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Abstract

Sometimes, the feasible set of an optimization problem that one aims to solve using a
Nonlinear Programming algorithm is empty. In this case, two characteristics of the algorithm
are desirable. On the one hand, the algorithm should converge to a minimizer of some infea-
sibility measure. On the other hand, one may wish to find a point with minimal infeasibility
for which some optimality condition, with respect to the objective function, holds. Ideally,
the algorithm should converge to a minimizer of the objective function subject to minimal
infeasibility. In this paper the behavior of an Augmented Lagrangian algorithm with respect
to those properties will be studied.
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1 Introduction

We wish to consider optimization problems in which the feasible region may be empty. Rigor-
ously speaking, such problems have no solutions at all and, so, a desirable property of algorithms
is to detect infeasibility as soon as possible [11, 19, 21, 22, 23, 30, 31, 46, 32, 39, 43, 47, 48].
However, in many practical situations one is interested in optimizing the function, admitting
some level of infeasibility. For example, when the constraints involve measurements or mod-
eling errors, their complete accurate satisfaction may be irrelevant and minimizers subject to
moderate infeasibility may be useful.
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This motivated us to study the behavior of optimization algorithms in the case of infeasibility.
In recent papers [19, 39] we considered the problem of early detection of this fact, without
concerns about the quality of the limit point obtained in terms of optimality. In the present paper
we will adopt the point of view that it is relevant to distinguish between different infeasible points
according to their objective function values. In this sense, it is important to distinguish between
relaxable and non-relaxable constraints [9, 10]. Non-relaxable constraints are those which are
necessarily satisfied at all iterations of the algorithms. On the other hand, relaxable constraints
need only to be satisfied approximately or asymptotically. It is interesting to recognize as soon
as possible the infeasibility of non-relaxable constraints (due, for example, to incompatibility of
definitions) because the model has no sense at all if these constraints are not fulfilled. On the
other hand, one should be tolerant with respect to non-fulfillment of relaxable constraints and
one should take into account the objective function value in that case.

In Section 2 of this paper we define a conceptual algorithm of Augmented Lagrangian type
for solving Nonlinear Programming problems. Essentially, the algorithm corresponds to the
ones introduced in [1] and [16], for “local” and global optimization, respectively. One of the
differences is that the complementarity measure employed for deciding whether to increase the
penalty parameter will be defined here as the product between multipliers and constraints. With
a suitable modification involving the updating of the multipliers we will prove that the global
version of the algorithm, in which it is assumed that the subproblems are solved globally, con-
verges to optimizers of the objective function on the set of minimizers of infeasibility. The
version of the main algorithm presented in Section 3 corresponds, with some modifications that
include measuring complementarity by products, to the algorithm introduced in [1]. In this case
we show, as in [1], that limit points are stationary points for the infeasibility measure and, in
addition, we prove that these points satisfy an optimality condition on a subset of minimizers of
infeasibility. In Section 4 we establish the consequences of the results of Section 3 in the presence
of weak constraint qualifications. Experiments will be presented in Section 5 and conclusions
will be given in Section 6.

Notation. If v ∈ IRn, v = (v1, . . . , vn)T , we denote v+ = (max(0, v1), . . . ,max(0, vn))T . If
K = (k1, k2, . . .) ⊆ IN (with kj < kj+1 for all j), we denote K ⊂

∞
IN . The symbol ‖ · ‖ will denote

the Euclidean norm. If h : IRn → IRm, we denote ∇h(x) = (∇h1(x), . . . ,∇hm(x)) ∈ IRn×m.

2 Conceptual Algorithm and global interpretations

We will consider the optimization problem defined by

Minimize f(x)
subject to h(x) = 0

g(x) ≤ 0
x ∈ Ω,

(1)
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where h : IRn → IRm, g : IRn → IRp, and f : IRn → IR are smooth and Ω ⊆ IRn is closed. The
Lagrangian function will be defined by

L(x, λ, µ) = f(x) +
m∑
i=1

λihi(x) +

p∑
i=1

µigi(x)

for all x ∈ Ω, x ∈ IRn, λ ∈ IRm, and µ ∈ IRp+, whereas the Augmented Lagrangian [25, 35, 42, 45]
will be given by

Lρ(x, λ, µ) = f(x) +
ρ

2

{
m∑
i=1

[
hi(x) +

λi
ρ

]2

+

p∑
i=1

[
max

(
0, gi(x) +

µi
ρ

)]2
}

for all x ∈ Ω, ρ > 0, λ ∈ IRm, and µ ∈ IRp+.
Below we define the main algorithm employed in this paper. The algorithm will be “con-

ceptual” in the sense that each outer iteration will be given by the “approximate minimization”
of the Augmented Lagrangian subject to the non-relaxable set Ω. “Approximate minimization”
is a deliberately ambiguous denomination that will be subject to different interpretations along
the paper.

Algorithm 2.1.

Let λmin < λmax, µmax > 0, γ > 1, 0 < τ < 1. Let λ̄1
i ∈ [λmin, λmax], i = 1, . . . ,m, µ̄1

i ∈ [0, µmax],
i = 1, . . . , p, and ρ1 > 0. Initialize k ← 1.

Step 1. Find xk ∈ Ω as an approximate solution of

Minimize Lρk(x, λ̄k, µ̄k) subject to x ∈ Ω. (2)

Step 2. Compute multipliers
λk+1 = λ̄k + ρkh(xk) (3)

and
µk+1 = (µ̄k + ρkg(xk))+. (4)

Step 3. Define
V k
i = µk+1

i gi(x
k) for i = 1, . . . , p.

If k = 1 or

max{‖h(xk)‖, ‖g(xk)+‖, ‖V k‖} ≤ τ max{‖h(xk−1)‖, ‖g(xk−1)+‖, ‖V k−1‖}, (5)

define ρk+1 = ρk. Otherwise, define ρk+1 = γρk.

Step 4. Compute λ̄k+1 ∈ [λmin, λmax]m and µ̄k+1 ∈ [0, µmax]p in such a way that if λk+1 ∈
[λmin, λmax]m and µk+1 ∈ [0, µmax]p then λ̄k+1 = λk+1 and µ̄k+1 = µk+1.
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As in [1] and other Augmented Lagrangian algorithms [25, 26, 27], the penalty parameter is
increased only if enough progress, in terms of feasibility and complementarity, has not been ob-
tained at iteration k. Due to scaling reasons, we adopted here the product form to measure com-
plementarity. The comparison between the products µk+1

i gi(x
k) and µki gi(x

k−1) is more invari-
ant under scaling than the comparisons that involve min{−gi(xk), µk+1

i } or min{−gi(xk), µ̄ki /ρk}
used in [1] and [15], respectively. Moreover, the product form is connected with the Comple-
mentary Approximate KKT condition (CAKKT) recently introduced in [7], where it was proved
that, in the Augmented Lagrangian context of [1], convergence to feasible points implies conver-
gence to null products of the constraints values with their corresponding Lagrange multipliers
approximations, independently of the fulfillment of constraint qualifications.

