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Abstract

Minimization diagrams encompass a large class of diagrams of interest in the literature, such as
generalized Voronoi diagrams. We develop an abstract perturbation theory in two dimensions and
perform a sensitivity analysis for functions depending on sets defined through intersections of smooth
sublevel sets, and formulate precise conditions to avoid singular situations. This allows us to define
a general framework for solving optimization problems depending on two-dimensional minimization
diagrams. The particular case of Voronoi diagrams is discussed to illustrate the general theory.
A variety of numerical experiments is presented. The experiments include constructing Voronoi
diagrams with cells of equal size, cells satisfying conditions on the relative size of their edges or
their internal angles, cells with the midpoints of pairs of Voronoi and Delaunay edges as close as
possible, or cells of varying sizes governed by a given function. Overall, the experiments show that
the proposed methodology allows the construction of customized Voronoi diagrams using off-the-shelf
well-established optimization algorithms.

Keywords: minimization diagrams, generalized Voronoi diagrams, nonsmooth shape optimization.

AMS subject classification: 49Q10, 49J52, 49Q12

1 Introduction

Let A ⊂ R2 be an open and bounded set, Kmd = {1, . . . , κ0} a set of indices, a = {ai}i∈Kmd
a set of

so-called sites with ai ∈ Rq, and ϕ = {ϕi}i∈Kmd
a set of smooth functions ϕi : R2 × Rq ∋ (x, a) 7→

ϕi(x, a) ∈ R. Define

Vi(a) := int

{
x ∈ A such that ϕi(x, ai) = min

k∈Kmd

ϕk(x, ak)

}
,

where intS denotes the interior of S ⊂ R2. The set V(a) := {Vi(a)}i∈Kmd
is called minimization diagram

and the sets Vi(a) are called cells of the diagram.
Minimization diagrams were introduced in [24] and generalize a large class of diagrams of interest

in the literature. They include various types of generalized Voronoi diagrams as particular cases, such
as Euclidean Voronoi diagrams [22], power diagrams [16], Laguerre tessellations [40], Möbius diagrams,
Apollonius diagrams [13, 51], multiplicatively weighted Voronoi diagrams [2] and anisotropic diagrams [4,
17]. For the computation of minimization diagrams, we refer to [25] and the references therein. The
concept of abstract Voronoi diagrams has also been introduced in [32] where the Voronoi cells are viewed
as intersections of regions rather than defined via distance functions. The bulk of the literature on this
topic is mainly focused on studying the theoretical properties of specific types of generalized Voronoi
diagrams and on their efficient computation.

The optimization of Voronoi diagrams has several important applications such as grid generation
and optimization in the framework of the finite element method. In this context, the optimization
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usually consists in obtaining centroidal Voronoi tessellations, see the reviews [22, 23] and the references
therein; see also [45] for alternative approaches. Other applications include land-use optimization [48]
and inverse problems [15]. In some cases, the optimization of Voronoi diagrams is based on a sensitivity
analysis, which has been performed in the literature for specific classes of energies and minimization
diagrams such as centroidal Voronoi tessellation functions [22], centroidal power diagrams [16] and for
an inverse problem for Voronoi diagrams in [15]. The sensitivity analysis developed in the present paper
widely generalizes these approaches and provides a rigorous mathematical construction of the bi-Lipschitz
mappings required for integration by substitution. This construction process is key to determine sufficient
conditions to avoid singular cases, and to enable the calculation of derivatives of any order and various
types of cost functions. For instance, in [6], a similar construction allowed to compute second-order
derivatives of cost functions defined as domain integrals. The sensitivity analysis of generalised Laguerre
tessellations, a particular case of minimization diagrams, has also witnessed many developments recently,
due to their applications in semi-discrete optimal transport. For a general class of costs, first- and second-
order derivatives of a specific type of cell integral with respect to the sites and weights were computed
in [20, Thm. 1]. In [31, Thm. 1.3] and [40, Thm. 45], derivatives of cell integrals with respect to the
weights were computed for Laguerre tessellations, C1,α-regularity results for cell integrals as a function
of the Laguerre weights were proved, and topological changes of the diagram were allowed. Similar
results were obtained in [26, Prop. 15] for generalised Laguerre tessellations. In the theory developed
in the present paper we do not consider topological changes, but they occur in numerical experiments
without negatively affecting the results. The perturbation theory developed here is independent of the
cost functional that may be considered for the optimization; this allows to obtain general formulas, but
also requires a sufficiently smooth framework.

The theoretical part of the present work is structured in three layers of abstraction. In the first, most
abstract layer, a perturbation theory for sets defined as the intersection of subzero level sets of smooth
functions is presented and natural conditions to avoid singular situations are provided. In the second
layer, this theory is applied to obtain a perturbation theory for functions depending on minimization
diagrams. In the third layer, the particular case of Euclidean Voronoi diagrams is discussed; this serves
as an illustration and enables a better understanding of the abstract concepts of the first two layers. In
the first layer, the main result consists in the construction of a bi-Lipschitz mapping between a reference
cell and its perturbation, both defined as intersections of smooth sets. In [5, 6] a similar but simpler
situation has been investigated, where a bi-Lipschitz mapping was built to model the small perturbation
of sets defined as a union of balls. The main ideas of [5, 6] for building such mapping are generalized
here to the much larger class of sets defined as subzero level sets of smooth functions. The obtained bi-
Lipschitz mapping is a key tool for applying shape calculus and shape optimization techniques [21, 28, 47]
to compute the shape sensitivity of cost functionals defined as integrals. Indeed, the calculation of the
derivatives of integrals on moving domains requires a change of variables employing this mapping. The
main challenge here is to handle the nonsmoothness of sets defined via intersections. In this sense the
present work contributes to advance the theory of nonsmooth shape optimization [35, 37].

The function x 7→ mink∈Kmd
ϕk(x, ak) is called lower envelope of the set of functions ϕ. In [36], a lower-

envelope-based numerical method has been developed, and it was shown that this method generalizes
the level set method [42]. The theory developed in the present paper shares similarities with the theory
developed in [36], both being based on a lower envelope approach, but distinguishes itself from [36] in
several key aspects. Indeed, [36] can be seen as a study of time-dependent minimization diagrams via
transport equations, aimed at the tracking of interfaces motion in multiphase problems, while the present
work is a study of the dependence on the sites a of the implicit interfaces of the diagram cells. In this
sense, these two studies are complementary and contribute to build an abstract theory of evolving and
parameterized minimization diagrams. It is interesting to observe that this abstract theory encompasses
seemingly unrelated topics such as lower envelope and level set methods, optimization of generalized
Voronoi diagrams and time-dependent minimization diagrams, which can be treated under the same
umbrella of shape calculus for domains defined as intersections of sublevel sets of smooth functions.

From a practical point of view and by way of illustration, this paper applies the developed theory to
the construction of Voronoi diagrams satisfying pre-specified properties. The experiments show that it is
possible to formulate a priori the desired properties as differentiable functions and that Voronoi diagrams
can be obtained by minimizing one or more desirable metrics simultaneously. Moreover, experiments
show that the optimization process can be performed using well-established and available optimization
methods.
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The rest of this work is organized as follows. In Section 2, a perturbation theory for curved polygons
defined as the intersection of subzero level sets of smooth functions is described. The proofs of the
intermediate results of Section 2 are provided in Appendix A. This theory is applied to minimization
diagrams in Section 3, and then to the particular case of Voronoi diagrams in Section 4. Section 5 presents
numerical experiments for the particular case of Voronoi diagrams. The calculations of the gradients
of the functions used in these numerical experiments are detailed in Appendix B. A brief discussion
included in Section 6 analyzes alternatives and options that remained unexplored in the computational
experiments. Conclusions and lines for future research are provided in the last section.

Notation. ∥ · ∥ denotes the Euclidean norm. Given x, y ∈ Rn, x · y = x⊤y ∈ R; while x ⊗ y = xy⊤ ∈
Rn×n. We use y⊥ := Ry, for a vector y ∈ R2, where R is a rotation matrix of angle π/2 with respect to a
counterclockwise orientation. The transpose of a matrix M is denoted M⊤, and rankM is the rank of M ,
i.e., the maximum number of linearly independent rows or columns of M . For a finite set I, |I| denotes
the cardinal of I. For a sufficiently smooth set S ⊂ R2, dimS denotes its topological dimension, intS
its interior, S its closure, |S| its perimeter if S is one-dimensional or its area if S is two-dimensional.
We use B(x, r) to denote an open ball of center x and radius r. The gradient with respect to x ∈ R2 of
a function ψ : R2 → R is denoted ∇xψ and is a column vector. The divergence of a sufficiently smooth
vector field R2 ∋ (x1, x2) 7→ ψ(x1, x2) = (ψ1(x1, x2), ψ2(x1, x2)) ∈ R2 is defined by divψ := ∂ψ1

∂x1
+ ∂ψ2

∂x2
,

and its Jacobian matrix is denoted Dxψ. The gradient with respect to a of a function G : Rqκ0 → R is
denoted ∇G. The Jacobian matrix with respect to a of a function G : Rqκ0 → Rn is denoted DG.

2 Perturbation theory for sets defined as intersections

Given a perturbation δa of the sites a, our main objective is to build a bi-Lipschitz transformation
T (·, t) that maps the cell Vi(a) onto its perturbation Vi(a + tδa). In order to handle the constraint
Vi(a) ⊂ A, it is convenient to first build a perturbation theory for sets defined as intersections of sublevel
sets of smooth functions depending on a pseudo-time t. A similar idea has been used in [31] to prove
derivatives of cell integrals with respect to the weights for Laguerre tessellations. For this purpose, we
use and extend the results of [5, 6, 34, 36]. The theory developed here shares several similarities with
the framework of [36]. Indeed, in [36] the “phases”, corresponding to the cells here, are also defined
by a minimization diagram. A key difference is that in [36], the function ϕ itself corresponds to the
control parameter, whereas in the present work the set a of sites is the control. Thus, unlike in [36],
we need here to express the perturbation of vertices and edges (interfaces between cells) in terms of the
perturbation δa. Still, several results from [36] can be used or adapted to the present framework. Our
approach can be labeled as nonsmooth shape optimization: we refer to the textbooks [21, 28, 47, 50] for
smooth shape calculus and shape optimization, and to [5, 6, 34, 35, 37] for an introductory material on
nonsmooth shape optimization.

Let K ⊂ N be a finite set of indices and Ir := {I ⊂ K | |I| = r}. Let {ϕ̂k}k∈K be a set of given
functions in C∞(R2 ×R,R). For a subset of indices I = {k1, k2, . . . , k|I|} ⊂ K, define

ϕ̂I := (ϕ̂k1 , ϕ̂k2 , . . . , ϕ̂k|I|)
⊤ ∈ C∞(R2 ×R,R|I|). (1)

Definition 1. For k ∈ K and I ⊂ K, define

ωk(t) := int{x ∈ R2 | ϕ̂k(x, t) ≤ 0}, (2)

VK(t) :=
⋂
k∈K

ωk(t), (3)

ek(t) := {x ∈ R2 | ϕ̂k(x, t) = 0, ϕ̂j(x, t) < 0 for all j ∈ K \ {k}}, (4)

LI(t) := {x ∈ R2 | ϕ̂I(x, t) = 0}, (5)

Lr(t) :=
⋃
I∈Ir

LI(t). (6)

For the sake of simplicity, we adopt the notation ωk := ωk(0), ek := ek(0), VK = VK(0), LI := LI(0)
and Lr := Lr(0). The cell VK(t) is the main object of study in this section, and is defined as the

intersection of smooth sets ωk(t) which are zero sublevel sets of the functions ϕ̂k. In this work we treat
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the two-dimensional case. However, the concepts introduced in Definition 1 are actually valid in any
dimension; see [36]. In n dimensions, under appropriate conditions, VK(t) is a (time-dependent) polytope
with curved faces. For n = 2, VK(t) is a polygon with curved edges ek(t). In the next sections, VK(t) plays
the role of the perturbed cell Vi(a + tδa) of a minimization diagram; for instance it could represent the

cell of a Voronoi diagram by choosing specific functions ϕ̂k. Example 3 and the accompanying Figure 2
illustrate some of the concepts of Definition 1. The example and figure appear a little later because they
also serve the purpose of illustrating some of the regularity assumptions that follow.

The goal of this section is to parameterize the motion (with respect to t) of the curved polygon
VK(t) by building a bi-Lipschitz mapping satisfying T (VK, t) = VK(t), as this will allow us to compute
derivatives of cost functions depending on the geometry of VK(t) via a change of variables. In order to
build the bi-Lipschitz mapping T such that T (VK, t) = VK(t), one needs first to establish a sufficiently

regular framework. Indeed, without any restriction on {ϕ̂k}k∈K, the cell VK(t) or its motion could be wild,
and the mapping T might not exist. For this purpose we introduce the sets LI(t) and Lr(t), where LI(t)

is a time-dependent zero level set of the |I|-dimensional vector-valued function ϕ̂I . In n dimensions, a
regular framework requires the dimension of LI(t) to be at most max(0, n− |I|); see [36]. Since in this
paper we work in two dimensions, there are only two cases: when |I| = 1 then the dimension of LI(t)
should be 0 or 1, which is enforced by Assumption 2, and when |I| = 2 the dimension of LI(t) should

be 0, which is enforced by the first part of Assumption 3. If the data {ϕ̂k}k∈K does not satisfy these

assumptions, we call this configuration singular. Even for a singular {ϕ̂k}k∈K, the sensitivity analysis of
the cost function may often be performed via techniques of asymptotic analysis; see [5, 6] and Example 8.

We start with an assumption that allows us to work with a uniformly bounded cell VK(t), which is
useful for the applications in Sections 3 and 4, to represent the bounded set A. Indeed, the sets defined
in (2) need not be bounded in general. For instance in the particular case of Voronoi diagrams one

chooses ϕ̂k(x, t) = ∥x− (ai + tδai)∥2 − ∥x− (ak + tδak)∥2, thus ωk(t) is a half-plane; see Section 4.

Assumption 1 (Uniformly bounded cell). There exists τ1 > 0, k ∈ K and an open ball B ⊂ R2 such
that ωk(t) ⊂ B for all t ∈ [0, τ1].

We observe that in general the sets ωk(t), k ∈ K, may have nonempty intersections, which is undesir-
able in applications. This may actually happen when a set LI(t) becomes “thick” for some I ∈ I1 and
t > 0, in the sense that dimLI(t) > 1. This can be avoided using Assumption 2 below, by forcing the

norm of the gradient of ϕ̂k to be positive on ∂ωk at t = 0. This is not a restrictive assumption, as there
are many ways to choose ϕ̂k to represent a set ωk.

Note that this type of non-degeneracy condition is standard in level set methods and has also been
used in the context of Laguerre tesselations for semi-discrete optimal transport; see [20, Def. 1] and [31,
§ 3.1].

Assumption 2 (Non-degeneracy of interfaces). ∥Dxϕ̂I(x, 0)∥ > 0 for all x ∈ LI and for all I ∈ I1.

We need to introduce one more assumption: the first part of Assumption 3 aims at preventing two sets
ωi and ωj to have a tangent boundary, while the second part’s objective is to prevent three boundaries
∂ωi, ∂ωj and ∂ωk from intersecting at the same point. Assumption 3 can be seen as a generalization
of a similar assumption introduced in [5, 6], where sets defined as unions of balls where considered. We
also observe that the notion of transversality in [6, Def. 3.2] conveys a similar idea as the first part of
Assumption 3, as it prevents the sets ωk, k ∈ K, from being tangent.

Assumption 3 (Non-degeneracy of vertices). We have rankDxϕ̂I(x, 0) = 2 for all x ∈ LI and for all
I ∈ I2, and

L3 = ∅. (7)

Remark 1. In Assumption 3, the condition rankDxϕ̂I(x, 0) = 2 for all x ∈ LI and for all I ∈ I2 is

equivalent to ∇xϕ̂j(x, 0)⊥ · ∇xϕ̂k(x, 0) ̸= 0 for all x ∈ LI and for all I = {j, k} ∈ I2.

We now give several examples to illustrate situations where Assumptions 2 and 3 are either satisfied
or fail to be satisfied.
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Example 1. Let K = I = {1} ∈ I1, ϕ̂I = (ϕ̂1), ϕ̂1(x, t) = ∥x−a1∥2−(1+t)2. Then ω1(t) = B(a1, 1+t),

Dxϕ̂I(x, t) = 2(x− a1), LI(t) = ∂B(a1, 1 + t), ∥Dxϕ̂I(x, 0)∥ = 2 > 0 for all x ∈ LI and for all I ∈ I1.
Thus, Assumption 2 is satisfied in this case. Now, if we take ϕ̂1(x, t) = (∥x− a1∥2 − (1 + t)2)3, then we

still have ω1(t) = B(a1, 1+t) and LI(t) = ∂B(a1, 1+t), but ∥Dxϕ̂I(x, 0)∥ = 6(x−a1)(∥x−a1∥2−1)2 = 0
for all x ∈ LI and for all I ∈ I1, and in this case Assumption 2 is not satisfied.

Example 2. Let K = {1, 2, 3}, I = {1, 2} ∈ I2, ϕ̂i(x, t) = ∥x − ai∥2 − (1 + t)2, i ∈ K, a1 = (−1/2, 0),
a2 = (1/2, 0), a3 = (2, 0). Then ωi(t) = B(ai, 1 + t) and LI = LI(0) = {(0,

√
3/2), (0,−

√
3/2)}; see

Figure 1a. Then

Dxϕ̂I(x, t) = 2

(
(x− a1)⊤

(x− a2)⊤

)
.

It can be easily checked that rankDxϕ̂I(x, 0) = 2 for all x ∈ LI , this can also be seen considering

Remark 1. It can then be checked in a similar way that for all other I ∈ I2, one has rankDxϕ̂I(x, 0) = 2
for all x ∈ LI . Next we have

L3 =
⋃
I∈I3

LI = LK = {x ∈ R2 | ϕ̂1(x, 0) = ϕ̂2(x, 0) = ϕ̂3(x, 0) = 0} = ∅.

