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Abstract This paper aims to give a brief introduction to the concept of computational
complexity in the context of continuous (nonconvex) nonlinear optimization.

1 Introduction

This paper is related to the plenary lecture titled “Complexity results in nonlinear
optimization” given by Ernesto G. Birgin at the Brazil-Portugal Joint Meeting on
Mathematics (Encontro Conjunto Brasil-Portugal em Matemática) that took place
from August 14 to 20, 2022, at the Federal University of Bahia, Salvador, Brazil.
In the same way as the presentation, this paper aims to introduce the concept of
complexity in continuous (nonconvex) nonlinear optimization to a wide audience of
non-specialists and to briefly review some recent results obtained by the author and
collaborators.

Optimization is the area of Mathematics that studies the problem of finding
𝑥 ∈ R𝑛 that realizes the smallest possible value of a given objective function, among
those points that belong to a predefined feasible region. If the objective function is a
continuous function and the feasible region is determined by the points that satisfy a
given set of equalities and inequalities defined by continuous functions, then we are
dealing with a continuous optimization problem.

Given 𝑓 : R𝑛 → R, 𝑔 : R𝑛 → R𝑝 , ℎ : R𝑛 → R𝑚, and a set Ω ⊆ R𝑛, a standard
continuous optimization problem can be written as follows

Minimize
𝑥∈R𝑛

𝑓 (𝑥) subject to ℎ(𝑥) = 0, 𝑔(𝑥) ≤ 0, 𝑥 ∈ Ω. (1)
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If Ω = R𝑛 and 𝑔 and ℎ are absent, the problem is an unconstrained optimization
problem. If 𝑔 and ℎ are absent and Ω = {𝑥 ∈ R𝑛 | ℓ ≤ 𝑥 ≤ 𝑢}, where ℓ = (ℓ𝑖),
𝑢 = (𝑢𝑖), ℓ𝑖 ∈ R ∪ {−∞}, and 𝑢𝑖 ∈ R ∪ {+∞} for 𝑖 = 1, . . . , 𝑛, the problem is a
bound-constrained minimization problem. If 𝑔 is missing the problem is an equality-
constrained optimization problem (with or without bound constraints), while if ℎ is
missing the problem is an inequality-constrained optimization problem.

Even in the simplest case of unconstrained minimization, a continuous optimiza-
tion problem can rarely be solved analytically. Therefore, optimization methods are
developed. In general, optimization methods are iterative and, given an initial approx-
imation 𝑥0, generate a sequence of iterates {𝑥𝑘}∞

𝑘=0 that, hopefully, as 𝑘 increases,
will better approximate a solution or satisfy some desirable condition.

Given an optimization method, there are basically two tasks necessary to show
its value. First, it must be shown that it is well defined. That is, that given 𝑥𝑘−1,
the steps that must be followed at iteration 𝑘 to define 𝑥𝑘 can be carried out.
Secondly, the asymptotic properties of the sequence generated by the method must
be studied. For example, in unconstrained minimization, a necessary condition for a
point to be a local minimizer is that the gradient of the objective function vanishes
at the point. Accordingly, a classical asymptotic result consists in showing that
lim𝑘→+∞ ∇ 𝑓 (𝑥𝑘) = 0 or that lim𝑘∈𝐾 ∇ 𝑓 (𝑥𝑘) = 0 for some 𝐾 ⊂∞ N.

Optimization problems are an object of study of Mathematics. However, besides
that, they have an enormous number of practical applications in the most diverse
areas of science such as Physics, Chemistry, Engineering, Economics, Medicine,
and Social Sciences, among others. This practical appeal means that, in practice,
optimization methods are equipped with a stopping criterion, since practitioners
cannot wait infinite time. When equipped with a stopping criterion, the methods are
transformed into algorithms (finite and well-defined sequence of operations). For the
example of unconstrained minimization considered in the previous paragraph, given
𝜖 > 0, a natural stopping criterion would be “to interrupt the execution of the method
when finding 𝑥𝑘 such that ∥∇ 𝑓 (𝑥𝑘)∥ ≤ 𝜖 .” This is the point where computational
complexity comes in to answer the following question: In the worst case, what is the
computational cost of finding 𝑥𝑘 that satisfies the pre-specified stopping criterion
of a given optimization algorithm? It is worth noting that this “computational cost”
can be measured in terms of number of arithmetic operations, number of iterations
of the algorithm or number of evaluations of the objective function 𝑓 , among other
possibilities. In the last two cases, we are talking about iteration complexity and
evaluation complexity, respectively. The field of study known as “computational
complexity theory” focuses on the complexity of problems, whereas “analysis of
algorithms” is concerned with the computational complexity of algorithms.

