
Packmol: A package for building initial configurations for

molecular dynamics simulations

L. Mart́ınez ∗ R. Andrade † E. G. Birgin † J. M. Mart́ınez ‡

December 10, 2008

Abstract

Adequate initial configurations for molecular dynamics simulations consist of ar-
rangements of molecules distributed in space in such a way to approximately repre-
sent the system’s overall structure. In order that the simulations are not disrupted by
large Van der Waals repulsive interactions, atoms from different molecules must keep
safe pairwise distances. Obtaining such a molecular arrangement can be considered
a packing problem: Each type molecule must satisfy spatial constraints related to
the geometry of the system, and the distance between atoms of different molecules
must be greater than some specified tolerance. We have developed a code able to
pack millions of atoms, grouped in arbitrarily complex molecules, inside a variety
of three-dimensional regions. The regions may be intersections of spheres, ellipses,
cylinders, planes or boxes. The user must provide only the structure of one molecule
of each type and the geometrical constraints that each type of molecule must sat-
isfy. Building complex mixtures, interfaces, solvating biomolecules in water, other
solvents, or mixtures of solvents, is straightforward. In addition, different atoms be-
longing to the same molecule may also be restricted to different spatial regions, in
such a way that more ordered molecular arrangements can be built, as micelles, lipid
double-layers, etc. The packing time for state-of-the-art molecular dynamics systems
varies from a few seconds to a few minutes in a personal computer. The input files
are simple and currently compatible with PDB, Tinker, Molden or Moldy coordi-
nate files. The package is distributed as free software and can be downloaded from
http://www.ime.unicamp.br/∼martinez/packmol/.

Keywords: Initial configuration, molecular dynamics, packing, large-scale optimiza-
tion, Packmol.

∗Department of Physical Chemistry, IQ-UNICAMP, University of Campinas.
leandromartinez98@gmail.com
†Department of Computer Science IME-USP, University of São Paulo, Rua do Matão 1010, Cidade

Universitária, 05508-090, São Paulo SP, Brazil.
‡Department of Applied Mathematics, IMECC-UNICAMP, University of Campinas, CP 6065, 13081-

970 Campinas SP, Brazil.

1



1 Introduction

The first step in a molecular dynamics simulation consists of obtaining initial coordinates
for all the atoms of the system. For example, in order to run a simple simulation con-
sisting of 300 water molecules with experimental density, we need the positions of the
300 molecules inside an adequately sized box. Furthermore, since molecular dynamics
force-fields contain repulsive terms that increase abruptly for short atom-to-atom dis-
tances, the distances between atoms from different molecules must be large enough so
that repulsive potentials do not disrupt the simulations. Frequently, the instability and
non-differentiability of the potential energy resulting from overlapping atoms is hard to
overcome [1].

For a simple system such as a water box, we can obtain an adequate configuration
simply by ordering the molecules in a regular lattice. However, for slightly more complex
systems such as a solvated peptide, regular configurations would almost certainly contain
overlapping atoms. Many times, this inconvenience is overcome in the following way: a
box of water molecules regularly distributed is constructed (or a previously equilibrated
solvent box is used, when available). Then, the “big” molecule is added to the system and
the solvent molecules containing overlapping atoms are removed. Finally, the energy of
the system is minimized.

However, when the complexity of the system increases, the work for building a starting
configuration may be very tedious. For example, if the protein is added to a box containing
water, ions and urea (a common denaturant), and the overlapping solvent molecules are
removed, the charge of the system and molar fraction of urea must be further adjusted.
Building ordered molecular systems, such as micelles, double layers, or interfaces, require
lots of trials, manipulation of files, small ad-hoc codes, etc., and, so, the very first steps of
the simulation turn out to be quite cumbersome. For this reason, ready-to-use configura-
tions and specific programs have been developed for the construction of some commonly
studied systems, particularly membranes [2, 3]. As the variety of interesting systems being
studied increases, more general approaches will be of great utility.