Hence Assumption 3 is satisfied. Consider now the same example with I = {1, 2} ∈ I2, except for a1 =

(−3/2, 0); see Figure 1b. Then the disks ω1 and ω2 are tangent, LI = {(−1/2, 0)} and rankDxϕ̂I(x, 0) = 1
since (x− a1) and (x− a2) are colinear for all x ∈ LI . Thus, Assumption 3 is not satisfied in this case.
Finally, consider a similar example but with a1 = (−1/2, 0), a2 = (1/2, 0), a3 = (0,

√
3/2 + 1); see

Figure 1c. Then, the three circles ∂ω1, ∂ω2 and ∂ω3 intersect at a single point and

L3 =
⋃
I∈I3

LI = LK = {(0,
√

3/2)} ≠ ∅.

In this case, one can show that the first part of Assumption 3 is satisfied, but the second part of Assump-
tion 3 fails to be satisfied due to L3 ̸= ∅.

Example 3. Consider the case K = {1, 2, 3}, ϕ̂k(x, t) = ∥x − ak∥2 − (r + tδr)2, a1 = (0, 1), a2 =
(−

√
3/2,−1/2), a3 = (

√
3/2,−1/2) and ωk(t) is a disk of center ak and radius r + tδr; see Figure 2

for an illustration of this geometric configuration. Then for r > 1 and sufficiently small t ≥ 0, the cell
VK(t) =

⋂
k∈K ωk(t) forms a well-known geometric figure called Reuleaux triangle. We have L{k}(t) =

∂ωk(t) for all k ∈ K. The set L{i,j}(t), {i, j} ⊂ K is composed of the two intersection points of the circles
∂B(ai, r+tδr) and ∂B(aj , r+tδr), thus L2(t) := ∪I∈I2LI(t) is composed of six points. Note that three of
these six points are the vertices of the Reuleaux triangle, while the other three points are irrelevant for the
description of the cell VK(t). We also have L3 = ∪I∈I3LI = ∅. Thus we conclude that Assumptions 1, 2
and 3 are satisfied when r > 1. The case r = 1 is singular in the sense that L3 := ∪I∈I3LI = (0, 0) ̸= ∅,
i.e., the three circles intersect at the same point (0, 0) at t = 0, thus Assumption 3 is not satisfied in this
case.

Lemma 1 and Lemma 2 below are straightforward extensions of [36, Lemma 2] and [36, Lemma 4],

respectively, therefore we omit the proof here. Note however that the definition of ϕ̂I in [36] is slightly
different from the definition in (1), thus the results of [36, Lemma 2] and [36, Lemma 4] need to be
adapted to the notation in the present paper.

Lemma 1. Suppose |K| ≥ 3, B ⊂ R2 is an open ball, and Assumption 2 holds. Then there exists τ1 > 0
such that for all I ∈ I1, LI(t)∩B is either empty or is a one-dimensional C∞-manifold for all t ∈ [0, τ1].

Lemma 2. Suppose |K| ≥ 3, B ⊂ R2 is an open ball, and Assumption 3 holds. Then there exists τ1 > 0
such that for all I ∈ I2, LI(t) ∩B is either empty or a set of isolated points for all t ∈ [0, τ1].

We now provide a key result for the sensitivity analysis of time-dependent curved polygons developed
in this section. In Lemma 3, the set LI(t) ∩ VK(t) is the set of vertices of VK(t) belonging to LI(t) for
some I ∈ I2. Lemma 3 essentially establishes, using the implicit function theorem, that the positions
t 7→ zv(t) of these vertices are uniquely determined, continuous and differentiable for sufficiently small t,
and provides an expression for the derivative z′v(0). It is also a stability result as it shows that no new
vertices appears at t > 0, for sufficiently small t.
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a1 a2 a3

(0,−
√

3/2)

(0,
√

3/2)

∂w1

∂w2

∂w3

(a) LI = {(0,
√

3/2), (0,−
√

3/2)} for I = {1, 2}.

a1 a2 a3(−1/2, 0)

∂w1 ∂w2 ∂w3

(b) LI = {(−1/2, 0)} for I = {1, 2}.

a1 a2

a3

(0,
√

3/2)

∂w1 ∂w2

∂w3

(c) L3 = {(0,
√

3/2)}

Figure 1: (a) Assumption 3 is satisfied in this example. (b) Assumption 3 is not satisfied in this example

as rankDxϕ̂I(x, 0) = 1 for I = {1, 2} and for all x ∈ LI . (c) The first part of Assumption 3 is satisfied
in this example, but the second part fails to be satisfied due to L3 ̸= ∅. Here, L3 is the intersection of
the three circles.

Lemma 3. Suppose that Assumptions 1 and 3 hold and let I ∈ I2. Then there exists τ1 > 0 such that
for all v ∈ LI ∩ VK there exists a unique smooth function zv : [0, τ1] → R2 satisfying zv(0) = v and

LI(t) ∩ VK(t) =
⋃

v∈LI∩VK

{zv(t)} for all t ∈ [0, τ1]. (8)

In addition we have
z′v(0) = −Dxϕ̂I(v, 0)−1∂tϕ̂I(v, 0) for all v ∈ LI ∩ VK. (9)

Proof. See Appendix A.

The results of Lemma 3 can then be used to show the stability of the set of vertices of the cell VK(t).
In Lemma 4, L2(t) ∩ VK(t) is the set of all vertices zv(t) of VK(t), where v is a vertex of L2 ∩ VK. Thus,
Lemma 4 shows that |L2(t) ∩ VK(t)| = |L2 ∩ VK| for all t ∈ [0, τ1], which means that the number of
vertices of VK(t) stays constant for sufficiently small t.

Lemma 4. Suppose that Assumptions 1 and 3 hold. Then there exists τ1 > 0 and r > 0 such that

L2(t) ∩ VK(t) =
⋃

v∈L2∩VK

{zv(t)} for all t ∈ [0, τ1], (10)

with zv(t) given by Lemma 3, zv(t) ∈ B(v, r) and B(v, r) ∩B(w, r) = ∅ for all {v, w} ⊂ L2 ∩ VK.

Proof. See Appendix A.

We now state a Lemma that provides a decomposition of the boundary of the cell VK(t) into edges
ek(t) and vertices L2(t) ∩ VK(t). Note that the properties ek(t) ⊂ ∂ωk(t) in Lemma 5 is not true in
general and requires Assumption 2, otherwise the dimension of ek(t) could be greater than one.
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a1

a2 a3

∂ω1(t)

∂ω2(t) ∂ω3(t)

VK(t)

z1(t)

z2(t) z3(t)

z4(t) z5(t)

z6(t)

γ1(t)

γ2(t)γ3(t)

Figure 2: In this illustration of Example 3, K = {1, 2, 3} r > 1, δr < 0, and the cell VK(t) is a mov-
ing Reuleaux triangle formed by the intersection of three disks ω1(t), ω2(t), ω3(t) of centers a1, a2, a3.
The dashed circles correspond to the configuration at t = 0. We have L{1,2}(t) = {z3(t), z4(t)},
L{1,3}(t) = {z2(t), z5(t)}, L{2,3}(t) = {z1(t), z6(t)} and L{1,2,3}(t) = ∅, which means that the inter-
section of the three circles is empty. Thus L2(t) = ∪I∈I2LI(t) = {z1(t), z2(t), z3(t), z4(t), z5(t), z6(t)}
and L3(t) = ∪I∈I3LI(t) = ∅. Since Assumptions 1, 2 and 3 are satisfied in this example, we have
L2(t) ∩ VK(t) = {z1(t), z2(t), z3(t)} which corresponds to the decomposition (10). This also means that
the points z1(t), z2(t), z3(t) are the vertices of the Reuleaux triangle VK(t). The three arcs of circle
e1(t), e2(t), e3(t) of the decomposition (11) are the three edges of the Reuleaux triangle.

Lemma 5. Suppose that Assumptions 1, 2 and 3 hold. Then there exists τ1 > 0 so that, for all k ∈ K,
ek(t) ⊂ ∂ωk(t), ek(t) is uniformly bounded on [0, τ1] and is a finite union of open, smooth, connected
arcs. In addition, VK(t) is Lipschitz and

∂VK(t) =
⋃
k∈K

ek(t) = (L2(t) ∩ VK(t)) ∪
⋃
k∈K

ek(t) for all t ∈ [0, τ1]. (11)

Proof. See Appendix A.

The example below describes a geometric configuration for which the hypotheses and, therefore, the
theses of Lemmas 4 and 5 hold.

Example 4. Consider Example 3 again. Each set ek(t) is an arc of circle with only one connected
component, and it is easy to see that (11) is satisfied. In (10), we have |L2(t) ∩ VK(t)| = |L2 ∩ VK| = 3
for sufficiently small t, and the points zv(t), v ∈ L2∩VK, are the vertices of the moving Reuleaux triangle
VK(t); see Figure 2.

We are now ready to build the bi-Lipschitz mapping T satisfying T (VK, t) = VK(t). The first step
is to build a Lipschitz mapping T (·, t) that maps the boundary ∂VK onto the moving boundary ∂VK(t).
The construction of T in Lemma 6 can be summarized as follows. On one hand, the motion of the
vertices zv(t) of ∂VK(t) is fully prescribed in view of Lemma 4, thus we simply assign T (v, t) = zv(t)
at the vertices v of ∂VK. On the other hand, only the normal component of T is prescribed on the
edges of ∂VK. Hence we are free to include translations along the edges of ∂VK when building T , while
respecting the constraint that T must match the prescribed motion of the vertices, and needs to be
globally Lipschitz on the boundary ∂VK with a Lipschitz constant close to 1.
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Lemma 6. Suppose that Assumptions 1, 2 and 3 hold. Then there exists τ1 > 0 and a continuous
function T : ∂VK × [0, τ1] → R2 such that

T (ek, t) = ek(t) for all k ∈ K and T (∂VK, t) = ∂VK(t).

In addition, T (·, t) is Lipschitz with constant 1 + Ct for all t ∈ [0, τ1], where C is independent of t.

Proof. See Appendix A.

We can now conclude with the main result of this section. We show in Theorem 1 that T (VK, t) =
VK(t) and we compute the derivative θ of T with respect to t. On the edges of ∂VK we provide the
expression (12) of the normal component of θ, which is useful for computing the derivative of cell integrals
in the next sections. At the vertices we also provide the expression (13) of the tangential component of
θ, which is used to compute derivatives of edge integrals.

Theorem 1. Suppose that Assumptions 1, 2 and 3 hold. Then there exists τ1 > 0 and a mapping
T : VK × [0, τ1] → R2 satisfying T (VK, t) = VK(t), T (∂VK, t) = ∂VK(t) and such that T (·, t) : VK → VK(t)
is bi-Lipschitz for all t ∈ [0, τ1]. In addition we have

θ(x) · ν(x) = − ∂tϕ̂k(x, 0)

∥∇xϕ̂k(x, 0)∥
for all x ∈ ek, (12)

θ(z) · τ(z) = −(Dxϕ̂I(z, 0)−1∂tϕ̂I(z, 0)) · τ(z) for all z ∈ L2 ∩ VK, (13)

where θ := ∂tT (·, 0), ν is the outward unit normal vector to VK, and τ is the tangent vector to ∂VK with
respect to a counterclockwise orientation.

Proof. Let T : ∂VK × [0, τ1] → ∂VK(t) be given by Lemma 6. Using Kirszbraun’s theorem [30] we can
extend x 7→ T (x, t) to a Lipschitz function on VK with the same Lipschitz constant 1 + Ct. Since C is
independent of t, we can choose τ1 sufficiently small so that x 7→ T (x, t) is invertible for all t ∈ [0, τ1], and
the inverse is also Lipschitz with Lipschitz constant (1 −Ct)−1. This shows that T (·, t) : VK → T (VK, t)
is bi-Lipschitz for all t ∈ [0, τ1].

Now we prove T (VK, t) = VK(t). Suppose first that ∂VK has only one connected component. Since
T (·, t) : VK → T (VK, t) is bi-Lipschitz, it is a homeomorphism. Thus it maps interior points onto
interior points and boundary points onto boundary points, which implies that T (VK, t) is the interior
of T (∂VK, t). Applying the Jordan curve theorem yields that VK(t) is the interior of ∂VK(t), and since
T (∂VK, t) = ∂VK(t) due to Lemma 6, their interiors coincide and we get T (VK, t) = VK(t). The case
where ∂VK has several connected components follows in a similar way.

In view of (47) we have β(x, 0) = x for x ∈ ek. Then due to (49) we have, for x ∈ ek,

θ(x) = ∂tT (x, 0) = ∂tβ(x, 0) + ∂tα̂(x, 0)∇xϕ̂k(x, 0)

+ ∇Γα̂(x, 0) · ∂tβ(x, 0)∇xϕ̂k(x, 0) + α̂(x, 0)D2
xϕ̂k(x, 0)∂tβ(x, 0),

where ∇Γ denotes the tangential gradient on ek. Using α̂(x, 0) = 0 for all x ∈ ∂ωk ∩B, and consequently
∇Γα̂(x, 0) = 0 for all x ∈ ∂ωk ∩B, where B is the ball given by Assumption 1, we get

θ(x) = ∂tβ(x, 0) + ∂tα̂(x, 0)∇xϕ̂k(x, 0). (14)

Then, taking the derivative with respect to t at t = 0 in (48) we obtain

∂tα̂(x, 0)∇xϕ̂k(x, 0) · ∇xϕ̂k(x, 0) + ∂tϕ̂k(x, 0) = 0.

Using Assumptions 2 we have ∥∇xϕ̂k(x, 0)∥ > 0, hence

∂tα̂(x, 0) = − ∂tϕ̂k(x, 0)

∥∇xϕ̂k(x, 0)∥2
.

Since β(x, t) ∈ ∂ωk ∩B for all t ∈ [0, τ1], ∂tβ(x, 0) is tangent to ek. Using also

ν(x) =
∇xϕ̂k(x, 0)

∥∇xϕ̂k(x, 0)∥
for x ∈ ek,
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in view of (14) we obtain, for x ∈ ek,

θ(x) · ν(x) = ∂tβ(x, 0) · ν(x)︸ ︷︷ ︸
=0

+∂tα̂(x, 0)∇xϕ̂k(x, 0) · ν(x) = − ∂tϕ̂k(x, 0)

∥∇xϕ̂k(x, 0)∥
,

which proves (12).

Since ∇xϕ̂k(x, 0) is normal to ek, using (14) we get, for z ∈ L2 ∩ VK,

θ(z) · τ(z) = ∂tβ(z, 0) · τ(z).

Now, using the notation of the proof of Lemma 6, suppose that z = zv. In view of (47) we then have

∂tβ(zv, 0) = ∂tσ(s(zv), 0)ξ′(σ(s(zv), 0)) = [λ(s(zv))s
′
w(0) + (1 − λ(s(zv)))s

′
v(0)]ξ′(σ(s(zv), 0))

= s′v(0)ξ′(sv),

where we have used s(zv) = sv, λ(sv) = 0 and σ(sv, 0) = sv. Since sv(t) = ξ−1(P (zv(t))) = s(P (zv(t)))
and P (zv) = zv we get s′v(0) = ∇Γs(zv) · [DxP (zv)z

′
v(0)], thus

∂tβ(zv, 0) · τ(z) = ∇Γs(zv) · [DxP (zv)z
′
v(0)]ξ′(sv) · τ(z) = ∇Γs(zv) · ξ′(sv)[DxP (zv)z

′
v(0)] · τ(z),

where we have used the fact that both ∇Γs(zv) and ξ′(sv) are tangent to ek to obtain the last equality.
Since s(x) = ξ−1(x), differentiating s ◦ ξ at sv yields ∇Γs(zv) · ξ′(sv) = 1. One can also show that
DxP = I − ν ⊗ ν on ek, where I is the identity matrix, see [18, Section 2.2]. This yields, using
DxP

⊤ = DxP on ek,

∂tβ(zv, 0) · τ(z) = [DxP (zv)z
′
v(0)] · τ(z) = [DxP (zv)τ(z)] · z′v(0) = z′v(0) · τ(z).

Finally, using (9) we get (13) for z = zv. The same procedure yields (13) for any z ∈ L2 ∩ VK.

3 Perturbation of minimization diagrams

In this section, we describe how the sensitivity analysis for curved polygons defined as sublevel sets,
developed in Section 2, allows us to treat the case of minimization diagrams. We start by giving a few
particular examples of minimization diagrams taken from [51]. Here A denotes a set in Rn.

Example 5 (Voronoi diagrams). Let ai ∈ Rq with q = 2. The cells of a Voronoi diagram are defined as

Vi(a) := int
{
x ∈ A such that ∥x− ai∥2 ≤ ∥x− ak∥2 for all k ∈ Kmd \ {i}

}
.

This corresponds to a minimization diagram for the particular case ϕk(x, a) = ∥x− a∥2 for all k ∈ Kmd,
with a ∈ Rq.

Example 6 (Power diagrams). Let ai = (ci, ri) with ci ∈ R2 and ri ∈ R, then ai ∈ Rq with q = 3. The
cells of a power diagram are defined as

Vi(a) := int
{
x ∈ A such that ∥x− ci∥2 − r2i ≤ ∥x− ck∥2 − r2k for all k ∈ Kmd \ {i}

}
.

This corresponds to a minimization diagram for the particular case ϕk(x, a) = ∥x− c∥2 − r2 for all k ∈
Kmd, with a = (c, r) ∈ Rq, c ∈ R2, r ∈ R.

Example 7 (Möbius diagrams). Let ai = (pi, λi, µi) with pi ∈ R2, and λi, µi ∈ R, then ai ∈ Rq with
q = 4. The cells of a Möbius diagrams are defined as

Vi(a) := int
{
x ∈ A such that λi∥x− pi∥2 − µi ≤ λk∥x− pk∥2 − µk for all k ∈ Kmd \ {i}

}
.

This corresponds to a minimization diagram for the particular case ϕk(x, a) = λ∥x − p∥2 − µ for all
k ∈ Kmd, with a = (p, λ, µ) ∈ Rq, p ∈ R2 and λ, µ ∈ R.

