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Abstract We describe finite sets of points, called sentinels, which allow us to decide if isometric copies of
polygons, convex or not, intersect. As an example of the applicability of the concept of sentinel, we explain how
they can be used to formulate an algorithm based on the optimization of differentiable models to pack polygons
in convex sets.
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1 Introduction

In [1] we propose a nonlinear programming approach to pack arbitrary polygons in convex sets (not necessarily
polygons). This approach is based on the observation that if theinterior of translated and rotated copiesP′ and
Q′ of the polygonsP andQ in Figure 1 intersect then either the interior ofP′ contains one of the pointsq′i or
the interior ofQ′ contains somep′i . Motivated by this fact, we say that thepi andqi aresentinelsfor {P,Q} with
respect to translations and rotations.

Fig. 1 The pointspi andqi are sentinels: they detect if translated and rotated copiesof the interior ofP andQ intersect. In this
examplep′4 is in the interior ofQ′.

The observation above leads to the following algorithm to pack translated and rotated copies ofP1,P2, . . . ,PN
on a convex setC:

1. We parameterizePi by the coordinates(xi ,yi) of its barycenter and its rotation angleθi .
2. We define differentiable functionsΨi j (xi ,yi ,θi ,x j ,y j ,θ j) based on the distance of the sentinels ofPi to Pj so

thatΨi j (xi ,yi ,θi ,x j ,y j ,θ j) is zero if all the sentinels ofPi are outside the interior ofPj andΨi j (xi ,yi ,θi ,x j ,y j ,θ j)
is positive otherwise. (See [1] for an example ofΨi j -functions for identical rectangles.)
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3. We find approximations to the solution of the feasibility problem

Ψi j (xi ,yi ,θi ,x j ,y j ,θ j) = 0 and vertices ofPi ⊂C. (1)

For each solution of problem (1) we obtain a packing ofP1,P2, . . . ,PN in C.
In [1] we describe the nonlinear programming aspects of the approach above in detail, from the theoretical

and practical perspectives. In [5], [7] and [8], Stoyan’sΦ-functions are introduced. AΦ-function for a pair of
polygons is defined as a function whose value is positive if thepolygons overlap and zero otherwise. Our func-
tionsΨ are analogous to Stoyan’sΦ-functions in the sense that they areΦ-functions defined through the usage
of sentinels. Sentinels can also be used to detect the intersection of rotated and translated copies of polygons [6].
Finally, the concept of sentinel leads to packings which are not necessarily lattice-like [3].

In the present work we focus on the geometric aspects of the novel concept of sentinel. We formalize this
concept for arbitrary families of polygons and discuss their existence and complexity. Sentinel is a neat concept,
but unfortunately some polygons require an infinite number of them. For instance, if instead of the polygonsP
andQ in Figure 1 we consider translated and rotated copies of a singletriangleT then no finite set of points
{t1, . . . , tn}, no matter how large, would be enough to detect all the intersections ofT and a translated copyT ′ of
it: see Figure 2; we can always translateT ′ (maintaining the overlapping withT) in order to havet ′1 outsideT
andt1 outside ofT ′ no matter how near we defineta from tb andt ′c from t ′d.

tb

ta

T

t′d

t′c

T ′

Fig. 2 There are no finite sets of sentinels for triangles. No matterhow near we defineta andtb for T andt ′c andt ′d for T ′, it will
always be possible to overlapT andT ′ havingt ′c /∈ T andta /∈ T ′.

Small internal angles are the main reason why we may need an infinite number of sentinels. More precisely,
in the next section we show that ifP is a finite family of convex and non-convex polygonsP such that all the
internal angles ofP are bigger than or equal toπ/2 then we can assign a finite setS(P) ⊂ R

2 to eachP∈ P in
such way that ifT,U : R

2 → R
2 are isometries,P,Q∈P and the interior ofT(P) andU(Q) intersect then either

T(S(P)) intersects the interior ofU(Q) or U(S(Q)) intersects the interior ofT(P). In Section 2 we also define
the terms we use throughout the paper and present basic results about the existence of sentinels. In Section 3 we
discuss sentinel assignments for rectangles, which are the main motivation behind [1].We present minimal sets
of sentinels for the families of rectangles that motivated [1] and lead us to define the concept of sentinel. The
last section contains concluding remarks.

2 Sentinels

In this section we formalize the concept of sentinel and prove theexistence of finite sets of sentinels for relevant
families of polygons. We start by defining the basic terms we use:

Notation 1 If u,v∈ R
2 then we call the segment with extremes u and v by uv. ⊓⊔

Convention 1 A polygon P is defined in terms of an integer n≥ 3 and vertices pi ∈ R
2, for i ∈ Z, such that

(a) pi+n = pi for all i and pi+ j 6= pi if j is not a multiple of n.
(b) pi /∈ pi−1pi+1 for all i.
(c) If the segments pi pi+1 and pj p j+1 intersect then either
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(i) i ≡ j modn, or
(ii) i ≡ j +1 modn and pi pi+1∩ p j p j+1 = {pi}, or

(iii) i +1≡ j modn and pi pi+1∩ p j p j+1 = {p j}.

