< 20, the points= (ro+r1+r2+r3)/4.

PowbdE

o

The following theorem is the main result in this section:

Theorem 3 Let % be a family of rectangles and suppode= Ngre4A(R). If for all R € #Z we havep(R) €
(0,b(R)) such that

b(R) ¢ {p(R),b(R) — p(R)} for all Re%# (12)
then the function S% — Sub(R?) given by $R) = Ssp(r)(R) is a sentinel assignment fa# with respect to
1. O

If all rectangles irR € % haved < b(R) < 25 then the set§;,r)(R) contain only one element in each smaller
side ofR and the sentinel assignme®iibove in Theorem 3 is optimal, i.e.,¥f is another sentinel assignment
for % with respect td, thenS(R) has at least as many element$S@R). In fact, S(R) must contain the vertices
of Rand at least one element in each siddRkoMoreover, ifS(R) does not contain as many elements¢R)
then itis possible to superimpose a copyRabtated byrr/2 andRin order to contradict the definition of sentinel
assignment.

We end this paper with the proof of Theorem 3:
Proof of Theorem 3.The setsS;, (R) and the condition (12) are invariant undsr, in the sense that if € I
andR € Z thenS;,(T(R)) = T(S55(R)) andb(R) = b(T(R)). Therefore, to prove Theorem 3 it is enough to
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show that ifH andR are rectangles withhg — hs|| > ||ha — h2||, |[ro —r3|| > ||[r1 —r2|| and

S eA(H)NA(R), [Iro—ra|l = [[ho —hs|l| & {p(H).p(R)} (13)
and in{H) Nint(R) # 0 then
Int(H) N Sép(R>(R) 75 0 or S(Sp(H)(H) N |nt(R) 7& 0. (14)

If a(H) <26 anda(R) < 20 then (14) is a consequence of Theorem 1 applied4e= {H,R}. Thus, we
can assume that(H) = ||hy — hp|| > 26. Moreover, ifs are the sentinels described in Figure 9 Fbrand
{ho, h1,h2,hs3,50,51,%, 3} Nint(R) # 0 then (14) is satisfied. Therefore, we only need to analyze #e ca

aH)=maxa(H),a(R)} >20 and h,s ¢int(R)fori=0,1,2,3. (15)

We leave to the reader, the verification of the fact thaibif, andror; are parallel then (14) is satisfi@dFrom
now on we analyze the case in whithis horizontal anR is a rotated rectangle as in Figure 10 or a rotated
rectangle witha(R) < 29.

Fig. 10 Two ways a rotated rectangiecould cross the horizontal rectangle H and do not tdutly U hgsp Uhihy Uhos,. Sentinels
are indicated by large circles and auxiliary points have emwmith superscripts and are represented by small circles.

To avoid conflicting names, we renarfs sentinels as in Figure 10: thesentinels forR are calledz's
and thet sentinels are calledi. Notice that in all polygon&in Figure 9 ifr; is a vertex ofR then there exists a
sentinelz at a distanc® fromr; in the counterclockwise direction aloRyRepeating the argument in the second
paragraph of the proof of Theorem 1 with= hg, w = 59 and g1 = hy, we deduce that if iIfR) Nhpsy # 0
then{zy,z1,25,z3} Nint(H) # 0 and (14) is satisfied. Therefore, from now on we assume th&)inthoso = 0.

If RN (hoso — {ho,0}) # 0 then we have only two possibilities:

— hpso andr1r, are parallel. In this cadeysy must be contained in the limgr, and you can check that either
(@) s €int(R), (b)z € int(H) or (¢c)s; = z andt; € int(R).

— hosp andryr, are not parallel. In this case, since we are assuming ghatindhgh; are not parallel and that
int(R) Nhosp = 0, there is a vertek € hosp — {ho, S} and (15) implies thag; € int(H).