Note that in Examples 5, 6, 7, the functions ϕk are actually independent of k. However, in the theory
of Section 2 the functions ϕk may actually depend on k. A simple example of such a case would be a
power diagram where the weights rk are given and fixed for all k ∈ Kmd, which would correspond to a
minimization diagram for the particular case ϕk(x, a) = ∥x− a∥2 − r2k for all k ∈ Kmd, with a ∈ R2.
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3.1 Sensitivity analysis for edges and vertices

Recall that ϕi : R2 ×Rq ∋ (x, a) → ϕi(x, a) ∈ R are given smooth functions for i ∈ Kmd = {1, . . . , κ0}.
Further, ∇xϕi denotes the gradient of ϕi with respect to the variable x, and ∇aϕi the gradient with
respect to a. Let δa = {δai}i∈Kmd

be a set of sites perturbations, with δai ∈ Rq. Through appropriate

choices of the sets K, I, of the function ϕ̂I , and applying Theorem 1, we are able to describe the
perturbations Vi(a + tδa) of the cells Vi(a) via a bi-Lipschitz mapping T (·, t) : Vi(a) → Vi(a + tδa).
The purpose of this section is mainly to give a more concrete description of the formulas (12,13) in the
particular case of minimization diagrams. Formula (12) is used to describe the perturbation of both
interior edges and edges on the boundary of A, where A is the set containing the diagram, and (13) is
used here to describe the perturbation of both interior vertices and vertices on the boundary of A, see
Theorem 5.

In this section we assume that A is a bounded open set with a piecewise smooth boundary defined
as the sublevel set

A := {x ∈ R2 | φ(x) < 0}

with φ(x) := minℓ∈KA
φℓ(x) and φℓ ∈ C∞(R2,R) for all ℓ ∈ KA := {κ0 + 1, . . . , κ0 + κ1}.

We now show that under appropriate conditions on ϕ(a), the minimization diagram V forms a parti-
tion of A and the boundaries of the cells of the minimization diagram are one-dimensional. Assumption 4
below corresponds to Assumption 2 with a specific choice of ϕ̂I and of the set of indices K.

Assumption 4 (Non-degeneracy of interfaces). Assumption 2 holds for K = KA ∪ Kmd \ {i} for all

i ∈ Kmd, with ϕ̂ℓ(x, t) = φℓ(x) for all ℓ ∈ KA and ϕ̂k(x, t) = ϕi(x, ai + tδai) − ϕk(x, ak + tδak) for all
k ∈ Kmd \ {i}.

Remark 2. If Assumption 4 holds, then Assumption 1 is satisfied since A is bounded. Assumption 4
also implies that ∥∇xϕi(x, ai) −∇xϕj(x, aj)∥ > 0 for all x ∈ {y ∈ R2 | ϕi(y, ai) = ϕj(y, aj)} and for all
{i, j} ⊂ Kmd, and that ∥∇xφℓ(x)∥ > 0 for all x ∈ ∂A and for all ℓ ∈ KA. Note that these are natural
and standard assumptions for domains defined as sublevel sets, see [42].

The proof of the following result can be found in [36, Theorem 1]. It essentially guarantees that the
cells of the diagram do not overlap when Assumption 4 holds.

Theorem 2. Suppose that Assumption 4 holds. Then dim ∂Vk(a) ≤ 1, Vk(a) ∩ Vℓ(a) = ∅ for all
{k, ℓ} ⊂ Kmd and

⋃
k∈Kmd

Vk(a) = A.

We now study the evolution of the vertices of the minimization diagram. For ℓ ∈ KA, introduce the
set ∂ℓA := {x ∈ ∂A | φℓ(x) = 0}. Then we have ∂A = ∪ℓ∈KA

∂ℓA. For {i, j, k} ⊂ Kmd and ℓ ∈ KA let us

define Yijk(t) := Vi(a + tδa) ∩ Vj(a + tδa) ∩ Vk(a + tδa) and Xijℓ(t) := Vi(a + tδa) ∩ Vj(a + tδa) ∩ ∂ℓA.
The set Yijk(t) is a set of interior vertices, i.e., points in A at the intersection of three cells. The set
Xijℓ(t) is a set of boundary vertices, i.e., points on ∂A at the intersection of two cells. We will write
Yijk := Yijk(0) and Xijℓ := Xijℓ(0) for simplicity. The purpose of Assumption 5 is to guarantee that
Yijk(t) and Xijℓ(t) are stable with respect to t, which means essentially that their cardinality is constant
and that they are continuous with respect to t. Assumption 5 corresponds to Assumption 3 with a
specific choice of the function ϕ̂I and of the set of indices K.

Assumption 5 (Non-degeneracy of vertices). Assumption 3 holds for K = KA ∪ Kmd \ {i} for all

i ∈ Kmd, with ϕ̂ℓ(x, t) = φℓ(x) for all ℓ ∈ KA and ϕ̂k(x, t) = ϕi(x, ai + tδai) − ϕk(x, ak + tδak) for all
k ∈ Kmd \ {i}.

Remark 3. If Assumption 5 holds, then Assumption 1 is satisfied since A is bounded. Also, Assump-
tion 5 implies

(∇xϕi(v, ai) −∇xϕj(v, aj))
⊥ · (∇xϕi(v, ai) −∇xϕk(v, ak)) ̸= 0

for all v ∈ Yijk and any {i, j, k} ⊂ Kmd, and

(∇xϕi(v, ai) −∇xϕj(v, aj))
⊥ · ∇φℓ(v) ̸= 0

for all v ∈ Xijℓ and any {i, j} ⊂ Kmd and ℓ ∈ KA.
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If Assumptions 4 and 5 hold, then applying Lemma 5 we obtain that A is Lipschitz and ∂A is a finite
union of smooth and connected arcs. Thus the set T∂A of vertices of A is finite.

Theorem 3. Suppose Assumption 5 holds and let {i, j, k} ⊂ Kmd. Then Yijk is finite and there exists
τ1 > 0 such that for all v ∈ Yijk there exists a unique smooth function zv : [0, τ1] → R2 satisfying
zv(0) = v and

Yijk(t) =
⋃

v∈Yijk

{zv(t)} for all t ∈ [0, τ1]. (15)

In addition we have

z′v(0) = Mv(j, k, i)δai +Mv(k, i, j)δaj +Mv(i, j, k)δak (16)

where

Mv(i, j, k) :=
(∇xϕi(v, ai) −∇xϕj(v, aj))

⊥ ⊗∇aϕk(v, ak)⊤

Qv(i, j, k)
(17)

and

Qv(i, j, k) := det

(
(∇xϕi(v, ai) −∇xϕj(v, aj))

⊤

(∇xϕi(v, ai) −∇xϕk(v, ak))⊤

)
.

Proof. Applying Lemma 3 with I = {j, k} ⊂ Kmd \ {i}, with ϕ̂j(x, t) = ϕi(x, ai + tδai)−ϕj(x, aj + tδaj)

and ϕ̂k(x, t) = ϕi(x, ai + tδai) − ϕk(x, ak + tδak), we get Yijk(t) ⊂ LI(t) and (15) follows.
Further, we have

ϕ̂I(x, t) =

(
ϕ̂j(x, t)

ϕ̂k(x, t)

)
, Dxϕ̂I(x, t) =

(
∇xϕ̂j(x, t)

⊤

∇xϕ̂k(x, t)⊤

)
.

In view of (9) we have, for v ∈ Yijk,

z′v(0) = −Dxϕ̂I(v, 0)−1∂tϕ̂I(v, 0).

We compute

Dxϕ̂I(v, 0)−1 =
(−(∇xϕi(v, ai) −∇xϕk(v, ak))⊥ (∇xϕi(v, ai) −∇xϕj(v, aj))

⊥)

detDxϕ̂I(v, 0)

and

∂tϕ̂I(v, 0) =

(
∇aϕi(v, ai) · δai −∇aϕj(v, aj) · δaj
∇aϕi(v, ai) · δai −∇aϕk(v, ak) · δak

)
=

(
∇aϕi(v, ai)

⊤

∇aϕi(v, ai)
⊤

)
δai −

(
∇aϕj(v, aj)

⊤

0

)
δaj −

(
0

∇aϕk(v, ak)⊤

)
δak

=

[(
1
1

)
⊗∇aϕi(v, ai)

⊤
]
δai −

[(
1
0

)
⊗∇aϕj(v, aj)

⊤
]
δaj −

[(
0
1

)
⊗∇aϕk(v, ak)⊤

]
δak.

Then we compute

(−(∇xϕi(v, ai) −∇xϕk(v, ak))⊥ (∇xϕi(v, ai) −∇xϕj(v, aj))
⊥)

[(
1
1

)
⊗∇aϕi(v, ai)

⊤
]

= (−(∇xϕi(v, ai) −∇xϕk(v, ak))⊥ + (∇xϕi(v, ai) −∇xϕj(v, aj))
⊥) ⊗∇aϕi(v, ai)

⊤

= (∇xϕk(v, ak) −∇xϕj(v, aj))
⊥ ⊗∇aϕi(v, ai)

⊤.

In a similar way we also have

(−(∇xϕi(v, ai) −∇xϕk(v, ak))⊥ (∇xϕi(v, ai) −∇xϕj(v, aj))
⊥)

[
−
(

1
0

)
⊗∇aϕj(v, aj)

⊤
]

= (∇xϕi(v, ai) −∇xϕk(v, ak))⊥ ⊗∇aϕj(v, aj)
⊤
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and

(−(∇xϕi(v, ai) −∇xϕk(v, ak))⊥ (∇xϕi(v, ai) −∇xϕj(v, aj))
⊥)

[
−
(

0
1

)
⊗∇aϕk(v, ak)⊤

]
= (∇xϕj(v, aj) −∇xϕi(v, ai))

⊥ ⊗∇aϕk(v, ak)⊤.

Gathering these results we obtain (16).

Remark 4. Note that we have Qv(i, j, k) = Qv(k, i, j) = Qv(j, k, i); this can be checked using the multi-
linearity of the determinant. Note also that Qv(i, j, k) is the oriented area of the parallelogram spanned
by the vectors ∇xϕi(v, ai) −∇xϕj(v, aj) and ∇xϕi(v, ai) −∇xϕk(v, ak). Also, we have Qv(i, j, k) ̸= 0 in
view of Remark 3.

Remark 5. A rotation of the index notation for (i, j, k) in (16), for instance (i, j, k) → (k, i, j), gives
exactly the same expression for z′v(0), as expected, since the result should be independent of the choice
of the indices i, j, k. Also, it can be checked that exchanging the notation for two indices, for instance
(i, j, k) → (i, k, j) yields the same result for z′v(0). As an example, for the first term of z′v(0) we have

Mv(j, k, i) =
(∇xϕk(v, ak) −∇xϕj(v, aj))

⊥ ⊗∇aϕi(v, ai)
⊤

Qv(j, k, i)
,

Mv(k, j, i) =
(∇xϕj(v, aj) −∇xϕk(v, ak))⊥ ⊗∇aϕi(v, ai)

⊤

Qv(k, j, i)
= Mv(j, k, i),

where we have used the fact that Qv(j, k, i) = Qv(k, i, j) = −Qv(k, j, i) since Qv(k, i, j) is an oriented
area.

Now we consider the case of vertices at the boundary of two cells and located on the boundary of A.

Theorem 4. Suppose Assumption 5 holds and let {i, j} ⊂ Kmd, ℓ ∈ KA. Then Xijℓ is finite, Xijℓ ∈
∂A\T∂A, where T∂A is the finite set of corners of A, and there exists τ1 > 0 such that for all v ∈ Xijℓ there
exists a unique smooth function zv : [0, τ1] → R2 satisfying zv(0) = v, φℓ(zv(t)) = 0 for all t ∈ [0, τ1],
and

Xijℓ(t) =
⋃

v∈Xijℓ

{zv(t)} for all t ∈ [0, τ1]. (18)

In addition we have

z′v(0) = M ℓ
v (j, i)δai + M ℓ

v (i, j)δaj (19)

with

M ℓ
v (j, i) :=

∇xφℓ(v)
⊥ ⊗∇aϕi(v, ai)

⊤

det

(
(∇xϕi(v, ai) −∇xϕj(v, aj))

⊤

∇xφℓ(v)
⊤

) . (20)

Proof. Applying Lemma 3 with I = {j, ℓ}, j ∈ Kmd \ {i}, ℓ ∈ KA and ϕ̂I = (ϕ̂j , ϕ̂ℓ)
⊤ with ϕ̂j(x, t) =

ϕi(x, ai + tδai) − ϕj(x, aj + tδaj) and ϕ̂ℓ(x, t) = φℓ(x), we get Xijℓ(t) ⊂ LI(t) and (18) follows.
In view of (9) we have

z′v(0) = −Dxϕ̂I(v, 0)−1∂tϕ̂I(v, 0) with Dxϕ̂I(x, t) =

(
∇xϕ̂j(x, t)

⊤

∇xφℓ(x)⊤

)
.

We compute

Dxϕ̂I(v, 0)−1 =
(−∇xφℓ(v)⊥ (∇xϕi(v, ai) −∇xϕj(v, aj))

⊥)

detDxϕ̂I(v, 0)
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and

∂tϕ̂I(v, 0) =

(
∇aϕi(v, ai) · δai −∇aϕj(v, aj) · δaj

0

)
=

[(
1
0

)
⊗∇aϕi(v, ai)

⊤
]
δai −

[(
1
0

)
⊗∇aϕj(v, aj)

⊤
]
δaj .

Further,

(−∇φℓ(v)⊥ (∇xϕi(v, ai) −∇xϕj(v, aj))
⊥)

[(
1
0

)
⊗∇aϕi(v, ai)

⊤
]

= −∇φℓ(v)⊥ ⊗∇aϕi(v, ai)
⊤,

(−∇φℓ(v)⊥ (∇xϕi(v, ai) −∇xϕj(v, aj))
⊥)

[
−
(

1
0

)
⊗∇aϕj(v, aj)

⊤
]

= ∇φℓ(v)⊥ ⊗∇aϕj(v, aj)
⊤.

Gathering these results we obtain (19).

The following result corresponds to the application of Theorem 1 in the context of minimization
diagrams. For k ∈ Kmd \ {i} and ℓ ∈ KA, Eik(a + tδa) := Vi(a + tδa) ∩ Vk(a + tδa) denotes an interior
edge of the diagram V(a+ tδa), while Eiℓ(a+ tδa) := Vi(a + tδa)∩ ∂ℓA denotes a boundary edge of the
diagram. Note that Eik(a + tδa) and Eiℓ(a + tδa) may have several connected components and may be
curved.

Theorem 5. Let i ∈ Kmd and suppose Assumptions 4 and 5 hold. Then there exist τ1 > 0 and a
mapping T : Vi(a) × [0, τ1] → R2 satisfying T (Vi(a), t) = Vi(a + tδa), T (Eik(a), t) = Eik(a + tδa)
for all k ∈ Kmd \ {i}, T (Eiℓ(a), t) = Eiℓ(a + tδa) for all ℓ ∈ KA, T (∂Vi(a), t) = ∂Vi(a + tδa) and
T (·, t) : Vi(a) → Vi(a + tδa) is bi-Lipschitz for all t ∈ [0, τ1]. In addition we have

θ(x) · ν(x) =
∇aϕk(x, ak) · δak −∇aϕi(x, ai) · δai

∥∇xϕk(x, ak) −∇xϕi(x, ai)∥
for all x ∈ Eik(a), (21)

θ(x) · ν(x) = 0 for all x ∈ Eiℓ(a), (22)

θ(v) · τ(v) = (Mv(j, k, i)δai +Mv(k, i, j)δaj +Mv(i, j, k)δak) · τ(v) for all v ∈ Yijk, (23)

θ(v) · τ(v) = (M ℓ
v (j, i)δai + M ℓ

v (i, j)δaj) · τ(v) for all v ∈ Xijℓ, (24)

where θ := ∂tT (·, 0), ν is the outward unit normal vector to Vi(a), and τ is the tangent vector to ∂Vi(a)
with respect to a counterclockwise orientation.

Proof. The properties of T follow from Lemma 6 and Theorem 1, considering that Eik(a + tδa) and
Eiℓ(a + tδa) both correspond to some ek(t) or eℓ(t) in Lemma 6. Applying (12) in Theorem 1 with

ϕ̂k(x, t) = ϕi(x, ai + tδai) − ϕk(x, ak + tδak)

we get (21). Applying (12) in Theorem 1 with ϕ̂ℓ(x, t) = φℓ(x) we get (22). Then (23) follows from
applying (13) and (16), and (24) is an application of (13) and (19).

Remark 6. The derivative of cell integrals for the case of power diagrams has been investigated in [16]
in n dimensions, and a special case of (21) appears in [16, equation (2.21)]. Note that in [16] the
existence of the mapping T is assumed, see [16, Lemma 2.4], and A is convex.

3.2 Application to cell integrals

We now give applications of Theorems 3, 4 and 5. Let us consider the following standard cost functional
defined as a cell integral:

G1(a) :=

∫
Vi(a)

f(x)dx,

where f ∈ C1(A,R2). Using Lemma 5, we get that Vi(a + tδa) is Lipschitz for all t ∈ [0, τ1]. Applying
Theorem 5 and a change of variables x 7→ T (x, t), then using the fact that T (·, t) : Vi(a) → Vi(a + tδa)
is bi-Lipschitz, we get

G1(a + tδa) :=

∫
Vi(a+tδa)

f(x)dx =

∫
T (Vi(a),t)

f(x)dx =

∫
Vi(a)

f(T (x, t))|detT (x, t)|dx.
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This yields

∇G1(a) · δa =

∫
Vi(a)

div(f(x)θ(x))dx,

where θ := ∂tT (·, 0). Since Vi(a) is Lipschitz, applying the divergence theorem we get

∇G1(a) · δa =

∫
∂Vi(a)

f(x)θ(x) · ν(x)dx.

Let E int
i denote the set of interior edges of the cell Vi(a), i.e., edges that are included in A. Then, applying

(21) and (22) we get

∇G1(a) · δa =
∑

E∈Eint
i

∫
E

f(x)
∇aϕk(i,E)(x, ak(i,E)) · δak(i,E) −∇aϕi(x, ai) · δai

∥∇xϕk(i,E)(x, ak(i,E)) −∇xϕi(x, ai)∥
dx, (25)

where k(i, E) is the index such that E = Vi(a) ∩ Vk(i,E)(a). Note that Assumption 4 and Remark 2
imply ∥∇xϕk(i,E)(x, ak(i,E)) −∇xϕi(x, ai)∥ > 0.