These conditions imply that P is a Jordan curve. We denote theinterior of this curve byint(P) and its border by
border(P). Moreover, we assume that the points pi are in counterclockwise order and use n(P) to denote n. ⊓⊔

Notation 2 Sub(R2) denotes the set whose elements are the subsets ofR
2. ⊓⊔

Using this terminology we can formalize the concept of sentinel:

Definition 1 Let P be a family of polygons and letT be a family of transformations T: R
2 → R

2 such that
T(P) is a polygon for all P∈ P. We say that a function S: P → Sub(R2) is a sentinel assignment forP
with respect toT if for all T , U ∈ T and P, Q∈ P such thatint(T(P))∩ int(U(Q)) 6= /0 we have that either
int(T(P))∩U(S(Q)) 6= /0 or int(U(Q))∩T(S(P)) 6= /0. In this context, we say that the elements of S(P) are the
sentinels of P. ⊓⊔

In this paper we care only about two familiesT of transformations:

Notation 3 The isometries ofR2 are transformations of the form T(x) = Qx+d, where Q is a2×2 orthogonal
matrix and d∈ R

2. We call the set of such isometries by I2. We define I+2 as the set of transformations T above
with detQ = 1. ⊓⊔

In this section we provide sufficient conditions on the familyP of polygons to guarantee the existence of
a sentinel assignmentS for P with respect toI2 such thatS(P) is finite for all P ∈ P. In the next section we
discuss the analogous question whenP is a family of rectangles and the family of transformations isI+

2 . These
conditions are expressed in terms of the parameterα(P):

Notation 4 We call the smallest internal angle of the polygon P byα(P). ⊓⊔

The relevance ofα(P) is illustrated in Figure 3. According to this figure, we can decidewhetherb is inside, over
or outside the circle with diameterac by looking at the angleα. This figure is the motivation for the condition
α(P) ≥ π/2 used throughout this paper.

Fig. 3 The angleα and the position ofb with respect to the circle with diameterac.

Besidesα(P) our results are formulated using the sets∆(P):

Definition 2 Let P be a polygon with n≥ 4 vertices (remember that we are dealing with convex and nonconvex
polygons). We define∆(P) as the set formed by the positiveδ ’s such that every segment uv connecting disjoint
sides of P has length bigger thanδ . ⊓⊔

Unfortunately,∆(P) is not as simple asα(P), starting with the fact that it is a set and not a number. Please, pay
much attention to this fact, because it does not follow the computational geometry tradition of using numbers to
characterize properties of polygons. For instance, the supremumof our sets∆(P) could be related to the several
attempts to quantify the fatness of a polygon (see [4]) but our approach is different: we look at the whole set
∆(P), not only at its supremum.

If P is convex andα(P) > π/2 then∆(P) = (0,µ(P)], whereµ(P) is the length ofP’s shortest side. In this
particular case the arguments below could be rephrased in terms of µ(P). However, in [1] we care mainly about
rectangles and ifR is a rectangle then∆(R) = (0,µ(R)) does not containµ(R). Therefore, in order to unify the
treatment of rectangles and polygons with bigger internal angles we chose to use∆(P).
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Usingα(P) and∆(P) we can state the key results behind most arguments in this paper. Given a familyP
of polygons and a functionS: P → Sub(R2), Theorems 1 and 2 give sufficient conditions forS to be a sentinel
assignment forP with respect toI2. Lemmas 1, 2 and 3 present technical results used to prove the theorems.

Lemma 1 Let P and Q be polygons withα(P) ≥ π/2 andα(Q) ≥ π/2. Suppose u, v, w∈ qkqk+1 are such that
‖u−qk‖ < ‖v−qk‖ < ‖w−qk‖ and

(a) u,w 6∈ int(P), (b) v∈ int(P) and (c) ‖u−w‖ ∈ ∆(P)∩∆(Q).

If no vertex of P is in the interior of Q then there exists a vertex pj of P with pj−1p j ∩uv= {x} and pj p j+1∩vw=
{y} (see Figure 4). Moreover, x and y are such that xy−{x,y} ⊂ int(P),

‖p j −x‖ < ‖u−w‖ and ‖p j −y‖ < ‖u−w‖. (2)

Fig. 4 The conceivable situations forp∈ pi pi+1∩ p j p j+1. Actually, only the right one is valid.