Recently, we proposed that the initial configuration problem can be treated as a packing
problem [1]. The molecules are packed within spatial regions with the desired character-
istics, in such a way that atoms from different molecules keep a safe pairwise distance.
Small systems composed by interfaces, mixtures of various components and solvated pro-
teins were successfully built and used in actual molecular dynamics simulations [4, 5, 6].
In that work, we have shown that random sets of appropriately packed molecules, with
no intermolecular clashes, can be rapidly equilibrated to the thermodynamic energy us-
ing standard MD integration algorithms and energy minimization [1], thus validating the
approach.

In this paper we show how this idea gives rise to an efficient code for public use. The
construction of large systems with increasing structural complexity is now envisaged. With
this in mind, we define a general set of spatial constraints, so that molecules can be packed
in complex regions formed by the intersections of planes, spheres, ellipsoids, cylinders and
boxes. We have also implemented tools that allow the user to allocate different parts of the
molecules to different regions, in such a way that ordered structures, such as micelles, may

2



be built. To achieve the needs of the increasingly large systems currently being simulated,
we have modified the function and gradient evaluation methods in order that the practical
algorithm scales linearly with the number of atoms of the system, and we have developed
a parallel version. As its predecessor, the computational software is called Packmol, and
is free software. Successive versions of Packmol are employed by many members of the
Molecular Dynamics community since 2003. Briefly speaking, the present paper reports
the improvements of Packmol since its introduction in 2003 as a proof-of-concept package.

This paper is organized as follows. Section 2 presents the mathematical model. Sec-
tion 3 deals with the efficient evaluation of the objective function and its derivatives. The
optimization method used to solve the packing problem and the parallelization of the ob-
jective function and its derivatives are described in Section 4. In Section 5 we describe
the usage of the software and we present some examples. Conclusions and perspectives
are stated in Section 6.

2 Mathematical model

Let us call nmol the total number of molecules that we want to place in a region of the
three-dimensional space. For each i = 1, . . . ,nmol, let natom(i) be the number of atoms
of the i−th molecule. Molecules can be grouped in different types (water, protein, urea,
and so on) but this classification is irrelevant for the model description. Each molecule
is represented by the cartesian coordinates of its atoms. The point whose coordinates
are the arithmetic averages of the coordinates of the atoms will be called barycenter. To
facilitate visualization, assume that the origin is the barycenter of all the molecules. For
all i = 1, . . . ,nmol, j = 1, . . . ,natom(i), let

aij = (aij
1 , a

ij
2 , a

ij
3 )

be the coordinates of the j−th atom of the i−th molecule.
Suppose that the i − th molecule is sequentially rotated around the axes x1, x2 and

x3, being θi = (θi
1, θ

i
2, θ

i
3) the angles that define such rotations. Moreover, suppose that

after these rotations, the whole molecule is displaced so that its barycenter becomes ci =
(ci1, c

i
2, c

i
3). These movements transform the coordinates aij to

pij = (pij
1 , p

ij
2 , p

ij
3 ).

Observe that pij is always a function of (ci, θi), the relation being

pij = ci +R(θi)aij , (1)

where R(θi) is the rotation matrix given by

R(θi) =

 ci1c
i
2c

i
3 − si

1s
i
3 si

1c
i
2c

i
3 + ci1s

i
3 −si

2c
i
3

−ci1ci2si
3 − si

1c
i
3 −si

1c
i
2s

i
3 + ci1c

i
3 −si

2s
i
3

ci1s
i
2 si

1s
i
2 ci2

 , (2)

in which si
k ≡ sin θi

k and cik ≡ cos θi
k, for k = 1, 2, 3.

3



Our objective is to find angles θi and displacements ci, i = 1, . . . ,nmol, in such a
way that, for all i,= 1, . . . ,nmol, j = 1, . . . ,natom(i), the point whose coordinates are
(pij

1 , p
ij
2 , p

ij
3 ) satisfy the constraints imposed to the atom j of the molecule i. In addition,

we wish that for all i 6= i′, j = 1, . . . ,natom(i), j′ = 1, . . . ,natom(i′),

‖pij − pi′j′‖ ≥ dtol, (3)

where dtol > 0 is a user-specified tolerance. The symbol ‖·‖ stands for the usual Euclidian
distance. In other words, the rotated and displaced molecules must remain in the desired
region and the distance between any pair of atoms of different molecules must not be less
than dtol.

