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Abstract

This contribution addresses the relevant question of retrieving, from transmittance data,

the optical constants and thickness of very thin semiconductor and dielectric films. The

retrieval process looks for a thickness that, subject to the physical input of the problem,

minimizes the difference between the measured and the theoretical spectra. This is a highly

underdetermined problem but, the use of approximate – though simple – functional depen-

dences of the index of refraction and of the absorption coefficient on photon energy, used as

an a priori information, allows surmounting the ill-posedness of the problem. The method

is illustrated with the analysis of transmittance data of very thin amorphous silicon films.

The method allows retrieving physically meaningful solutions for films as thin as 300Å. The

estimated parameters agree well with known data or with optical parameters measured by

independent methods. The limitations of the adopted model and the shortcomings of the

optimization algorithm are presented and discussed.
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A. Introduction

Today, advanced electronic and optical devices are manufactured involving the deposi-

tion of single or multilayered structures of materials, including all kind of semiconductors,

dielectrics, nitrides, oxides, and other alloys. Frequently, the thickness of these mostly amor-

phous or polycrystalline thin layers is just a few tens of nanometers. The optical properties

of very thin films are different from those of the corresponding bulk material, the difference

stemming either from materials’ inhomogeneities or, as the thickness of the films decreases,

from the increasing influence of surface and interface defective layers. As the true optical

properties of the deposited films may influence the overall device performance, the need ap-

pears to develop fast and accurate characterization methods to extract the optical constants

and the thickness of such very thin coatings. Measurements of the complex amplitudes of

the light transmitted and reflected at normal or oblique incidence at the film and substrate

sides, or different combinations of them, enable the explicit evaluation of the thickness and

the optical constants in a broad spectral range. At normal incidence, the planes of equal

phase are parallel to those of equal amplitude for isotropic absorbing films. The formula-

tion of the problem becomes more involved at non-normal incidence. Normal reflectance is

not easily available in standard equipments. This is not the case of normal transmittance,

which provides quick, accurate and non-destructive information on material’s properties in

a spectral range going from complete opacity to transparency – an interesting photon energy

range for many applications.

The retrieval of the optical properties and thickness of a thin film from transmittance

data is a reverse optical engineering problem in the sense that the response of the system is

known but the parameters producing this response must be estimated [1]. This is a highly

underdetermined ill-posed problem, the solution not being unique. As shown in this, and

in previous publications [2,3], the ill-posedness can be surmounted by introducing in the
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problem some prior information on the behavior of the parameters to be estimated. In the

present contribution we address and solve the problem of extracting the optical properties

and thickness from the transmission spectra of amorphous semiconductor layers as thin as

300 Å. The reliability and limitations of the retrieval process are discussed.

Sometimes, the properties of relatively thick films can be obtained from transmission

spectra quite accurately with the so-called envelope methods [4–7]. The main shortcoming

of such methods, however, is that they cannot be used in the case of rather thin films,

because their transmittance does not display an interference fringe pattern at photon ener-

gies corresponding to zero, or almost zero, absorption . In recent publications, we reported

two approaches – a pointwise constrained optimization approach [2] and a pointwise uncon-

strained optimization approach (PUM) [3,8] – that proved to be very useful to circumvent

the difficulty of a lacking fringe pattern. Both methods minimize the difference between

measured and calculated transmittance introducing, with ad hoc procedures, some prior

knowledge of the physically meaningful solution. The optimization algorithms were tested

with computer simulated films [3] and with amorphous semiconductor films deposited onto

glass substrates [8]. In all cases, the methods proved to be highly reliable for films thickness

in excess of ≈ 100 nm.

In this contribution we extend the applicability of the pointwise unconstrained minimiza-

tion method to the retrieval of the optical constants and the thickness of very thin amorphous

semiconductor films, i.e., to film thickness less than 100 nm. We apply a new minimiza-

tion algorithm to a series of hydrogen-free (a-Si) and hydrogenated amorphous silicon films

(a-Si:H) of several thicknesses. The retrieved optical properties agree with published data

and/or expected values, the retrieved thicknesses being always close to measured values or

to values estimated from deposition rate and deposition time. The method proves its use-

fulness for film thickness down to 30 nm. The method can be extended without difficulty

to other homogeneous films like epitaxial crystalline and organic thin layers.

The paper is organized as follows. Section B introduces the problem and the strategy for

the estimation of the optical properties and thickness of very thin amorphous semiconductor
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films. Section C gives a brief description of the experimental conditions and the main results.

Section D contains the discussion of the results considering retrieved optical properties and

thickness. The limitations of the approach are also discussed. The conclusions of the work

are presented at the end of the paper.