Proof of Lemma 1 Let xy be the biggest segment contained inqkqk+1 such thatv∈ xy andxy−{x,y} ⊂ int(P)
and consider the sidespi pi+1 and p j p j+1 such thatx ∈ pi pi+1 andy ∈ p j p j+1. Items (a) and (b) imply that
xy⊂ uw. Item (c) shows that‖x− y‖ ≤ ‖u−w‖ ∈ ∆(P). Sincex ∈ pi pi+1 andy∈ p j p j+1, the definition of∆
implies thatpi pi+1∩ p j p j+1 6= /0. Let p∈ {p j , p j+1} be the common vertex ofpi pi+1 andp j p j+1. According to
Figure 3,p belongs to the diskD = {z∈R

2 with ‖2z−(x+y)‖ ≤ ‖x−y‖}. If L andR are the open half planes
on the left and right sides of the lineqkqk+1 then, in principle, we have the two possibilities regardingp described
in Figure 4. However, the situation on the left side of this figuredoes not occur, becauseD ∩L ⊂ int(Q) and
there is no vertex ofP in int(Q) by hypothesis. In fact, notice thatD ∩L cannot intersect sides ofQ which
are nonconsecutive toqkqk+1 because (c) implies that the distances from such sides toqkqk+1 is bigger than
the radius ofD . Moreover,D ∩L does not intersect the sidesqk−1qk andqk+1qk+2 either, because the internal
angles ofQ are at leastπ/2. This implies thatD ∩L is contained in the interior ofQ and, thus,p /∈ D ∩L as
we claimed. Therefore, we must havep = p j = pi+1 ∈ D ∩R as described in the right side of Figure 4 and the
bounds in (2) holds because the diameter ofD is at most‖u−w‖. (For further reference, aspi+1 ≡ p j , we will
refer topi pi+1 asp j−1p j .) ⊓⊔

Lemma 2 Let P, Q and{x} = qkqk+1∩ p j−1p j as in Lemma 1. Assume that x6= qk and let c∈ border(P)∩

border(Q) be the first point different from x encountered when walking xp j−1 from x to pj−1 (see Figure 5)1.
Then, either

c∈ qk−1qk−{qk} and ‖x−c‖ > max{‖c−qk‖,‖qk−x‖}, (3)

or
c 6∈ qk−1qk∪qkqk+1 and ‖x−c‖ ≥ sup∆(Q). (4)

Proof of Lemma 2 Let qmqm+1 be the side ofQ containingc. We will first show thatqmqm+1 6= qkqk+1 and
qmqm+1 6= qk+1qk+2. Sincex∈ qkqk+1−{qk}, c∈ qmqm+1 and /06= xc−{x,c} ⊂ int(Q) we have thatx andc are
in different sides ofQ and, in consequence,qmqm+1 6= qkqk+1. Considering the triangle with verticesxpjy (right
hand side of Figure 4) and knowing that∠xpjy= ∠p j−1p j p j+1 ≥ π/2 we have that∠qkxc∼= ∠p jxy< π/2. Then
∠qkxc< π/2 implies that∠qk+1xc> π/2. This and∠qkqk+1qk+2 ≥ π/2 imply that the half linesx+ γ1(c−x)
andqk+1 + γ2(qk+2−qk+1), γ1,γ2 ≥ 0, never intersect. Thus,c /∈ qk+1qk+2 andqmqm+1 6= qk+1qk+2.

Therefore, we have only these two possibilities regardingqmqm+1:

1 Note thatp j−1p j ∩uv = p j−1p j ∩ qkqk+1 = {x} 6= qk implies that the segmentsqkqk+1 and p j−1p j are not colinear and the
pointc is well defined.
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qk−1

qk qk+1

pj−1

pj

c
x

qk−1

qk qk+1

qm
qm+1

pj−1

pj

c

x

(i) (ii)

Fig. 5 The situations (i) and (ii) described in Lemma 2.

– qmqm+1 = qk−1qk. In this case‖x− c‖ > max{‖c− qk‖,‖qk − x‖} becausexc is the biggest side in the
(nonempty) triangle with verticesxqkc, since the angle∠xqkc is equal to∠qk+1qkqk−1, which is at leastπ/2.

– qmqm+1 6= qk−1qk. In this case, by definition of∆ , ‖x−c‖ > δ for all δ ∈ ∆(Q). This implies that‖x−c‖ ≥
sup∆(Q). ⊓⊔

Clearly, a symmetric result can be obtained for{y} = qk−1qk∩ p j p j+1 defined in Lemma 1.
Part of the hypothesis of the main theorem in this section requires that each polygon inP has an internal

sentinel outside theforbidden region F(P,δ ) that we now describe. SupposeP is a polygon andδ > 0 satisfies
δ ≤ ‖pi+1− pi‖ for all i. For each vertexpi of P we define the forbidden cornerFC(P, i,δ ) as

FC(P, i,δ )= {x = λu+(1−λ )v for λ ∈ (0,1), u∈ pi−1pi , v∈ pi pi+1, uv−{u,v} ⊂ int(P) and‖u−v‖ < δ}

(see Figure 6) and we define the forbidden region

F(P,δ ) =
⋃

i:∠pi−1pi pi+1<π
FC(P, i,δ ). (5)

pi−1

pi pi+1

u

v

x

δ

pi−1

pi pi+1

pi−1

pi pi+1

pj−1

pj

pj+1

(a) (b) (c)

Fig. 6 The forbidden cornerFC(P, i,δ ).