A large variety of positioning constraints may be required individually to the atoms.
Let rij be the number of constraints that apply to the j−th atom of the i−th molecule.
In practice, the constraints may be applied to a subset of atoms of all the molecules of
the same type, or to all the atoms of a molecule, or to any desired subset of atoms or
molecules, but, again, this is irrelevant for the model description.

These constraints can be represented as

gij
` (pij) ≤ 0, ` = 1, . . . , rij . (4)

Examples of the positioning constraints that may be required for the atoms will be shown
in Section 5.

In our approach, the constraints are incorporated into the objective function. This
means that, for each atom, the objective function contains a part associated with the
distance to other atoms and a part associated with the fulfillment of the geometrical
constraints that are imposed to it. Given the position of the atom in space, the quantity
gij
` (pij) is positive if the constraint is not satisfied and negative otherwise. This justifies

the addition of the terms of the form [max{0, gij
` (pij)}]2 to the objective function.

The objectives (3–4) lead us to define the following merit function f :

f(c, θ) =
nmol∑
i=1

natom(i)∑
j=1

 nmol∑
i′=i+1

natom(i′)∑
j′=1

max{0, d2
tol − ‖pij − pi′j′‖2}2


+

nmol∑
i=1

natom(i)∑
j=1

 rij∑
`=1

max{0, gij
` (pij)}2

 ,

(5)

where c = (c1, . . . , cnmol) ∈ IR3×nmol and θ = (θ1, . . . , θnmol) ∈ IR3×nmol. (Remember the
dependence of pij on the variables (ci, θi) and the constants aij given by (1-2).) Note that
f(c, θ) is non-negative for all angles and displacements. Moreover, f vanishes if, and only
if, the objectives (3–4) are fulfilled. This means that, if we find displacements and angles
where f = 0, the atoms of the resulting molecules fit the desired region and are sufficiently
separated. This leads us to define the following unconstrained minimization problem:

Minimize f(c, θ). (6)

4



The number of variables is 6 × nmol (three angles and a displacement in the three-
dimensional space per molecule). The analytical expression of the derivatives of f is
cumbersome but straightforward.

The definition (5) possesses two nice features. One one hand, the functional value
vanishes at the solutions of the packing problem, where no overlaps are present and all
constraints are satisfied. Therefore, the global minimizers of (5) are recognized trivially.
On the other hand, the function f is continuous and first-order differentiable. These
are important advantages over the explicit minimization of the potential energy of the
system. In fact, most force-fields of molecular mechanics contain non-differentiable terms
(both the Van-der-Waals and Electrostatics at d = 0), which do not represent problems
for a stable simulation, but introduce instabilities that hamper the process of obtaining a
suitable initial configuration by direct energy minimization. For example, a system may
have an overall acceptable energy, but a single unsatisfactory interatomic distance can
lead to simulation instabilities. On the other hand, by minimizing the packing function
and recognizing a global solution with f = 0 one is sure that there are no clashes, and
energy minimization and/or simulations may run smoothly (even if the total energy of the
system is not satisfactory and needs to be equilibrated to the thermodynamic energy at
the desired temperature) [1].

The smoothness of the objective function facilitates the minimization procedure to
the point that global solutions are obtained frequently. At the same time, the objective
function can be evaluated using very fast procedures due to its local character (there are
no long-range interactions), as will be described below.

3 Function and gradient evaluation

The expression (5) has two terms: the first term reflects the minimum-distance requirement
between atoms of different molecules; and the second one corresponds to the fulfillment of
constraints. The second term can be computed in linear time (with respect to the number
of atoms), whereas the first one involves all the atom-to-atom distances. Therefore, in
principle, the computational cost of the first term calculation could increase as the square
of the number of atoms, being impractical for large problems.