B. The optical model and the retrieval algorithm

The driving idea behind the method allowing the retrieval of the optical constants and the

thickness of very thin amorphous semiconductor films is the fact that, for the photon energy

range corresponding to transmittance spectra, the absorption coefficient and the index of

refraction can be approximated by simple expressions. For example, the absorption edge of

amorphous semiconductors and dielectrics films can be broken into two main contributions

[10–12]:

α = B2(hν −EG)m/hν, for (hν > EG), (1)

with m =2 or 3; and

α = A exp[(hν − E0)/EU ], for (hν < E0). (2)

The quantity α is the absorption coefficient, hν denotes photon energy, B is a constant

that includes information of the convolution of the valence and conduction band states and

on the matrix elements of optical transitions, EG is the Tauc’s optical gap [11], EU is the

characteristic energy of the exponential absorption edge, which depends on the topological

disorder of the network [10], andA and E0 are constants that depend on material composition

and deposition method and conditions. At photon energies below the exponential absorption

edge a third contribution to α appears, which tends to flattens the absorption curve. This
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sub-gap absorption originates from transitions between deep localized electron states in

the pseudo-gap and extended states in the conduction and in the valence bands. As a

consequence, the log[α(hν)] versus hν plot has an elongated
∫

-like shape, that remembers

the integral mathematical symbol [12].

Similarly, within the photon energy range normally given by transmittance measure-

ments, the dependence of the index of refraction on photon energy can be well described

using a single-effective-oscillator formulation:

n2 − 1 = EdEosc/[E
2
osc − (hν)2] (3)

where Eosc is the single-oscillator energy and Ed is the dispersion energy [13,14]. The

expression (3) holds for photon energies well below Eosc. At energies approaching Eosc,

deviations to the simple law (3), originating from the proximity of the main band-to-band

transitions, are measured.

Consider now the four-layer situation depicted in Fig. 1: air (n0)/film (ñf)/thick trans-

parent substrate (nS)/air (n0). For simplicity of notation let us call d, n and κ the thickness,

the refractive index and the attenuation coefficient of the film, and s the refractive index of

the substrate. In this case, the transmittance reduces to [6]:

Tmeas(λ) = Measured transmittance =
Ax

B − Cx+Dx2
(4)

where:

A = 16s(n2 + κ2) (5)

B = [(n+ 1)2 + κ2][(n + 1)(n+ s2) + κ2] (6)

C = [(n2 − 1 + κ2)(n2 − s2 + κ2) − 2κ2(s2 + 1)] 2 cos ϕ

−κ[2(n2 − s2 + κ2) + (s2 + 1)(n2 − 1 + κ2)] 2 sinϕ (7)
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D = [(n− 1)2 + κ2][(n− 1)(n− s2) + κ2] (8)

ϕ = 4πnd/λ, x = exp(−αd), α = 4πκ/λ. (9)

The problem of retrieving the extinction coefficient κ, the refractive index n and the

thickness d of a thin film from transmittance data is, evidently, highly under-determined.

The input of the problem is a set of experimental values [λi, T
meas(λi)], λmin ≤ λi ≤ λi+1 ≤

λmax, for i = 1, ..., N . For all wavelengths and a repeating d the following equation must

hold:

T theor(λ) = Tmeas(λ, s(λ), d, n(λ), k(λ)) (10)

where T theor is the calculated transmission of the film+substrate structure. This equation

has two unknowns, n(λ) and k(λ), and, in general, its set of solutions (n, k) is a curve in

the two-dimensional [n(λ), k(λ)] space. Consequently, the set of functions (n, k) satisfying

T theor = Tmeas for a given d is infinite. However, as shown in [2], physical constraints

(PCs) drastically reduce the range of variability of the unknowns n(λ), k(λ). For example,

in the case of amorphous semiconductors films in the neighborhood of the fundamental

edge, typical physical constraints (PC) could be: PC1: n(λ) ≥ 1 and k(λ) ≥ 0 for all

λ ∈ [λmin, λmax]; PC2: n(λ), and k(λ) are decreasing functions of (λ); PC3: n(λ) is convex;

PC4: there exists λinf l ∈ [λmin, λmax] such that k(λ) is convex if λ ≥ λinf l and concave if

λ < λinf l. These constraints on the unknowns can be eliminated by a suitable change of

variables, as shown in detail in [3]. The use of the pointwise unconstrained minimization

approach –PUM– needs the calculation of complicate derivatives of functions, which requires

the use of automatic differentiation techniques. The present authors used the procedures

for automatic differentiation described in [15].

The optimization process looks for a thickness that, subject to the physical input of the

problem, minimizes the difference between the measured and the theoretical spectra, i.e.,
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Minimize
∑

all i

[Tmeas(λi) − T theor(λi, s, d, n(λi), k(λi))]
2 (11)

The minimization of (11) starts sweeping a thickness range ∆dR divided into thick-

ness steps ∆ds and proceeds decreasing ∆dR and ∆ds until the optimized thickness

dopt is found. An example of the process is shown in Fig.2 where
∑

all i [Tmeas(λi) −

T theor(λi, s, d, n(λi), k(λi))]
2 versus thickness has been plotted for a film with d = 72 nm.

The left part of Fig. 2 shows the results of a coarse 50 nm step scan. The right part of the

figure is an enlargement of the region around the minimum quadratic error found with the

coarse step scan, but using a smaller (1 nm) scan step. The absolute minimum corresponds

to a thickness of 72 nm, considered the true thickness of the film..

The minimization uses a very simple algorithm introduced recently by Raydan [16],

which realizes a very effective idea for potentially large-scale unconstrained minimization.

It consists of using only gradient directions with step-lengths that ensure rapid convergence.