The next lemma shows that we can always find internal sentinelsoutside the forbidden regions for any
polygon withn > 3 vertices.

Lemma 3 If P is a polygon with n> 3 vertices andδ ∈ ∆(P) then the setint(P)−F(P,δ ) is not empty.

Proof of Lemma 3.We analyze convex and non-convex polygons separately.
Let us start withPconvex. For eachi = 0, . . . ,n−1 letPi be the convex polygon with vertices{p0, . . . , pn−1}−

{pi}. Note that
Pi ∩Pj ∩Pk ⊃ {p0, . . . , pn−1}−{pi , p j , pk} 6= /0

for every tripleti, j,k. Therefore, Radon’s theorem implies that

A =
n−1
⋂

i=0

Pi 6= /0.
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pi+2

pi+1 ≡ pj

pi

pi−1

u

v

s

pi+1

pi

pi−1

pj−1

pj

pj+1
u

v

s

(a) (b)

Fig. 7 The two cases that illustrates the proof of Lemma 3.

The setA does not contain vertices or sides ofP. Thus,A⊂ int(P). Moreover, the interior of the ears ofP do not
intersectA. It is clear then that int(P)−F(P,δ ) ⊃ A 6= /0 and we are done with the convex case.

If P is not convex then there exists at least onei such that the angle∠pi−1pi pi+1 is bigger thanπ. Let
ε ∈ (0,δ/4) be such that

s= sε = pi − ε
(

pi+1− pi

‖pi+1− pi‖
+

pi−1− pi

‖pi−1− pi‖

)

belongs to int(P). Geometrically (see Figure 7),s is a point in the bisectrix of the angle∠pi−1pi pi+1 very close
to pi :

‖pi −s‖ ≤ ε
∥

∥

∥

∥

pi+1− pi

‖pi+1− pi‖
+

pi−1− pi

‖pi−1− pi‖

∥

∥

∥

∥

≤ 2ε < δ/2.

To complete this proof we will show thats∈ int(P)−F(P,δ ), i.e., it does not belong to any forbidden corner
FC(P, j,δ ) with ∠p j−1p j p j+1 < π. Consider a forbidden cornerFC(P, j,δ ) as above. Letu∈ p j−1p j andv∈
p j p j+1 be such thats∈ uv, uv−{u,v} ∈ int(P). To prove thats /∈ FC(P, j,δ ) is enough to show that‖u−v‖≥ δ .
Noticing that∠p j−1p j p j+1 < π < ∠pi−1pi pi+1 implies i 6= j, we are left with the three cases:

(i) j = i +1 (described in Figure 7a),
(ii) j = i −1 (described, after reflection, in Figure 7a),

(iii) j 6∈ {i −1, i, i +1} (described in Figure 7b).

Cases (i) and (ii) differ only by a reflection and we will threat bothas case (i).
Let us start with case (i). SinceP has more than three vertices, we have thatpi−1pi and pi+1pi+2 are not

consecutive. Thus, by definition of∆(P) we have that‖pi −v‖ > δ . Now,

∠vpiu > ∠spiu = ∠pi−1pi pi+1/2 > π/2.

This implies that‖u−v‖ > ‖pi −v‖ > δ and we are done with cases (i) and (ii).
Finally, let us handle case (iii). In this case the sidespi pi+1 andp j p j+1 are not consecutive. Thus, by defini-

tion of δ , ‖pi −v‖ > δ . As a consequence,

‖v−s‖ ≥ ‖pi −v‖−‖s− pi‖ > δ −δ/2 = δ/2. (6)

Analogously, since the sidespi−1pi andp j−1p j are not consecutive we get that‖pi −u‖ > δ and then

‖s−u‖ ≥ ‖pi −u‖−‖s− pi‖ > δ −δ/2 = δ/2. (7)

Combining (6) and (7) we get

‖u−v‖ = ‖u−s‖+‖s−v‖ > δ/2+δ/2 = δ
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and the proof is complete. ⊓⊔
Now we can address the main question of this section: Given a family P of polygons and a functionS :

P → Sub(R2), give sufficient conditions forS to be a sentinel assignment forP with respect toI2.

Theorem 1 LetP be a family of polygons such that, for each P∈ P, α(P)≥ π/2. Let S be a function fromP
to Sub(R2). Assume that for all P∈ P

(a) S(P) contains the vertices of P;

and that there existsδ ∈
⋂

P∈P ∆(P) for which

(b) for each side pi pi+1 of P there exist ni ∈ N and sj ≡ pi +(γ j/Γ )(pi+1− pi) ∈ S(P), whereΓ = ‖pi+1− pi‖,
such thatγ j ∈ [0,Γ ] for j = 1, . . . ,ni , if ni 6= 0 thenγ1 = δ andγni = Γ −δ , γ j < γ j+1 and|γ j − γ j+1| ≤ δ for
j = 1, . . . ,ni −1;

(c) the set S(P) contains a point inint(P)−F(P,δ ).