3.3 Application to edge integrals

Let us consider another standard cost functional defined as an integral over an edge of the minimization
diagram V(a):

G2(a) :=

∫
E(a)

f(x)dx,

where f ∈ C1(A,R2). Here E(a) can either be an interior edge given by E(a) = Vi(a) ∩ Vk(a), {i, k} ⊂
Kmd, or a boundary edge given by E(a) = Vi(a)∩∂ℓA, ℓ ∈ KA. To compute the gradient of G2 we recall
the following basic results.

Theorem 6 (tangential divergence theorem). Let Γ ⊂ R2 be a Ck open curve, k ≥ 2, with a parameter-
ization ξ, and denote (v, w) the starting and ending points of Γ, respectively, with respect to ξ. Let τ be
the unitary-norm tangent vector to Γ, ν the unitary-norm normal vector to Γ, and H the mean curvature
of Γ, with respect to the parameterization ξ. Let F ∈W 1,1(Γ,R2) ∩ C0(Γ,R2), then we have∫

Γ

divΓ(F (x))dx =

∫
Γ

H(x)F (x) · ν(x)dx+ JF (x) · τ(x)Kwv ,

where divΓ(F ) is the tangential divergence of F on Γ, and

JF (x) · τ(x)Kwv := F (w) · τ(w) − F (v) · τ(v).

Proof. The result follows from [46, § 7.2] and [21, Ch. 9, § 5.5].

Lemma 7 (change of variables for line integrals). Let Γ ⊂ R2 be a Ck open curve, k ≥ 2, and ν a
unitary-norm normal vector to Γ. Let F ∈ C0(Γ,R2) and T (·, t) : Γ → T (Γ, t) be a bi-Lipschitz mapping.
Then ∫

T (Γ,t)

F (x) dx =

∫
Γ

F (T (x, t))ζ(x, t)dx,

where
ζ(x, t) := ∥ det(DxT (x, t))DxT (x, t)−⊤ν(x)∥ (26)

and det(DxT (x, t))DxT (x, t)−⊤ is the cofactor matrix of DxT (x, t). Furthermore, we have

∂tζ(x, 0) = divΓ θ(x) with θ := ∂tT (·, 0) on Γ. (27)

Proof. See [28, Prop. 5.4.3].
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Applying Theorem 5, Lemma 7 and a change of variables x 7→ T (x, t), then using the fact that
T (·, t) : E(a) → E(a + tδa) is bi-Lipschitz, we get

G2(a + tδa) :=

∫
E(a+tδa)

f(x)dx =

∫
T (E(a),t)

f(x)dx =

∫
E(a)

f(T (x, t))ζ(x, t)dx.

This yields, using (27),

∇G2(a) · δa =

∫
E(a)

∇xf(x) · θ(x) + f(x) divΓ(θ(x))dx =

∫
E(a)

∂νf(x)θ(x) · ν(x) + divΓ(f(x)θ(x))dx,

where θ := ∂tT (·, 0), ν is the outward unit normal vector to Vi(a) and ∂νf(x) := ∇xf(x)·ν(x). According
to Lemma 5, E(a) is a finite union of smooth, connected arcs. Let EE(a) be the set of these arcs, then
we have

E(a) =
⋃

e∈EE(a)

e.

Thus we can write

∇G2(a) · δa =

∫
E(a)

∂νf(x)θ(x) · ν(x)dx+
∑

e∈EE(a)

∫
e

divΓ(f(x)θ(x))dx.

Since Vi(a) is Lipschitz, applying Theorem 6 on each integral over e we get

∇G2(a) · δa =

∫
E(a)

(∂νf(x) + H(x))θ(x) · ν(x)dx+
∑

e∈EE(a)

Jf(x)θ(x) · τ(x)Kwv , (28)

where (v, w) denote the starting and ending points of e, with respect to a counterclockwise orientation
on ∂Vi(a). Finally, in (28), θ(x) · ν(x) is given by (21) if E(a) = Vi(a)∩ Vj(a) is an interior edge and by

(22) if E(a) = Vi(a) ∩ ∂ℓA is a boundary edge. Also, θ(x) · τ(x) is given by (23) if x ∈ A and by (24) if
x ∈ ∂ℓA.

4 The particular case of Euclidean Voronoi diagrams

Voronoi diagrams are the simplest example of minimization diagrams, corresponding to q = 2 and
ϕi(x, a) = ∥x − a∥2 for all i ∈ Kmd, and have applications in many fields such as natural sciences,
engineering and computer sciences. Therefore it is both relevant and helpful, for a deeper understanding
of the perturbation theory for minimization diagrams, to interpret and discuss the results and formulas
of Sections 2 and 3 in the particular case of Voronoi diagrams, which is the purpose of this section. The
obtained formulas will be the basis for the calculation of the gradients used in the numerical experiments
of Section 5.

Throughout this section we always assume that q = 2 and ϕi(x, a) = ∥x − a∥2 for all i ∈ Kmd. For
x ∈ A let us introduce the set of indices

P(x) :=
{
i ∈ Kmd such that x ∈ Vi(a)

}
.

We clearly have |P(x)| ≥ 1 for all x ∈ A. If |P(x)| = 1, then either x belongs to some cell Vi(a) or
x ∈ ∂A.

First of all we observe that Assumption 4, considering Remark 2, reduces to ∥∇xφℓ(x)∥ > 0 for all
x ∈ ∂ℓA and for all ℓ ∈ KA, and to the condition ∥ai−aj∥ > 0 for all {i, j} ⊂ Kmd, which is independent
of x. The latter condition of well-separated sites also derives from Assumption 5, as can be seen in the
following result.

Lemma 8. Suppose that Assumption 5 holds, then the sites {ai}i∈Kmd
are pairwise distinct. In addition,

we have |P(x)| ≤ 3 for all x ∈ A, |P(x)| ≤ 2 for all x ∈ ∂A \ T∂A and |P(x)| = 1 for all x ∈ T∂A, where
T∂A is the finite set of corners of A.
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Proof. Suppose ai = aj for some i ̸= j, then we have ∇xϕi(x, ai) −∇xϕj(x, aj) = 0 for all x ∈ R2 and
Assumption 5 could not hold.

Now suppose that |P(x)| > 3 for some x ∈ A. Then there exist indices {i, j, k,m} ⊂ Kmd such that
∇xϕi(x, ai) = ∇xϕj(x, aj) = ∇xϕk(x, ak) = ∇xϕm(x, am), but this is incompatible with condition (7).
In a similar way, |P(x)| > 2 for some x ∈ ∂A\T∂A and |P(x)| > 1 for some x ∈ T∂A are both incompatible
with condition (7).

Lemma 8 provides an interpretation of Assumptions 3 and 5 in the context of Voronoi diagrams. The
first result states that Assumption 3 (or Assumption 5) eliminates the trivial situations where two cells
are identical. The second result of Lemma 8 shows that the interior vertices of the Voronoi diagram
belong to no more than three cells. If Assumption 5 does not hold, then interior vertices may belong to
four or more cells and a new edge may appear after a small perturbation, a singular case that requires
a specific asymptotic analysis; see Example 8. These configurations are “rare” in the sense that they
represent a set of zero measure in R2, and an arbitrary small perturbation of the sites allows to avoid
them when they occur. Lemma 8 also shows that under these assumptions, vertices of the Voronoi
diagram that are regular points of ∂A belong to at most two cells, while vertices of A belong to only one
cell.

In Section 3.1 we have introduced the set of interior vertices Yijk and the set of boundary vertices Xijℓ

of the diagram. The following result is an immediate consequence of the fact that the sites {ai}i∈Kmd

are pairwise distinct, see Lemma 8.

Lemma 9. Suppose that Assumption 5 holds, then for all {i, j, k} ⊂ Kmd we have |Yijk| ≤ 1.

Lemma 9 states that in the particular case of Voronoi, the intersection of three cells and A is at most
one point. This well-known fact illustrates Assumptions 3 and 5 in a particular case. Note that the set
of boundary vertices Xijℓ may have more than one element, and that the results of Lemma 9 do not hold
in general for minimization diagrams.

Now we describe Theorems 3 and 4 for the particular case of Voronoi diagrams.

Theorem 7. Suppose Assumption 5 holds and |Yijk| = 1 for some {i, j, k} ⊂ Kmd. Then, denoting
v = Yijk, there exists τ1 > 0 and a unique smooth function zv : [0, τ1] → R2 satisfying zv(0) = v and

z′v(0) = Mv(j, k, i)δai +Mv(k, i, j)δaj +Mv(i, j, k)δak (29)

where

Mv(i, j, k) :=
(ai − aj)

⊥ ⊗ (v − ak)⊤

Q(i, j, k)
(30)

and

Q(i, j, k) := det

(
(aj − ai)

⊤

(ak − ai)
⊤

)
.

Proof. The result follows by applying Theorem 3 with ϕm(x, a) = ∥x− a∥2, m = i, j, k.

Theorem 8. Suppose Assumption 5 holds and let {i, j} ⊂ Kmd, ℓ ∈ KA. Then Xijℓ is finite, Xijℓ ∈
∂A\T∂A, where T∂A is the finite set of corners of A, and there exists τ1 > 0 such that for all v ∈ Xijℓ there
exists a unique smooth function zv : [0, τ1] → R2 satisfying zv(0) = v, φℓ(zv(t)) = 0 for all t ∈ [0, τ1],
and

Xijℓ(t) =
⋃

v∈Xijℓ

{zv(t)} for all t ∈ [0, τ1]. (31)

In addition we have

z′v(0) = M ℓ
v (j, i)δai + M ℓ

v (i, j)δaj (32)

with

M ℓ
v (j, i) :=

−∇xφℓ(v)⊥ ⊗ (v − ai)
⊤

det

(
(aj − ai)

⊤

∇xφℓ(v)⊤

) . (33)
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Proof. The result follows by applying Theorem 4 with ϕm(x, a) = ∥x− a∥2, m = i, j.

Next, we compute the gradient of G1(a) of Section 3.2 in the particular case of Voronoi diagrams.
Taking ϕm(x, a) = ∥x− a∥2 in (25) with m = i, k(i, E), we obtain

∇G1(a) · δa =
∑

E∈Eint
i

δai
∥ai − ak(i,E)∥

·
∫
E

f(x)(x− ai)dx−
δak(i,E)

∥ai − ak(i,E)∥
·
∫
E

f(x)(x− ak(i,E))dx.

Let vE and wE denote the vertices of E with respect to a counterclockwise orientation on Vi(a). In the
particular case f ≡ 1 we compute

∇G1(a) · δa =
∑

E∈Eint
i

δai
∥ai − ak(i,E)∥

·
∫
E

(x− ai)dx−
δak(i,E)

∥ai − ak(i,E)∥
·
∫
E

(x− ak(i,E))dx

=
∑

E∈Eint
i

|E|δai
∥ai − ak(i,E)∥

·
[
vE + wE

2
− ai

]
−

|E|δak(i,E)

∥ai − ak(i,E)∥
·
[
vE + wE

2
− ak(i,E)

]
.

Introducing the midpoint pE := (vE + wE)/2 of E, this yields

∇G1(a) · δa =
∑

E∈Eint
i

|E|
∥ai − ak(i,E)∥

[δai · (pE − ai) − δak(i,E) · (pE − ak(i,E))]. (34)

The gradient of G1 given by (34) is already known in the literature; see for instance [16, Lemma 2.4],
which gives the derivative of cell integrals for the more general case of power diagrams.

Next, we compute the gradient of G2(a) of Section 3.3 in the particular case of Voronoi diagrams,
f ≡ 1 and A is a polygon. Here E = E(a) is an edge of a cell Vi(a) of the Voronoi diagram, for some
i ∈ Kmd, and can either be an interior edge E ⊂ A or a boundary edge E ⊂ ∂ℓA for some ℓ ∈ KA. In
any case, we have H = 0, ∂νf ≡ 0 and E has only one connected component, hence

∇G2(a) · δa = θ(wE) · τ(wE) − θ(vE) · τ(vE).

Considering that θ(v) · τ(v) is given by (23) if v ∈ A, by (24) if v ∈ ∂ℓA and by θ(v) = 0 if v ∈ T∂A,
where T∂A is the finite set of corners of A, we get

∇G2(a) · δa = F(i, wE) · τ(wE) −F(i, vE) · τ(vE), (35)

where

F(i, v) :=

 Mv(j, k, i)δai +Mv(k, i, j)δaj +Mv(i, j, k)δak, if v ∈ Yijk,
M ℓ

v (j, i)δai + M ℓ
v (i, j)δaj , if v ∈ Xijℓ,

0, if v ∈ T∂A.
(36)

Note that in (36), the indices j, k in Yijk and the index j in Xijℓ actually depend on the index i and on
the vertex v. These indices may be uniquely determined by choosing a counterclockwise orientation of
the cells around the vertex v.

We conclude with an example, to illustrate the formulas obtained in this section and to discuss a
singular case for the perturbation of Euclidean Voronoi diagrams. Example 8 shows that directional
derivatives of cost functionals can still be computed even in certain singular cases, here when Assump-
tion 5 is not satisfied, and that these directional derivatives often coincide with the limit of directional
derivatives in regular cases. However, techniques of asymptotic analysis need to be used to compute
these directional derivatives, and it is more difficult to perform a general analysis, as different geometric
configurations may require different types of asymptotic analysis.

Example 8. Let a1 = (1/2, 0), a2 = (0, 1/2), a3 = (−1/2, 0), a4 = (0,−1/2), δa1 = (1, 0), δa2 = (0, 0),
δa3 = (−1, 0), δa4 = (0, 0). We consider a Voronoi diagram in the square

A = (−1, 1)2 = {x ∈ R2 | φ(x) < 0}

with φ(x) := minj∈KA
φj(x), Kmd = {1, 2, 3, 4}, KA = {5, 6, 7, 8} and φ5(x) = x · (1, 0) − 1, φ6(x) =

x · (0, 1) − 1, φ7(x) = x · (−1, 0) − 1, φ8(x) = x · (0,−1) − 1; see Figure 3.
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a3

a4

a1

a2

vE(t)

wE(t)

a3 + tδa3

a4

a1 + tδa1

a2

(a) (b)

Figure 3: The Voronoi diagrams of Example 8 in the square A = (−1, 1)2. The diagram (a) at t = 0
satisfies Assumption 4 but does not satisfy Assumption 5, whereas diagram (b) for small t > 0 satisfies
both Assumptions 4 and 5. For small t > 0, a short segment appears at the center, which converges
towards the quadruple point (0, 0) of diagram (a) as t→ 0.

For small t > 0, Assumptions 4 and 5 are satisfied, whereas Assumption 5 is not satisfied at t = 0.
Geometrically, the small central segment vanishes as t → 0 and its extremities, which are triple points,
merge into a single quadruple point. This illustrates the fact that Assumption 5 is designed in particular
to avoid quadruple points in minimization diagrams. Assumption 5 also prevents that an interior edge
touches a corner of ∂A, see Figure 3.

Now let E(t) be the edge of V1(a + tδa) with vertices vE(t), wE(t), such that vE(0) = (1, 1) and
wE(0) = (0, 0); see Figure 3. An explicit calculation yields

vE(t) =

(
1 + t+ t2

1 + 2t
, 1

)
, wE(t) =

(
t+ t2

1 + 2t
, 0

)
. (37)

Let us compute the derivative of the area of the cell V1(a + tδa), which corresponds to G1(a + tδa) with
f ≡ 1. Formula (34) can not be used in principle since Assumption 5 is not satisfied. However, (34)
is still meaningful and actually yields ∇G1(a) · δa = 0 since δa1 · (pE − a1) = 0 and δa2 = δa4 = 0.
Performing an explicit calculation using (37) also yields

G1(a + tδa) −G1(a)

t
=

1

t

(
1 + t+ t2

1 + 2t
− t+ t2

1 + 2t
+ 2

(
1 − 1 + t+ t2

1 + 2t

)
− 1

)
=

−2t

1 + 2t
→ 0 as t→ 0.

This shows that G1 has a directional derivative in direction δa at t = 0, and that its expression coincides
with expression (34) obtained in the regular case.

Now let us consider the derivative of the length of the edge E(t), which corresponds to G2(a + tδa)
with f ≡ 1. Performing an explicit calculation using (37) yields

G2(a + tδa) −G2(a)

t
=

1

t

((
1 + t+ t2

1 + 2t
− t+ t2

1 + 2t

)1/2

−
√

2

)
→ −

√
2 as t→ 0. (38)

We would like to compare this result with formula (35) but we observe that, unlike in the case of the
cell area, formula (35) is not meaningful for the geometry of this example due to the quadruple point at
t = 0. Nevertheless, we can try to compare limt→0 ∇G2(a + tδa) · δa with (38) since ∇G2(a + tδa) · δa
is well-defined for small t > 0. An explicit calculation using (36), (30) yields

F(i, wE(t)) =

(
1 − 2

t+ t2

1 + 2t
, 0

)
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and using (36), (33) yields

F(i, vE(t)) =

(
2
t− t2

1 + 2t
− 1, 0

)
.

Then we have

τ(vE(t)) = τ(wE(t)) =
wE(t) − vE(t)

∥wE(t) − vE(t)∥
→ − 1√

2
(1, 1)⊤ as t→ 0.

Thus, (35) yields

∇G2(a + tδa) · δa = F(i, wE(t)) · τ(wE(t)) −F(i, vE(t)) · τ(vE(t)) → −
√

2 as t→ 0, (39)

which is equal to the directional derivative computed in (38). This shows that the directional derivative
∇G2(a + tδa) · δa is continuous at t = 0, even though Assumption 5 is not satisfied at t = 0.

5 Numerical experiments

In this section we assume that A is open and polygonal, and we show numerical experiments to illustrate
the application of the developed theory to the specific case of Voronoi diagrams. The optimization of
Voronoi diagrams is highly relevant in applications, in particular for mesh optimization [22, 23, 45]. The
advantage of our approach is to provide a general framework for computing derivatives for a wide class
of cost functions and generalized Voronoi diagrams, and also to provide a sensitivity analysis for cells,
edges and vertices on the boundary of A.