We implemented the fast evaluation of the first term using a Linked Cell technique [7].
This technique is related to well-known multipole ideas [8] but it is even simpler since our
approach does not involve long-range interactions. Here, the system is partitioned into
small boxes (bins) of side dtol. Each atom is assigned to each bin using simple arithmetic
operations. Then, since the objective function vanishes for distances greater than dtol,
for each atom only the distances to atoms belonging to the same bin or to adjacent bins
is necessary. If the atoms are reasonably well distributed in space, the time required to
evaluate these distances only depends on the number of atoms per bin, scaling linearly with
the total number of atoms [7]. Since dtol is of the order of a few (usually 2.0) angstroms,
we observe that only about 10 distances must be computed for each atom, providing the
algorithm with great efficiency.

A good external bounding box not exceeding the real size of the system is necessary

5



for an efficient partition of the space into bins. The number of bins must be small in
order to avoid looping over empty boxes. We note that a “bounding box” in which all
molecules are included cannot be deduced from the desired constraints. For example, for
building spherical micelles, one usually imposes that the polar head of the lipids must
be outside a sphere of a given radius, whereas the tail must be inside some other sphere.
The presence of the outer sphere constraint makes the definition of an external bounding
box quite cumbersome in general, and the structure of the molecules that are going to be
packed should be taken into account.

In order to define a suitably practical bounding box, we decided to solve first an aux-
iliary packing problem, as follows. The position of the molecules are randomly generated
within a very large region and the problem of packing all the molecules into the regions de-
fined by the geometrical constraints ignoring the distances between their atoms is solved.
From the solution of this easy problem, we obtain maximum and minimum coordinates for
each atom of the system, and these coordinates define the external bounding box. Since
the initial positions of the molecules are generated in a very large box, the solution will
contain the molecules generally close to the boundaries of the constraints, and a good
estimate of the total size of the system is obtained.

This procedure is also useful in a different sense: Sometimes the user imposes a spatial
constraint for some of the molecules of the system which cannot be satisfied (the molecule
does not fit into the region). If the algorithm fails to put the molecules into the desired
regions defined by the constraints, it is almost certain that the constraints are not well
defined, and the desired packing will not be successful. Therefore, by solving this initial
problem the software recognizes inconsistencies in the input information and stops with
an appropriate error message.

4 Optimization and Parallelization

4.1 Optimization method

For solving the molecular packing problem it is necessary to minimize the function f(c, θ).
In order to achieve this purpose, an efficient local optimization algorithm is required.
The first version of Packmol used Box-Quacan [9] whereas, in the present version, we
decided to use Gencan [10], which turned out to be more efficient. As most optimiza-
tion algorithms [11, 12], Gencan is an iterative method that, starting from an initial
approximation for (c, θ), computes, at each step, an approximation with smaller function
value. In the limit, a local minimizer is obtained. At each iteration, Gencan calcu-
lates a direction in the (c, θ) space along which the objective function f decreases. The
new approximation to the solution is computed in the half-line determined by the above
mentioned descent direction with origin in the current approximation. The descent di-
rection is defined according to the Newtonian paradigm, which means that it is the best
possible direction in the case that the objective function possesses a simple (quadratic)
structure. The procedure for finding a new point along this direction uses sophisticated
interpolation and extrapolation techniques that allows one to obtain efficiency and to
guarantee ultimate convergence. Gencan is available at the Tango Project web page