The analysis of optimization algorithms for convex and strongly convex problems
and for some problems with specific structure, such as fractional linear programming,
has a long tradition in the optimization literature. See for example, [21] and [25].
However, the convergence theory of optimization methods for nonlinear program-
ming problems consisted basically in the asymptotic study of the infinite sequences
generated by the methods until the beginning of the current millennium. In 2006, a
paper by Nesterov and Polyak [22], dealing with computational complexity issues in
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nonconvex continuous optimization, caught the interest of the academic optimization
community. Since then, a large number of papers have been published dealing with
the computational complexity of different algorithms for a wide variety of nonconvex
nonlinear programming problems. In 2022, a book [18] specifically dedicated to this
subject was released.

The rest of this paper is organized as follows. In Section 2, we present as sim-
ply as possible an algorithm for unconstrained minimization and its computational
complexity analysis. In Section 3, we deal with the computational complexity of an
augmented Lagrangian algorithm applied to the solution of the most general contin-
uous optimization problem. The final section presents some perspectives of current
and future work.

Notation. The symbol ∥ · ∥ denotes the Euclidean norm of vectors and matrices. For
𝑣 ∈ R𝑛, 𝑣+ = (max{0, 𝑣1}, . . . ,max{0, 𝑣𝑛})𝑇 . If ℓ, 𝑢 ∈ R𝑛, [ℓ, 𝑢] denotes the box
defined by {𝑥 ∈ R𝑛 | ℓ ≤ 𝑥 ≤ 𝑢}, while 𝑃[ℓ,𝑢] (𝑥) denotes the projection operator
of an arbitrary point 𝑥 ∈ R𝑛 onto [ℓ, 𝑢]. If 𝐾 = {𝑘1, 𝑘2, . . . } ⊆ N (with 𝑘 𝑗 < 𝑘 𝑗+1
for all 𝑗), we denote 𝐾 ⊂∞ N. Given 𝜙 : R𝑛 → R𝑚, 𝜙 = (𝜙1, . . . , 𝜙𝑚)𝑇 , we denote
∇𝜙(𝑥) = (∇𝜙1 (𝑥), . . . ,∇𝜙𝑚 (𝑥)). R𝑛+ = {𝑥 ∈ R𝑛 | 𝑥 ≥ 0}. Given two functions
𝑎 : R→ R and 𝑏 : R→ R, we say 𝑎(𝜖) = 𝑂 (𝑏(𝜖)) as 𝜖 → 0 if there exist positive
numbers 𝛿 and 𝑀 such that |𝑎(𝜖) | ≤ 𝑀𝑏(𝑥) for all 0 < 𝜖 < 𝛿.

2 A didactic example of computational complexity for
unconstrained minimization

In this section we consider an unconstrained minimization problem given by

Minimize
𝑥∈R𝑛

𝑓 (𝑥), (2)

where 𝑓 : R𝑛 → R. To tackle problem (2), we introduce a method based on “cubic
regularization” that, given an initial guess 𝑥0 ∈ R𝑛, generates a sequence {𝑥𝑘}∞

𝑘=0.
We show that, given a tolerance 𝜖 > 0, the method uses a finite number of iterations
of order 𝜖−3/2 to find a point 𝑥𝑘 such that ∥∇ 𝑓 (𝑥𝑘)∥ ≤ 𝜖 . In fact, we show more than
that. We show that the (finite) number of iterations such that ∥∇ 𝑓 (𝑥𝑘)∥ > 𝜖 is of the
order of 𝜖−3/2. The results are different because from the former one it would follow
that lim𝑘∈𝐾 ∇ 𝑓 (𝑥𝑘) = 0 for some 𝐾 ⊂∞ N, while from the latter one it follows that
lim𝑘→+∞ ∇ 𝑓 (𝑥𝑘) = 0. The complexity results on the number of iterations also follow
for the number of evaluations of 𝑓 , because in the introduced method the number of
evaluations of 𝑓 per iterations is 𝑂 (1) with respect to 𝜖 .

The method follows below.

Method 2.1. Let 𝛼 > 0 and 𝑥0 ∈ R𝑛 be given. Set 𝑘 ← 1.

Step 1. Define 𝑥𝑘 = 𝑥𝑘−1 + 𝑠𝑘 , where 𝑠𝑘 is such that
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𝑓 (𝑥𝑘) ≤ 𝑓 (𝑥𝑘−1) − 𝛼∥𝑠𝑘 ∥3. (3)

Step 2. Set 𝑘 ← 𝑘 + 1 and go to Step 1.

At this point, Method 2.1 is not very elucidative, because we did not say yet in
what way an 𝑠𝑘 satisfying (3) can be computed. (In fact we did not even mention
under what conditions an 𝑠𝑘 satisfying (3) exists, so it is not clear yet under what
hypotheses the method is well defined.) However, it is interesting to understand what
properties Method 2.1 has under suitable assumptions.