Following [5, 6], we consider examples of regions A given by the union of disjoint convex polygons
A1, . . . , Ap. In that way, we can represent non-convex regions and regions with holes. Non-convex
regions “America”, “Cesàro Fractal”, “Minkowski Fractal”, “Star”, and “Polygon with Holes” were
already considered in [5, 6], where a detailed description can be found. Non-convex regions “Letter A”
and “Key” were inspired by [45, Fig.2]. The detailed description of our free interpretation of these figures
can be found in Appendix C, as well as the description of the other two considered simple convex regions
named “Convex Polygon” and “Regular Polygon”. The way in which the regions named “Polygon with
Holes”, “America” and “Cesàro Fractal” are partitioned into smaller convex polygons can be seen in [6,
Figs. 6b, 7b, 8b], respectively. The only restriction in the description of a region A, aiming to simplify
the implementation, is that the interior of the edges of each constituting convex polygon Aj must be
either totally contained within the boundary of A or totally contained within A. The description in
Fortran 90 of the regions considered, as well as all the code necessary to reproduce the experiments of
the present work, can be found at http://www.ime.usp.br/~egbirgin/. The description of the region,
as explained, and the number κ0 of sites are the only information needed to solve any of the problems
reported in this and the following sections, since all considered merit functions and their gradients, as
well as the optimization method used, are included in the available code. In this way, following the above
specifications, the reader could define a desired region A and solve his own problems with the available
software. The entire code was written in Fortran 90. Tests were conducted on a computer with a 3.4
GHz Intel Core i5 processor and 8GB 1600 MHz DDR3 RAM memory, running macOS Mojave (version
10.14.6). Code was compiled by the GFortran compiler of GCC (version 8.2.0) with the -O3 optimization
directive enabled.

Note that there is no guarantee that Assumptions 4 and 5 are satisfied in numerical experiments.
However, there are several reasons why these assumptions do not unreasonably hamper the numerical
experiments. First, the Lebesgue measure of the set of points where these assumptions are not satisfied
is usually zero, which means for practical purposes that these singular geometric configurations are rare
events. Second, similar assumptions were employed in [5, 6] for the problem of covering a set with a
union of balls, and it was shown through various examples, using asymptotic analysis, that directional
derivatives of usual cost functions, such as the volume and the perimeter, often are continuous at singular
configurations; see Example 8. In addition, extensive numerical results have shown in [5, 6] that the
impact of their potential non-fulfillment on the numerical experiments was negligible; the same thing
being observed in the experiments of the present work.

Considering that A is a polygon, define E∂Ai the set of edges of Vi(a) ∩ ∂A. Let E int
i denote the set

of interior edges of the cell Vi(a), i.e., edges that are included in A. Define Ei := E int
i ∪ E∂Ai as the
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set of edges of the cell Vi(a). So far we have defined the cells Vi(a) as subset of A. For the numerical
implementation we also introduce Voronoi cells relative to the plane:

Wi(a) := int
{
x ∈ R2 such that ∥x− ai∥2 ≤ ∥x− ak∥2 for all k ∈ Kmd \ {i}

}
.

Clearly, Vi(a) = Wi(a) ∩A.
In Section 5.1, we address the problem of constructing Voronoi diagrams with cells of equal volume.

In Section 5.2, we show how to avoid cells with very small edges. In Section 5.3, we show how to avoid
sharp angles. In Section 5.4, we deal with approximating the midpoint of a Voronoi edge with the
midpoint of the corresponding Delaunay edge. In Section 5.5, we show how to get cells with different
pre-specified sizes for different parts of the region A.

5.1 Identical volume cells

Initially, we consider the merit function given by

J1(a) :=
1

κ0

κ0∑
i=1

[
J1
i (a)

]2
,

where

J1
i (a) :=

(∫
Vi(a)

dx

)/( 1

κ0

∫
A

dx

)
− 1,

that measures the deviation of the area of the Voronoi cell respect to the average area of the cells in the
domain A. For future reference, note that J1(a) ≤ 10−8 means that, on average, |J1

i (a)| ≤ 10−4. This
means that, on average, the relative error of the area of a cell in relation to the ideal area of a cell is less
than 0.01%.

As the Voronoi diagrams are not well defined if two sites coincide, it is useful in practice to ask the
sites to keep a certain distance between each other. Therefore, the minimization of J1 can be combined
with the minimization of J0 given by

J0(a) :=

κ0∑
i=1

κ0∑
j=i+1

max
{

0, J0
ij(a)

}2
with J0

ij(a) := δ2 − ∥ai − aj∥2,

where δ > 0 is a small pre-established tolerance. J0 nullifies when all pairs of sites are at least δ
apart, i.e., when they represent the centers of non-overlapping balls of radius δ/2. At first glance, the
computation of J0 has time complexity O(κ0

2). However, it is expected that sites of non-neighboring
cells have distance greater than δ and, therefore, do not contribute to the computation of J0. Thus, in
practice, it is reasonable to compute the terms in J0 that correspond only to pairs (i, j) of neighbor cells,
reducing its evaluation cost to O(κ0).

Given the sites a ∈ R2κ0 , the computation of J1 stars by computing the Delaunay diagram using the
Dtris2 subroutine from Geompack [29] (available at https://people.math.sc.edu/Burkardt/f_src/
geompack2/geompack2.html) and, from that, the Voronoi diagram W(a) = {Wi(a) for i = 1, . . . , κ0}.
Each cell of the Voronoi diagram is a polyhedron (which can be unbounded). For each Wi(a), we compute
Vi(a) = Wi(a) ∩ A as Vi(a) = ∪pj=1Vij(a), where Vij(a) = Wi(a) ∩ Aj . Each Vij(a) is the intersection
of a polyhedron with a convex polygon and is computed using an adaptation of Sutherland-Hodgman
algorithm [49]. With this information, the area of Vi(a) in J1

i is trivially calculated as the sum of the
areas of the corresponding polygons Vij(a). At this point it is worth noting that the interpretation of J1

may not correspond precisely to what one imagines at first, since for non-convex regions A some cells
Vi(a) may be disconnected.

In J0, we considered δ = 0.1. This value is appropriate since the considered regions A were scaled
so that |A| ≈ κ0, i.e., at a solution a it is expected that |Vi(a)| ≈ 1 for all i. The optimization problems
were solved using the Spectral Projected Gradient (SPG) method [9, 10, 11, 12]. As anticipated in the
discussion above, the stopping criterion was to achieve a value of the objective function less than or equal
to 10−8. The initial point a0 of the optimization process was constructed by drawing points in A with
uniform distribution. In fact, from the description of A, it is possible to establish the smallest rectangle D
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such that A ⊆ D. Uniformly distributed points are drawn in D until κ0 points a1, . . . , aκ0
∈ R2 belonging

to A are obtained. These points constitute the initial guess a0.
Figures 4–6 show the result of minimizing f(a) := 10J0(a) + J1(a) subject to a ∈ R2κ0 with κ0 ∈

{100, 1000} for the nine regions A already mentioned. The behavior of the optimization method varies
slightly depending on the relative weight attributed to J0 and J1. The weight 10 for J0 was obtained
empirically. The figures show that many cells Vi(a) are non-convex, mainly near the borders of A.
Disconnected cells Vi(a) are rare, but do exist. See for example the Gulf of California or Tierra del
Fuego regions in the map of America with κ0 = 100. In the second case, two disconnected parts of A
are covered by the same Voronoi cell, resulting, evidently, in a disconnected Vi(a). These two cases
correspond to κ0 = 100. When κ0 = 1000, the cells are small compared to the edges of the polygons
defining A and, therefore, the cases are rarer or nonexistent.

Table 1 shows some details of the optimization process. In the table, scaling factor corresponds
to the scale factor the region A was multiplied by, so that its volume is approximately equal to κ0, i.e.,
that the cells have ideal area |A|/κ0 of approximately 1, while |A| corresponds to the actual volume
of A. Column p corresponds to the number of convex polygons defining A. Column κ0 corresponds
to the considered number of sites and column ntrials corresponds to the number of different initial
guesses (limited to 10) that were used in the optimization process until a final iterate with a functional
value smaller than or equal to 10−8 was found. it identifies the number of iterations, fcnt identifies the
number of evaluations of the objective function, and Time identifies the elapsed CPU time in seconds.
The number of gradient evaluations coincides with the number of iterations plus 1. The columns f(a∗)
and ∥∇f(a∗)∥∞ identify the value of the objective function and the sup-norm of the gradient at the final
iterate a∗.

The figures in Table 1 show that the considered problems could be solved using a simple, available
and well-established optimization algorithm with an acceptable effort. Moreover, the target functional
value was found in 7 out of the 9 considered problem starting from a single initial guess. In one problem
(“Letter A” with κ0 = 100), a functional value smaller than 10−8 was found in the third trial; while in
one problem (“America” with κ0 = 1000) the smallest functional value was found in the fourth trial, but
no value below 10−8 was found. In any case, small functional values were found in all problems with an
affordable computational effort. This performance is in accordance with the solution of a large practical
problem for which multiple runs might be unaffordable.

Problem scaling factor |A| p κ0 ntrials f(a∗) ∥∇f(a∗)∥∞ it fcnt Time

Convex
Polygon

3.06250E+00 1.00582E+02 1 100 1 9.09410E−09 5.2E−06 39 41 0.02
9.67188E+00 1.00320E+03 1 1000 1 9.84241E−09 5.8E−07 258 346 1.68

Regular
Polygon

5.70312E+00 1.00510E+02 1 100 1 9.62359E−09 9.5E−07 54 57 0.03
1.79531E+01 9.96007E+02 1 1000 1 7.37442E−09 2.5E−06 228 287 1.64

Letter A
6.56250E−01 1.00143E+02 16 100 3 9.76781E−09 1.7E−06 350 450 0.67
2.07812E+00 1.00421E+03 16 1000 1 9.16932E−09 7.4E−07 1209 1849 27.37

America
1.18750E+00 9.91234E+01 34 100 1 9.51486E−09 6.0E−07 866 1368 3.98
3.76562E+00 9.96743E+02 34 1000 4 2.14619E−05 9.8E−09 5603 9241 267.93

Cesàro
Fractal

1.17812E+01 1.00214E+02 21 100 1 9.66216E−09 2.9E−06 58 68 0.13
3.71758E+01 9.97855E+02 21 1000 1 9.98247E−09 7.3E−08 485 706 13.79

Key
1.06250E+00 9.95155E+01 22 100 1 6.63147E−09 1.0E−06 135 165 0.37
3.36719E+00 9.99464E+02 22 1000 1 9.86242E−09 1.5E−07 728 1101 22.28

Minkowski
Fractal

2.50000E+00 1.00000E+02 16 100 1 8.02930E−09 1.7E−06 77 85 0.14
7.89062E+00 9.96191E+02 16 1000 1 6.94410E−09 3.2E−06 528 752 11.59

Star
2.54688E+00 9.91209E+01 9 100 1 5.52897E−09 8.7E−06 119 133 0.15
8.08984E+00 1.00007E+03 9 1000 1 9.76350E−09 3.5E−07 467 621 6.80

Polygon
with Holes

1.20156E+01 9.97793E+01 14 100 1 8.39601E−09 7.0E−06 103 123 0.19
3.79141E+01 9.93456E+02 14 1000 1 8.43135E−09 7.2E−07 419 576 8.57

Table 1: Details of the optimization process and the solutions found for the problem of finding Voronoi
diagrams with cells of equal volume.

We close this section by showing how the method behaves when the problem size increases, i.e. when
the number of cells grows. Table 2 shows details of the solutions obtained and the performance of the
method when applied to the region A named Regular Polygon with κ0 ∈ {100, 500, 1,000, 5,000, 10,000,
20,000, 30,000, 40,000, 50,000}. Column fcnt/it shows that the number of function evaluations per iter-
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Figure 4: Voronoi diagrams with κ0 ∈ {100, 1000} cells of identical area. Regions “Letter A”, “America”,
and “Cesàro Fractal”.

ation is, on average, smaller than 1.5, regardless of κ0. At this point it is perhaps interesting to mention
that the computation of the objective function and its gradient share many operations, among them
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Figure 5: Voronoi diagrams with κ0 ∈ {100, 1000} cells of identical area. Regions “Key”, “Minkowski
Fractal”, and “Regular Polygon”.

the construction of the Voronoi diagram, which is the dominant cost. Therefore, among the several
possible options, we opted for computing them together. At iteration k, being at the current point ak,
the SPG method calculates ak,trial and, if the value of the merit function at that point is considered
acceptable, it defines ak+1 := ak,trial. (Otherwise, the method starts a backtracking process to calculate
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Figure 6: Voronoi diagrams with κ0 ∈ {100, 1000} cells of identical area. Regions “Star”, “Polygon with
Holes”, and “Convex Polygon”.

a new point closer to ak.) Whenever a new iteration starts, the gradient at the new current point ak+1

is necessary; see [9, 10, 11, 12] for details. If, when calculating the merit function at ak,trial, we already
calculated the gradient together, then the joint calculation of function and gradient can be used. The
value, in average, smaller than 1.5 in column fcnt/it suggests, as already known in the literature, that
the method goes from ak to ak+1 with a single function evaluation in about half of the iterations, making
the joint evaluation of function and gradient profitable. Regarding the cost, as a function of κ0, of the
routine that evaluates function and gradient, it follows, as expected, the cost O(κ0 log(κ0)) related to
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the computation of the Voronoi diagram; see, for example, [19]. This is shown in the last column, which
presents the value of c given by Time/fcnt divided by κ0 log10(κ0). The column shows that c ≈ 2×10−6

seconds independently of κ0. (The case κ0 = 100 should be ignored, since the measurement of such small
times is subject to large relative measurement errors.)

κ0 scaling factor |A| f(a∗) ∥∇f(a∗)∥∞ it fcnt Time fcnt/it c

100 5.70312E+00 1.00510E+02 9.62359E−09 9.5E−07 54 57 0.03 1.06 2.94E−06
500 1.27188E+01 4.99886E+02 9.16129E−09 2.6E−06 137 156 0.43 1.14 2.05E−06
1000 1.79531E+01 9.96007E+02 7.37442E−09 2.5E−06 228 287 1.62 1.26 1.88E−06
5000 4.03750E+01 5.03741E+03 1.13295E−07 8.0E−09 638 925 30.01 1.45 1.75E−06
10000 5.71094E+01 1.00785E+04 6.91039E−07 8.6E−09 1131 1725 114.84 1.53 1.66E−06
20000 8.03750E+01 1.99629E+04 5.40638E−06 8.9E−09 927 1385 188.07 1.49 1.58E−06
30000 9.82344E+01 2.98201E+04 1.16004E−05 9.8E−09 673 969 216.83 1.44 1.67E−06
40000 1.14109E+02 4.02369E+04 1.36545E−05 8.6E−09 785 1134 342.17 1.44 1.64E−06
50000 1.27008E+02 4.98475E+04 3.66230E−05 8.3E−09 668 965 363.70 1.44 1.60E−06

Table 2: Details of the optimization process and the solutions found for the problem of finding Voronoi
diagrams with cells of equal volume in the region A named Regular Polygon with increasing values of κ0.

5.2 Avoiding cells with relatively small edges

In this section, we consider convex regions1. If we analyze the cells of the region named Regular Polygon
with κ0 = 100 in Figure 5, we can see that there are cells with small edges. Specifically, given a fraction
c2 ∈ (0, 1), we say that an edge E of a cell Vi is small if its size |E| is smaller than c2 (Pi/ni), where Pi is
the perimeter of the cell Vi, ni is the number of edges of the cell Vi, and, therefore, Pi/ni is the average
size of the cell’s edges. To construct Voronoi diagrams that do not have cells with relatively small edges,
given a tolerance c2 ∈ (0, 1), we consider the merit function given by

J2(a) :=

κ0∑
i=1

J2
i (a) with J2

i (a) :=
1

ni

∑
E∈Ei

min

{
0,

|E|
Ēi

− c2

}2

,

where Ei is the set of edges of the cell Vi, ni = |Ei|, and Ēi = Pi/ni. Given c2 ∈ (0, 1), if all edges
E ∈ Ei of a cell Vi satisfy |E| ≥ c2 Ēi, i.e., if they are at least 100% × c2 larger than the average, then
|E|/Ēi − c2 ≥ 0 and, therefore, J2

i vanishes. In general, J2
i measures the average violation of the size of

the edges of Vi relative to the minimum desired size.
For the Voronoi diagram with κ0 = 1000 of the region named Regular Polygon shown in Figure 5,

Figure 7a shows, painted with different tones of blue, the cells Vi that satisfy J2
i > 0 for different values

of c2 ∈ {0.1, 0.2, . . . , 0.5}. The darker the color of the cell Vi, the smaller the maximum value of c2 for
which J2

i > 0, i.e., the more unbalanced are the edge sizes of the cell Vi. The uncolored cells Vi satisfy
J2
i = 0 for the considered values of c2 and are, therefore, deemed balanced. Preserving the meaning of

the colors, Figures 7b–f show the diagrams obtained by minimizing

f(a) := 10J0(a) + J1(a) + J2(a) (40)

with c2 ∈ {0.1, 0.2, . . . , 0.5}, respectively. In the cases with c2 up to 0.4, the unwanted unbalanced cells
were eliminated. In the case c2 = 0.5, a single run of the optimization method was not able to find
a global minimizer of f and, therefore, cells Vi with J2

i (a) > 0 remained. Regardless of that, in the
solutions found by minimizing (40) with c2 = 0.4 and c2 = 0.5 (Figures 7e and 7f), all cells Vi satisfy
J2
i (a) = 0 with c2 = 0.4, i.e., they are considered balanced with tolerance c2 = 0.4 and, thus, no cell has

an edge whose size is less than 40% of the average size of the cell edges.
Figure 8 analyzes the six different solutions a∗ (depicted in Figure 7) found by minimizing (40) with

c2 ∈ {0.0, 0.1, . . . , 0.5}. For a given solution a∗, the figure shows the proportion of cells Vi satisfying

1There would be, a priori, no limitation to apply the content of this section to non-convex regions. However, due to the
way we compute Vi(a) := Wi(a)∩A, when A is non-convex, we have direct access to the edges of each Vij(a) := Wi(a)∩Aj

for j = 1, . . . , p instead of having access to the edges of Vi(a). When A is convex (in which case p = 1), Vi(a) coincides
with Vi1(a) for all i and, thus, we have direct access to the edges of Vi(a). This is a technical limitation that could be
overcome by re-implementing this part of the software.
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(a) (b)

(c) (d)

(e) (f)

Figure 7: Voronoi diagram with κ0 = 1000 for the region named Regular Polygon. In (a) we show
the Voronoi diagram obtained in Section 5.1, minimizing f(a) := 10J0(a) + J1(a). The darker the
cell, the more unbalanced the sizes of its edges. In (b), (c), (d), (e) and (f), preserving the meaning
of the colors, we show the diagrams obtained by minimizing f(a) := 10J0(a) + J1(a) + J2(a) with
c2 ∈ {0.1, 0.2, . . . , 0.5}, respectively.
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Figure 8: This figure analyzes the solutions found when minimizing (40) with c2 ∈ {0.0, 0.1, . . . , 0.5}.
(The case in which c2 = 0 is identical to minimizing 10J0(a)+J1(a), i.e., ignoring J2.) For each solution,
the figure shows, as a function of c, the proportion of cells that satisfy the statement “all my edges are
at least 100% × c the average size of my edges”.