Then S is a sentinel assignment forP with respect to I2.

Proof of Theorem 1 Consider membersA andB of P andT, U ∈ I2. DefineP = T(A), Q = U(B), S(P) =
T(S(A)) andS(Q) =U(S(B)). SinceT andU are isometries, hypotheses (a), (b) and (c) also apply toP andS(P)
andQ andS(Q). To prove Theorem 1, we assume that there exists a pointz∈ int(P) ∩ int(Q) and show that
either

S(P) ∩ int(Q) 6= /0 or S(Q) ∩ int(P) 6= /0. (8)

Hypothesis (c) implies that there existss∈ S(P)∩ (int(P)−F(P,δ )). If s∈ int(Q) then the first condition in (8)
is satisfied and we are done. Thus, we assume thats 6∈ int(Q). Sincesandzare in the interior of the Jordan curve
P, there exists a continuous path contained in the interior ofP connectings to z. This path intersects border(Q)
at some pointv becauses 6∈ int(Q) andz∈ int(Q). If v∈ S(Q) then the second condition in (8) is satisfied and
we are done again. Thus, we only need to care about the case in which v 6∈ S(Q) andv is the first intersection of
the path above and border(Q), that is, there exists a continuous functionφ : [0,1] → R

2 such that

φ(0) = s, φ(1) = v, φ([0,1]) ⊂ int(P) and φ([0,1))∩Q = /0. (9)

If qkqk+1 is the side ofQ that containsv, then by hypotheses (a) and (b) there existu,w∈ S(Q)∩qkqk+1 such
thatv∈ uw, ‖u−w‖ ≤ δ and‖u−qk‖ < ‖w−qk‖. If u or w belong to int(P) then the second condition in (8)
is satisfied and we are done. To complete this proof, let us now derive a contradiction from the assumption that
hypothesis (c) holds and neitheru nor w belong to int(P). In this case Lemma 1 implies that there existp j−1,
p j andp j+1, vertices ofP, and{x} = uv∩ p j−1p j , {y} = vw∩ p j p j+1 andxy−{x,y} ⊂ int(P) like the ones in
Figure 8. This figure is also accurate regarding the fact thats is in the interior of the triangleτ = xpjy. In fact, (9)

Fig. 8 The relative position ofp j , s, u, v andw when{u,w}∩ int(P) = /0.

implies that the pathφ([0,1]) does not crossxpj nor p jy andφ([0,1)) does not touchyx. Moreover, ifε is small
φ(1− ε) is close tov and outsideQ. This implies thatφ(1− ε) ∈ int(τ) for ε small. Sinceφ([0,1)] does not
touch border(τ) we have thatφ([0,1)) ⊂ int(τ). In particular,s= φ(0) ∈ int(τ). However, equation (2) shows
that‖x− p j‖ ≤ δ and‖p j −y‖ ≤ δ . This implies that int(τ) ⊂ FC(P, j,δ ) and we deduce thats∈ F(P,δ ). This
conclusion contradicts our choice ofsat the beginning of this proof. ⊓⊔

Theorem 1 implies that ifP is a finite family of polygonsP with α(P) ≥ π/2 then there exists a sentinel
assignmentS for P with respect toI2 such thatS(P) is finite for all P ∈ P: take an arbitrary choice ofδ ∈
⋂

P∈P ∆(P), for example,

δ =
1
3

sup
⋂

P∈P

∆(P) > 0,
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and for eachP∈P choose a finite setS(P) of sentinels that satisfy the conditions (a)–(c) in Theorem 1. Lemma
3 guarantees that it is possible to find a point satisfying condition (c) of Theorem 1.

Using Theorem 1 you can prove the following corollary to justify ourclaim regarding the intersections of
rotated and translated copies of the pentagon and the hexagon in the first page of this paper:

Corollary 1 Let δ > 0 and letP be a family of convex polygons such that, for all P∈ P we have thatα(P) >
π/2 and all sides of P have lengthδ . For P∈P take s∈ int(P)−F(P,δ ) and define S(P) = {s, p1, p2, . . . , pn(P)}.
The function S is a sentinel assignment forP regarding I2. (S satisfies hypotheses (a) and (c) by definition and
hypothesis (b) with ni = 0.) ⊓⊔

We have seen that Theorem 1 can be used to construct sentinel assignments for certain families of polygons or
to verify that a given assignmentSthat satisfies the hypotheses of Theorem 1 is a sentinel assignment. However,
there is a simple and important case that is not covered by Theorem1. Consider a familyP of identical squares
P of sided. In this case we have that∆(P) = (0,d) for all P∈ P. Let δ = 1

2d. Consider a sentinel assignmentS
for P such that, for eachP∈ P, S(P) is given by a sentinel in each vertex ofP, a sentinel in the middle of each
side ofP and a sentinel in int(P)−F(P,δ ). ThisSsatisfies hypotheses (a) and (b) but does not satisfy hypothesis
(c) of Theorem 1. Therefore, Theorem 1 can not be used to certify thatS is, in fact, a sentinel assignment for
P. The theorem below is similar to Theorem 1 except for the fact that hypothesis (c) is replaced by a couple of
other hypotheses satisfied by the sentinel assignment described above.