Let us assume that there exists 𝛾 > 0 such that√︄
∥∇ 𝑓 (𝑥𝑘)∥

𝛾
≤ ∥𝑠𝑘 ∥ (4)

for all 𝑘 ∈ N. (Later in this section we will give sufficient conditions for this
assumption to be satisfied.) From (3) and (4), it trivially follows that, for all 𝑘 ∈ N,

𝑓 (𝑥𝑘) ≤ 𝑓 (𝑥𝑘−1) − 𝑐∥∇ 𝑓 (𝑥𝑘)∥3/2 (5)

with 𝑐 = 𝛼/𝛾3/2.
Assume now that, given a tolerance 𝜖 > 0, we desire to stop Method 2.1 the first

time an iterate 𝑥𝑘 satisfying ∥∇ 𝑓 (𝑥𝑘)∥ ≤ 𝜖 is computed. Assume the method is at
(the end of) iteration 𝑘current and it did not stop. It means that ∥∇ 𝑓 (𝑥𝑘)∥ > 𝜖 for
𝑘 = 1, . . . , 𝑘current. Thus, by (5), 𝑓 (𝑥𝑘) ≤ 𝑓 (𝑥𝑘−1) − 𝑐𝜖3/2 for 𝑘 = 1, . . . , 𝑘current, i.e.
the value of the objective function decreased at least 𝑐𝜖3/2 at every iteration already
executed. At this point there are two alternatives. Or the method is in the way to
compute a sequence {𝑥𝑘}∞

𝑘=0 such that lim𝑘∈𝐾 𝑓 (𝑥𝑘) = −∞ for some 𝐾 ⊂∞ N (in
which case 𝑓 is unbounded below) or there exists 𝑓low ∈ R such that 𝑓 (𝑥𝑘) ≥ 𝑓low
for all 𝑘 ∈ N and

𝑘current ≤ 𝑘 𝜖 :=
⌊
𝑓 (𝑥0) − 𝑓low

𝑐𝜖3/2

⌋
= 𝑂 (𝜖−3/2).

We name the assumption “there exists 𝑓low ∈ R such that 𝑓 (𝑥𝑘) ≥ 𝑓low for all 𝑘 ∈ N”
Assumption A1 from now on. This assumption is an assumption in the sequence
generated by the method, which is undesired. On the other hand, it holds trivially if
there exists 𝑓low such that 𝑓 (𝑥) ≥ 𝑓low for all 𝑥 ∈ R𝑛.

Up to this point, we have shown that, under assumption (4) and Assumption A1,
given 𝜖 > 0, there exists 𝑘 ≤ 𝑘 𝜖 + 1 such that ∥∇ 𝑓 (𝑥𝑘)∥ ≤ 𝜖 and that the num-
ber of iterations such that ∥∇ 𝑓 (𝑥𝑘)∥ > 𝜖 is limited by 𝑘 𝜖 . From the former it
follows lim𝑘∈𝐾 ∇ 𝑓 (𝑥𝑘) = 0 for some 𝐾 ⊂∞ N, while from the latter it follows
lim𝑘→+∞ ∇ 𝑓 (𝑥𝑘) = 0. It remains to show how to compute 𝑠𝑘 at each iteration 𝑘

using 𝑂 (1) functional evaluations. By showing this we will also address the satis-
faction of (4) and we will reveal from where the qualifier “cubic regularized” for
Method 2.1 comes from.
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There are several alternatives to compute, at iteration 𝑘 , a step 𝑠𝑘 satisfying the
sufficient descent condition (3) plus (4). A simple choice will be present here for
didactical purposes. Consider the cubic regularized second-order Taylor polynomial
of 𝑓 around 𝑥𝑘−1 given by

𝑀𝑘 (𝑠, 𝜎) := 𝑇𝑘 (𝑠) +
𝜎

3
∥𝑠∥3,

where
𝑇𝑘 (𝑠) := 𝑓 (𝑥𝑘−1) + ∇ 𝑓 (𝑥𝑘−1)𝑇 𝑠 + 1

2
𝑠𝑇∇2 𝑓 (𝑥𝑘−1)𝑠

and 𝜎 > 0 plays the role of a regularization parameter. The procedure to compute
𝑠𝑘 is described by the method below.

Method 2.2. Let 𝜎𝑘,1 ≥ 𝜎low > 0 and 𝜃 > 0 be given (with 𝜎low and 𝜃 being the
same for all 𝑘 .) Let ℓ ← 1.

Step 1. Compute 𝑠𝑘,ℓ such that

𝑀𝑘 (𝑠𝑘,ℓ , 𝜎𝑘,ℓ) ≤ 𝑀𝑘 (0, 𝜎𝑘,ℓ) (6)

and
∥∇𝑠𝑀𝑘 (𝑠𝑘,ℓ , 𝜎𝑘,ℓ)∥ ≤ 𝜃∥𝑠𝑘,ℓ ∥2. (7)

Step 2. If (3) does not hold with 𝑠𝑘 ≡ 𝑠𝑘,ℓ then define 𝜎𝑘,ℓ+1 := 2𝜎𝑘,ℓ , set
ℓ ← ℓ + 1 and go to Step 1.

Step 3. Define 𝜎𝑘 := 𝜎𝑘,ℓ and 𝑠𝑘 := 𝑠𝑘,ℓ .