6



(see http://www.ime.usp.br/∼egbirgin/tango/).
We have used Gencan in combination with heuristics devised to enhance the conver-

gence to global (i. e. f = 0) minimizers. One of the obstacles associated to the global
minimization of f(c, θ) (also causing slow convergence) was observed to be the formation
of clusters of atoms which, by the local nature of the objective function, are hard to dis-
perse. This is because the algorithm cannot recognize the presence of “empty spaces”
far from the clusters. In order to avoid the formation of these clusters and enhance the
convergence to global solutions, two strategies were adopted. First, the packing process
starts with a larger minimum-distance requirement than the one specified by the user.
Thus, the packing method begins aiming a larger separation of the atoms than the re-
quired by the tolerance dtol. The effect of this is to expand possible clusters and to occupy
remaining empty spaces. In the current version of Packmol the initial tolerance is 10%
larger than dtol. Using this initial tolerance, ten Gencan iterations are performed. The
procedure is repeated while the objective function with the actual dtol decreases at the
end of each ten-iteration loop. Then, the actual dtol is restored and the final optimization
steps are performed. Usually, if the density of a system is close to the water density at
room temperature, one requires a target tolerance dtol = 2Å, but most times a solution
is found before, with a larger minimum interatomic distance. As a second heuristic pro-
cedure, the function value is evaluated for each molecule separately, and the 5% worst
molecules are moved to the vicinity of the 5% best molecules, aiming a more homogeneous
distribution. The classification of the function value for the molecules is done by the also
linear-scaling algorithm Flashsort [13]. This procedure is applied to each type of molecule
independently.

Some other procedures were employed to improve the reliability and efficiency of the
method: When many types of molecules are present, the packing problem is solved for
each type independently, and only as a final step all the molecules are packed together. In
this way, we take advantage of the fact that many times each type of molecule occupies
a different region in space (as the two components of an interface, or the lipids and the
solvent in micelles, for example). The packing process runs faster for each type of molecule
and, if the regions do not overlap, the independent solutions are very close to an actual
solution of the whole packing problem. Finally, when large fixed structures are present,
such as proteins, our initial approximations automatically exclude solvent molecules that
clash with the big molecules. With these strategies, global solutions are obtained for all
kinds of mixtures of small molecules and for the solvation of large fixed molecules. When
larger molecules (as lipids) are considered as variables, the whole packing process may
not succeed, but generally the best configuration found is satisfactory. The improvement
of the heuristics in order to obtain global solutions for a greater number of systems is a
subject of continuous research.

4.2 Parallelization

Experiments show that 85% of the CPU time used to solve the optimization problem (6) is
employed in the evaluation of the objective function (5) and its derivatives. Motivated by
this observation, we decided to develop a parallel code for these computations. We note

7



that Packmol, even without parallelization, is generally quite fast, being able to solve
a problem with about a hundred thousand atoms in some minutes in a typical personal
computer. Therefore, the aim of the parallel version is to take advantage of the multiple-
core architectures available in current personal computers. The parallelization to massive
parallel computations is not a priority.

The strategy for the parallelization of the objective function evaluation consists on
assigning the task of computing the distances of an atom to its neighbors to individual
processes. Each process computes a partial sum and then all these terms are added in
order to obtain the final sum.

Since function and gradient evaluations represent, in the sequential version of the code,
85% of the CPU time, the theoretical speedup of the parallel implementation of Packmol
with ρ processors is given by

S =
1

0.15 + 0.85/ρ
.

For example, running the parallel version of Packmol in a machine with ρ = 4 cores, it
is expected to obtain a 2.759 times speedup relative to using a single core.

The parallel Fortran 77 version of Packmol was implemented using the OpenMP
Application Program Interface (API) [14] that supports multi-platform shared-memory
parallel programming in C/C++ and Fortran. Codes were compiled with gfortran (GNU
Fortran compiler, version 4.2) and the optimization compiler options “-O4 -ffast-math -
mcmodel=medium” for the serial version, and the same options plus “-fopenmp” for the
parallel version. All the experiments were run in a computer with two 2.83GHz Intel(R)
Xeon(R) Quad-Core processors and 4GB of RAM memory.

We illustrate the behaviour for two problems:

Problem A: A proof-of-concept 1.4 million atom mixture of water and urea. This exam-
ple illustrates the behavior of Packmol for very large systems, for which the use of
the parallel version will be mostly recommended.