J2
i (a∗) = 0 as a function of c2 ∈ [0, 1]. The case in which (40) is minimized with c2 = 0 is identical

to minimizing 10J0(a) + J1(a), since J2(a) is identically null when c2 = 0. For the solution found in
this case, the figure shows, for example, that the statement “all my edges are at least 20% the average
size of my edges” is true for 60% and that the statement “all my edges are at least 40% the average
size of my edges” is true for slightly more than 30% of the cells. The figure also shows that when we
minimize (40) with c2 = 0.4 or c2 = 0.5, the statement “all my edges are at least 40% the average size
of my edges” is true for all the cells. Table 3 shows details of the solutions found and the optimization
process. The first column corresponds to the value of c2 considered in (40). The other columns contain
the same information as Table 1. The numbers in the table show that the problems that correspond to
minimizing (40) with c2 ∈ {0.1, 0.2, 0.3} were easily solved. When c2 = 0.4, solving the problem was
more expensive; and the method failed to find a solution with a value of a merit function less than 10−8

within a limit of 50,000 iterations when we minimized (40) with c2 = 0.5.

c2 f(a∗) ∥∇f(a∗)∥∞ it fcnt Time

0.1 8.98014E−09 3.7E−07 288 357 2.07
0.2 6.17602E−09 4.3E−06 362 448 2.77
0.3 9.86248E−09 4.5E−08 519 628 3.83
0.4 9.99953E−09 5.4E−08 30304 46154 309.08
0.5 1.15592E−04 8.2E−06 50000 83594 608.91

Table 3: Details of the optimization process and the solutions found for the problem of finding Voronoi
diagrams with cells of equal volume and avoiding cells with relatively small edges.
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5.3 Avoiding sharp-angled cells

The solution illustrated in Figure 7e has cells of identical size for which the statement “my edges are all
at least 40% of the average size of my edges” holds true. In this section we focus on the balancing of
the internal angles of the cells. To construct Voronoi diagrams that do not have cells with sharp-angled
cells, given a tolerance c3 ∈ (0, 1), we consider the merit function given by

J3(a) :=

κ0∑
i=1

J3
i (a) with J3

i (a) :=
1

|Ẽi|

∑
E∈Ẽi

min

{
0,
θE
θ̄i

− c3

}2

,

where (i) for a given edge E ∈ Ei, vE and wE represent its vertices in counterclockwise order, (ii)

τE :=
wE − vE

∥wE − vE∥

is the tangential vector on E pointing counterclockwise, (iii) θE := arccos(−τE · τÊ) is the interior angle

formed by the edge E and the edge before E, denoted Ê, considering a counterclockwise orientation,
(iv) Ẽi := {E ∈ Ei such that vE /∈ T∂A}, where T∂A denotes the set of vertices of ∂A, and (v)

θ̄i :=
1

|Ẽi|

∑
E∈Ẽi

θE

is the average angle value in the cell Vi, excluding the angles of Vi that are also vertices of A.
The five black dashed lines in Figure 9 show, for each of the five solutions described in Section 5.2,

the proportion of cells satisfying J3 ≡ 0 as a function of c3. It is worth noting that the merit function J3

was not considered in Section 5.2. However, the black dashed lines in Figure 9 show that, somehow,
trying to balance the size of the edges produced cells more or less well balanced in relation to their angles
as well. The three solid lines in the figure show the same property in relation to solutions obtained by
minimizing

f(a) := 10J0(a) + J1(a) + J2(a) + J3(a) (41)

with c2 = 0.4 and c3 ∈ {0.5, 0.6, 0.7}. Details of these solutions and the optimization process are shown
in Table 4. The numbers in the table show that, in the problems with c3 = 0.5 and c3 = 0.6, it was
possible to find a solution with f(a∗) ≤ 10−8, while the same was not possible with c3 = 0.7, considering
a single attempt and a limit of 50,000 iterations. Figure 10 shows the solutions found.

c3 f(a∗) ∥∇f(a∗)∥∞ it fcnt Time

0.5 9.93676E−09 6.6E−06 20514 33342 266.28
0.6 9.99877E−09 3.2E−07 36549 61748 490.28
0.7 3.05663E−06 1.2E−07 50000 81335 654.68

Table 4: Details of the optimization process and the solutions found for the problem of finding Voronoi
diagrams with cells of equal volume and avoiding, simultaneously, cells with relatively small edges and
sharp-angles.

5.4 Balancing Delaunay and Voronoi edges

So far we have shown that, in association with looking for cells of equal size, we can try to balance the
edges and angles of each cell. On the other hand, it is a fact that one cannot optimize everything at
the same time, since some objectives may conflict and, in the end, one could get a result that does not
minimize anything. In this section, we return to looking at cells of equal size and try to build cells such
that the midpoint of each edge is contained in the associated Delaunay edge, i.e., that the midpoints of
the associated Voronoi and Delaunay edges coincide. This is a relevant objective to improve the accuracy
of discrete differential operators for grid optimization; see the tweaking optimization algorithm in [27].
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Figure 9: This figure analyzes (solid lines) the solutions found when minimizing (41) with c2 = 0.4 and
c3 ∈ {0.5, 0.6, 0.7}. For each solution, the figure shows, as a function of c, the proportion of cells that
satisfy the statement “all my angles are at least 100% × c my average angle”. The five black dashed
lines show, for each of the five solutions described in Section 5.2, in which J3 was not considered, the
proportion of cells satisfying J3 ≡ 0 as a function of c.

In this case, the considered merit function is given by

J4(a) :=

κ0∑
i=1

J4
i (a) with J4

i (a) :=
1

|E int
i |

∑
E∈Eint

i

∥pE − qE∥2

|E|2
, (42)

where E int
i ⊆ Ei denotes the set of all edges of the cell Vi that are contained in A, i.e., edges on the

boundary of A are excluded, pE := 1
2 (vE + wE) is the midpoint of edge E, qE := 1

2 (ai + ak(i,E)) is the
midpoint of the edge of the Delaunay triangulation that joins ai with ak(i,E), and ak(i,E) is the site of
the Voronoi cell Vk(i,E) that shares edge E with Vi.

The merit function J4
i measures, for a cell Vi, the relative mean deviation between the midpoints

of associated Voronoi and Delaunay edges; while the merit function J4 measures the average of that
metric over all cells in the diagram. Note that, in this case, when defining J4

i , we made a different choice
(relative to the choice made when defining J2

i and J3
i ); J4

i measures the mean of the desired metric over a
cell and it is nullified only if the midpoints coincide in all pairs of edges. There is no desired upper bound
on the relative distance ∥pE − qE∥/|E| which causes the function to nullify if that bound is honored.

It should also be noted that it may be impossible to obtain a solution with cells Vi of equal volume
that satisfies pE = qE for all E ∈ ∪κ0

i=1E int
i . That is, in this problem, the stopping criterion should not be

to get a solution that nullifies the objective function with a certain tolerance. The remaining criterion
in this case is to find a stationary point of the merit function, i.e., a solution that cancels the gradient
of the objective function (with a tolerance εopt > 0). Independently of that, if what we want is, among
the solutions with cells of equal size, a solution that minimizes J4, we must find a weight ρ so that we
can get such a solution by minimizing

f(a) := 10J0(a) + J1(a) + ρJ4(a).

A numerical experiment with ρ = 1 shows that J4 dominates f(a) and that the obtained solution does
not have cells of the same size. On the other hand, the desired result is obtained with ρ = 10−4.

29



(a) (b)

(c) (d)

Figure 10: Voronoi diagram with κ0 = 1000 for the region named Regular Polygon. In (a) we show the
Voronoi diagram obtained in Section 5.2, minimizing f(a) := 10J0(a) + J1(a) + J2(a) with c2 = 0.4.
The darker the cell, the more unbalanced the angles. In (b), (c), and (d), preserving the meaning of
the colors, we show the diagrams obtained by minimizing f(a) := 10J0(a) + J1(a) + J2(a) + J3(a) with
c2 = 0.4 and c3 ∈ {0.5, 0.6, 0.7}, respectively.
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Figure 11: Voronoi diagram with κ0 = 1000 for the region named Regular Polygon constructed by seeking
cells of the same size such that the midpoints of the edges of the Voronoi cells and their associated
Delaunay edges coincide. Segments [pE , qE ], which ideally should be null or small relative to |E|, appear
painted blue.

Figure 11 shows the solution (corresponding to the eighth of ten attempts, which was the best in
terms of lowest objective function value), obtained using ρ = 10−4 and εopt = 10−8. In fact, despite
the εopt = 10−8, the optimization method stopped due to lack of progress in the objective function in
an iterate a∗ with f(a∗) ≈ 10−6 and ∇f(a∗) ≈ 10−6, using 2039 iterations, 3310 functional evaluations,
and 24.10 seconds of CPU time. Importantly, at this point, we have J0(a∗) = 0, J1(a∗) ≈ 10−5,
and J4(a∗) ≈ 84.40. Moreover, mini∈Kmd

{J4
i (a∗)} ≈ 10−4, maxi∈Kmd

{J4
i (a∗)} ≈ 0.89, and the average

1
κ0

∑κ0

i=1 J
4
i (a∗) = J4(a∗)/m ≈ 0.08, meaning that, in average over all E ∈ ∪κ0

i=1E int
i , ∥pE−qE∥2 is smaller

than 10% of |E|2. As a reference, the solution ā illustrated in Figure 7a, obtained by minimizing 10J0(a)+
J1(a), has mini∈Kmd

{J4
i (ā)} ≈ 10−3, maxi∈Kmd

{J4
i (ā)} ≈ 184323.03, and the average J4(ā)/m ≈ 504.63.

These relatively “large” values must in part correspond to edges E with “small” |E|. This shows that the
inclusion of the merit function J4 has the desirable side effect of avoiding “small” edges. In Figure 11,
the blue segments correspond to segments of the form [pE , qE ]. In most cases, it is valid that [pE , qE ] ⊆
[vE , wE ], where vE and wE are the vertices of the edge E. The cases where [pE , qE ] ̸⊆ [vE , wE ] correspond
to cases where a Voronoi edge and its associated Delaunay edge do not even intersect.

5.5 Seeking cells of varied sizes

Many possible merit functions may be defined in order to achieve cells with different sizes. For instance
in the framework of centroidal Voronoi tessellations, nonconstant density functions are used to obtain
nonuniform cell sizes [22]. In this work, we opted for a small variation of the function J1

i defined in
Section 5.1. One could generalize J1

i by introducing a density in the integral on the cell Vi(a), but this
would require to use a quadrature to compute the integral. In order to preserve the exactness of the
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(a) (b)

Figure 12: Voronoi diagram with κ0 = 1000 for the region named Regular Polygon constructed by seeking
cells of varied sizes. In (a), ψ(z) := 2.5−2∥z− c∥2/r2, where c and r are the center and the radius of the
circle circumscribing the polygon, respectively. In (b), ψ(z) = 0.25 if (z̄2 − (z̄1/4)2)2 + (z̄1/4 − 1)2 ≤ 1,
where z̄ = (2, 2)T + 2

5z, and ψ(z) = 1.075, otherwise; i.e., the region to be covered by smaller cells is a
scaled and translated level set of the famous Rosenbrock function.

gradient, we avoid using a quadrature rule and we simply replace the constant 1 in J1
i by a function of

the cell site ai. In this way, the desired cell size is governed by a function ψ : A → R that dictates the
desired value for the ratio of the cell’s volume divided by the “ideal size” |A|/κ0. The merit function
follows:

J5(a) :=
1

κ0

κ0∑
i=1

[
J5
i (a)

]2
with J5

i (a) :=

(∫
Vi(a)

dx

)/( 1

κ0

∫
A

dx

)
− ψ(ai).

A difficulty of the merit function J5 thus defined is that the sum of the desired areas does not
necessarily coincide with the total area of the region A. As a consequence, there is no global minimizer
in which the merit function cancels out. Therefore, the stopping criterion of the optimization method
must again depend on the merit function gradient norm and there is no simple way to identify whether
a global minimizer has been found. As seen in the previous example, in which the stopping criterion
depended on the gradient norm, the method stopped due to “lack of progress”. That is, the method
continued as long as a decrease in the objective function was observed. If, in a successive number of
iterations, progress is no longer observed, the method stops. In fact, this is not an issue in practice and
this stopping criterion is as valid as any other, since the tolerance εopt used to stop by the gradient rule
is in general arbitrary.

Figure 12 shows two examples of minimizing f(a) := J5(a). In both cases the method stopped due
to lack of progress and the solution found corresponds to the best among ten attempts in terms of lowest
objective function value. In the case depicted in Figure 12a, the method used 58 iterations, 439 function
evaluations, and 2.29 seconds of CPU time to find a solution a∗ with f(a∗) ≈ 10−2 and ∇f(a∗) ≈ 10−4.
That merit function value corresponds to an average deviation relative to the desired area of 17%, with
a maximum deviation of 44%. In the case depicted in Figure 12b, the method used 116 iterations,
575 function evaluations, and 3.05 seconds of CPU time to find a solution a∗ with f(a∗) ≈ 10−2 and
∇f(a∗) ≈ 10−4. That merit function value corresponds to an average deviation relative to the desired
area of 8%, with a maximum deviation of 33%. Recall that a solution that satisfies all desired areas does
not exist with very high probability. On the other hand, solutions look exactly as expected.

We close this section by mentioning that two problems related to problems tackled in the present
work were already addressed in the literature. On the one hand, there is the convex optimization problem
of finding (generalized) Laguerre diagrams with cells of given areas, whose state-of-the-art method is the
damped Newton method introduced in [26, 31, 38], see also the non-monotone Barzilai-Borwein gradient-
type method considered in [33]. On the other hand, there is the non-convex optimization problem of
finding centroidal Laguerre tessellations with cells of given areas. For this problem, considered algorithms
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are generally based on variations of the Lloyd’s algorithm and consist of two-phase iterations: in the first
phase the sites are defined as the centroids of the cells and, in the second phase, a convex optimization
subproblem is solved to compute the weights that make the cells to have the desired areas or volumes;
see, for example, [14, 33, 39, 52]. From the practical point of view, in [33] different optimization methods
(mainly gradient-type and quasi-Newton methods) were analyzed. In particular, it is shown that the
gradient method with Barzilai-Borwein steps and a non-monotone line search [3, 43, 44] outperforms
the other considered solvers. It is worth noticing that the SPG method considered in the present work
coincides with this method when applied to unconstrained problems. Table 6 in [33, p.16] shows that
problems with κ0 = 1,000 sites are solved in a few seconds. Disregarding problem-related tolerances,
stopping criteria and computational environments, this and other related experiments in [14, 16] roughly
corroborate that nonlinear programming problems in the current work are being solved with a compatible
computational effort.

6 Discussion

In Section 5, we showed that Voronoi diagrams with certain pre-specified desired characteristics, formally
described by differentiable merit functions, can be obtained by solving an optimization problem. Using
the chain rule and the first order derivatives obtained for the minimization diagrams in previous sections,
the gradients of the merit functions were obtained. With the merit functions and their gradients in hand,
an off-the-shelf first-order optimization method with a well-established convergence theory was employed.

On the one hand, the use of Voronoi diagrams was an illustrative example, and other types of diagrams
with desired characteristics could also be constructed following the same procedure. On the other hand,
even in the case of Voronoi diagrams, many of the decisions made could have been different. For example:

• Depending on the merit functions considered, a better-than-random starting point could be con-
sidered, such as, for example, the sites of a Central Voronoi Tessellation (CVT).

• Instead of minimizing the mean of the desired measure for each cell, a constraint on the merit
measure of each cell could have been imposed. In Section 5 we described merit functions Jℓi
(ℓ = 0, . . . , 5) that apply to the cells Vi (i = 1, . . . , κ0) of a Voronoi diagram. The described
merit functions can be combined in a flexible way in the determination of an optimization problem
whose solution is a Voronoi diagram satisfying desired pre-specified properties. Considered merit
functions are written in such a way that the closer they are to zero, the better; but some are
always non-negative while others are not. If a non-negative merit function Jℓi is used to impose a
constraint to the desired Voronoi diagram, then constraints of the form

Jℓi (a) ≤ εℓ, i = 1, . . . , κ0

should be considered in the optimization problem, where εℓ > 0 is an ad-hoc given constant; while
constraints of the form

−εℓ ≤ Jℓi (a) ≤ εℓ, i = 1, . . . , κ0

should be considered if the merit function Jℓi (a) can assume negative values as well. When the
closest-to-zero possible value of a merit function is sought, a term of the form

Jℓ(a) :=
1

κ0

κ0∑
i=1

(Jℓi (a))ζ

should be included in the objective function, with ζ = 2 or ζ = 1 depending on whether the merit
function assumes non-negative values only or not, respectively. Summing up, given merit functions
Jℓi with ℓ ∈ JF1

∪JF2
∪JC1

∪JC2
, the nonlinear programming problem to be solved could be given

by

Minimize
∑
ℓ∈JF1

ρℓJ
ℓ(a) +

∑
ℓ∈JF2

ρℓ(J
ℓ(a))2 (43)

subject to

Jℓi (a) ≤ εℓ for ℓ ∈ JC1
and − εℓ ≤ Jℓi (a) ≤ εℓ for ℓ ∈ JC2

, i = 1, . . . , κ0, (44)
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where 0 < ρℓ with ℓ ∈ JF1
∪ JF2

are given weights and 0 < εℓ with ℓ ∈ JC1
∪ JC2

are given
tolerances. For practical purposes, it is important to note that, for the merit functions considered
in Section 5, the Jacobian of the constraints in (44) is a sparse matrix. It is also important to
remark that nonlinear programming problems of the form (43,44) can be solved with, for example,
Augmented Lagrangian methods [1, 7, 8].