The assumption below gives a (global) interpretation for the approximate minimization of
the subproblem that defines the outer iteration, which corresponds to the global Augmented
Lagrangian method of [16].

Assumption 2.1 Assume that {εk} is a sequence such that limk→∞ εk = 0 and εk ≥ 0 for all
k ∈ IN . At Step 1 of Algorithm 2.1, the point xk ∈ Ω is such that

Lρk(xk, λ̄k, µ̄k) ≤ Lρk(x, λ̄k, µ̄k) + εk (6)

for all x ∈ Ω.

Assumption 2.1 requires the approximate global minimization of the subproblems. This
strong assumption will allow us to prove strong results. The global minimization requirement
is impractical for many real-world problems of interest. However, it is well known that global
optimization tools have been developed and successfully applied to specific classes of real-world
problems. See [16] and references therein.

The proofs of Theorems 2.1 and 2.2 are small variations of the ones of Theorems 1 and 2
of [16, pp. 142–145]. Theorem 2.1 will show that, under Assumption 2.1, Algorithm 2.1 finds
global minimizers of the infeasibility measure ‖h(x)‖2 + ‖g(x)+‖2. In particular, if the problem
is feasible, the algorithm finds feasible points.

Theorem 2.1 Let {xk} be a sequence generated by Algorithm 2.1 under Assumption 2.1. If x∗

is a limit point of {xk}, we have that

‖h(x∗)‖2 + ‖g(x∗)+‖2 ≤ ‖h(x)‖2 + ‖g(x)+‖2

for all x ∈ Ω.

Theorem 2.2 states that, when the problem is feasible, the algorithm with Assumption 2.1
finds global minimizers of (1).

Theorem 2.2 Suppose that, at Step 1 of Algorithm 2.1, xk is chosen according to Assump-
tion 2.1. Assume, moreover, that the feasible region of problem (2) is non-empty and x∗ is a
limit point of the sequence {xk}. Then, x∗ is feasible and

f(x∗) ≤ f(x)
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for all x ∈ Ω such that h(x) = 0 and g(x) ≤ 0.

Theorems 2.1 and 2.2 say that Algorithm 2.1 always converges to minimizers of infeasibility
and that, in the feasible case, convergence occurs to optimal points. However, these theorems
do not provide any information about the quality of the minimal infeasible points in terms of
optimality. The following definition of the auxiliary problem PA(x∗) will help us to understand
the behavior of Algorithm 2.1 in infeasible cases.

For all x∗ ∈ Ω, we denote by PA(x∗) the following auxiliary problem:

Minimize f(x)
subject to h(x)− h(x∗) = 0

gi(x)− gi(x∗) ≤ 0 for all i such that gi(x
∗) > 0,

gi(x) ≤ 0 for all i such that gi(x
∗) ≤ 0,

x ∈ Ω.

(7)

Let x∗ be a global minimizer of the infeasibility. Although the feasible set of (7) is contained
in the set of global minimizers of the infeasibility, the latter is generally bigger than the former.
In other words, solutions of PA(x∗) may not be minimizers of the objective function subject to
minimal infeasibility.

Let us prove that any limit point x∗ of the sequence generated by Algorithm 2.1, with As-
sumption 2.1, is necessarily a global minimizer of PA(x∗).

Theorem 2.3 Assume that x∗ ∈ Ω is a limit point of a sequence generated by Algorithm 2.1,
where the subproblems at Step 1 are computed according to Assumption 2.1. Then, for all fea-
sible point x of problem PA(x∗), we have that f(x∗) ≤ f(x).

Proof. If h(x∗) = 0 and g(x∗) ≤ 0, the thesis follows from Theorems 2.1 and 2.2. Let us assume,
from now on, that x∗ is infeasible for problem (1). This implies, by Step 3, that limk→∞ ρk =∞.
Let x be an arbitrary feasible point of PA(x∗). Then, h(x) = h(x∗), gi(x) ≤ 0 for all i such that
gi(x

∗) ≤ 0, and gi(x) ≤ gi(x
∗) for all i such that gi(x

∗) > 0. By Theorem 2.1, x∗ is a global
minimizer of infeasibility, therefore, by the definition of PA(x∗),

m∑
i=1

hi(x
∗)2 +

∑
gi(x∗)>0

gi(x
∗)2 ≤

m∑
i=1

hi(x)2 +
∑

gi(x∗)>0

gi(x)2.

Since h(x∗) = h(x) we obtain ∑
gi(x∗)>0

gi(x
∗)2 ≤

∑
gi(x∗)>0

gi(x)2. (8)

But, by the definition of PA(x∗), we have that gi(x) ≤ gi(x∗) whenever gi(x
∗) > 0. Then, by (8),

gi(x) = gi(x
∗) for all i such that gi(x

∗) > 0.
Therefore, h(x) = h(x∗), gi(x) ≤ 0 if gi(x

∗) ≤ 0, and gi(x) = gi(x
∗) if gi(x

∗) > 0, for all
i = 1, . . . , p. Let K ⊂

∞
IN such that limk∈K x

k = x∗. Since xk ∈ Ω for all k and Ω is closed, we
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have that x∗ ∈ Ω. By (6),

f(xk) + ρk
2

[∥∥∥h(xk) + λ̄k

ρk

∥∥∥2
+

∥∥∥∥(g(xk) + µ̄k

ρk

)
+

∥∥∥∥2
]

≤ f(x) + ρk
2

[∥∥∥h(x) + λ̄k

ρk

∥∥∥2
+

∥∥∥∥(g(x) + µ̄k

ρk

)
+

∥∥∥∥2
]

+ εk,

(9)

for all k ∈ K. Note that∥∥∥∥(g(x) + µ̄k

ρk

)
+

∥∥∥∥2

=
∑p

i=1 max
(

0, gi(x) + µ̄i
k

ρk

)2

≤
∑p

i=1

(
gi(x)+ +

µ̄ki
ρk

)2
= ‖g(x)+‖2 + 2

ρk
(µ̄k)T g(x)+ +

(
‖µ̄k‖
ρk

)2 (10)

and ∥∥∥∥(g(xk) + µ̄k

ρk

)
+

∥∥∥∥2

=
∑p

i=1 max
(

0, gi(x
k) +

µ̄ki
ρk

)2

≥
∑

gi(xk)>0

(
gi(x

k) +
µ̄ki
ρk

)2
≥
∥∥g(xk)+

∥∥2
+ 2

ρk
(µ̄k)T g(xk)+.