Problem B: A protein solvated by water and ions. The system was actually used in
practical MD simulations [6] and bears 53,769 atoms.

The details of these systems can be seen in the Examples section. Figure 1 illustrates the
empirical speedup compared with the theoretical one for these two examples.

The parallel version is 2.75 times faster with four cores than with one core, in agreement
with the predicted scalability. On the other side, running in a single core, it is ∼1.6 times
slower than the serial version, due to the overhead associated to the usage of the application
programming interface that enables the multi-platform shared memory multiprocessing
programming.

5 Packmol usage

With Packmol the user can pack molecules (or other objects defined as groups of points)
restricted to regions of the space whose shapes are defined by geometrical constraints. Full
instructions on the usage of the software can be obtained in the Packmol site.

8



Figure 1: Scalability of the parallel version of Packmol in two examples. (a) A 1.4 million
atom mixture of water and urea and (b) protein solvated in water and ions. The open
square indicates the time of the serial version. The bars display standard deviations of
ten runs with different random initial points.

Packmol is distributed as free software under the GNU General Public License. It
can be downloaded from

http://www.ime.unicamp.br/∼martinez/packmol

A user-guide and some auxiliary applications are also maintained in this page.

5.1 The input data and basic input syntax

The user must provide the coordinates of one molecule of each type. For example, in
order to solvate a protein with water and urea, the user must provide a file containing
the structure of a single water molecule, a file containing the structure of a single urea
molecule, and the protein structure. These structures may be given in Tinker, Molden’s
XYZ, Moldy or PDB formats.

The current version of Packmol uses a user-friendly input syntax. For example, a
minimum input file could be:

9



filetype pdb
output waterbox.pdb
tolerance 2.0
structure water.pdb
number 1000
inside cube 0. 0. 0. 31.

end structure

With this input, Packmol will fill a cube of side 31Å with 1000 water molecules
(density 1 g/ml). Every pair of atoms of different molecules will be separated by, at least,
2.0 Å, and the molecules will be, very likely, well distributed inside the cube. More types
of molecules could be added by additional sections of the form

structure ... end structure

and, within each structure, additional constraints may be set.

5.2 Atom selections

An additional functionality of the current Packmol version is the ability to restrict some
atoms of a structure to spatial regions independently of the other atoms. This may be
useful for building vesicles, where the hydrophilic part of the surfactants must be pointing
to the aqueous environment, or lipid layers, in which all lipids are approximately aligned,
for example. Suppose that the coordinate file of a single molecule contains, say, 10 atoms.
One could restrict atoms 9 and 10 to a particular region using the keyword atoms, for
example:

structure molecule.pdb
inside cube 0. 0. 0. 20.
atoms 9 10
inside box 0. 0. 15. 20. 20. 20.

end atoms
end structure

In this case, all the atoms of the molecule will be placed inside the defined cube and,
additionally, atoms 9 and 10 will be inside the box.

5.3 Types of constraints

Six types of geometrical constraints may be imposed to whole molecules or to some atoms:
cubes, boxes, spheres, ellipsoids, cylinders, and planes. Of course, cubes are particular cases
of boxes and spheres are particular cases of ellipsoids but, in order to simplify the usage,
they have their independent input. For closed regions (cubes, boxes, spheres, ellipsoids
and cylinders) there are two possibilities: inside and outside. For open regions (planes) the
possibilities are over and below. In addition, individual molecules (a protein, for instance)
can be fixed in some desired position. Therefore, a total of 13 different combinations of

10



keywords can be used to order the system. The details on how to use each of these options
can be obtained in the Packmol software documentation.

6 Examples

Figure 2 presents some examples of systems built with Packmol, that illustrate some
of the capabilities of the package. The corresponding input files can be obtained in the
Packmol site or upon request to authors.

Figure 2: Examples of simulations boxes built with Packmol: (a) A mixture of water and
urea. (b) Carbon nanotube containing water inside and carbon tetrachloride outside. (c)
Water and carbon tetracloride with a hormone in the interface. (d) Thyroid hormone re-
ceptor solvated spherically by water and ions. (e) Proof-of-concept million-atom example:
a mixture of water and urea. More details of these examples are described in Table 1.