Theorem 2 Let P be a family of polygons such that, for all P∈ P, α(P) ≥ π/2. Let S be a function fromP
to Sub(R2). Assume that for all P∈ P

(a) S(P) contains the vertices of P;

and that there existsδ ∈
⋂

P∈P ∆(P) that satisfies

(b) for each side pi pi+1 of P there exist ni ∈ N and sj ≡ pi +(γ j/Γ )(pi+1− pi) ∈ S(P), whereΓ = ‖pi+1− pi‖,
such thatγ j ∈ [0,Γ ] for j = 1, . . . ,ni , if ni 6= 0 thenγ1 = δ andγni = Γ −δ , γ j < γ j+1 and|γ j − γ j+1| ≤ δ for
j = 1, . . . ,ni −1;

(c) S(P)∩ int(P) 6= /0; and
(d) ‖pi+1− pi‖ ≥ 2δ for all i ∈ Z.

Then S is a sentinel assignment forP with respect to I2.

Proof of Theorem 2This proof follows very closely the proof of Theorem 1. Thus, we will assume that there
exists a pointz∈ int(P) ∩ int(Q) and show that either

S(P) ∩ int(Q) 6= /0 or S(Q) ∩ int(P) 6= /0. (10)

By hypothesis (c), there existss∈ S(P)∩ int(P) and letv ∈ int(P) be the first point that belongs to border(Q)
encountered when walking the continuous path froms to z trought the interior ofP. If s∈ int(Q) or if v∈ S(Q)
then (10) holds and we are done. Therefore, we only need to care aboutthe case in which there exists a continuous
functionφ : [0,1] → R

2 such that

φ(0) = s, φ(1) = v, φ([0,1]) ⊂ int(P) and φ([0,1))∩Q = /0. (11)

Let qkqk+1 be the side ofQ that containsv. Then, hypotheses (a) and (b) imply that there existu,w ∈ S(Q)∩
qkqk+1 such thatv ∈ uw, ‖u−w‖ ≤ δ and‖u− qk‖ < ‖w− qk‖. If S(Q)∩ int(P) 6= /0 we are done. So, we
assume thatu,w /∈ int(P). In this case Lemma 1 implies that there existp j−1, p j and p j+1, vertices ofP, and
{x} = uv∩ p j−1p j and{y} = vw∩ p j p j+1 like the ones in right hand side of Figure 4. Hypothesis (d) and the
fact that‖u−w‖ ≤ δ imply that eitheru 6= qk or w 6= qk+1. By symmetry, assume thatu 6= qk which implies that
x 6= qk (in fact, it implies that‖x−qk‖ ≥ δ ). In this case, by Lemma 2, there existsc∈ border(P)∩border(Q),
the first point different fromx encountered when walkingxpj−1 from x to p j−1 (see Figure 5), such that either (3)
or (4) holds. By (3) and the fact that‖x−qk‖ ≥ δ or by (4) and the fact thatδ ∈ ∆(Q), we have that‖x−c‖ ≥ δ .
So, we havexc⊂ int(Q)∩ p j−1p j and‖x− c‖ ≥ δ . By hypothesis (b) there existst ∈ xc∩S(P) and, thus, we
have verified (10). ⊓⊔
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3 Sentinels for rectangles

In this section we present optimal sentinel assignments for rectangles with respect toI+
2 . We assume thata =

a(R) = ‖r0− r1‖ is the longest side of the rectangleR andb = b(R) = ‖r0− r3‖ is the smallest side. We define
sentinel assignments that depend on two parametersδ andρ : given a rectangleR we defineSδρ(R) as the set of
points indicated by circles in Figure 9. Formally, given a rectangle R andδ andρ with 0 < δ ,ρ < ‖r3− r0‖ we

Fig. 9 The sentinelsSδρ (R). In the top left rectanglea > 2δ ≥ b > δ andλ = (a−2δ )/nλ for nλ = ⌈(a−2δ )/δ⌉. For the bottom
rectangle,b > 2δ andγ = (b−δ )/nγ with nγ = ⌈(b−δ )/δ⌉. In the top right rectanglea≤ 2δ andb≤ 2δ .

defineSδρ(R) as the set formed by:

1. The verticesr0, r1, r2, r3 of R.
2. The pointssi = r i +δ (r i+1− r i)/‖r i+1− r i‖ for i = 0,1,2 and 3.
3. If b> 2δ , the pointsxi = s3+ i(r0−s3)/nγ andyi = s1+ i(r2−s1)/nγ for 1≤ i < nγ , with nγ = ⌈(b−δ )/δ⌉.
4. If a > 2δ , the pointsti = ρ(r3− r0)/b+(s0− r0)+ i∆/nτ , for 1≤ i < nτ , with ∆ = r1− r0−2(s0− r0) and

nτ = ⌈‖∆‖/δ⌉.
5. If a≤ 2δ , the points= (r0 + r1 + r2 + r3)/4.