(11)

So, by (9), (10), and (11),

f(xk) + (λ̄k)Th(xk) + (µ̄k)T g(xk)+ + ρk
2

[∥∥h(xk)
∥∥2

+
∥∥g(xk)+

∥∥2
]

≤ f(x) + (λ̄k)Th(x) + (µ̄k)T g(x)+ + ρk
2

[
‖h(x)‖2 + ‖g(x)+‖2

]
+
‖µ̄k‖2

2ρk
+ εk.

Therefore,

f(xk) + (λ̄k)T [h(xk)− h(x)] + (µ̄k)T [g(xk)+ − g(x)+]

+ρk
2

[(∥∥h(xk)
∥∥2

+
∥∥g(xk)+

∥∥2
)
−
(
‖h(x)‖2 + ‖g(x)+‖2

)]
− ‖µ̄

k‖2
2ρk

≤ f(x) + εk.

By the definition of x, h(x) = h(x∗) and ‖h(x)‖2 + ‖g(x)+‖2 = ‖h(x∗)‖2 + ‖g(x∗)+‖2, so

f(xk) + (λ̄k)T [h(xk)− h(x∗)] + (µ̄k)T [g(xk)+ − g(x)+]

+ρk
2

[(∥∥h(xk)
∥∥2

+
∥∥g(xk)+

∥∥2
)
−
(
‖h(x∗)‖2 + ‖g(x∗)+‖2

)]
− ‖µ̄

k‖2
2ρk

≤ f(x) + εk.

Define I = {i ∈ {1, . . . , p} | gi(x∗) > 0}. For each i /∈ I, since gi(x) ≤ 0, we have µ̄ki [gi(x
k)+−

gi(x)+] ≥ 0. Therefore, by Theorem 2.1,

f(xk) + (λ̄k)T [h(xk)− h(x∗)] +
∑
i∈I

µ̄ki [gi(x
k)− gi(x)]−

∥∥µ̄k∥∥2

2ρk
≤ f(x) + εk,

for k ∈ K large enough. By continuity of f , h, g, the boundedness of {λ̄k} and {µ̄k}, and the
fact that limk∈K gi(x

k) = gi(x
∗) = gi(x) for each i ∈ I, taking limits in K on both sides of this
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inequality, we obtain the desired result. �

Counter-Example

We will show that the result of Theorem 2.3 cannot be improved, in the sense that limit points
generated by Algorithm 2.1 are not necessarily minimizers of the objective function subject to
minimal infeasibility.

Consider the problem
Minimize −x
subject to x− 1 = 0

x+ 1 = 0
2(x2 − 1) = 0

x ∈ Ω ≡ IR.

(12)

Clearly, this problem is infeasible and the points that minimize infeasibility are−
√

3/2 and
√

3/2.
The latter is the minimizer of the objective function on the set of minimizers of infeasibility.
The Augmented Lagrangian is

Lρk(x, λ̄k, µ̄k) = −x+ λ̄k1(x− 1) + λ̄k2(x+ 1) + 2λ̄k3(x2 − 1) + ρk
2 ‖h(x)‖2 + c1

= (λ̄k1 + λ̄k2 − 1)x+ 2λ̄k3x
2 + ρk

2 ‖h(x)‖2 + c,

where c1 and c are constants. Let us define λmin = −1 and λmax = 3.
Since the problem is infeasible, we certainly have that ρk → ∞. We have that h1(x) =

x − 1 < 0 for x close to
√

3/2 or −
√

3/2, therefore, λk1 = λ̄k−1
1 + ρk−1h1(xk−1) → −∞ for any

subsequence that converges to points that minimize infeasibility. By Step 4 of Algorithm 2.1,
using the choice of projecting onto the safeguarding interval, we have that λ̄k1 = λmin for k
large enough. Analogously, in the case of h2(x) = x + 1, we have that λ̄k2 = λmax and for
h3(x) = 2(x2−1) we have that λ̄k3 = λmin for k large enough. Then, for k large enough, we have

Lρk(x, λ̄k, µ̄k) = (λmin + λmax − 1)x+ 2λminx
2 +

ρk
2
‖h(x)‖2 + c.

Then, by the definition of λmin and λmax,

Lρk(x, λ̄k, µ̄k) = x− 2x2 +
ρk
2
‖h(x)‖2 + c.

Clearly, if x is close to −
√

3/2 and y is close to
√

3/2 one has that

Lρk(x, λ̄k, µ̄k) < Lρk(y, λ̄k, µ̄k).

As a consequence, −
√

3/2 will be the limit point of the sequence {xk} generated by Algorithm
2.1 under Assumption 2.1 when applied to problem (12), for the particular choice λmin = −1
and λmax = 3 and computing λ̄k+1 as the projection of λk+1 onto [λmin, λmax]m. However, this
limit point, in spite of being a minimizer of the infeasibility, does not minimize f on the set
{−
√

3/2,
√

3/2}.
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The counter-example above shows that the property of minimizing the objective function
subject to minimal infeasibility does not hold for arbitrary choices of the approximate Lagrange
multipliers. In the following assumption we state a simple updating rule that essentially says
that multipliers should be updated with the standard first-order formulae (3) and (4) except
when they exceed the safeguarding bounds. In this last case, the multipliers are reset to zero and
the next iteration is essentially a quadratic penalty iteration. In the practical implementation
of Algorithm 2.1, one uses artificial safeguarding bounds for the Lagrange multipliers [1]. If the
safeguards of the multipliers are large enough and, in addition, the problem is feasible and some
constraint qualification is satisfied, the safeguarding rule will not be activated. In these cases
the alternative choice will not affect the behavior of the algorithm.

In the Augmented Lagrangian approach the quantities λi/ρ and µi/ρ represent shifts of the
equality and inequality constraints, respectively. Roughly speaking one expects that modest
penalization with respect to a suitably shifted constraint should produce similar effect as ex-
treme penalization without shifts. Obviously, when one is forced to use very large (extreme)
penalty parameters shifting the constraints makes no sense at all. This is the reason why we
preserve Lagrange multipliers between finite bounds, forcing the shifts to go to zero as ρ tends to
infinity. Due to the updating rule of multipliers the case in which λk+1 or µk+1 tend to infinity
is generally associated with ρ→∞ too. So, when λk+1 or µk+1 exceed the safeguarding bounds
it is sensible to annihilate the shifts, thus setting λ̄k+1 = 0 and µ̄k+1 = 0. This is stated in the
assumption below.

