
Minimizing the object dimensions

in circle and sphere packing problems

E. G. Birgin ∗ F. N. C. Sobral †

October 12, 2006

Abstract

Given a fixed set of identical or different-sized circular items, the problem we deal with
consists on finding the smallest object within which the items can be packed. Circular,
triangular, squared, rectangular and also strip objects are considered. Moreover, 2D and
3D problems are treated. Twice-differentiable models for all these problems are presented.
A strategy to reduce the complexity of evaluating the models is employed and, as a conse-
quence, instances with a large number of items can be considered. Numerical experiments
show the flexibility and reliability of the new unified approach.

Key words: Packing of circles and spheres, models, algorithms, nonlinear programming.

1 Introduction

Several papers deal with the packing problem of, given an object and a fixed set of items,
minimize the object dimension (or equivalently maximize the items dimension) subject to placing
the items within the object without overlapping. In particular, several papers focus on this
problem using nonlinear optimization models and techniques.

In [26] the problem of packing identical circular items within a square is treated. A max-
min model to maximize the minimum distance between the centers of the circular items is
introduced with the aim of maximizing the items diameter. A classical nonlinear reformulation
of the max-min problem is solved using MINOS [30] and the GAMS modeling language [17]. A
multi-start strategy is used to enhance the probability of finding global solutions. Problems up
to 30 items are solved attaining the best known solutions reported in the literature and yielding
some new configurations. A different nonlinear programming formulation of the same problem
is also introduced in [31]. Basically, the energy function

∑

i6=j(λ/d2
ij)

m, where dij represents

∗Department of Computer Science, IME, University of São Paulo, Rua do Matão, 1010, Cidade Universitária,
05508-090, São Paulo, SP, Brazil. This author was supported by PRONEX-CNPq/FAPERJ E-26/171.164/2003
- APQ1, CNPq (PROSUL 490333/2004-4) and FAPESP (Grants 03/09169-6 and 01/04597-4). Corresponding
author. FAX: +55(11)3091-6134. e-mail: egbirgin@ime.usp.br

†Department of Computer Science, IME, University of São Paulo, Rua do Matão, 1010, Cidade Universitária,
05508-090, São Paulo, SP, Brazil. This author was supported by CNPq. e-mail: fsobral@ime.usp.br

1



the Euclidean distance between the centers of items i and j, λ is a scaling factor and m is a
positive integer, is minimized subject to the items fitting inside the object. An unconstrained
reformulation of that problem is solved using an hybrid line-search algorithm that uses gradient-
type directions at the beginning and Newton-type directions near the solution. The solution
obtained by the optimization algorithm is then used as a starting point to solve a system of
nonlinear equations with the aim of improving the accuracy of the solution. Problems with up
to 50 items are solved, finding some alternative solutions and improving some results presented
in [18, 21]. In [25], the same problem is studied. The problem is modeled as a quadratic
optimization problem. Two properties satisfied by at least an optimal solution are introduced
and a clever and efficient branch-and-bound algorithm is developed. The algorithm is used
to prove the ǫ-optimality of solutions with up to 35 items, 38 and 39 items. Moreover, new
solutions for 32 and 37 items are found. Finally, the authors of [25] highlight that, concerning
the problem of maximizing the items diameter (instead of minimizing the object size), while
most of the approaches are capable of obtaining a lower bound, their approach provides an
upper bound on the solution.

The problem of packing equal circles within a circle is addressed in [29]. The nonlinear
formulation is one of the most natural ones and maximizes the items radius while requires
that the items do not overlap and fit inside the circular object. Two equivalent formulations,
using cartesian and polar coordinates, are presented. A heuristic method called Reformulation
Descent that iteratively alternates from one model to the other is presented and tested. The
authors claim that these switches may reduce the probability of the method to stop at undesired
stationary points. Numerical experiments show that the method is much faster than classical
nonlinear programming methods and that, for instances with up to 100 items, the best known
solution is found in 40% of the cases while in the other cases the error never exceeds 1%.

The problem of packing different-sized circles into a strip is considered in [35]. A natural
nonlinear model is introduced and deeply studied. As pointed out by the authors, some pecu-
liarities of the model allow to conclude that optimal solutions are attained at extreme points
of the feasible region. A clever approach (based on Lagrange multipliers) to jump from a local
minimizer to a better one, interchanging the positions of two non-identical circles, is devised.
The numerical experiments in [35] show that this strategy, that can be viewed as a tunneling
method for escaping from local minimizers, together with an efficient local solver [34] and a
multi-start strategy, yields high-quality solutions. A comparison against a branch-and-bound
algorithm using instances with up to 35 items show the advantages of the presented approach.
Similar techniques are considered in [36], where the problem of packing various solid spheres into
a parallelepiped with minimal height is addressed and numerical results with up to 60 spheres
are given.