The first task is to show that Method 2.2 is well defined and that it is in fact an
algorithm, i.e. that it stops in a finite number of iterations (having computed a step 𝑠𝑘
that satisfies (3) plus (6,7) as desired.) The fact that the method is well defined comes
from the fact that 𝑠𝑘,ℓ satisfying (6,7) can be computed for all 𝑘 and ℓ. This is because
the models 𝑀𝑘 (𝑠, 𝜎𝑘,ℓ) with 𝜎𝑘,ℓ > 0 have bounded level sets and, thus, have at
least one global minimizer. At the global minimizer, the functional value is upper
bounded by 𝑀𝑘 (0, 𝜎𝑘,ℓ) and the gradient vanishes. Therefore, (6,7) hold. Moreover,
for given 𝑘 and ℓ, the step 𝑠𝑘,ℓ can be computed in finite time by a monotone method
for unconstrained minimization with the property that the accumulation points of the
sequence generated by the method are first-order stationary, starting from 𝑠 = 0. The
combination of the method monotonicity and the initial guess choice guarantees the
satisfaction of (6). Concerning (7), if 𝑠 = 0 is stationary of minimizing 𝑀𝑘 (𝑠, 𝜎𝑘,ℓ),
then the method stops at the initial point and (7) holds. Let us say then that 𝑠 = 0 is not
stationary. Since model 𝑀𝑘 (𝑠, 𝜎𝑘,ℓ) with 𝜎𝑘,ℓ > 0 has bounded level sets, then the
sequence {𝑠𝑘,ℓ, 𝑗 }∞

𝑗=0 generated by the method has a stationary accumulation point 𝑧,
which is not zero. Then, there exists 𝐽 ⊂∞ N such that, for 𝑗 ∈ 𝐽 sufficiently large,
∥∇𝑠𝑀𝑘 (𝑠𝑘,ℓ, 𝑗 , 𝜎𝑘,ℓ)∥ ≤ 1

2 𝜃∥𝑧∥
2 and 1

2 𝜃∥𝑧∥
2 ≤ 𝜃∥𝑠𝑘,ℓ, 𝑗 ∥2, i.e. 𝑠𝑘,ℓ, 𝑗 satisfies (7).

It is worth noting that the task of computing 𝑠𝑘,ℓ does not depend on 𝜖 and does
not require evaluations of the objective function 𝑓 . Thus, the entire set of operations
carried out by Method 2.2 has no effect on the complexity of Method 2.1.
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The task of showing that Method 2.2 stops in a finite number of iterations requires
to assume that there exist non-negative constants 𝜉1 and 𝜉2 such that the second-order
Taylor polynomials 𝑇𝑘 satisfy

𝑓 (𝑥𝑘−1 + 𝑠𝑘,ℓ) − 𝑇𝑘 (𝑠𝑘,ℓ) ≤ 𝜉1∥𝑠𝑘,ℓ ∥3 (8)

and
∥∇ 𝑓 (𝑥𝑘−1 + 𝑠𝑘,ℓ) − ∇𝑠𝑇𝑘 (𝑠𝑘,ℓ)∥ ≤ 𝜉2∥𝑠𝑘,ℓ ∥2 (9)

for all 𝑘 and ℓ. We name it Assumption A2. This assumption is fulfilled when 𝑓

is three times continuously differentiable on R𝑛 and the third-order derivative of
𝑓 is bounded or when 𝑓 is twice continuously differentiable and the second-order
derivative is Lipschitz continuous; see, for example, [4]. With these assumptions, in
particular using (8), (6), and the fact that 𝑀𝑘 (0, ·) = 𝑓 (𝑥𝑘−1), we have that, if

𝜎𝑘,ℓ ≥ 3(𝜉1 + 𝛼), (10)

then
𝑓 (𝑥𝑘−1 + 𝑠𝑘,ℓ) ≤ 𝑇𝑘 (𝑠𝑘,ℓ) + 𝜉1∥𝑠𝑘,ℓ ∥3

= 𝑇𝑘 (𝑠𝑘,ℓ) + 𝜎𝑘,ℓ

3 ∥𝑠
𝑘,ℓ ∥3 − ( 𝜎𝑘,ℓ

3 − 𝜉1)∥𝑠𝑘,ℓ ∥3
= 𝑀𝑘 (𝑠𝑘,ℓ , 𝜎𝑘,ℓ) − ( 𝜎𝑘,ℓ

3 − 𝜉1)∥𝑠𝑘,ℓ ∥3
≤ 𝑀𝑘 (0, 𝜎𝑘,ℓ) − 𝛼∥𝑠𝑘,ℓ ∥3
= 𝑓 (𝑥𝑘−1) − 𝛼∥𝑠𝑘,ℓ ∥3,

i.e. that 𝑠𝑘,ℓ satisfies (3). Since 𝜎𝑘,1 ≥ 𝜎low and 𝜎𝑘,ℓ = 2𝜎𝑘,ℓ−1 for ℓ = 2, 3, . . . then
it is clear that Method 2.2 achieves a sufficiently large value for the regularization
parameter in at most ⌈log2 ((3(𝜉1 +𝛼))/𝜎low) +1⌉ iterations, a quantity that does not
depend on 𝜖 . At each iteration ℓ, Method 2.2 needs to check if the computed trial
step 𝑠𝑘,ℓ satisfies (3). This verification involves an evaluation of 𝑓 .