Assumption 2.2 At Step 4 of Algorithm 2.1, if λk+1 ∈ [λmin, λmax]m and µk+1 ∈ [0, µmax]p, we
define

λ̄k+1 = λk+1 and µ̄k+1 = µk+1.

Otherwise, we define λ̄k+1 = 0 and µ̄k+1 = 0.

Theorem 2.4 Assume that x∗ ∈ Ω is a limit point of a sequence generated by Algorithm 2.1,
with Assumptions 2.1 and 2.2. Then, ‖h(x∗)‖2 +‖g(x∗)+‖2 ≤ ‖h(x)‖2 +‖g(x)+‖2 for all x ∈ Ω,
and

f(x∗) ≤ f(x) for all x ∈ Ω such that ‖h(x)‖2 + ‖g(x)+‖2 = ‖h(x∗)‖2 + ‖g(x∗)+‖2.

Proof. If h(x∗) = 0 and g(x∗) ≤ 0, the thesis follows from Theorems 2.1 and 2.2. Let us assume,
from now on, that ‖h(x∗)‖2 +‖g(x∗)+‖2 = c > 0. This implies, by Step 3, that limk→∞ ρk =∞.
Since, by Theorem 2.1, x∗ is a global minimizer of ‖h(x)‖2 + ‖g(x)+‖2, it turns out that, for
all k ∈ IN , ‖h(xk)‖2 + ‖g(xk)+‖2 ≥ c. Since by Theorem 2.1 any other limit point of {xk} is
infeasible, by (3), (4), the boundedness of {λ̄k} and {µ̄k}, and the fact that ρk tends to infinity,
we have that, for all k large enough, either λk+1 /∈ [λmin, λmax]m or µk+1 /∈ [0, µmax]p. Therefore,
by Assumption 2.2, there exists k0 ∈ IN such that for all k ≥ k0 we have that λ̄k = 0 and µ̄k = 0.

Let K ⊂
∞
{k0, k0 + 1, k0 + 2, . . .} be such that limk∈K x

k = x∗. By Assumption 2.1 and the

fact that ‖λ̄k‖ = ‖µ̄k‖ = 0 we have that, for all x ∈ Ω,

f(xk) +
ρk
2

[
‖h(xk)‖2 + ‖g(xk)+‖2

]
≤ f(x) +

ρk
2

[
‖h(x)‖2 + ‖g(x)+‖2

]
+ εk, (13)
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for all k ∈ K such that k ≥ k0. In particular, if x ∈ Ω is such that ‖h(x)‖2 + ‖g(x)+‖2 =
‖h(x∗)‖2 + ‖g(x∗)+‖2 we have that x is a global minimizer of the infeasibility on Ω, thus

ρk
2

[
‖h(xk)‖2 + ‖g(xk)+‖2

]
≥ ρk

2

[
‖h(x)‖2 + ‖g(x)+‖2

]
.

Therefore, by (13) and Assumption 2.1,

f(xk) ≤ f(x) + εk for all k ∈ K.

By the continuity of f , taking limits on both sides of this inequality, we obtain the desired
result. �

3 Local interpretations

In Section 2 we presented an algorithm that exhibits the desirable property of converging to
global minimizers of the objective function, subject to minimal infeasibility. This algorithm
depends on the interpretation of Step 1 in terms of global optimization of the subproblem (2).
Although implementations of Algorithm 2.1 with those characteristics exist (see, for exam-
ple, [16]), in the case of large-scale problems solving (2) by means of cheaper “local” algorithms
in generally preferred. In order to describe the local version of Algorithm 2.1, following the lines
of [1], we define the non-relaxable set Ω by

Ω = {x ∈ IRn | h(x) = 0, g(x) ≤ 0}, (14)

where h : IRn → IRm and g : IRn → IRp are continuously differentiable.
Assumption 3.1 defines the approximate solution of (2) in terms of first-order optimality

conditions for the minimization of the Augmented Lagrangian subject to h(x) = 0 and g(x) ≤ 0.

Assumption 3.1 At Step 1 of Algorithm 2.1, the point xk ∈ IRn is such that there exist vk ∈ IRm
and wk ∈ IRp+ satisfying

‖∇Lρk(xk, λ̄k, µ̄k) +∇h(xk)vk +∇g(xk)wk‖ ≤ εk, (15)

h(xk) = 0, g(xk) ≤ 0, |g
i
(xk)wki | ≤ εk for all i = 1, . . . , p, (16)

where limk→∞ εk = 0.

Asking feasibility with respect to the constraints h and g in Assumption 3.1 is sensible when
these constraints have favorable structure. Under Assumption 3.1, Algorithm 2.1 is similar to
the Augmented Lagrangian algorithm defined in [1], the main difference being that complemen-
tarity is measured by the product form instead of the minimum. Practical implementations
of the Augmented Lagrangian algorithm defined in [1] considering box-constraints and affine-
constraints for the non-relaxable set Ω have been developed in [1, 2, 14, 18] and [8], respectively.
In this paper we wish to emphasize the properties related to convergence towards infeasible
points.
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Let us define now Approximate KKT points in the sense of [3].

Definition 3.1.We say that a feasible point x∗ for problem (1) satisfies the Approximate KKT
conditions (AKKT) with respect to a problem of the form (1), with Ω given by (14), if there
exist sequences {xk} ⊆ IRn, {λk} ⊆ IRm, {µk} ⊆ IRp+, {vk} ∈ IRm, {wk} ∈ IRp+, such that

lim
k→∞

xk = x∗,

lim
k→∞

‖∇f(xk) +∇h(xk)λk +∇g(xk)µk +∇h(xk)vk +∇g(xk)wk‖ = 0, (17)

lim
k→∞

min{−gi(xk), µki } = 0 for all i = 1, . . . , p, (18)

and
lim
k→∞

min{−g
i
(xk), wki } = 0 for all i = 1, . . . , p. (19)

When x∗ satisfies AKKT we will say that x∗ is an AKKT point.