Let us remember here that the PUM formulation was able to retrieve correctly the thickness,

the index of refraction and the absorption coefficient of both computer generated films [3]

and hydrogenated amorphous silicon films deposited onto glass [8]. However, it was unable

to retrieve physically meaningful solutions from the transmittance of real a-Si:H films of

thickness less than 100 nm and of d < 80 nm computer generated films. In the present

contribution we introduce a new formulation that solves this difficulty and allows retrieving

the optical properties and thickness of amorphous semiconductor films having a thickness

as small as 30 nm. Needless to say, for such very thin films the properties of surfaces and

interfaces influence the overall retrieval, as discussed in the coming sections.

1. Strategy

As the physical thickness of films decreases the information contained in their transmit-

tance decreases. The reason is easy to understand. In the limit of zero thickness (i.e., no

film at all) the measured transmittance is just that of the substrate alone. Hence, as this

limiting zero thickness is approached, the estimation of film properties becomes more and
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more difficult. This situation is typical of the so-called inverse problems. In cases where the

available information becomes scarce, it is important to add some a priori information in

the estimation process. Normally, “true” a priori information is not available and, therefore,

“reasonable” – though not necessarily true – information is incorporated in order to get an

estimation. Classical regularization [17] is a typical example of this methodology. In classical

regularization, an artificial bound for the solution of an inverse problem is produced, with-

out guaranteeing the correctness of such a bound. In fact, the determination of the correct

regularization parameter, which is correlated with the bound, is an involved mathematical

and statistical problem. The general practical principle of inverse problems seems to be: if

you do not have enough information to determine the solution, adding some “reasonable”

– though not necessarily true – information is better than not introducing any information

at all. Of course, it is not useful adding “reasonable” information to problems that are

sufficiently determined. In the present case, the “reasonable” – though not necessarily true

– information is represented by a functional form imposed to the absorption coefficient and

to the index of refraction. Probably, real parameters do not follow exactly these functional

forms, but the functions are sufficient to eliminate very arbitrary possible solutions.

Our objective is to estimate the optical constants and the thickness of very thin films

given a measured spectral transmittance (λi, T
meas
i ), i = 1, . . . , N , with d < 100 nm. For

such a purpose we adopt a calculation strategy, heretofore called FFM, that was successfully

tested with computer generated semiconductor and dielectric films [9].

A model function for the optical constants of these films is such that:

(a) The quantity 1/[n2(hν) − 1] is a linear function of (hν)2.

(b) Within the spectral region given by transmittance data, log[α(hν)] displays a “math-

ematical integral-like shape” (
∫

), where α(hν) is the absorption coefficient of the semicon-

ductor.

The restriction (a) finds its justification on the validity of the single-effective-oscillator

approach [13], as stated above. The restriction given in (b) lead us to investigate families of

functions where the integral-like shape is present. Let F(γ, η) be the set of twice continuously
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differentiable functions ψ : IR → IR such that:

(i) ψ(0) = γ;

(ii) ψ′(0) = η;

(iii) ψ′′(0) = 0;

(iv) ψ′(t) ≥ 0 for all t ∈ IR.

(v) ψ′′(t) > 0 if t < 0 and ψ′′(t) < 0 if t > 0.

It is easy to see that, given ψ−, ψ+ ∈ F(γ, η), the function ψ defined by

ψ(t) = ψ−(t) if t ≤ 0

and

ψ(t) = ψ+(t) if t ≥ 0,

also belongs to F(γ, η). This property allows one to define functions that satisfy the prop-

erties (i)–(v) and are not odd. We selected four functions θj ∈ F(γj, ηj), j = 1, 2, 3, 4,

choosing γj and ηj in such a way that θj([Emin, Emax]) ⊂ [0, 1], where Emin and Emax are

the minimum and the maximum photon energy in the spectrum under consideration, corre-

sponding, respectively, to the maximum and minimum wavelength. Finally, we propose the

following form for the logarithm of the absorption coefficient:

LogModel-α(hν) =
4∑

i=1

aiθi[bi(hν − c)] + k. (12)

As mentioned above, from the model of the refractive index (3)

1

n2 − 1
=
m

λ2
+ β,

yields

Model-n(λ) =

√
1

m
λ2 + β

+ 1. (13)
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We can define new variables, depending onm and β, so that they are computational more

insightful. Indeed, once m and β are fixed, we define p and q through p = nm,β(λmin) and

q = nm,β(λmax) − nm,β(λmin) (the inverse relation being quite simple). From this definition

it is clear that p > 1 and q > 0.

The meaning of the parameters aj , bj , c, k, p and q are geometrically obvious. Observe

that in this way, with bj , aj > 0, the resulting function has necessarily the integral shape,

being c the location of the inflection point. The functions θj used in our model were the

following:

θ1 =





2

4 + π

(
arctan(hν) +

π

2

)
when hν < 0,

2

4 + π

(
arctanh(hν) + 2

)
when hν > 0,

θ2 =





1

4

(
4

1 + e−hν

)
when hν < 0,

1

4

(
arctanh(hν) + 2

)
when hν > 0,

θ3 =





1

3

(
tanh(hν) + 1

)
when hν < 0,

1

3

(
arctanh(hν) + 2

)
when hν > 0,

θ4 =






1

3

(
2

∫ Ē

−∞

(
1 −

1

1 + e−t2

)
dt+ σ

)
when hν < 0,

1

3

(
arctanh(hν) + 2

)
when hν > 0,

where hν = 10

(
hν − hνmin

hνmax − hνmin

)
− 5 and σ =

∫
∞

−∞

(
1 −

1

1 + e−t2

)
dt.