Table 1 summarizes the components of the systems and the computational time re-
quired to solve them. All these examples were run in a Sony Vaio VGN-NR11Z/S laptop
with Intel Core 2 Duo T7250 processor and 2 Gb of RAM, running Ubuntu 8.04 Linux.
The computational times correspond to the serial version of the package compiled with
the GNU Fortran Compiler (g77) version 3.4.6 with the “-ffast-math -O3” flags.

In order to illustrate a complete Packmol input file, the one corresponding to the
example (b) is given in Figure 3.

Lines 1 to 3 define general aspects of the system: the type of structure files provided
will be pdb, the minimum distance between atoms of different molecules at the solution
will be 2.0 Å and the output file will be called solvtube.pdb. The carbon nanotube
will be placed according to its coordinates in the structure file provided (no rotations, no
translations). Then, 45 water molecules will be put inside the nanotube, by restricting
them to be inside a cylinder that starts at the minimum coordinates of the tube (0. 0.
-11.7), is oriented in the z-axis (0. 0. 1.), has a radius of 4.0 Å and a length of

11



System Composition Natoms Nvar t

(a) 400 urea molecules
1,000 water molecules

6,200 8,400 5 s

(b) 45 water molecules
150 CCl4 molecules
One carbon nanotube

1,125 1,170 16 s

(c) 1,019 water molecules
199 CCl4 molecules
One T3 (thyroid hormone)

4,087 7,308 3 s

(d) 16,500 water molecules
20 Cl− ions
30 Na+ ions
Thyroid Hormone Receptor LBD

53,796 99,300 37 s

(e) 216,000 water molecules
86,400 urea molecules
Memory requirement: ∼400 Mb

1,339,200 1,814,400 37 min

Table 1: Properties of the examples of Figure 2. Natoms is the number of atoms of the
system, Nvar is the number of variables of the optimization problem, and t is the running
time.

1 filetype pdb

2 tolerance 2.0

3 output solvtube.pdb

4 structure nanotube.pdb

5 fixed 0. 0. 0. 0. 0. 0.

6 end structure

7 structure water.pdb

8 number 45

9 inside cylinder 0. 0. -11.7 0. 0. 1. 4.0 23.4

10 end structure

11 structure ccl4.pdb

12 number 150

13 outside cylinder 0. 0. -11.7 0. 0. 1. 4.0 23.4

14 inside box -10. -10. -11.7 10. 10. 11.7

15 end structure

Figure 3: Input file for example (b).

12



23.4 Å. The carbon tetrachloride molecules, then, are put outside this same cylinder, and
inside a box with minimum coordinates (-10. -10. -11.7) and maximum coordinates
(10. 10. 11.7), therefore surrounding the whole system.

7 Conclusions

We have developed a software for building initial configurations for molecular dynamics
simulations based on the concept of packing optimization. The software is called Packmol
and allows the user to define the molecular system to be simulated by packing different
types of molecules into regions defined by geometric constraints. Function and gradient
evaluations are optimized to the point that millions of atoms can be packed in reasonable
time, and initial configurations for state-of-the-art simulations can be built in few minutes
or seconds. The user must provide only the structures of one molecule of each type and
the geometrical constraints that must be fulfilled. It is possible to build mixtures of
several components, solvate proteins, and build ordered arrangements as double layers or
micelles. The package is currently compatible with Tinker, Moldy, Molden’s XYZ and
PDB file formats. It is free software and is available online at

http://www.ime.unicamp.br/∼martinez/packmol

Packmol has already been used for building initial configurations for different applica-
tions in different research groups, such as protein solvation with different solvents [6, 16],
multiple component mixtures or uncommon liquids [17, 18], ionic liquids [19], polymer
solutions [20], interfaces [4, 5], and others [21, 22, 23, 24, 25, 26, 27, 28].