Now observe that, by the increasing rule of the regularization parameter in
Method 2.2 (i.e. doubling it) and the fact that 𝜎𝑘,ℓ ≥ 3(𝜉1 + 𝛼) makes 𝑠𝑘,ℓ to
satisfy the sufficient descent condition (3), it holds that

𝜎𝑘 < 𝜎max := 6(𝜉1 + 𝛼) (11)

for all 𝑘 . We now aim to show that (11), (9), and (7) imply (4). Let us write

∥∇ 𝑓 (𝑥𝑘)∥ = ∥∇ 𝑓 (𝑥𝑘−1 + 𝑠𝑘)∥ = ∥∇ 𝑓 (𝑥𝑘−1 + 𝑠𝑘) −∇𝑠𝑀𝑘 (𝑠𝑘 , 𝜎𝑘) +∇𝑠𝑀𝑘 (𝑠𝑘 , 𝜎𝑘)∥.
(12)

Now, since
∇𝑠𝑀𝑘 (𝑠, 𝜎) = ∇𝑠𝑇𝑘 (𝑠) + 𝜎∥𝑠∥2

𝑠

∥𝑠∥ , (13)

by substituting (13) in (12), applying the triangle inequality, and then using (9,11,7),
we have
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∥∇ 𝑓 (𝑥𝑘)∥ = ∥∇ 𝑓 (𝑥𝑘−1 + 𝑠𝑘) − ∇𝑠𝑇𝑘 (𝑠𝑘) − 𝜎𝑘 ∥𝑠𝑘 ∥2 𝑠𝑘

∥𝑠𝑘 ∥ + ∇𝑠𝑀𝑘 (𝑠𝑘 , 𝜎𝑘)∥
≤ ∥∇ 𝑓 (𝑥𝑘−1 + 𝑠𝑘) − ∇𝑠𝑇𝑘 (𝑠𝑘)∥ + ∥𝜎𝑘 ∥𝑠𝑘 ∥2∥ + ∥∇𝑠𝑀𝑘 (𝑠𝑘 , 𝜎𝑘)∥
≤ (𝜉2 + 𝜎max + 𝜃)∥𝑠𝑘 ∥2.

So (4) holds with 𝛾 = 𝜉2 + 𝜎max + 𝜃.
Summarizing, we showed in this section an algorithm that, given 𝑓 : R𝑛 → R and

𝜖 > 0, finds a point 𝑥𝑘 that satisfies ∥ 𝑓 (𝑥𝑘)∥ ≤ 𝜖 in a finite number of iterations of
order 𝜖−3/2. For that, Assumptions A1 and A2 are required, and sufficient conditions
for their satisfaction are that (i) 𝑓 is bounded from below by 𝑓low in R𝑛 and that (ii)a
𝑓 is three times continuously differentiable on R𝑛 and the third-order derivative of
𝑓 is bounded or (ii)b 𝑓 is twice continuously differentiable and the second-order
derivative is Lipschitz continuous.

It is important to mention that the derivations presented in this section are nowa-
days standard in the literature and can be found, among many others, in, for example,
[1, 5, 6, 7, 8, 10, 11, 12, 14, 15, 16, 17, 22] applied in proofs of complexity results of
algorithms for unconstrained minimization, minimization with bound-constraints or
convex sets, and nonlinear programming in general. Moreover, the presented results
can also be extended, as in fact they already were, for arbitrary norms, models of
order 𝑝 (other than Taylor polynomials) with regularization of order 𝑝 + 1 and to
find stationary points of order 𝑞 instead of first-order stationary points only.

3 The case of augmented Lagrangians for nonlinear optimization

In this section we consider the constrained problem given by

Minimize
𝑥∈R𝑛

𝑓 (𝑥) subject to ℎ(𝑥) = 0, 𝑔(𝑥) ≤ 0, ℓ ≤ 𝑥 ≤ 𝑢 (14)

where 𝑓 : R𝑛 → R, 𝑔 : R𝑛 → R𝑝 and ℎ : R𝑛 → R𝑚 are continuously differentiable
and ℓ, 𝑢 ∈ R𝑛.

Augmented Lagrangians represent a well-established family of methods for solv-
ing nonlinear programming problems of the form (14). The computational complex-
ity of different augmented Lagrangian methods was studied in [13, 19, 26]. In [13],
the complexity of Algencan was analyzed. Algencan [2, 3, 9] is an implementation
of a safeguarded augmented Lagrangian method relying on the Powell-Hestenes-
Rockafellar augmented Lagrangian function [23, 20, 24]. Each iteration of Algencan
consists of (a) minimization of the objective function plus a term that penalizes
violation of the constraints with respect to appropriate shifted tolerances and (b)
updating of the Lagrange multipliers approximations and the penalty parameter.