• The experiments in Section 5 and the remark in the item above correspond to the situation in
which the user knows in which way he/she wants to combine the various possible objectives. When
this is not the case, the problem is a multi-objective optimization problem, which may or may
not have constraints. If the different objectives are in fact conflicting, then there is no solution
that minimizes all of them at the same time and the Pareto set of solutions or at least a Pareto
solution should be computed. For that purpose, classical scalarization techniques, such as linear
scalarization and ϵ-constraint minimization can be used; see, for example, [41]. In all situations,
the merit functions presented in Section 5, their gradients, and the aforementioned optimization
methods (Spectral Projected Gradients and Augmented Lagrangians) can still be used.

• Once a problem is formulated and solved, new smaller optimization problems can be solved to
re-optimize or refine details of specific parts of the solution. Sites whose position must remain
fixed can be defined as constants or as variables with additional constraints.

What this discussion shows is that the proposed methodology provides a flexible way to construct
Voronoi diagrams with desired characteristics, which could be extended to other types of minimization
diagrams. The point being made is that the approach is flexible and that optimization problems can be
solved with off-the-shelf methods with well-established convergence theory. It is important to observe
that many known and already in use ways of constructing Voronoi diagrams with desired characteristics
fit into the proposed framework.

7 Conclusions

In this paper we have developed a perturbation theory and performed a sensitivity analysis for sets defined
as intersections of sublevel sets of smooth functions and for minimization diagrams. This contributes to
consolidate the theory developed in [36] for dynamic minimization diagrams, and to advance the theory
of nonsmooth shape optimization and calculus [5, 6, 35, 37]. This sensitivity analysis allowed us to obtain
general formulas for computing derivatives of a large class of cost functionals, including cell integrals,
edge integrals, functions of vertices, and integrals depending on the solution of a partial differential
equation. It also has the advantage of treating interior and boundary edges and vertices in a unified
way. One disadvantage of our approach is that non-degeneracy assumptions on the level set functions
are required, which exclude topological changes of the diagram. Nevertheless, topological changes can
be studied separately using an asymptotic analysis as in [5, 6], and the current framework could be
extended in the future to allow topological changes of the diagram for certain types of cost functionals.
Using the chain rule, we have applied these general formulas to compute the first derivatives of different
merit functions related to the cells of a Voronoi diagram. With this tool, using established off-the-shelf
optimization algorithms, we constructed Voronoi diagrams satisfying pre-established desired properties.
Numerical experiments showed that the proposed techniques work well in practice.

The generality of the perturbation theory developed in this work opens various perspectives for future
research. The optimization of generalized Voronoi diagrams of interest for applications, such as Laguerre
tessellations, multiplicatively weighted Voronoi diagrams and power diagrams, seems to be a natural
consideration. Problems involving partial differential equations will also be considered, and present
interesting challenges from the shape optimization point of view; see [36]. An extension of the present
framework to three dimensions is possible, but the construction of the mapping T in Lemma 6 is specific
to the two-dimensional setting and can not be directly extended to three dimensions. A more complex
construction must be devised, which will be the subject of future investigations. Due to its significance
for computing numerical solutions of partial differential equations, grid generation and optimization
should be one of the main focus for future research. A natural step would be to extend and apply this
theory for grid optimization and manifolds and in particular on spheres [27]. Following the line of [5, 6],
second derivatives could also be computed using similar techniques. However, in the context of grid
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generation and optimization, the problems to be solved are large and, therefore, it is not clear whether
optimization techniques using second order derivatives can be used. Perhaps they can be used in the
context of re-optimizing small regions of an already computed mesh, but that practical utility would
need to be established. This will be the subject of future work.

Acknowledgments. We would like to thank the referees for their insightful comments and suggestions
that helped improve the paper. We also thank Pedro da Silva Peixoto for the inspiring discussions and
for sharing with us his knowledge and useful references about grid generation and optimization, quality
measures and the tweaking optimization algorithm.

Appendix A: Proofs of Section 2

Proof of Lemma 3

Due to Assumption 1, there exists k ∈ K such that ωk(t) is uniformly bounded for all t ∈ [0, τ1], hence
VK(t) is uniformly bounded. Thus, in view of Lemma 2, LI ∩ VK is a finite set of points. We have

ϕ̂I(v, 0) = (0, 0)⊤ for all v ∈ LI ∩ VK. Using Assumption 3, we get that Dxϕ̂I(v, 0) is invertible for all
v ∈ LI ∩ VK. Thus we can apply the implicit function theorem, and for each v ∈ LI ∩ VK this yields a
unique smooth function zv : [0, τ1] → R2 such that zv(0) = v and ϕ̂I(zv(t), t) = (0, 0)⊤ for all t ∈ [0, τ1].
This proves (8).

Since ϕ̂I(zv(t), t) = (0, 0)⊤ for all t ∈ [0, τ1] we get

∂tϕ̂I(v, 0) +Dxϕ̂I(v, 0)z′v(0) = (0, 0)⊤

and then z′v(0) = −Dxϕ̂I(v, 0)−1∂tϕ̂I(v, 0).

Proof of Lemma 4

The functions zv in (8) depend in principle on I. However, we can show that to each v ∈ L2 ∩ VK can
be associated a unique function zv using Assumption 3. Indeed let v ∈ L2 ∩ VK, then there is a unique
I ∈ I2 such that v ∈ I, otherwise we would have v ∈ LI ∩ LĨ ∩ VK = LI∪Ĩ ∩ VK for some Ĩ ̸= I,

Ĩ ∈ I2, but this would contradict (7) since I ∪ Ĩ ∈ Ir, r ≥ 3. Thus, the functions zv in (8) are actually
independent on I ∈ I2, and using (8) and definition (6) we may write

L2(t) ∩ VK(t) =
⋃
I∈I2

⋃
v∈LI∩VK

{zv(t)} for all t ∈ [0, τ1],

which yields (10).
According to Lemma 1 and since there exists k ∈ K such that ωk is bounded due to Assumption 1,

L2 ∩ VK is finite. Thus we can choose τ1 sufficiently small so that there exists r > 0 with the property
zv(t) ∈ B(v, r) for all v ∈ L2 ∩ VK and B(v, r) ∩ B(w, r) = ∅ for all {v, w} ⊂ L2 ∩ VK. This yields the
result.

Proof of Lemma 5

Due to Assumption 1, there exists an open ball B ⊂ R2 such that ek(t) ⊂ B for all k ∈ K and all

t ∈ [0, τ1]. Using Assumption 2 we get ∂ωk(t) = {x ∈ R2 | ϕ̂k(x, t) = 0} = L{k}(t) and Lemma 1
yields dim(L{k}(t) ∩ B) = 1 or L{k}(t) ∩ B = ∅ for all t ∈ [0, τ1]. Thus ek(t) ⊂ ∂ωk(t) in view of (4).
The boundary of ek(t), relatively to ∂ωk(t), is included in LI(t) for some I ∈ I2 with I ∋ k. Due to
Assumption 3 and Lemma 2, the boundary of ek(t), relatively to ∂ωk(t), is a finite set of points, thus
ek(t) is a finite union of open, smooth and connected arcs.

Now we prove the first equality in (11). Let x ∈ ∂VK(t), then we must have ϕ̂k(x, t) = 0 for some

k ∈ K and ϕ̂j(x, t) ≤ 0 for all j ∈ K \ {k}, otherwise we would have ϕ̂k(x, t) < 0 for all k ∈ K which
would imply x ∈ VK(t). This would be a contradiction since VK(t) is open. Since

ek(t) = {x ∈ R2 | ϕ̂k(x, t) = 0, ϕ̂j(x, t) ≤ 0 for all j ∈ K \ {k}}, (45)
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we have x ∈ ek(t) and this proves ∂VK(t) ⊂
⋃
k∈K ek(t).

Reciprocally, let x ∈ ek(t) for some k ∈ K, then x ∈ VK(t) by definition of ek(t). Further, if x ∈ VK(t)

we would have B(x, r) ⊂ VK(t), for some r > 0, and consequently ϕ̂k(y, t) ≤ 0 for all y ∈ B(x, r). Since

ϕ̂k(x, t) = 0 due to (45), we must have ∇xϕ̂k(x, t) = 0 which contradicts Assumption 2 for t ∈ [0, τ1] and
τ1 sufficiently small. Thus x ∈ ∂VK(t) and this proves the first equality in (11).

Then we prove the following result

⋃
k∈K

ek(t) =

 ⋃
I={k1,k2}∈I2

ek1(t) ∩ ek2(t)

 ∪
⋃
k∈K

ek(t) =

( ⋃
I∈I2

LI(t) ∩ VK(t)

)
∪
⋃
k∈K

ek(t). (46)

We start with the first equality in (46). Suppose x ∈
⋃
k∈K ek(t) \

⋃
k∈K ek(t), then, in view of (4)

and (45), ϕ̂k1(x, t) = 0 and ϕ̂k2(x, t) = 0 for some {k1, k2} ⊂ K, which proves
⋃
k∈K ek(t) \

⋃
k∈K ek(t) ⊂⋃

I={k1,k2}∈I2 ek1(t) ∩ ek2(t). The other inclusion is clear.

Now we prove the second equality in (46). Let x ∈ ek1(t) ∩ ek2(t), then x ∈ L{k1,k2}(t) in view
of (45). Using the first equality in (11), we also have x ∈ ∂VK(t) and this yields the first inclusion.

Reciprocally, suppose x ∈ LI(t) ∩ VK(t) for some I = {k1, k2} ∈ I2, then ϕ̂k1(x, t) = 0, ϕ̂k2(x, t) = 0,
therefore x ∈ ek1(t) ∩ ek2(t), which proves the other inclusion.

Using (46) and ( ⋃
I∈I2

LI(t) ∩ VK(t)

)
∪
⋃
k∈K

ek(t) = (L2(t) ∩ VK(t)) ∪
⋃
k∈K

ek(t)

proves the second equality in (11).
Now we prove that VK(t) is Lipschitz. Recall that VK(t) is Lipschitz if ∂VK(t) is, in a neighborhood

of each of its points, the graph of a Lipschitz function and VK(t) is only on one side of its boundary. Let
x ∈ ∂VK(t). In view of (11), either x ∈ L2(t) ∩ VK(t) or x ∈ ek(t) for some k ∈ K. If x ∈ ek(t), then

we can use the function ϕ̂k to locally describe ∂VK(t) as the graph of a Lipschitz function, and VK(t) is

only on one side of its boundary since VK(t) satisfies ϕ̂k(·, t) ≤ 0 in a neighborhood of x ∈ ek(t).
Now suppose x ∈ L2(t)∩VK(t), i.e., x is a vertex of VK(t). Then x ∈ ej(t)∩ek(t) for some {j, k} ∈ I2.

Since ∂VK(t) is smooth on both sides of x, one just needs to check that the tangent vectors to ej(t) and

ek(t) are not collinear at x. If the tangent vectors were collinear, then the normal vectors to ej(t) and ek(t)

would also be collinear and this would contradict the condition rankDxϕ̂I(x, 0) = 2 of Assumption 3
(see Remark 1), for sufficiently small τ1. This shows that VK(t) is Lipschitz.

Proof of Lemma 6

Let k ∈ K such that ek ̸= ∅; if ek is empty for all k ∈ K then the result follows trivially. Using
Assumption 2 and Lemma 5 we get ek(t) ⊂ ∂ωk(t) for all t ∈ [0, τ1]. We need to separate two cases, the
case where the boundary of ek, relatively to ∂ωk, is empty, and the case where it is not empty.

Suppose first that the boundary of ek is not empty. We have ek(t) ⊂ B due to Assumption 1.
In view of (10), let zv(t), zw(t) ∈ L2(t) ∩ VK(t) be two consecutive vertices of ek(t) with respect to a
counterclockwise orientation on ∂VK(t), and write zv := zv(0), zw := zw(0) for simplicity. Then the
vertices zv(t), zw(t) define a unique connected and relatively open (with respect to ∂ωk(t)) subarc e(t) ⊂
ek(t); we will write e := e(0) for simplicity. Let U ⊂ R be an open interval, ξ : U → ∂ωk be a smooth
parameterization of ∂ωk, and {sv, sw} be such that ξ(sv) = zv and ξ(sw) = zw, [sv, sw] ⊂ U and ξ|[sv,sw]

is a parameterization of e. Let P be the projection onto ∂ωk. For sufficiently small τ1, this projection
is unique for all x ∈ ∂ωk(t) ∩ B, where B is the ball given by Assumption 1. Define λ(s) := s−sv

sw−sv ,

s(x) := ξ−1(x), sv(t) := s(P (zv(t))), sw(t) := s(P (zw(t))), σ(s, t) := λ(s)sw(t) + (1 − λ(s))sv(t) and

β(x, t) := ξ(σ(s(x), t)) ∈ e. (47)

Note that σ(s, 0) = s, thus β(x, 0) = ξ(s(x)) = x. It can also be checked that β(zv, t) = P (zv(t)) and
β(zw, t) = P (zw(t)).
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Since ek ⊂ ∂ωk, if ∂ωk ∩ B = ∅ then ek is empty. If ∂ωk ∩ B is not empty, then according to [34,
Lemma 3.1], and using Assumption 1, there exists α̂ ∈ C∞(∂ωk ∩B× [0, τ1],R) satisfying α̂(y, 0) = 0 for
all y ∈ ∂ωk ∩B and

ϕ̂k(y + α̂(y, t)∇xϕ̂k(y, 0), t) = 0 for all y ∈ ∂ωk ∩B and t ∈ [0, τ1]. (48)

Note that ∇xϕ̂k(y, 0) is normal to ∂ωk. For τ1 sufficiently small, we have β(x, t) ∈ ∂ωk ∩B for all x ∈ e
and all t ∈ [0, τ1]. Thus we can define

T (x, t) := β(x, t) + α̂(β(x, t), t)∇xϕ̂k(β(x, t), 0) on e× [0, τ1]. (49)

Let us also define S : [sv, sw] × [0, τ1] → R2 as S(s, t) := T (ξ(s), t) − ξ(s). Since P, zv, zw, α̂, ϕ̂k are
smooth functions on their domain of definition, then by composition sv, sw, ξ, λ, σ, β and S are also
smooth on their domain of definition. Also we have S(s, 0) = T (ξ(s), 0) − ξ(s) = β(ξ(s), 0) − ξ(s) = 0
for all s ∈ [sv, sw]. Thus, a Taylor expansion provides

∂sS(s, t) = ∂sS(s, 0) + t∂s∂tS(s, η) = t∂s∂tS(s, η) with |η| < t.

Using the smoothness of S, this yields

∥∂sS(s, t)∥ ≤ ct for all t ∈ [0, τ1] and s ∈ [sv, sw], (50)

for some constant c independent of s and t.
Now we show that (50) implies the existence of a constant C > 0 such that x 7→ S(x, t) := T (x, t)−x

is Lipschitz on e with Lipschitz constant Ct, i.e.,

∥S(x, t) − S(y, t)∥ ≤ Ct∥x− y∥, ∀(t, x, y) ∈ [0, τ1] × e2. (51)

Indeed if this were not the case, then there would exist a sequence (tn, xn, yn) ∈ [0, τ1] × e2 such that

∥S(xn, tn) − S(yn, tn)∥
tn∥xn − yn∥

→ ∞ as n→ +∞. (52)

Suppose that (52) holds. In view of (49) the numerator ∥S(xn, tn)−S(yn, tn)∥ is uniformly bounded on
[0, τ1] × e2, thus we must have tn∥xn − yn∥ → 0. We suppose that both tn → 0 and ∥xn − yn∥ → 0, the
other cases follow in a similar way. Using the compactness of [0, τ1] × e2, we can extract a subsequence,
still denoted (tn, xn, yn) for simplicity, that converges towards (0, x⋆, x⋆) ∈ [0, τ1] × e2. Then we write,
recalling that s(x) = ξ−1(x) where ξ|[sv,sw] is a parameterization of e,

∥S(xn, tn) − S(yn, tn)∥
tn∥xn − yn∥

=
∥S(s(xn), tn) − S(s(yn), tn)∥

tn∥s(xn) − s(yn)∥︸ ︷︷ ︸
bounded using (50) at s(x⋆)

∥s(xn) − s(yn)∥
∥xn − yn∥︸ ︷︷ ︸
bounded

.

This contradicts (52) which proves (51). This proves that T (·, t) is Lipschitz on e with constant 1 + Ct
for all t ∈ [0, τ1]. Then the mapping T is built in the same way on each connected subarc of ek.

Then, taking y = β(x, t) in (48) we get ϕ̂k(T (x, t), t) = 0 for all x ∈ ek and t ∈ [0, τ1]. This proves
that T (ek, t) ⊂ ∂ωk(t). Since T (·, t) is Lipschitz on e with constant 1 + Ct for all t ∈ [0, τ1], T (·, t) is
invertible on e for sufficiently small τ1, thus T (·, t) is a homeomorphism from e onto T (e, t).

We also have

T (zv, t) = β(zv, t) + α̂(β(zv, t), t)∇xϕ̂k(β(zv, t), 0) = P (zv(t)) + α̂(P (zv(t)), t)∇xϕ̂k(P (zv(t)), 0)

and T (zw, t) = P (zw(t)) + α̂(P (zw(t)), t)∇xϕ̂k(P (zw(t)), 0). In fact we can show T (zv, t) = zv(t) and
T (zw, t) = zw(t) for all t ∈ [0, τ1] and τ1 > 0 sufficiently small. Indeed, suppose that T (zv, tn) ̸= zv(tn)
for some sequence tn → 0. Then, by definition of the projection P onto ∂ωk we have

zv(tn) = P (zv(tn)) + ζ(tn)∇xϕ̂k(P (zv(tn)), 0),
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with ζ(tn) → 0 as n → ∞, since zv(0) ∈ ek. Also, we have ϕ̂k(zv(tn), tn) = ϕ̂k(T (zv, tn), tn) = 0 due to

(48) and zv(tn) ∈ ek(tn). Thus, the directional derivative of x 7→ ϕ̂k(x, tn) in direction ∇xϕ̂k(P (zv(tn)), 0)
must vanish at some point between zv(tn) and T (zv, tn). Hence there exists µ(tn) with

min{|ζ(tn)|, |α̂(P (zv(tn)), tn)|} ≤ |µ(tn)| ≤ max{|ζ(tn)|, |α̂(P (zv(tn)), tn)|}

such that
∇xϕ̂k(P (zv(tn)) + µ(tn)∇xϕ̂k(P (zv(tn)), 0), tn) · ∇xϕ̂k(P (zv(tn)), 0) = 0.