The choice of these functions came from intensive experimentation with computer gen-

erated films, after discarding many other ones with similar topological properties.
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2. Optimization procedure

Using (12), (13) and the formulae (4-9), and given a trial thickness d and the parameters

ai, bi, c, k, m and β a theoretical transmittance T theor(λ) can be computed. Given a set

of observations Tmeas(λi), i = 1, . . . , m, the objective is to solve the following minimization

problem:

Minimize

m∑

i=1

[T theor(λi) − Tmeas(λi)]
2. (14)

The objective function (sum of squares) of (14) will be called F (d, c, k,M,B, a1,

. . . , a4, b1, . . . , b4). It has 13 variables and we must take into account that all of them

must be positive, except, perhaps, c and k. The function has many local minimizers, there-

fore the optimization procedure is not straightforward, since the application of an ordinary

minimization algorithm will normally lead to a local-non-global solution of (14). Below, the

optimization procedure used for solving (14) is described.

Assume that we have lower and upper bounds for each variable, except for ai and bi, for

which we only have an initial estimate and we know that they are nonnegative. The lower

and upper bounds for variables d, c, k, p, q are dmin, cmin, kmin, pmin, qmin and dmax, cmax,

kmax, pmax, qmax, respectively. The first stage of the optimization procedure defines a coarse

grid in [dmin, dmax]. For each trial thickness dtrial belonging to this coarse grid, we consider

the function F which, now, depends on 12 parameters. Then, we define a grid G in the

four-dimensional box

[cmin, cmax] × [kmin, kmax] × [pmin, pmax] × [qmin, qmax].

For each point of G, we evaluate F and discard the points for which the objective function

value is greater than a tolerance TOL1. In this way, we obtain a second grid G′ ⊂ G. We

use each point of G′ as initial estimate for minimizing F using the software BOX-QUACAN

(see [18,19]) and perform just one iteration of this local minimization method. Then we

discard a percentage TOL2 of the points of G′ with worse objective function value. In this
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way, we have a third grid G′′ ⊂ G. Each point of G′′ is then used as initial estimate of

BOX-QUACAN for a complete local minimization procedure. The final point for which we

have the smaller functional value is, so far, preserved as the representative point for the trial

thickness dtrial.

So, at the end of the coarse-grid procedure, we have a representative set of parameters

and a functional value for each trial thickness. Taking into account the best values of the

function, we define a new interval [d′min, d
′

max] ⊂ [dmin, dmax] and a new fine grid in this new

interval. For each trial thickness in this fine grid (using as initial estimate the point obtained

at the end of the Coarse grid step) we directly apply the algorithm BOX-QUACAN set up for

a full local minimization. Finally, we fix the thickness with the smallest objective function

value and perform the same strategy used in the coarse-grid step (for fixed thicknesses) with

the size of the grid G slightly increased. The set of parameters that give the lower functional

value is considered to be the estimate provided by our method.

The computer parameters used in the above procedure are:

• for the bounds we used [cmin, cmax] = [kmin, kmax] = [−10, 10] while for p, q we used

[pmin, pmax] = [1.1, 5] and [qmin, qmax] = [0, 5]. Although ai and bi are not bounded,

computational we restricted ourselves to the box [0, 10].

• for the grid G we used 81 equally spaced points in IR4 (meaning that we had ESP = 3

equally spaced points at each coordinate). Once we have found and fixed the retrieved

thickness (as described above), the size of the improved grid at the last step is ESP+2.

• for the fine-grid, we used, respectively, for the lower and upper bound dcoarse − 19

and dcoarse + 19 with step 1, where dcoarse is the thickness obtained at the end of the

coarse-grid step;

• for the tolerance TOL1 we used the value 10;

• for the percentage of discard TOL2 we used 0.1. Let s(X) be the number of points of

the grid X. Then s(G′′) = max{0.1 s(G′), 10}. Clearly, this could lead s(G′′) into a
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fraction, had we not the help of the mod function.

C. Experimental and results

The a-Si and a-Si:H films were deposited onto 7059 glass held at 250 0C with a depo-

sition rate of 1 Å/sec. The rf-sputtering technique was used to produce the H-free a-Si

layers, whereas a-Si:H thin films were made by the plasma enhanced chemical vapor de-

position method (PECVD). Under these deposition conditions the films are believed to be

homogeneous and possessing flat parallel faces. For the growth of a-Si films the deposition

conditions were kept identical, only the deposition time being varied in order to produce

films with different thickness but otherwise similar. The a-Si:H films originate from two

deposition runs made at different times, but believed to be representative of state of the art

a-Si:H. The transmittance of the films (400 - 2000 nm range) was measured in a Hewlett

Packard Lambda-9 model spectrophotometer, with typical speed 60 nm/min and variable

slit. Figures 3 and 4 show the transmittance of thin a-Si and a-Si:H films, respectively.

They clearly indicate that envelope-like methods are of no use with these fringe-free trans-

mission spectra. The transmittance of a relatively thick a-Si film has also been included

in Fig.3. It displays an absorption modulated interference pattern and can not be treated

with envelope-like methods either. The study of films with d > 100 nm has been included in

the present study for reasons that will become clear in the coming sections. The estimation

problem of these relatively thick films has been done using the PUM approach and not the

FFM method, used for all the d < 100 nm films investigated here. The reasons for the choice

of the FFM algorithm in the calculation of films having a thickness d <100 nm were already

given and will be discussed in the coming section.