The following theorem is the main result in this section:

Theorem 3 Let R be a family of rectangles and supposeδ ∈
⋂

R∈R ∆(R). If for all R ∈ R we haveρ(R) ∈
(0,b(R)) such that

b(R′) 6∈ {ρ(R),b(R)−ρ(R)} for all R′ ∈ R (12)

then the function S: R → Sub(R2) given by S(R) = Sδρ(R)(R) is a sentinel assignment forR with respect to
I+
2 . ⊓⊔

If all rectangles inR∈ R haveδ < b(R) ≤ 2δ then the setsSδρ(R)(R) contain only one element in each smaller
side ofR and the sentinel assignmentSabove in Theorem 3 is optimal, i.e., ifS′ is another sentinel assignment
for R with respect toI+

2 thenS′(R) has at least as many elements asS(R). In fact,S′(R) must contain the vertices
of R and at least one element in each side ofR. Moreover, ifS′(R) does not contain as many elements asS(R)
then it is possible to superimpose a copy ofRrotated byπ/2 andR in order to contradict the definition of sentinel
assignment.

We end this paper with the proof of Theorem 3:
Proof of Theorem 3.The setsSδρ(R) and the condition (12) are invariant underI+

2 , in the sense that ifT ∈ I+
2

andR∈ R thenSδρ(T(R)) = T(Sδρ(R)) andb(R) = b(T(R)). Therefore, to prove Theorem 3 it is enough to
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show that ifH andRare rectangles with‖h0−h3‖ ≥ ‖h1−h2‖, ‖r0− r3‖ ≥ ‖r1− r2‖ and

δ ∈ ∆(H)∩∆(R), |‖r0− r3‖−‖h0−h3‖| 6∈ {ρ(H),ρ(R)} (13)

and int(H)∩ int(R) 6= /0 then

int(H)∩Sδρ(R)(R) 6= /0 or Sδρ(H)(H)∩ int(R) 6= /0. (14)

If a(H) ≤ 2δ and a(R) ≤ 2δ then (14) is a consequence of Theorem 1 applied toP = {H,R}. Thus, we
can assume thata(H) = ‖h1 − h0‖ > 2δ . Moreover, if si are the sentinels described in Figure 9 forH and
{h0,h1,h2,h3,s0,s1,s2,s3}∩ int(R) 6= /0 then (14) is satisfied. Therefore, we only need to analyze the case

a(H) = max{a(H),a(R)} > 2δ and hi ,si 6∈ int(R) for i = 0,1,2,3. (15)

We leave to the reader, the verification of the fact that ifh0h1 andr0r1 are parallel then (14) is satisfied2. From
now on we analyze the case in whichH is horizontal andR is a rotated rectangle as in Figure 10 or a rotated
rectangle witha(R) ≤ 2δ .

Fig. 10 Two ways a rotated rectangleRcould cross the horizontal rectangle H and do not touchh3h0∪h0s0∪h1h2∪h2s2. Sentinels
are indicated by large circles and auxiliary points have names with superscripts and are represented by small circles.

To avoid conflicting names, we renameR’s sentinels as in Figure 10: thes sentinels forR are calledz’s
and thet sentinels are calledw. Notice that in all polygonsR in Figure 9 ifr i is a vertex ofR then there exists a
sentinelzi at a distanceδ from r i in the counterclockwise direction alongR. Repeating the argument in the second
paragraph of the proof of Theorem 1 withu = h0, w = s0 andqk+1 = h1, we deduce that if int(R)∩h0s0 6= /0
then{z0,z1,z2,z3}∩ int(H) 6= /0 and (14) is satisfied. Therefore, from now on we assume that int(R)∩h0s0 = /0.
If R∩ (h0s0−{h0,s0}) 6= /0 then we have only two possibilities:

– h0s0 andr1r2 are parallel. In this caseh0s0 must be contained in the liner1r2 and you can check that either
(a)s1 ∈ int(R), (b) z2 ∈ int(H) or (c)s1 = z2 andt1 ∈ int(R).

– h0s0 andr1r2 are not parallel. In this case, since we are assuming thatr0r1 andh0h1 are not parallel and that
int(R)∩h0s0 = /0, there is a vertexr i ∈ h0s0−{h0,s0} and (15) implies thatzi ∈ int(H).