Proposition 3.1. A feasible point x∗ satisfies AKKT with respect to the problem (1), with
the definition (14) if and only if there exist sequences {xk} ⊆ IRn, {λk} ⊆ IRm, {µk} ⊆ IRp+,

{vk} ∈ IRm, {wk} ∈ IRp+, such that, for all k ∈ IN

lim
k→∞

xk = x∗,

lim
k→∞

‖∇f(xk) +∇h(xk)λk +∇g(xk)µk +∇h(xk)vk +∇g(xk)wk‖ = 0, (20)

µki = 0 for all i = 1, . . . , p such that gi(x
∗) < 0, (21)

and
wki = 0 for all i = 1, . . . , p such that g

i
(x∗) < 0. (22)

Proof. This proof was essentially given in Lemma 2.1 of [3, p. 629]. �

Theorem 3.1. Assume that the sequence {xk} is generated by Algorithm 2.1 under Assump-
tion 3.1 and let x∗ be a limit point of {xk}. Then, x∗ satisfies the AKKT conditions associated
with the problem

Minimize
1

2

(
‖h(x)‖2 + ‖g(x)+‖2

)
subject to h(x) = 0, g(x) ≤ 0. (23)

Proof. By Assumption 3.1 we have that h(x∗) = 0 and g(x∗) ≤ 0. Consider first the case
in which the sequence of penalty parameters {ρk} is bounded. Then, by (5), we have that
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limk→∞ ‖h(xk)‖ = limk→∞ ‖g(xk)+‖ = 0. Therefore, h(x∗) = 0 and g(x∗)+ = 0. Therefore,
x∗ is an unconstrained global minimizer of 1

2(‖h(x)‖2 + ‖g(x)+‖2). Thus, the gradient of this
function vanishes at x∗. Then, the AKKT conditions corresponding to (23) hold trivially defining
all multipliers equal to zero in (17–19).

Now, consider the case in which ρk tends to infinity. Let K ⊂
∞
IN be such that limk∈K x

k = x∗.

By (15), for all k ∈ K we have that∥∥∥∇f(xk) + ρk

{∑m
i=1∇hi(xk)

[
hi(x

k) +
λ̄ki
ρk

]
+
∑p

i=1∇gi(xk)
[
max(0, gi(x

k) +
µ̄ki
ρk

)
]}

+∇h(xk)vk +∇g(xk)wk
∥∥∥ ≤ εk. (24)

Since limk∈K x
k = x∗, the sequence {∇f(xk)} is bounded for k ∈ K. Dividing both sides of (24)

by ρk we obtain:

lim
k∈K

m∑
i=1

∇hi(xk)
[
hi(x

k) +
λ̄ki
ρk

]
+

p∑
i=1

∇gi(xk)
[
max

(
0, gi(x

k) +
µ̄ki
ρk

)]
+∇h(xk)

vk

ρk
+∇g(xk)

wk

ρk
= 0.

(25)
Now, by (16) we have that limk→∞w

k
i gi(x

k) = 0. Therefore, if g
i
(x∗) < 0, we have that wki → 0.

Then, by (25), and the boundedness of λ̄ki ,

lim
k∈K

m∑
i=1

∇hi(xk)hi(xk)+
p∑
i=1

∇gi(xk)
[
max

(
0, gi(x

k) +
µ̄ki
ρk

)]
+∇h(xk)

vk

ρk
+

∑
g
i
(x∗)=0

∇g
i
(xk)

wki
ρk

= 0.

(26)
Now, ∑p

i=1∇gi(xk)
[
max

(
0, gi(x

k) +
µ̄ki
ρk

)]
=
∑

gi(x∗)<0∇gi(xk)
[
max

(
0, gi(x

k) +
µ̄ki
ρk

)]
+
∑

gi(x∗)=0∇gi(xk)
[
max

(
0, gi(x

k) +
µ̄ki
ρk

)]
+
∑

gi(x∗)>0∇gi(xk)
[
max

(
0, gi(x

k) +
µ̄ki
ρk

)]
.

If gi(x
∗) < 0, then gi(x

k) < 0 for k large enough, so, since ρk →∞ and µ̄k is bounded, the first
term of the right-hand side of the equality above vanishes for k large enough. Thus,

lim
k∈K

∑
gi(x∗)<0

∇gi(xk)
[
max

(
0, gi(x

k) +
µ̄ki
ρk

)]
= lim

k∈K

∑
gi(x∗)<0

∇gi(xk)gi(xk)+ = 0. (27)

Analogously,

lim
k∈K

∑
gi(x∗)=0

∇gi(xk)
[
max

(
0, gi(x

k) +
µ̄ki
ρk

)]
= lim

k∈K

∑
gi(x∗)=0

∇gi(xk)gi(xk)+ = 0. (28)

Finally, by the boundedness of µ̄k,

lim
k∈K

∑
gi(x∗)>0

∇gi(xk)
[
max

(
0, gi(x

k) +
µ̄ki
ρk

)]
= lim

k∈K

∑
gi(x∗)>0

∇gi(xk)gi(xk). (29)
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By (26), (27), (28), and (29), we have:

limk∈K
∑m

i=1∇hi(xk)hi(xk) +
∑p

i=1∇gi(xk)
[
max

(
0, gi(x

k) +
µ̄ki
ρk

)]
+∇h(xk)v

k

ρk
+
∑

g
i
(x∗)=0∇gi(x

k)
wk

i
ρk

= limk∈K ∇h(xk)h(xk) +∇g(xk)g(xk)+ +∇h(xk)v
k

ρk
+
∑

g
i
(x∗)=0∇gi(x

k)
wk

i
ρk

= 0.

Thus,

limk∈K
1
2∇(‖h(xk)‖2 + ‖g(xk)+‖2)) +∇h(xk)v

k

ρk
+
∑

g
i
(x∗)=0∇gi(x

k)
wk

i
ρk

= limk∈K ∇h(xk)h(xk) +∇g(xk)g(xk)+ +∇h(xk)v
k

ρk
+
∑

g
i
(x∗)=0∇gi(x

k)
wk

i
ρk

= 0.

By Proposition 3.1 this implies the desired result. �

Remark. In Assumption 3.1 we imposed that lim
k→∞

wki gi(x
k) = 0. However, it is easy to see that

the thesis of Theorem 3.1 holds under the weaker condition that |wki gi(x
k)| is bounded. This

seems to indicate that the product form of complementarity is more adequate than the “min”
form of complementarity for declaring that a point is an approximate solution of the subproblem
in the presence of possible infeasibility.

Theorem 3.2. Assume that the sequence {xk} is generated by Algorithm 2.1 under Assump-
tion 3.1. Let x∗ be a limit point of {xk}. Then, x∗ satisfies the AKKT conditions related with
problem PA(x∗) (defined by (7) and (14)).