Table I shows the results of the minimization process for all the samples discussed in

this contribution. The series include six very thin layers, three of a-Si and three of a-Si:H.

The results referring to two thick samples d > 100 nm are also included in Table I. In all

cases the optimal retrieved thickness is close to that estimated from the deposition rate and
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deposition time (d < 100 nm) or to values given by a profilometer (d > 100 nm). The

quadratic error (11) corresponding to the optimum thickness is given in the last column of

Table I.

The study of amorphous films with d > 100 nm is justified by the need to compare the

optical constants of more bulky layers with those retrieved in very thin films. Note that the

optical properties of thick films are much less affected by defective interfaces and surfaces

than those of very thin layers. The thickness of the defective a-Si:H/substrate interface

layer has been estimated to be, at least, of 50 to 100 Å [20]. Deviations to the ideal model

adopted in the present study (4) are, then, expected to be smaller in films of thickness

d > 100 nm. The need to incorporate rather thick films in the present study is also justified

by the fact that the bulk properties of both, a-Si and a-Si:H, are known, and the correctness

of the retrieval process may be verified. The agreement between the optical properties of

a 0.5 µm thick a-Si:H film, retrieved using PUM and those measured on the same films by

independent methods, such as photothermal deflection spectroscopy and ellipsometry, has

already been published [21,8]. A similar verification procedure becomes almost impossible

in the case of very thin amorphous layers.

Figure 5 shows the retrieved values of the absorption coefficient and of the index of

refraction of two PECVD a-Si:H films of thickness 624 nm (PUM) and 72 nm (FFM method),

respectively, deposited under identical conditions [8]. The retrieval of the properties of

sample #7 (see Table I) has been done using both PUM and FFM methods, the final result

being identical. The figure clearly indicates that the retrieved optical properties of these

two films having quite different thickness are essentially the same, as expected for films

deposited under identical nominal conditions but different deposition time. Note that the

retrieval does not depend on the use of the PUM or the FFM method for the film having a

thickness d = 72 nm. It is important to remark: a) The absorption coefficient is perfectly

retrieved for both samples, the retrieval interval depending on film thickness, as expected.

The retrieval of α at decreasing photon energies fails when a break occurs in the smooth α

vs E curve. The break is followed by an almost constant value of α. b) Due to the adoption
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of (13), the use of FFM for very thin films leads to an unimpeded increase of the index

of refraction n as the photon energy approaches the value of the single-effective-oscillator

energy. As a consequence, valid n values are only those corresponding to photon energies

well below Eosc, say hν . Eosc/2.

Figures 6 and 7 show the retrieved optical constants of a-Si and a-Si:H films, respectively.

It is noticed in Fig. 6, that the absorption coefficient differs between samples at photon

energies smaller than around 2 eV. For hν > 2 eV, the retrieved α displays a unique behavior,

irrespective of film thickness. In contrast, the retrieved index of refraction depends on film

thickness in the whole energy range. Note, again, the unimpeded increase of n with photon

energy, a consequence of the functional variation adopted for the index (13). The situation

depicted in Fig. 7 refers to two very thin PECVD a-Si:H films deposited under standard

PECVD conditions. There is no fundamental difference in the retrieved index of refraction

between a-Si:H samples. The absorption coefficient, however, appears to depend on film

thickness. In the discussion to follow, likely reasons behind this behavior will be advanced.

D. Discussion

Homogeneous, isotropic, perfectly flat, and parallel-face semiconductor films are a math-

ematical fiction, in particular when dealing with very thin films. Substrates on which films

are formed are neither mathematically plane nor inert, in the sense that their structure may

exert a profound influence on the form of the overlying film. The condensed atoms of films

prepared by sputtering or chemical vapor deposition possess a surface mobility resulting in

an aggregated, rather than a continuous structure. In early measurements of optical con-

stants, for which it was assumed that the film behaved as a thin slice of bulk material, values

obtained for the optical constants were found to differ widely from those of the bulk [22]. It

is now established that such apparent variations are due to the aggregated structure which

is observed in matter of thin layers. Thus, the model idealized in Fig. 1 and (4), is not in

practice realized. In other words, the four layer model adopted here to represent the actual
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experimental situation of very thin film is only approximate, because it does not include

some important experimental facts that may affect the retrieval process in a variety of ways.

Among other things, the ideal model is only approximate because it does not consider the

existence of a substrate/film interface which, in the case of amorphous silicon films, is always

a highly perturbed region . The transmittance data contain, in an unknown proportion, the

optical properties of the bulk material and of this interfacial region, the thickness of which

may depend on preparation conditions and on the nature of the substrate. Such interface

is not easy to model, nor its influence to quantify, although it clearly increases as the film

thickness decreases. The thinner the film the larger the contribution of the interface layer.

Besides this unavoidable effect, the bulk of the films may be inhomogeneous, in the sense

that it may contain regions having structurally different materials, or a density deficit, or

impurity aggregates, etc. We do not expect this to be the case of the present amorphous

silicon films.