The Powell-Hestenes-Rockafellar augmented Lagrangian function is given by

𝐿𝜌 (𝑥, 𝜆, 𝜇) := 𝑓 (𝑥) + 𝜌
2

[
𝑚∑︁
𝑖=1

(
ℎ𝑖 (𝑥) +

𝜆𝑖

𝜌

)2
+

𝑝∑︁
𝑖=1

(
𝑔𝑖 (𝑥) +

𝜇𝑖

𝜌

)2

+

]
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for all 𝑥 ∈ [ℓ, 𝑢], 𝜌 > 0, 𝜆 ∈ R𝑚, and 𝜇 ∈ R𝑝+ , where 𝜌 is the penalty parameter and
𝜆 and 𝜇 represent the Lagrange multipliers associated with the equality constraints
ℎ(𝑥) = 0 and the inequality constraints 𝑔(𝑥) ≤ 0, respectively.

Method 3.1 below describes Algencan.

Method 3.1: Assume that 𝑥0 ∈ R𝑛, 𝜆min < 𝜆max, �̄�1 ∈ [𝜆min, 𝜆max]𝑚, 𝜇max > 0,
�̄�1 ∈ [0, 𝜇max] 𝑝 , 𝜌1 > 0, 𝛾 > 1, 0 < 𝜏 < 1, and {𝜖𝑘}∞𝑘=1 are given. Initialize 𝑘 ← 1.

Step 1. Compute 𝑥𝑘 ∈ [ℓ, 𝑢] satisfying𝑃[ℓ,𝑢] (𝑥𝑘 − ∇𝐿𝜌𝑘 (𝑥𝑘 , �̄�𝑘 , �̄�𝑘)) − 𝑥𝑘∞ ≤ 𝜖𝑘 (15)

by approximately solving

Minimize
𝑥∈R𝑛

𝐿𝜌𝑘 (𝑥, �̄�𝑘 , �̄�𝑘) subject to 𝑥 ∈ [ℓ, 𝑢] .

Step 2. Define

𝑉 𝑘 = min
{
−𝑔(𝑥𝑘), �̄�

𝑘

𝜌𝑘

}
.

If 𝑘 = 1 or

max
{
∥ℎ(𝑥𝑘)∥∞, ∥𝑉 𝑘 ∥∞

}
≤ 𝜏max

{
∥ℎ(𝑥𝑘−1)∥∞, ∥𝑉 𝑘−1∥∞

}
,

choose 𝜌𝑘+1 ≥ 𝜌𝑘 . Otherwise, choose 𝜌𝑘+1 ≥ 𝛾𝜌𝑘 .
Step 3. Compute

𝜆𝑘+1 = �̄�𝑘 + 𝜌𝑘ℎ(𝑥𝑘) and 𝜇𝑘+1 =

(
�̄�𝑘 + 𝜌𝑘𝑔(𝑥𝑘)

)
+
.

Compute �̄�𝑘+1 ∈ [𝜆min, 𝜆max]𝑚 and �̄�𝑘+1
𝑖
∈ [0, 𝜇max] 𝑝 . Set 𝑘 ← 𝑘 + 1 and go to

Step 1.

Algencan was introduced in [2, 3] and it is fully described in the book [9]. In
particular, [9] describes the asymptotic convergence theory of Algencan. On the
other hand, [13] complements Algencan’s theory presented in [9] by presenting its
worst-case iteration and evaluation complexity analysis. In this section we summarize
the Algencan worst-case complexity analysis presented in [13].

Method 3.1 has interesting properties for the case of sequences of arbitrary
tolerances {𝜖𝑘}∞𝑘=1, which are used as tolerance for the approximate solution of
the subproblems in Step 1; see [9] for details. However, in the present work, we are
interested in the case 𝜖𝑘 → 0. For that reason, from here on, we will analyze this case
only. When Method 3.1 is applied to problem (14), the method generates sequences
of primal iterands {𝑥𝑘} and sequences of Lagrange multipliers {𝜆𝑘} and {𝜇𝑘}. If
lim𝑘∈𝐾 𝑥𝑘 = 𝑥∗ for some 𝐾 ⊂∞ N, then there are two possibilities for 𝑥∗. Either 𝑥∗
is infeasible and satisfies the first-order optimality conditions for the problem of
minimizing the squared infeasibility given by
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Minimize
𝑥∈[ℓ,𝑢]

∥ℎ(𝑥)∥2 + ∥𝑔(𝑥)+∥2

or 𝑥∗ is feasible and satisfies the sequential optimality condition AKKT of prob-
lem (14) given by

lim
𝑘∈𝐾

𝑃[ℓ,𝑢] (𝑥𝑘 − (
∇ 𝑓 (𝑥𝑘) + ∇ℎ(𝑥𝑘)𝜆𝑘+1 + ∇𝑔(𝑥𝑘)𝜇𝑘+1

))
− 𝑥𝑘

 = 0

and
lim
𝑘∈𝐾

max
{
∥ℎ(𝑥𝑘)∥, ∥min{−𝑔(𝑥𝑘), 𝜇𝑘+1}∥

}
= 0.