Proof. Let K ⊂
∞
IN be such that limk∈K x

k = x∗. By (3), (4), and (15) there exist vk ∈ IRm and

wk ∈ IRp+ such that

lim
k→∞

∥∥∥∥∥∇L(xk, λk+1, µk+1) +

m∑
i=1

vki∇hi(xk) +

p∑
i=1

wki∇gi(x
k)

∥∥∥∥∥ = 0. (30)

By (16) we have that

lim
k∈K
‖h(xk)‖ = 0 and lim

k∈K
min{−g

i
(xk), wki } = 0, (31)

for all i = 1, . . . , p.
If ρk is bounded, by (5), we have that

lim
k→∞

‖h(xk)‖ = 0, lim
k→∞

‖g(xk)+‖ = 0,

and, since limk→∞ µ
k+1
i gi(x

k) = 0,

lim
k→∞

min{−gi(xk), µk+1
i } = 0

for all i = 1, . . . , p. Then, x∗ is feasible, h(x∗) = 0, g(x∗) ≤ 0, and the thesis follows trivially.
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Consider the case in which limk→∞ ρk = ∞. Suppose first that gi(x
∗) < 0. By the bound-

edness of {µ̄k} and the updating formula (4) we have that, for k ∈ K large enough, µk+1
i = 0.

So,
lim
k∈K

min{−gi(xk), µk+1
i } = 0, (32)

for all i such that gi(x
∗) ≤ 0. Finally, suppose that gi(x

∗) > 0. By the definition of PA(x∗), it
turns out that

lim
k∈K

min{−(gi(x
k)− gi(x∗)), µk+1

i } = 0. (33)

Therefore, by (30), (31), (32), and (33), x∗ is an AKKT point of PA(x∗). �

We finish this section proving that, under Assumptions 2.2 and 3.1, if Algorithm 2.1 fails to
find approximate feasible points, then every limit point satisfies the AKKT optimality conditions
related with the minimization of the objective function with only one relaxable constraint that
says that the sum of squares of infeasibilities is the presumably minimal one. As in the case of
Theorem 2.4 this is due to the fact that, under Assumption 2.2, the algorithm switches to the
quadratic penalty method in this case.

Theorem 3.3. Assume that the sequence {xk} is generated by Algorithm 2.1 under Assump-
tions 2.2 and 3.1 and that the sequence {‖h(xk)‖2 + ‖g(xk)+‖2} is bounded away from zero for
k large enough. Suppose that {xk} admits at least one limit point x∗. Define, for all x ∈ IRn,

Γ(x) = ‖h(x)‖2 + ‖g(x)+‖2.

Then, x∗ satisfies the AKKT conditions related with the problem

Minimize f(x) subject to Γ(x)− Γ(x∗) = 0, h(x) = 0, and g(x) ≤ 0. (34)

Proof. Since the sequence {‖h(xk)‖2 + ‖g(xk)+‖2} is bounded away from zero, by Step 3 of
Algorithm 2.1, we have that limk→∞ ρk =∞. Thus, by the boundedness of {λ̄k} and {µ̄k}, we
deduce that limk→∞ ‖λk+1‖+ ‖µk+1‖ =∞. Then, by Assumption 2.2 we have that λ̄k = 0 and
µ̄k = 0 for k large enough.

Therefore, by Assumption 3.1 there exist sequences {vk} ⊆ IRm and {wk} ⊆ IRp+ such that

lim
k→∞

∇f(xk) +
ρk
2
∇Γ(xk) +∇h(xk)vk +∇g(xk)wk = 0,

h(xk) = 0, g(xk) ≤ 0, and lim
k→∞

g
i
(xk)wki = 0 for all i = 1, . . . , p.

Thus,
lim
k→∞

min{−g
i
(xk), wki } = 0 for all i = 1, . . . , p.

Since x∗ is a feasible point of problem (34), we deduce that this point satisfies the AKKT con-
dition of (34). �
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The “ideal” property of finding minimizers of the objective function under minimal global
infeasibility is not achievable by affordable algorithms. On the one hand the problem of finding
global minimizers of infeasibility is a global optimization problem the solution of which, in the
absence of suitable assumptions on the problem, can be obtained only under evaluation on a
dense set. By the same reason, without dense-set evaluations, it is not possible to guarantee
global minimization of the objective function subject to minimal infeasibility. Therefore, the
best that we can prove using standard affordable algorithms is that limit points satisfy some
optimality condition related to the minimization of f subject to the fact that some optimality
condition related to the minimization of infeasibility holds. This is the type of result proved in
Theorems 3.2 and 3.3.

4 Results under constraint qualifications

Theorem 3.2 establishes that the main local algorithm satisfies an optimality property in the
infeasible case: every limit point, infeasible or not, fulfills the Approximate KKT conditions
relative to problem (7). It is interesting to study the conditions under which this property
implies that the limit point fulfills the KKT conditions of (7). Clearly, this is not always true.
Consider, for example, the problem of minimizing x subject to x2 + 1 = 0. Although the AKKT
condition holds at the solution x∗ = 0 and, in fact, our algorithm converges to x∗ independently
of the initial point, the auxiliary problem PA(x∗) is

Minimize x subject to x2 = 0

and the KKT conditions do not hold for this problem.
In this section we will prove that, when a limit point x∗ satisfies some constraint qualifica-

tions, the KKT conditions of PA(x∗) hold at x∗. In the last few years many weak constraint
qualifications were introduced in [4, 5, 36, 37, 40, 41]. In particular, the Constant Positive Gener-
ators (CPG) condition introduced in [5] is one of the weakest constraint qualification that allows
one that prove that AKKT implies KKT. The definition of the CPG condition for the minimiza-
tion of a function f(x) with m′ constraints Hi(x) = 0 and p′ constraints Gi(x) ≤ 0 is given below.