In situ ellipsometry has been a powerful experimental tool to investigate the surface layer

during the deposition of semiconductor films. By measuring the intensity and polarization

of light reflected from the surface, the optical constants of the film are retrieved. The evolu-

tion of the real and imaginary parts of the global dielectric function can be followed as the

film growth occurs [23]. The data on the nucleation and growth of amorphous silicon films

indicate the existence of two regimes [20]. The first, of typically a few hundred angstroms,

is when nucleation on the substrate surface takes place. In this regime the measured dielec-

tric constant receives contributions from both the film and the substrate [23] and a model

assuming the growth of a uniform layer is unable to explain the experimental data. The

second regime corresponds to later stages when the substrate is no longer detectable and

only the properties of the top bulk material are probed. In the first regime, the changes of

the optical properties with film thickness are dramatic, as they evolve from those of the sub-

strate to those of the bulk material. In the second regime, there is no change of the optical

properties of the film, unless its structure changes with increasing thickness. Furthermore,

for thin amorphous semiconductor coatings, even when carefully prepared and measured,
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surface roughness, which originates in the nucleation process, cannot be physically removed

from the sample. The surface roughness of the films is also obtained from ellipsometry and a

typical roughness of 10 Å is found for optimized a-Si:H films, whereas sputtering deposition

leads to a much greater value [20]. These considerations imply that, although the films have

been deposited under similar nominal conditions, we should not expect retrieving identical

properties as their thickness decreases. This proves to be the case. For the sake of clarity,

let us discuss separately the results obtained on a-Si films from those on a-Si:H films.

a. Hydrogen-free amorphous silicon films The optical properties of sample #4, d = 491

nm (see Table I), retrieved with PUM, agree well with published data on a-Si [24]. Note

that, besides convexity, the PUM algorithm does not impose any functional dependence of

the index of refraction on photon energy. Sample #4 is thick enough to minimize the effects

that surface and interface layers may introduce. A test of the goodness of the retrieval

process for n is given by its agreement to the single–effective–oscillator model, known to

be valid for amorphous semiconductors [13,14]. The model predicts a linear dependence of

1/(n2 − 1) vs (hν)2, as shown in Fig. 8 for sample #4. The best linear fit to the retrieved

data gives for the single-oscillator-effective energy Eosc = 3.0 eV, which is near the main

peak of the ε2 spectrum of a-Si. This value compares well with that reported by Wemple

for a-Si, Eosc = 3.1 eV [14]. The dispersion energy extracted from Fig. 8 is Ed = 37.4 eV,

comparable with Wemple’s 34 eV [14] and Chittick’s 38.6 eV [25], found by independent

methods. Moreover, from the retrieved absorption coefficient it is possible to estimate an

exponential-like behavior of the log α vs photon energy. Its slope, EU ∼ 230 meV, is in

agreement with values normally found in H-free a-Si films. Finally, the E04 optical gap,

i.e., the photon energy at which α equals 104 cm−1, is 1.38 eV, also in agreement with the

expected value. Finally, let us note here that the film thickness given by a profilometer,

d = 504 ± 20 nm, is close to the retrieved one. We take these results as indicative that the

retrieval of the optical constants and the thickness of sample #4 has been successful.

Let us now consider the retrieved values for the very thin a-Si films. The behavior of

the refractive index of these films, in the 0.5 < E < 2.0 eV spectral region is similar in
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shape to that of the thickest d = 491 nm layer. Figure 6, however, shows that the value

of n decreases as the film thickness decreases, a trend indicating a less dense material as

the thickness of the films decreases. This result is consistent with the previous discussion

referring to nucleation mechanisms of a-Si.

In situ ellipsometry models the dielectric function of very thin films using the Bruggeman

effective medium approximation, which considers two components for the dielectric function

of the system [20]. Deviations to the model of a uniform growth of the amorphous film are

attributed to two microstructural effects: buried layers at the substrate interface of lower

density than the bulk material and increase in surface roughness. The adatom mobility

of sputtered Si atoms is smaller than that of a-Si:H. As a consequence, both the defective

interface region and the surface roughness become larger. The roughness of sputtered a-Si

has been found to be particularly important, of the order of 2 nm. The void structure at

the interface is also large and may be present in the first 20 nm growth. These experimental

findings suggest that the retrieved decreasing n for very thin a-Si layers is the consequence

of the growing influence of a density deficit region at the film/substrate interface, as the

thickness of the film decreases. The explanation is also consistent with the augmented

absorption at photon energies smaller than that of the pseudo-gap. Void-rich regions at the

interface increases the density of localized electron states in the pseudo-gap and broaden

the tail of states of the valence and of the conduction bands, leading to an augmented

optical absorption at energies below the band-to-band transitions [26]. As a complement to

the above we show in Table II some physical parameters extracted from the minimization

process. Again, the data displayed in Table II illustrate the meaningfulness of the retrieval

process.

The present authors are fully aware that the retrieved optical constants and thickness

represent average values, in the sense that the model behind the minimization process does

not include any kind of film inhomogeneities, which are always present in real physical

situations. In spite of the model limitations, the above plausibility arguments lead us to

believe that the retrieval of the optical constants of the present very thin a-Si films from
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transmittance data is meaningful. The results suggest that the FFM method can be applied

to transmittance data of amorphous silicon films having a thickness as small as 300 Å.

b. Hydrogenated amorphous silicon The considerations on the influence of interface and

surface inhomogeneities on the overall properties of very thin a-Si films also apply to a-Si:H.