Further improvements of the package may include macro-input keywords to build the
most common systems and more complex unit cells, the parallelization of tasks other than
function and gradient evaluation, the improvement of global convergence heuristics, and
the development of a graphical user interface, or its incorporation as a plugin into some
graphical molecular viewer.

Acknowledgements

The authors thank the Brazilian national funding agencies CAPES and CNPq and the state
of São Paulo agency FAPESP for financial support. We also acknowledge two anonymous
referees whose suggestions improved the quality of the paper.

References

[1] Mart́ınez, J. M.; Mart́ınez, L. J Comp Chem 2003, 24, 819-825.

[2] Balabin, I. Membrane Plugin, Version 1.1; 2008.

[3] Jo, S.; Kim, T.; Im W. PLoS ONE 2007, 2, e880.

[4] Martins, L. R.; Skaf, M. S.; Ladanyi, B. M. J Phys Chem B 2004, 108, 19687-19697.

13



[5] Moreira, N. H.; Skaf, M. S. Prog Coll Pol Sci 2004, 128, 81-85.

[6] Mart́ınez, L.; Webb, P.; Polikarpov, I.; Skaf, M. S. J Med Chem 2006, 49, 23-26.

[7] Griebel, M.; Knapek, S.; Zumbush, G. Numerical Simulation in Molecular Dy-
namics; Springer, Berlin-Heidelberg, 2007.

[8] Greengard, L.; Rokhlin, A. J Comp Phys 1987, 73, 325-348.

[9] Friedlander, A.; Mart́ınez, J. M.; Santos, S. A. Appl Math Opt 1994, 30, 235-266.

[10] Birgin, E. G.; Mart́ınez, J. M. Comp Optim Appl 2002, 23, 101-125.

[11] Dennis Jr. J. E.; Schnabel, R. B. Numerical Methods for Unconstrained Optimiza-
tion and Nonlinear Equations; Prentice-Hall, Englewoods Cliffs, 1983.

[12] Luenberger, D. G. Linear and Nonlinear Programming; Addison-Wesley, Califor-
nia, 1984.

[13] Neubert, K-D. Dr Dobbs J 1998, 23, 123-129.

[14] http://www.openmp.org

[15] J. T. Frey, D. J. Doren, TubeGen 3.3; University of Delaware, Newark, DE, 2005.

[16] Ander, M.; Luzhkov, V. B.; Aqvist, J. Biophys J 2008, 94, 820-831.

[17] Gardner, A.; Vasquez, V. R.; Clifton, A.; Graeve, O. A. Fluid Phase Eq 2007,
264-270.

[18] Aparicio S.; Alcalde, R.; Davila, M. J.; Garcia, B.; Leal, J. M. J Phys Chem B
2007, 111, 4417-4431.

[19] Davilla, M. J.; Aparicio, S.; Alcalde, R.; et al. Green Chem 2007, 9, 221-232.

[20] Costa, L. T.; Ribeiro, M. C. C. J Chem Phys 2006, 124, 184902.

[21] Siqueira, L. J. A.; Ribeiro, M. C. C. J Phys Chem B 2007, 111, 11776-11785.

[22] Riihimaki, E. S.; Mart́ınez, J. M.; Kloo, L. J Phys Chem B 2007, 111, 10529-10537.

[23] Waibel, B.; Scheiber, J.; Meier C.; et al. Europ J Org Chem 2007, 18, 2921-2930.

[24] Aparicio, S. J Phys Chem A 2007, 111, 4671-4683.

[25] Luzhkov, V. B.; Almlof, B.; Nervall, M.; et al. Biochemsitry 2006, 45, 10807-10814.

[26] Mudi, A.; Chakravarty, C. J Phys Chem B 2006, 110, 8422-8431.

[27] Riihimaki, E. S.; Mart́ınez, J. M.; Kloo, L. J Mol Struct 2006, 760, 91-98.

[28] Preto, M. A. C.; Melo, A.; Maia, H. L. S.; et al. J Phys Chem B 2005, 109,
17743-17751.

14