As in this work we are interested in complexity results associated with Method 3.1,
our objective is to transform Method 3.1 into an algorithm incorporating stopping
criteria associated with the two possibilities mentioned in the previous paragraph
and to quantify the computational cost that the resulting algorithm consumes to stop
due to either of the two criteria.

Stating the complexity results requires a couple of lemmas that we present below.
Proofs of the lemmas can be found at [13]. We record here that these lemmas involve
hypotheses on problem (14), namely, the bondedness of [ℓ, 𝑢] and the continuity of
𝑓 , 𝑔 ℎ, and their gradients. The main complexity results of Method 3.1 are stated in
the sequel. Additional results can be found in [13].
Lemma 3.1 [13, Lem. 3.2] There exists 𝑐big > 0 such that, for all 𝑘 ≥ 1,

max{∥ℎ(𝑥𝑘)∥∞, ∥𝑉𝑘 ∥∞} ≤ 𝑐big.

Lemma 3.2 [13, Lem. 3.3] There exist 𝑐lips > 0 and 𝑐 𝑓 > 0 such that, for all
𝑥 ∈ [ℓ, 𝑢], 𝜆 ∈ [𝜆min, 𝜆max]𝑚, and 𝜇 ∈ [0, 𝜇max] 𝑝 , one has

∥∇ℎ(𝑥)∥∥𝜆∥ + ∥∇𝑔(𝑥)∥∥𝜇∥ ≤ 𝑐lips

and
∥∇ 𝑓 (𝑥)∥ ≤ 𝑐 𝑓 .

The theorem that follows presents a complexity result that limits the number of
iterations needed to compute a triple (𝑥𝑘 , 𝜆𝑘+1, 𝜇𝑘+1) that either satisfies (17,18) or
(19,20,21). The conditions (17,18) relate to an infeasible point 𝑥𝑘 that is stationary
of the sum of the squared infeasibilities subject to the box constraints. The relation
𝛿 > 𝛿low suggests that 𝑥𝑘 is “very infeasible” and “nearly stationary”. The conditions
(19,20,21) correspond to the approximate satisfaction of the KKT conditions by the
triple (𝑥𝑘 , 𝜆𝑘+1, 𝜇𝑘+1) with tolerance 𝜖 for optimality and tolerance 𝛿 for feasibil-
ity and complementarity. In the bound on the number of iterations, the constant
𝑁 (𝛿low, 𝜖) appears such that 𝜖𝑘 ≤ min{𝜖, 𝛿low}/4 for all 𝑘 ≥ 𝑁 (𝛿low, 𝜖). As we
mentioned above, 𝜖𝑘 → 0. It would be acceptable to assume 𝜖𝑘 ≤ min{𝜖, 𝛿low}/4 for
all 𝑘 , in which case 𝑁 (𝛿low, 𝜖) = 1. However, from a practical point of view, it is im-
portant to allow successive subproblems of the augmented Lagrangian method to be
solved approximately, with varying tolerance 𝜖𝑘 . The complexity result shows how
the bound on the number of iterations is affected by the choice of these tolerances.
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Theorem 3.3 [13, Thm. 3.5] Let 𝛿 > 0, 𝛿low ∈ (0, 𝛿), and 𝜖 > 0 be given. Let
𝑁 (𝛿low, 𝜖) be such that 𝜖𝑘 ≤ min{𝜖, 𝛿low}/4 for all 𝑘 ≥ 𝑁 (𝛿low, 𝜖). Then, after at
most

max
{
𝑁 (𝛿low, 𝜖),

[ log(𝛿/𝑐big)
log(𝜏)

]
×
[
log (𝜌max/𝜌1)

log(𝛾)

]}
iterations, where

𝜌max = max
{
1,

4𝑐lips

𝛿low
,
𝜇max
𝛿
,

4𝑐 𝑓
𝛿low

}
, (16)

we obtain an iteration 𝑘 such that one of the following two facts takes place:

1. The iterate 𝑥𝑘 ∈ [ℓ, 𝑢] verifies𝑃[ℓ,𝑢] (𝑥𝑘 − ∇ [
∥ℎ(𝑥𝑘)∥2 + ∥𝑔(𝑥𝑘)+∥2

] )
− 𝑥𝑘


∞
≤ 𝛿low (17)

and
max{∥ℎ(𝑥𝑘)∥∞, ∥𝑔(𝑥𝑘)+∥∞} > 𝛿. (18)

2. The multipliers 𝜆𝑘+1 ∈ R𝑚 and 𝜇𝑘+1 ∈ R𝑝+ are such that𝑃[ℓ,𝑢] (𝑥𝑘 − (
∇ 𝑓 (𝑥𝑘) + ∇ℎ(𝑥𝑘)𝜆𝑘+1 + ∇𝑔(𝑥𝑘)𝜇𝑘+1

))
− 𝑥𝑘


∞
≤ 𝜖, (19)