Thus, ifR∩ (h0s0−{h0,s0}) 6= /0 then (14) is satisfied and we can assume that

R∩ (h0s0−{h0,s0}) = /0. (16)

Now let us analyze the intersections ofR with the sideh3h0 of H. Since this side is populated with the
sentinelsh3, s3, xi andh0, which are at mostδ apart, Lemma 1 yields that if int(R)∩h3h0 6= /0 then we have a
situation like the one in the right side of Figure 4, withqk = h3, qk+1 = h0 andqk+2 = h1 andp j as one vertexr i
of R. We claim that in this casezi ∈ int(H). In fact, since‖zi − pi‖ = δ is at least as big as the diameter ofD we
have thatzi 6∈ r iy. Let d be the point defined in items (iv) — (vi) of Lemma 1. We have this three possibilities:

2 when doing that, do not forget hypothesis (12).
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– d satisfies (iv): This case case contradicts (16) and need not to be considered.
– d satisfies (v). In this case we have that

‖r i −d‖ > ‖y−d‖ ≥ sup∆(Q) ≥ δ = ‖r i −zi‖ (17)

and‖r i −d‖ > δ . This inequality combined withzi 6∈ ziy and‖zi − r i‖ = δ implies thatzi ∈ yd−{y,d} ⊂
int(H). Thus,zi ∈ int(H) in case (v).

– d satisfies (vi): In this cased ∈ h0h1∩R and sinceR∩ (h0s0−{h0,s0}) = /0 we must haved ∈ s0h1. This
implies that‖d−h0‖ ≥ δ and, sinceqk+1 = h0 in our context, (iv) implies that‖y−d‖ ≥ δ . We can then use
the same argument following (17) and conclude thatzi ∈ int(H).

In summary, we have shown that if int(R)∩h3h0 6= /0 then (14) holds. Let us then assume that int(R)∩h3h0 = /0.
Using this assumption and (16) it is easy to show that ifR∩ (h3h0−{h3,h0}) 6= /0 then there existsr i ∈ (h3h0−
{h3,h0}) andzi ∈ int(H). Thus, we can assume thatR∩ (h3h0−{h3,h0}) 6= /0. This assumption, the fact that
int(H)∩ int(R) 6= /0 and (16) imply thatR∩ (h3h0∩h0s0−{h3,s0}) = /0. Using symmetry we can resume our
conclusions up to this point as the statement that either

R∩ (h3h0∪h0s0∪h1h2∪h2s2−{h3,s0,h1,s2}) = /0 (18)

or (14) is satisfied and we assume (18) from now on.
Equation (18) shows that if{r0, r1, r2, r3}∩ int(H) = /0 and int(H)∩ int(R) 6= /0 then one of the sidesr0r1

or r2r3 crosses both segmentss0h1 ands2h3, at pointse and f , say. Since‖ f −e‖ > δ we conclude that ifR is
“short”, i.e., if b(R) ≤ 2δ , then{z0,s2}∩ int(H) 6= /0. Therefore, we can assume that

b(R) > 2δ and {r0, r1, r2, r3,z0,z2}∩ int(H) = /0

and thatz0 is on or above the lineh2h3 andz2 is on or below the lineh0h1 (These details are illustrated in Figure
10.) We then have our three final possibilities:

(i) If r0r1∩(s′0h3−{s′0}) 6= /0 thenRmust be inclined to the left as illustrated in Figure 10, becauser0r1∩h0s0−
{s0} = /0. As a result, the pointz0 is aboveh2h3 andz0 is belowh0h1 and ife f = z0z1∩H then‖e− f‖ > δ .
Since the segmente f−{e, f} is populated with sentinelswi which are lessδ apart and‖z0−w1‖ < δ and
‖z2−wnw‖ < δ at least onewi belongs to int(H) and (14) is satisfied.

(ii) The caser2r3∩ (s′2h1−{s′2}) 6= /0 is symmetric to item (i).
(iii) If r0r1∩ (s′0h3−{s′0}) = /0 andr2r3∩ (s′2h1−{s′2}) = /0 then we are in the situation described on the right of

Figure 10. In this case we can exchangeH andRand repeat the argument in item (i). ⊓⊔

4 Concluding remarks

We defined the concept of sentinels and found finite sentinel assignments for finite families of polygons with
internal angles bigger than or equal toπ/2. We presented optimal assignments for some families of rectangles.
It would be interesting to characterize optimal sentinel assignments for more general families of polygons. For
instance, the sentinel assignments for the rectangles suggest that by locating sentinels along well chosen lines in
the interior of the polygons it is possible to produce smaller sentinel assignments.

The concept of sentinel provides a new approach, based on nonlinear programming, for solving a large
variety of packing problems to optimality. Defining sentinelsfor a given set of polygons may be a hard task.
Modelling the problem of finding the sentinels set as a mathematical programming problem will be the subject
of future research. It may allow the straightforward application of sentinels-based packing techniques on real
applications.
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