Passing to the limit tn → 0 we get zv(tn) → zv, P (zv(tn)) → zv, µ(tn) → 0 and

∥∇xϕ̂k(zv, 0)∥2 = 0,

which contradicts Assumption 2. Thus we have indeed T (zv, t) = zv(t) and in a similar way T (zw, t) =
zw(t) for all t ∈ [0, τ1] and τ1 > 0 sufficiently small. Proceeding in the same way for each connected arc
e(t) ⊂ ek(t), we obtain T (∂ek, t) = ∂ek(t) for all t ∈ [0, τ1], where ∂ek(t) denotes the boundary of ek(t)
relatively to ∂ωk(t).

Since T (·, t) is a homeomorphism on e, T (e, t) is connected. Hence, as T (∂e, t) = ∂e(t), we must either
have T (e, t) = e(t) or T (e, t) ⊂ int(e(t)c), where the interior and complementary are relative to ∂ωk(t).
In the latter case, we have either T (e, t) ⊂ ek(t) or T (e, t) ̸⊂ ek(t). If T (e, t) ⊂ ek(t), then T (e, t) must
be one of the connected component of ek(t), hence we must have T (e, t) = e(t) due to T (∂e, t) = ∂e(t).

The case T (e, t) ̸⊂ ek(t) is not possible; otherwise there would exist a x ∈ e such that ϕ̂j(x, 0) < 0 and

ϕ̂j(T (x, t), t) ≥ 0, for some j ∈ K \ {k}, and passing to the limit t → 0 we would get ϕ̂j(x, 0) = 0,
which contradicts x ∈ e. Thus we conclude that T (e, t) = e(t). Repeating the same argument for each
connected component e ⊂ ek we obtain T (ek, t) = ek(t).

Now recall that we have supposed in the beginning of the proof that the boundary of ek is not empty.
In the case where the boundary of ek is empty, we define the mapping as

T (x, t) := x+ α̂(x, t)∇xϕ̂k(x, 0) on ek × [0, τ1], (53)

i.e., we do not need to use the translation β. One can then prove in a similar way that T (·, t) is Lipschitz
on ek and that T (ek, t) = ek(t).

Finally, using (11), we get

T (∂VK, t) = T

(⋃
k∈K

ek, t

)
=
⋃
k∈K

T (ek, t) =
⋃
k∈K

ek(t) = ∂VK(t).

Since T (·, t) is Lipschitz on ek with constant 1+Ct for all t ∈ [0, τ1], and by construction T (·, t) : ∂VK →
∂VK(t) is continuous at the vertices of ∂VK, we obtain that T (·, t) : ∂VK → ∂VK(t) is Lipschitz with
constant 1 + Ct for all t ∈ [0, τ1]. This proves the result.

Appendix B: Gradients of the considered merit functions

We start by defining some useful notations for writing the gradients calculated in this section. Recall
that A is open, polygonal and that T∂A denotes the set of vertices of ∂A. The Voronoi diagram associated
with A is denoted V(a). The set Tint denotes the set of vertices of V(a) belonging to the open set A.
The set Tbd denotes the set of vertices of V(a) belonging to ∂A\T∂A. Suppose that Assumption 5 holds.
If v ∈ Tint ∩ Vi(a), then v belongs to exactly three cells due to Lemma 8, and we denote k1(i, v) and
k2(i, v) the indices of these cells with respect to a counterclockwise orientation around v. In the case
v ∈ Tbd ∩ Vi(a), v belongs to exactly two cells due to Lemma 8, and we denote by k3(i, v) the index of
the other cell, and by ℓ the index such that v ∈ ∂ℓA. In the case v ∈ T∂A, v belongs to only one cell and
is fixed, thus the contribution of such points to the gradient is zero. Recall that Ei is the set of edges of
the cell Vi(a) and E int

i denotes the set of interior edges of the cell Vi(a), i.e., edges that are included in A.
For an edge E ∈ Ei, vE and wE denote the vertices of E with respect to a counterclockwise orientation.
Also recall that Ẽi := {E ∈ Ei such that vE /∈ T∂A}.
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Then we introduce the following function which frequently appears in the gradient formulas:

F (i, v, ζ) :=



Mv(k1(i, v), k2(i, v), i)⊤ζ · δxi +Mv(k2(i, v), i, k1(i, v))⊤ζ · δxk1(i,v)
+Mv(i, k1(i, v), k2(i, v))⊤ζ · δxk2(i,v), if v ∈ Tint,

M ℓ
v (k3(i, v), i)⊤ζ · δxi + M ℓ

v (i, k3(i, v))⊤ζ · δxk3(i,v), if v ∈ Tbd,

0, if v ∈ T∂A.

Note that F (i, v, ζ) = F(i, v) · ζ, where F(i, v) is given by (36).

Gradient of J1

We compute

∇J1(a) =
2

κ0

κ0∑
i=1

J1
i (a)∇J1

i (a)

with

∇J1
i (a) · δa =

κ0
|A|

∑
E∈Eint

i

|E|
∥ai − ak(i,E)∥

[δai · (pE − ai) − δak(i,E) · (pE − ak(i,E))],

where pE := (vE + wE)/2 and k(i, E) is the index such that E = Vi(a) ∩ Vk(i,E)(a).

Gradient of J2

We compute

∇J2(a) =

κ0∑
i=1

∇J2
i (a).

Recalling that Ēi = Pi/ni and Pi =
∑
Ẽ∈Ei

|Ẽ|, we obtain

∇J2
i (a) =

2

ni

∑
E∈Ei

min

{
0,

|E|
Ēi

− c

}∇|E|
Ēi

− |E|
niĒ2

i

∑
Ẽ∈Ei

∇|Ẽ|


=

2

Pi

(∑
E∈Ei

min

{
0,

|E|
Ēi

− c

}
∇|E|

)
− 2

Pi

∑
Ẽ∈Ei

∇|Ẽ|

(∑
E∈Ei

min

{
0,

|E|
Ēi

− c

}
|E|
Pi

)

=
2

Pi

∑
E∈Ei

min

{
0,

|E|
Ēi

− c

}
−
∑
Ẽ∈Ei

|Ẽ|
Pi

min

{
0,

|Ẽ|
Ēi

− c

}∇|E|.

Here ∇|E| · δa is given by (35), thus we obtain, using (36) and the property F (i, v, ζ) = F(i, v) · ζ,

∇J2
i (a) · δa =

∑
E∈Ei

µ(E)(F (i, wE , τE) − F (i, vE , τE))

with

µ(E) :=
2

Pi

min

{
0,

|E|
Ēi

− c

}
−
∑
Ẽ∈Ei

|Ẽ|
Pi

min

{
0,

|Ẽ|
Ēi

− c

} .

Gradient of J3

We compute

∇J3(a) =

κ0∑
i=1

∇J3
i (a).
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The calculation of ∇J3
i is similar to the calculation of ∇J2

i and yields

∇J3
i (a) =

2

θ̄i|Ẽi|

∑
E∈Ẽi

min

{
0,
θE
θ̄i

− c

}
−
∑
Ẽ∈Ẽi

θẼ
θ̄i|Ẽi|

min

{
0,
θẼ
θ̄i

− c

}∇θE .

Now recall that τE = (wE − vE)/|E| is the tangential vector on E pointing counterclockwise, and
θE := arccos(−τE · τÊ) is the interior angle formed by the edge E and the edge before E, denoted Ê,
considering a counterclockwise orientation. Then we compute

∇θE · δa = −
∇[−τE · τÊ ] · δa

(1 − (τE · τÊ)2)1/2
=
DτEδa · τÊ +DτÊδa · τE

(1 − (τE · τÊ)2)1/2
.

In view of (29), (32), (36) we have DvEδa = F(i, vE) and DwEδa = F(i, wE). Using ∇|E| · δa given by
(35), we get

DτEδa · τÊ =

[
F(i, wE) −F(i, vE)

|E|
− (wE − vE)

|E|2
(F(i, wE) · τE −F(i, vE) · τE)

]
· τÊ

= (F(i, wE) −F(i, vE)) ·
(
τÊ
|E|

−
τE · τÊ
|E|

τE

)
= (F(i, wE) −F(i, vE)) · νE

(νE · τÊ)

|E|
,

and similarly

DτÊδa · τE = (F(i, wÊ) −F(i, vÊ)) · νÊ
(νÊ · τE)

|Ê|
.

By definition we have, using 0 < θE < π for E ∈ Ẽi,(
1 − (τE · τÊ)2

)−1/2
=
(
1 − (cos θE)2

)−1/2
= (sin θE)−1

and also νE · τÊ = sin θE , νÊ · τE = − sin θE . Gathering these results we get

∇θE · δa = (F(i, wE) −F(i, vE)) · νE
|E|

− (F(i, wÊ) −F(i, vÊ)) ·
νÊ
|Ê|

.

This yields

∇J3
i (a) · δa =

∑
E∈Ẽi

η(E)

|E|
(F (i, wE , νE) − F (i, vE , νE)) − η(E)

|Ê|
(F (i, wÊ , νÊ) − F (i, vÊ , νÊ))

with

η(E) :=
2

θ̄i|Ẽi|

min

{
0,
θE
θ̄i

− c

}
−
∑
Ẽ∈Ẽi

θẼ
θ̄i|Ẽi|

min

{
0,
θẼ
θ̄i

− c

} .

Gradient of J4

Recall that

J4
i (a) :=

1

|E int
i |

∑
E∈Eint

i

∥dE∥2

|E|2
, where dE := pE − qE .

We compute

∇J4
i (a) · δa =

1

|E int
i |

∑
E∈Eint

i

∇
(
∥dE∥2

|E|2

)
· δa.

=
1

|E int
i |

∑
E∈Eint

i

(
2dE · ∇dE

|E|2
− 2

∥dE∥2

|E|3
∇|E|

)
· δa.

=
1

|E int
i |

∑
E∈Eint

i

(
dE · (DvEδa +DwEδa− δai − δak(i,E))

|E|2
− 2

∥dE∥2

|E|3
∇|E| · δa

)
.
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In view of (29), (32), (36) we have DvEδa = F(i, vE) and DwEδa = F(i, wE). Using (35) we have
∇|E| · δa = F (i, wE , τE) − F (i, vE , τE). Considering that τE = (wE − vE)/|E|, we get

∇J4
i (a) · δa =

1

|E int
i |

∑
E∈Eint

i

(
dE · (F(i, vE) + F(i, wE) − δai − δak(i,E)))

|E|2
− 2

∥dE∥2

|E|3
∇|E| · δa

)

=
1

|E int
i |

∑
E∈Eint

i

F (i, vE , µE) + F (i, wE , ηE) − dE · δai
|E|2

−
dE · δak(i,E)

|E|2
,

where

µE :=
dE
|E|2

+ 2
∥dE∥2

|E|4
(wE − vE) and ηE :=

dE
|E|2

− 2
∥dE∥2

|E|4
(wE − vE).

Gradient of J5

We compute

∇J5(a) =
2

κ0

κ0∑
i=1

J5
i (a)∇J5

i (a)

with ∇J5
i (a) · δa = ∇J1

i (a) −∇aiψ(ai) · δai, see the calculation of the gradient of J1.

Appendix C: Description of “Letter A” and “Key” regions

The description of each region A consists in the list of the vertices, in counterclockwise order, of the
convex polygons Aj that constitute the partition of the problem. Both regions being described here were
inspired by [45, Fig.2].

The non-convex polygon in the form of the letter “A” shown, with Vol(A) ≈ 232.5318, is composed
by p = 16 convex polygons. The vertices of polygons A1, . . . , A16 are given below:

V(A1) = {(−1, 0), (8.2, 0), (8.2, 0.62), (6.92, 0.76), (1, 0.8), (−0.1, 0.6)},

V(A2) = {(1, 0.8), (6.92, 0.76), (5.86, 1.32), (2, 1.5)},

V(A3) = {(2, 1.5), (5.86, 1.32), (5.24, 2.65), (3.5, 4.36)},

V(A4) = {(5.24, 2.65), (5.58, 4.36), (3.5, 4.36)},

V(A5) = {(3.5, 4.36), (5.58, 4.36), (7.58, 9), (5.5, 9)},

V(A6) = {(5.5, 9), (7.58, 9), (8.4, 10.91), (6.32, 10.91)},

V(A7) = {(6.32, 10.91), (8.4, 10.91), (14.02, 23.95), (11.94, 23.95)},

V(A8) = {(11.94, 23.95), (18.72, 23.95), (15.89, 30.56), (14.79, 30.56)},

V(A9) = {(19.6, 10.91), (24.3, 10.91), (18.72, 23.95), (14.02, 23.95)},

V(A10) = {(7.58, 9), (20.42, 9), (19.6, 10.91), (8.4, 10.91)},

V(A11) = {(20.42, 9), (25.12, 9), (24.3, 10.91), (19.6, 10.91)},

V(A12) = {(22.06, 5.15), (26.54, 6), (25.12, 9), (20.42, 9)},

V(A13) = {(22.46, 2.26), (28.53, 2.3), (26.54, 6), (22.06, 5.15)},

V(A14) = {(22.05, 1.2), (29.6, 1.22), (28.53, 2.3), (22.46, 2.26)},

V(A15) = {(21.24, 0.82), (30.79, 0.74), (29.6, 1.22), (22.05, 1.2)},

V(A16) = {(19.13, 0), (32.15, 0), (32.15, 0.6), (30.79, 0.74), (21.24, 0.82), (19.13, 0.6)}.
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The non-convex polygon in the shape of a key, with Vol(A) ≈ 88.15209, is composed by p = 22 convex
polygons. The vertices of polygons A1, . . . , A22 are given below:

V(A1) = {(0, 0), (0,−3.44), (2.49,−3.44), (3,−3), (3, 0)},

V(A2) = {(0,−3.44), (0,−4.5), (1.58,−4.5), (2.49,−3.74), (2.49,−3.44)},

V(A3) = {(0,−4.5), (0,−4.79), (1.58,−4.79), (1.58,−4.5)},

V(A4) = {(0,−4.79), (0,−5.48), (1.87,−5.48), (2,−5.4), (2,−5.14), (1.58,−4.79)},

V(A5) = {(0,−5.48), (0,−5.86), (1.87,−5.86), (1.87,−5.48)},

V(A6) = {(0,−5.86), (0,−6.9), (2.26,−6.9), (2.42,−6.76), (2.42,−6.51), (1.87,−5.86)},

V(A7) = {(0,−6.9), (0,−7.22), (2.26,−7.22), (2.26,−6.9)},

V(A8) = {(0,−7.22), (0,−7.98), (2.1,−7.98), (2.43,−7.65), (2.43,−7.4), (2.26,−7.22)},

V(A9) = {(0,−7.98), (0,−8.2), (2.1,−8.2), (2.1,−7.98)},

V(A10) = {(0,−8.2), (0,−8.87), (2.26,−8.87), (2.43,−8.74), (2.43,−8.49), (2.1,−8.2)},

V(A11) = {(0,−8.87), (0,−9.17), (2.26,−9.17), (2.26,−8.87)},

V(A12) = {(0,−9.17), (0,−10.15), (1.87,−10.15), (2.43,−9.62), (2.43,−9.28), (2.26,−9.17),

V(A13) = {(0,−10.15), (0,−10.5), (0.37,−10.9), (0.94,−10.9), (1.87,−10.35), (1.87,−10.15)},

V(A14) = {(0.94,−10.9), (1.29,−11.35), (1.86,−11.12), (2.26,−10.7), (1.87,−10.35)},

V(A15) = {(0.85, 6.06), (0.58, 6.68), (−0.51, 6.53), (−3, 6), (−3.6, 3.5), (−3, 0.7), (0, 0)},

V(A16) = {(1.5, 5.86), (0.85, 6.06), (0, 0), (3, 0)},

V(A17) = {(1.5, 5.86), (3, 0), (2.15, 6.06)},

V(A18) = {(2.15, 6.06), (3, 0), (6, 0.7), (6.6, 3.35), (6, 6), (3.51, 6.53), (2.42, 6.68)},

V(A19) = {(0.58, 6.68), (0.85, 7.3), (0.69, 8.16), (0, 7.62), (−0.51, 6.53)},

V(A20) = {(0.85, 7.3), (1.5, 7.5), (1.5, 8.5), (0.69, 8.16)},

V(A21) = {(1.5, 7.5), (2.15, 7.3), (2.31, 8.16), (1.5, 8.5)},

V(A22) = {(2.42, 6.68), (3.51, 6.53), (3, 7.62), (2.31, 8.16), (2.15, 7.3)}.

The region named Regular Polygon is in fact a regular polygon with nvert = 20 vertices of the form
(cos(θi), sin(θi)) with θi = 2π(i − 1)/nvert for i = 1, . . . , nvert. The vertices of the convex polygon with
six edges are given by:

V(A1) = {(0.65, 2.31), (−1.98, 2.71), (−3.35, 1.64), (−2.59,−0.34), (−0.22,−1.07), (0.54, 0.72)}.
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[26] A. Gallouët, Q. Mérigot, and B. Thibert. A damped Newton algorithm for generated Jacobian
equations. Calculus of Variations and Partial Differential Equations, 61:49, 2022.

[27] R. P. Heikes, D. A. Randall, and C. S. Konor. Optimized icosahedral grids: Performance of finite-
difference operators and multigrid solver. Monthly Weather Review, 141(12):4450–4469, 2013.

[28] A. Henrot and M. Pierre. Shape variation and optimization, volume 28 of EMS Tracts in Mathemat-
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Laguerre tessellations for prescribed volume fractions with applications to microstructure generation
of polycrystalline materials. Computer Methods in Applied Mechanics and Engineering, 369:113175,
2020.

[34] A. Laurain. Analyzing Smooth and Singular Domain Perturbations in Level Set Methods. SIAM
Journal on Mathematical Analysis, 50(4):4327–4370, 2018.

[35] A. Laurain. Distributed and boundary expressions of first and second order shape derivatives in
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