∥ℎ(𝑥𝑘)∥∞ ≤ 𝛿, ∥𝑔(𝑥𝑘)+∥∞ ≤ 𝛿, (20)

and, for all 𝑗 = 1, . . . , 𝑝,

𝜇𝑘+1𝑗 = 0 whenever 𝑔 𝑗 (𝑥𝑘) < −𝛿. (21)

The previous theorem limits the number of iterations of the algorithm, but the
result is incomplete if the cost of solving the subproblem at each iteration is not
mentioned. The minimized augmented Lagrangian function at each iteration depends
on the penalty parameter 𝜌𝑘 . In the next theorem we assume that the cost of solving
each subproblem is known and depends on 𝜌𝑘 . The theorem presents a bound for
the total number of iterations of the algorithm used to solve the subproblems and
the total number of evaluations of the functions 𝑓 , 𝑔, and ℎ that define the original
problem.

Theorem 3.4 [13, Thm. 3.6] In addition to the hypotheses of Theorem 3.3, assume
that there exist 𝑐inner > 0, 𝑣 > 0, and 𝑞 > 0, where 𝑐inner only depends on 𝜆min,
𝜆max, 𝜇max, ℓ, 𝑢, and characteristics of the functions 𝑓 , ℎ, and 𝑔, such that the
number of inner iterations, function and derivative evaluations that are necessary to
obtain (15) is bounded above by 𝑐inner 𝜌

𝑣
𝑘
𝜖
−𝑞
𝑘

. Then, the number of inner iterations,
function evaluations, and derivative evaluations that are necessary to obtain 𝑘 such
that (17) and (18) hold or (19), (20) and (21) hold is bounded above by

𝑐inner 𝜌
𝑣
max𝜖

−𝑞
min,3 max

{
𝑁 (𝛿low, 𝜖),

[ log(𝛿/𝑐big)
log(𝜏) )

]
×
[
log (𝜌max/𝜌1)

log(𝛾)

]}
,
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where 𝜌max is given by (16) and

𝜖min,3 = min
{
𝜖𝑘 | 𝑘 ≤ max

{
𝑁 (𝛿low, 𝜖),

[ log(𝛿/𝑐big)
log(𝜏) )

]
×
[
log (𝜌max/𝜌1)

log(𝛾)

]}}
.

The analysis of the algorithm that Algencan uses to solve the subproblems, meet-
ing the hypotheses of Theorem 3.4, is presented in [13].

It is worth keeping in mind that the hypotheses used on problem (14) to obtain the
complexity results mentioned above are minimal and they do not include any con-
straint qualification. Consider an algorithm that, given a problem of the form (14) and
a tolerance 𝜖 > 0, checks whether (𝑥, 𝜆, 𝜇) = 0 satisfies first-order optimality con-
ditions with precision 𝜖 . If it satisfies, it returns (𝑥, 𝜆, 𝜇) = 0. Otherwise, it declares
that it failed. With the hypothesis “(𝑥, 𝜆, 𝜇) = 0 is a first-order stationary point of
the problem”, we would prove that the method finds a solution to problem (14) with
computational complexity 𝑂 (1). It would definitely be the most efficient method in
the world, but it would be of little use.

4 Conclusions and perspectives for future work

In this text, we introduced the concept of computational complexity or analysis of al-
gorithms in the area of continuous nonconvex nonlinear optimization. We illustrated
the idea with the simplest possible case of unconstrained minimization and con-
cluded by addressing the more general case of an augmented Lagrangian algorithm
for nonlinear programming. In between, many problems and algorithms can and
have been considered in the literature. A careful look at the references in this work
or a search on the author’s web page, his Google Scholar profile or the references of
the book [18] would be a good starting point for the interested reader.

One line of research widely used in the literature consists of, for a given problem,
trying to develop the algorithm with the best possible complexity. Two important
points must be considered when this point of view is used. The first is related to the
hypotheses that the algorithm (with potentially low complexity) needs to find points
with the desired properties. In other words, doesn’t the search for a competitive
complexity leave out many problems that do not satisfy the necessary hypotheses?
(See [8, Table 2].) The second question concerns the applicability of the proposed
method. Often, an algorithm with low worst-case complexity is known to be useless
in practice, because it suffers from known issues, such as generating too short steps
far from a solution.

The effective contribution of complexity analysis to the development of novel
algorithms for (nonconvex) nonlinear programming problems that are clean, easy to
understand and implement, and have significantly better performance than existing,
well-established ones remains to be verified. For the reasons mentioned in the previ-
ous paragraph, this author believes that the genuine and already verified contribution
of complexity analysis of continuous optimization algorithms lies in deepening or
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closing a gap in the study of existing consolidated algorithms. In-depth knowledge
of existing algorithms helps to use them in the best possible way, to better interpret
their behavior and, potentially, to incorporate improvements.
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