Definition 4.1. Assume that H(x∗) = 0 and G(x∗) ≤ 0. Define I = {1, . . . ,m′}. Let
J ⊆ {1, . . . , p′} be the indices of the active inequality constraints at x∗. Let J− be set of indices
` ∈ J such that, for all ` ∈ J−, there exist λ1, . . . , λm′ ∈ IR and µj ∈ IR+ for all j ∈ J , such that

−∇G`(x∗) =
m′∑
i=1

λi∇Hi(x
∗) +

∑
j∈J

µj∇Gj(x∗). (35)

Define J+ = J − J−. We say that the Constant Positive Generator (CPG) condition holds at
x∗ if there exists I ′ ⊆ I and J ′ ⊆ J− such that

1. The gradients ∇Hi(x
∗) and ∇Gj(x∗) indexed by i ∈ I ′ and j ∈ J ′ are linearly independent.
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2. For all x in a neighborhood of x∗, if

z =
m′∑
i=1

λ′i∇Hi(x) +
∑
j∈J

µ′j∇Gj(x),

with µ′j ≥ 0 for all j ∈ J , then for all i ∈ I ′, ` ∈ J ′, and j ∈ J+, there exist λ′′i ∈ IR,
λ′′′` ∈ IR, and µ′′j ∈ IR+ such that

z =
∑
i∈I′

λ′′i∇Hi(x) +
∑
`∈J ′

λ′′′` ∇G`(x) +
∑
j∈J+

µ′′j∇Gj(x).

Theorem 4.1. Assume that the sequence {xk} is generated by Algorithm 2.1 under Assump-
tion 3.1. Let x∗ be a limit point of {xk} and assume that the CPG constraint qualification with
respect to the problem PA(x∗), given by (7) and (14), is fulfilled at x∗, with the obvious definition
of H, G, m′, and p′. Then, x∗ satisfies the KKT conditions related with PA(x∗).

Proof. By Theorem 3.2 x∗ satisfies the AKKT conditions with respect to the problem PA(x∗)
with the suitable definition of H, G, m′, and p′. Then, by Theorem 3.1 of [5], x∗ satisfies the
KKT conditions of the problem of minimizing f(x) subject to H(x) = 0 and G(x) ≤ 0. This
completes the proof. �

Constraint qualifications are properties of the constraints of Nonlinear Programming prob-
lems that, when satisfied at a local minimizer x∗, independently of the objective function, imply
that x∗ fulfills the KKT conditions. In other words, if CQ is a constraint qualification, the
proposition “KKT or not-CQ” is a necessary optimality condition. As a consequence, weak
constraint qualifications produce strong optimality conditions. CPG is a constraint qualifica-
tion weaker than LICQ (Linear Independence of the gradients of active constraints), MFCQ
(Mangasarian-Fromovitz), and CPLD (Constant Positive Linear Dependence) [5]. The linearity
of active constraints also implies CPG. As a consequence of the results of this section and Sec-
tion 3 we conclude that Algorithm 2.1 converges to limit points that satisfy strong optimality
conditions with respect to the auxiliary problem (7).

5 Experiments

We implemented Algorithm 2.1 with Assumptions 2.2 and 3.1 as a straightforward modification
of Algencan, the Augmented Lagrangian method introduced in [1] (available at the TANGO
Project web page [49]), that considers box constraints for the non-relaxable set Ω. Basically,
our modification only affects the criterion for increasing the penalty parameter, so the modified
method will be called “modified Algencan”.

5.1 Preliminary experiments

In a first set of experiments, that can be found in [50, 51], using all the problems from the
CUTEr collection [33], we performed an exhaustive numerical comparison between the modified
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Algencan and the original version of Algencan. We did not find meaningful differences between
the behavior of both algorithms, neither in feasible, nor in infeasible problems. Although we be-
lieve that the product form of measuring complementarity is less prone to scaling inconveniences
than the ones based on the minimum operator and that the product form has the theoretical
advantage of being connected to the strong sequential optimality condition CAKKT [7], these
features does not seem to be enough to produce practical effects. In a second set of experiments,
that can be found in [52], we compared the modified Algencan with Ipopt [48], a well established
interior point method for constrained optimization that is not prepared for optimal convergence
to points that minimize infeasibility. The practical interpretation of the theory presented in this
paper was corroborated by the performance of the modified Algencan on infeasible problems,
that outperformed the interior point algorithm. Of course, this does not mean that Algencan
should be more efficient than Ipopt in different (perhaps feasible) situations.

5.2 Large-scale infeasible problems

In a third set of experiments, we analyzed the performance of the modified Algencan method
on a set of large-scale infeasible problems related to image reconstruction (see, for example,
[12, 28]). Consider a signal t ∈ IRn for which it is known that it has a sparse representation in
the space generated by the columns of a matrix ΨT ∈ IRn×n, i.e. there exists s ∈ IRn with a few
non-null elements such that t = ΨT s. Let Φ ∈ IRm×n be a matrix that represents the task of
performing m < n observations b ∈ IRm that are linear combinations of the elements of the n-
dimensional signal t, i.e. b = Φt. The problem of recovering the signal t from the observations b
consists of finding a vector s ∈ IRn with the smallest possible number of non-null elements such
that ΦΨT s = b. Matrices Φ and Ψ are implicitly defined sparse matrices such that computing a
single matrix-vector product is very cheap, but A = ΦΨT may be dense and computing it may
be very expensive. In Compressive Sensing, the basis pursuit problem [24] consists on

Minimize ‖s‖1 subject to ΦΨT s = b. (36)

In Algencan, the Augmented Lagrangian subproblems are solved (at Step 1 of Algorithm 2.1)
with an active-set method [17] that uses spectral projected gradients [20] for leaving the faces.
Within the faces, there are several alternatives for tackling the “unconstrained” subproblems.
When applying Algencan to problem (36) (or its reformulation below), since computing the full
matrix ΦΨT is computationally unaffordable, a truncated Newton approach will be considered.
Therefore, Newtonian systems will be solved by conjugate gradients and only matrix-vector
products will be required.

By the change of variables s = u−v with u ≥ 0 and v ≥ 0, problem (36) can be reformulated
as the linear programming problem given by

Minimize

n∑
i=1

ui + vi subject to ΦΨT (u− v) = b, u ≥ 0, v ≥ 0. (37)

Consider the “original” signal t ∈ IRn with n = 256×256 = 65,536 pixels (each one representing
a grey-scale between 0 and 1), depicted on Figure 1. Let Ψ be the n × n (orthogonal) Haar
transform matrix (see, for example, [29, Chapter 6]) and let Φ ∈ IRm×n be the (full rank) highly
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sparse binary permuted block diagonal measurement matrix (with L = 2 block diagonal matrices;
see [34] for details). The sparse representation of t in the space generated by the columns of
ΨT is given by s = Ψt and it has only k = 6,391 non-null elements, which corresponds to
a density of k/n × 100% ≈ 9.75%. Consider eight different linear programming problems of
the form (37) with m = αk and α ∈ {1.5, 2.0, 2.5, . . . , 5.0}. The problems have 2n = 131,072
variables and m equality constraints plus the bound constraints. Starting from the least-squares
solution (u0, v0) = ([s0]+, [−s0]+), with s0 = ΘT (ΘΘT )−1b and Θ = ΦΨT , Algencan (with all its
default parameters, that include a tolerance εfeas = 10−8 for feasibility) solves the eight (feasible)
problems using much less time than the time needed to perform the strongly unrecommended
task of computing the matrix Θ only once. Figure 2 illustrates the solutions found considering
different numbers of measurements m.