Ellipsometry studies show that, due to the different surface mobility of the precursor species,

the first nucleation and growth stages in rf-sputtered a-Si and PECVD a-Si:H are not the

same [20]. The H-free precursor is more reactive and tend to stick at the landing site. Differ-

ently, the precursor species (SiH3) in a-Si:H PECVD growth has a low sticking coefficient, so

that the molecules are continuously adsorbed and released. Hence, the difference between rf-

sputtered and PECVD silicon is that the initial inhomogeneities due to nucleation is quickly

removed in PECVD growth but remains with rf-sputtered material [27]. The thickness and

texture of the density deficit film/substrate interface layer are smaller in a-Si:H than in a-Si,

as experimentally found. Hence, thin a-Si:H films are expected to be more homogeneous

than H-free layers of similar thickness. Figures 5 and 7 do show that this is indeed the

case. The upper half of Figs. 5 and 7 show that there is no significative difference between

the retrieved n of the a-Si:H films. Figure 5 also shows that the absorption coefficient of

samples #8 (bulky, d = 491 nm) and #7 (d = 99 nm) are identical within experimental

error. The correctness of the retrieved optical properties of sample #8 has been confirmed

by independent methods.

The bottom part of Fig. 7 shows the retrieved absorption coefficient of samples # 5

and #6, two very thin a-Si:H films of another deposition run. The high absorption region

(α ≥ 105 cm−1), that mostly probes the film properties after the initial stages of growth,

displays identical values for the two films, and are identical of that of the bulk sample #8.

An exponential like absorption region is apparent in Figs. 5 and 7. State of the art a-Si:H

films possess an exponential absorption edge – or Urbach edge (2) – with a characteristic

energy EU ∼ 50 meV [27]. The Urbach edge of samples #7 and #8, EU ∼ 60 meV,

is similar to that given by photothermal deflection spectroscopy (PDS) in thick samples.

Figure 7 shows the exponential-like absorption edge for the two thinnest a-Si:H samples.
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Sample #6 (d = 72 nm) possesses a well defined Urbach edge, with EU ∼ 45 meV. This

value may originate from a hydrogen content higher than that of samples #7 and #8, which

should also provoke a larger E04 gap, as found The retrieved Urbach edge of sample #5

(d = 35 nm) is very broad, EU ∼ 85 meV. It is noteworthy that the FFM method retrieves

an exponential absorption edge in a-Si:H films as thin as 350 Å. The broad tail, and the

large remaining absorption at photon energies below 1.5 eV of sample #5, is a consequence

of the influence of the perturbed film/substrate interface layer, which increases as the film

thickness decreases. This layer is a density deficit region containing a void microstructure of

unknown characteristics, which contributes, not only to an increased density of deep defects

(residual absorption) but also to a larger topological disorder, as evidenced by the broad

absorption tail.

It is timely to address now the question of – down to what thickness is it possible to

retrieve the properties of very thin films using unconstrained minimization and the adopted

model? The numerical [9] and the physical experiments here reported indicate that it is

possible to obtain meaningful answers to thicknesses as small as 300 Å. But, even for ideal

computer-made films the retrieval process fails for d < 300 Å. The failure must not be

interpreted as the absence of any response. The problem, detected with computer made

films in which the “true” solution is known in advance, is that the thickness coming out

of the minimization process is either not the good one, or does not retrieve the expected

optical constants. Note that, for gedanken films, this failure does not originate from any

inadequacy of the adopted model, nor from the presence of defective interfaces (absent

in computer experiments), but from the insufficiency of the a priori information on the

behavior of the optical parameters. We conclude that the present approach concerning

amorphous semiconductor thin films, which considers that α and n possess a functional

dependence given by (1)-(3), respectively, is unable to find physically meaningful solution

for films having a thickness less than 300 Å. In other words, the certitude that the retrieved

thickness corresponds to the correct answer is lost at d < 300 Å. At this particular thickness

the quadratic error resulting from the minimization process starts flattening, the different
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minima corresponding to different thicknesses having close values. We illustrate the point

in Fig. 9, which shows, for sample #5, the quadratic error resulting from (11) with a fine 1

nm scan step. It is clear that, although the minimum stays at 35 nm, other neighboring film

thicknesses result in not very different quadratic errors, comparable to the one obtained at

d = 35 nm. The minimization process of samples thicker than 300 nm does not show this

behavior (see Fig. 2 for d = 72 nm). Similar results are found when dealing with computer

made films. The way to circumvent this difficulty, or the kind of a priori information needed

to feed the problem in order to solve much thinner films, is not yet known. It represents a

next challenge to this sort of ill-posed inverse problems.