Thus, ifRN (hgso — {ho, S0 }) # 0 then (14) is satisfied and we can assume that
RN (hoso — {ho,o}) = 0. (16)

Now let us analyze the intersections Rfwith the sidehshg of H. Since this side is populated with the
sentinelshs, s3, X andhg, which are at mosd apart, Lemma 1 yields that if itR) N hzhg # 0 then we have a
situation like the one in the right side of Figure 4, wih= hs, 0k 1 = ho andgx,2 = h; andp; as one vertex;
of R. We claim that in this casg € int(H). In fact, sincd|z — pi|| = J is at least as big as the diameter@fve
have thatz ¢ r;y. Letd be the point defined in items (iv) — (vi) of Lemma 1. We have thieéhpossibilities:

2 when doing that, do not forget hypothesis (12).
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— d satisfies (iv): This case case contradicts (16) and need not tors@ered.
— d satisfies (v). In this case we have that

Iri—d]l > lly—d|l > supA(Q) = 5 = [Iri —z| an

and||ri —d|| > . This inequality combined witls; ¢ zy and ||z —ri|| = d implies thatz € yd— {y,d} C
int(H). Thus,z € int(H) in case (v).

— d satisfies (vi): In this casd € hphy "R and sinceRN (hpsp — {ho,S}) = 0 we must havel € sph;. This
implies that|d — ho|| > d and, sincej,1 = ho in our context, (iv) implies thaty —d|| > . We can then use
the same argument following (17) and conclude thatint(H).

In summary, we have shown that if (R) N hzhg # 0 then (14) holds. Let us then assume thatRin hzhg = 0.
Using this assumption and (16) it is easy to show th&if(hsho — {hs,ho}) # 0 then there existg € (hshg —
{hs,ho}) andz € int(H). Thus, we can assume thRt (hzhg — {hs,ho}) # 0. This assumption, the fact that
int(H) Nint(R) # 0 and (16) imply thaRN (hshoNhpso — {h3,%}) = 0. Using symmetry we can resume our
conclusions up to this point as the statement that either

RN (hshgUhpspUhiho Uhpsy — {hz, 50,1, 5}) =0 (18)

or (14) is satisfied and we assume (18) from now on.

Equation (18) shows that ifro,r1,r2,r3} Nint(H) = 0 and infH) Nint(R) # 0 then one of the sidegr:
or ror3 crosses both segmersgsgh; andsyhs, at pointse and f, say. Sincg|f —e|| > & we conclude that iR is
“short”, i.e., ifb(R) < 29, then{zy, s} Nint(H) # 0. Therefore, we can assume that

b(R) > 26 and {ro,r1,r2,r3,%,22} Nint(H) =0

and thatz is on or above the linbyohs andz, is on or below the lindgh; (These details are illustrated in Figure
10.) We then have our three final possibilities:

(i) If roran(sphs—{sy}) # 0 thenRmust be inclined to the left as illustrated in Figure 10, becagisenhoso —
{s0} = 0. As aresult, the poirg is abovehyhs andz is belowhph; and ifef =7z NH then|le— f|| > d.
Since the segmemrf — {e, f } is populated with sentinels; which are les® apart and|z — wi|| < é and
||lz2—wn, || < O at least onav; belongs to infH) and (14) is satisfied.
(i) The caseraran(s)hy —{s,}) # 0 is symmetric to item (i).
(iii) If roriN(sHhs —{sp}) =0 andrarzn(s,hy — {s,}) = 0 then we are in the situation described on the right of
Figure 10. In this case we can exchattj@andR and repeat the argument in item (i). O

4 Concluding remarks

We defined the concept of sentinels and found finite sentirsyjmsents for finite families of polygons with
internal angles bigger than or equalmg2. We presented optimal assignments for some families of rgletsin

It would be interesting to characterize optimal sentinel assants for more general families of polygons. For
instance, the sentinel assignments for the rectangles subgeby locating sentinels along well chosen lines in
the interior of the polygons it is possible to produce smaketimel assignments.

The concept of sentinel provides a new approach, based omeanlprogramming, for solving a large
variety of packing problems to optimality. Defining sentinfis a given set of polygons may be a hard task.
Modelling the problem of finding the sentinels set as a mattiealgporogramming problem will be the subject
of future research. It may allow the straightforward application otisels-based packing techniques on real
applications.
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