Figure 1: Phantom “original” image with n = 256× 256 = 65,536 pixels.

The key point in the numerical experiments described in the paragraph above is that noise
was not considered at all in the process of obtaining the observations b. Assume now that there
is noise in the acquisition of the observations b. In this case, it may be expected the linear
system ΦΨT s = b to be incompatible. If the level of noise is known or can be estimated, the
problem to be solved may be given by

Minimize ‖s‖1 subject to ‖ΦΨT s− b‖2 ≤ σ, (38)

where σ is an estimation of the Euclidean norm of the residual of the presumable incompatible
linear system ΦΨT s = b. Problem (38) is known as basis pursuit denoise problem [12]. If the
level of noise of the observations is unknown, a sequence of problems of the form (38), considering
different values for σ, may be solved. This alternative is strongly related to a second alternative
that consists of solving a sequence of problems of the form

Minimize ‖s‖1 + γ‖ΦΨT s− b‖22, (39)

where γ is a parameter. Solving sequences of problems of the form (38) or (39) can be seen as
applying classical scalarization methods such as the ε-constraint method or the weights method,
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(a) m = 1.5k = 9,586 (b) m = 2k = 12,782 (c) m = 2.5k = 15,977 (d) m = 3k = 19,173

(e) m = 3.5k = 22,368 (f) m = 4k = 25,564 (g) m = 4.5k = 28,759 (h) m = 5k = 31,955

Figure 2: Recovered images obtained as solutions of the linear programming problem (37) with
different number of constraints (observations).

respectively, to an underlying biobjective optimization problem. See, for example, [12, 38] and
the references therein. In the present numerical experiments, we explore a different alternative:
trying “to solve” with the modified Algencan method an infeasible problem of the form (36).

Assume that observations b are of the form b = Φt + η, where ηi ∈ [−εi, εi] are random
variables with uniform distribution and that the levels of noise εi are unknown. Moreover, to
be sure that we are in fact dealing with an empty feasible set, we consider that observations are
given by b̃ = Φt+ η̃ and b̂ = Φt+ η̂, where η̃ and η̂ are random variables as already described.
In this case, the set of 2m constraints that express the desire of finding a signal in accordance
with the observations is given by the incompatible set of linear equations(

ΦΨT

ΦΨT

)
s =

(
b̃

b̂

)
. (40)

Thus, the (infeasible) linear programming problem that should be solved is given by

Minimize
∑n

i=1 ui + vi

subject to ΦΨT (u− v) = b̃,

ΦΨT (u− v) = b̂,
u ≥ 0, v ≥ 0.

(41)

We considered instances of problem (41) with m = 3.5k = 22,368 and three different levels
of noise εi = ξ|bi| for i = 1, . . . ,m, with ξ ∈ {0.01, 0.1, 0.5}. The considered initial point was
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the least-squares solution (u0, v0) = ([s0]+, [−s0]+), with s0 = ΘT (ΘΘT )−1b̃. Figure 3 shows
the “solutions” found. In all cases, as expected, the objective function seems to have been
minimized subject to minimal infeasibility. “Solutions” found should be compared with the one
depicted in Figure 2e, that corresponds to the case ξ = 0. In that case, the solution found
is feasible with tolerance εfeas = 10−8 for the sup-norm of the infeasibility and the objective
function value (`1-norm of s) at the solution is f(s∗) ≈ 3303.27. For the infeasible problems
with ξ ∈ {0.01, 0.1, 0.5}, the sup-norm of the infeasibility at the “solutions” was of the order of
10−2, 0.1, and 1, respectively, while the optimal objective function values were approx. 3313.10,
3431.25, and 4238.36, respectively. The values of the infeasibility at the “solutions” were verified
by solving, independently, the problem of minimizing the squared Euclidean norm of the linear
constraints of problem (41) subject to the bound constraints. Note that, without estimating the
level of noise of the observations’ acquisition, “solutions” obtained by the modified Algencan
applied to problem (41) appear to be similar to the ones obtained by Algencan when applied to
problem (37). While this experiments suggest that a method that minimizes the objective func-
tion subject to minimum infeasibility may be a useful tool in the field of images reconstruction,
the reader should be warned that such a claim is out of the scope of the present work, where
image reconstruction problems were used to illustrate the practical behaviour of the modified
Algencan method.

(a) 1% (ξ = 0.01) (b) 10% (ξ = 0.1) (c) 50% (ξ = 0.5)

Figure 3: Recovered images obtained as “solutions” of the infeasible problem (41) with different
levels of noise εi = ξ|bi| for i = 1, . . . ,m in the generation of b̃ and b̂.

6 Final Remarks

In many practical situations we do not know whether the constrained optimization problem
that we try to solve is feasible or not. In these cases it is advantageous to use algorithms that
quickly detect possible infeasibility. However, there are cases in which it is relevant to distinguish
between different infeasible points. In those cases, under similar levels of infeasibility, one may
prefer the points at which the objective function value is as small as possible. This is a motivation
for studying “optimality properties” of algorithms that could converge to infeasible points. In the
context of global optimization, in which we assume that it is possible to solve simple subproblems
up to global minimization with arbitrary precision, it is simple to develop Augmented Lagrangian
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algorithms that converge to minimizers of the objective function subject to minimal infeasibility.
However, these algorithms are in general not affordable if the number of variables or constraints
is large. It is interesting, therefore, to study the properties of affordable algorithms (which
generally converge to feasible points and satisfy first-order optimality conditions) in the case
that convergence to a feasible point does not occur. In this paper we addressed this task in
the case of an Augmented Lagrangian method. Although, in this case, it is impossible to prove
convergence to global minimizers subject to minimal infeasibility, we were able to detect a
simpler feasible auxiliary problem such that the proposed algorithm converges to the auxiliary
problem’s feasible stationary points. Modifications made on an standard Augmented Lagrangian
method do not affect its classical convergence properties and the properties of the so far modified
algorithm were studied from the point of view of global convergence. In order to corroborate
the theoretical properties, we performed some numerical experiments with geometric appeal, in
which we illustrated that behaviour of the analyzed Augmented Lagrangian method in infeasible
problems when the criterion of minimal objective function is considered to be relevant.
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