E. Conclusions

This work discussed the ways to obtain the optical constants and the thickness of very

thin amorphous semiconductor films from spectral transmission data. The use of an approx-

imate, though simple, functional dependence of the index of refraction and of the absorption

coefficient on photon energy is given as an a priori information of this reverse optical engi-

neering problem. The optimization process looks for a thickness that, subject to the physical

input of the problem, minimizes the difference between the measured and the theoretical

spectra. We used a minimization algorithm introduced in [18]. The present method al-

lows retrieving physically meaningful solutions for amorphous semiconductor thin films, as

suggested by comparison with known data or with optical parameters measured by indepen-

dent methods. H-free a-Si and hydrogenated a-Si:H thin films of thickness d < 100 nm were

studied. It was possible to retrieve physical meaningful estimates for films as thin as 300

Å. The paper discusses the influence of surface and interface regions on the retrieved opti-

cal constants and indicates the shortcomings of the adopted model. The limitations of the

minimization algorithm used in the present contribution are identified. Their overcoming

constitute a new challenge in this important area of very thin optical coating metering.
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Table I. Retrieved thickness and quadratic error resulting from the minimization process

on H-free and hydrogenated amorphous silicon thin films. The experimental thickness col-

umn indicates values either estimated from deposition rate and deposition time, or estimated

from profilometer data As indicated, the FFM method has been used for the retrieval of the

properties of films with thickness less than 100 nm. Instead, the PUM method has been

applied to films with d >100 nm.

Sample # Material Experimental Retrieved Quadratic

thick. (nm) thick. (nm) error

1 a-Si ∼ 28 30 (FFM) 4.22×10−4

2 a-Si ∼ 42 39 (FFM) 3.08×10−4

3 a-Si ∼ 58 59 (FFM) 1.15×10−4

4 a-Si ∼ 504±20 491 (PUM) 1.71×10−4

5 a-Si:H <50 36 (FFM) 5.14×10−4

6 a-Si:H ∼ 80 72 (FFM) 1.19×10−4

7 a-Si:H ∼120 99 (FFM) 3.09×10−4

8 a-Si:H ∼ 620±20 624 (PUM) 1.60×10−3
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Table II. Retrieved single-effective-oscillator (Eosc) and dispersion (Ed) energies ?? on

H-free amorphous silicon very thin films. They are compared with those obtained in the

relatively thick sample #4. Remember that the transmittance of samples #1, 2 and 3 has

been processed using the FFM method, whereas that of sample #4 has been calculated with

PUM. The retrieved Eosc and Ed are to be compared with the values found in the literature:

Eosc = 3.1 eV, and Ed = 38.6 eV, respectively [14]. The close agreement gives additional

support to our belief of the goodness of the retrieval methods.

Sample # Retrieved Eosc Ed

thick. (nm) (eV) (eV)

1 ∼ 30 3.4 34.0

2 ∼ 39 3.5 37.4

3 ∼ 59 3.3 36.6

4 ∼ 491 3.0 37.4
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FIGURE CAPTIONS

Figure 1: Optical structure considered in this contribution: a very thin ‘ideal’ amorphous

semiconductor film deposited onto a transparent substrate of known index of refraction.

Figure 2: Quadratic error of the difference between measured and retrieved transmit-

tance for an a-Si:H film of thickness 72 nm. Left-hand side: minimization process using a

coarse 10 nm scan step. Right-hand side: Same process but using a fine 1 nm scan step in

the neighborhood of the minimum found with the coarse 10 nm scan step. The absolute

minimum at 72 nm gives the correct thickness of the film.

Figure 3: Transmittance spectra of H-free a-Si films. Note the featureless spectra of films

d < 100 nm thick. A relatively thick film (d = 491 nm) is also shown. Its properties are

studied and compared with those estimated from very thin layers.

Figure 4: Transmittance spectra of a-Si:H very thin films (d < 100 nm).

Figure 5: Index of refraction (top) and absorption coefficient (bottom) of two a-Si:H films

of different thickness retrieved using PUM (thick film) and FFM (very thin film) methods.

Note that both films display almost indistinguishable optical constants. The index of the

thinner film increases unimpeded as the photon energy increases because of the adopted

model for n 3. Note the retrieval of an exponential (Urbach) tail with characteristic energy

of ≈ 50-60 meV for both films.

Figure 6: Retrieved index of refraction (top) and absorption coefficient (bottom) for a-Si

samples. The index n decreases as the films become thinner, a consequence of the increasing

influence of a density-deficit layer at the film/substrate interface. The retrieved absorption

also suffers the influence of this defective layer, particularly at low photon energy. All films

possess an identical absorption at photon energies above 2 eV, at which the most external

region of the film is probed.
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Figure 7: Retrieved index of refraction (top) and absorption coefficient (bottom) for

a-Si: very thin samples. No important differences are found for n between a-Si:H samples.

The absorption coefficient, instead, indicates the influence of the perturbed film/substrate

interface in the thinner sample, increasing the sub-gap and the residual absorption at low

photon energy. This is a consequence of an augmented density of deep localized electron

states in the pseudo-gap.

Figure 8: Single-oscillator energy representation vs the squared photon energy for the

retrieved n data of the thick (d ∼ 491 nm) H-free amorphous silicon film. The retrieved

parameters are in good agreement with values found in the literature [14,25].

Figure 9: Quadratic error of the difference between measured and retrieved transmittance

for an a-Si:H film of thickness 35 nm using a fine 1 nm scan step. Note that, although the 35

nm thickness correspond to a true minimum, neighboring thicknesses give quadratic errors

not much different from that at d = 35 nm. The a priori information leading to a doubtless

response in Fig. 2, seems to be insufficient, or just sufficient, when the thickness approaches

300 Å.
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