Nonlinear models have also been successfully used in the problem of, given an infinite number
of identical items and an object, all with fixed dimensions, pack as many items as possible
within the object. In [15] the authors deal with circular items within rectangular and circular
containers. In [12, 11] the problems of packing orthogonal rectangles and free-rotated rectangles
within arbitrary convex regions are considered, respectively. The Method of Sentinels introduced
in [11, 28] can also be used for packing arbitrary non-identical polygons (with internal angles
not smaller than π/2) within arbitrary convex regions. In all the cases the nonlinear models are
solved using Algencan [2, 1, 7, 10], an Augmented Lagrangian method for the minimization of

2



a smooth function with general constraints (freely available at the Tango Project web page [6]).
All the nonlinear-model-based strategies described above have a point in common: the num-

ber of non-overlapping constraints between the items is O(N2), where N is the number of items
being packed. Based on efficient algorithms developed to reduce the asymptotic computational
complexity of the N -body problem [22], we develop a methodology (and their corresponding
data structures) to reduce the computational complexity of evaluating the nonlinear models.
By using this strategy, packing problems with a large number of items are solved. See [27],
where a similar strategy was successfully used for the generation of initial configurations for
molecular dynamics.

This paper is organized as follows. In Section 2 we introduce a variety of nonlinear models
for packing circles and spheres in several kinds of objects. The strategy to reduce the complexity
of the non-overlapping constraints is described and analyzed. Numerical experiments are shown
in Section 3. In Section 4 we state some conclusions and directions for future research.

2 Nonlinear models

The nonlinear models considered in this paper have the following structure (see [33]):

Minimize the object dimension
subject to fitting the items inside the object,

non-overlapping of items.
(1)

Problem (1) has three main ingredients: (i) the object dimension to be minimized; (ii) the
constraints of the items being placed within the object; and (iii) the non-overlapping constraint
between the items. Clearly, the first one depends just on the object and the last one depends
just on the items, while the other one depends on both, the object and the items. In the present
section we will show how to deal with each model ingredient in the cases of circular or spherical
items and a wide range of objects.

2.1 Non-overlapping constraints

In this subsection we describe the non-overlapping constraints. Moreover, we describe a method-
ology, based on strategies developed for the N -body problem [22], to reduce the complexity of
computing the non-overlapping constraints.

Let ci, i = 1, . . . , N , be the centers of N circular or spherical items with radii ri, i = 1, . . . ,N .
The non-overlapping between the items can be modeled as

d(ci, cj)
2 ≥ (ri + rj)

2, ∀ i < j, (2)

or
∑

i<j

max{0, (ri + rj)
2 − d(ci, cj)

2}2 = 0, (3)

where d(·, ·) is the Euclidean distance (see Figure 1). Both (2) and (3) are related to the distances
among the centers of the N(N − 1)/2 pairs of items. Squares in (2) and (3) are used to make

3



d(ci, cj)

ci

ri

Item i

cj

rj

Item j

Figure 1: Two items do not overlap if and only if the distance among their centers is greater
than or equal to the sum of their radii.

them differentiable. Clearly, (2) and (3) are equivalent and any set of items that satisfy (2) or
(3) has no overlapping.

However, (3) has a great advantage over (2) in practice: not all the O(N2) distances need to
be computed to evaluate the left hand side of the constraint at a given point. Basically, if two
circular items k1 and k2 are far one from the other, the contribution of the term max{0, (rk1 +
rk2)

2 − d(ck1 , ck2)
2}2 to the sum in (3) is null. In fact, if the items are more or less well

distributed, the number of pairs that contribute to the sum in (3) is O(N). Moreover, these
pairs can also be identified in O(N) operations. This strategy has been successfully used in
molecular conformation problems in which the number of items can be very large (see [27]).

The N -body problem consists on computing the gravitational force between N particles in
the 3D space, where each particle exerts a force on all the other particles, implying pairwise
interactions. This kind of physical system occurs in several fields, like celestial mechanics, plasma
physics, fluid mechanics and semiconductor device simulations [22]. Several efficient algorithms
were proposed to reduce the asymptotic computational complexity from O(N2), in the naive
approach, to O(NlogN) (see [3, 5]) and to O(N) (see [19] for particles in two dimensions and
[20, 38] for particles in three dimensions). In [24] a study of the performance of these methods
in parallel computers is analyzed. Based on these ideas, we develop a strategy to reduce the
computational complexity of evaluating (3).

It is hard to realize a procedure to detect which pairs will contribute to the sum in (3)
without computing all the O(N2) distances. However, it is easy to detect which pairs will not
contribute and just to compute the distances for the other pairs (which may contribute or not).
Consider a partition of the object in regions in such a way that circular items whose centers are
in non-adjacent regions can’t overlap. For the case of identical circular items with radius r it is
easy to see that a partition in squared regions of side δ = 2r has such property (see Figure 2).
For the case of circular items with radii ri, i = 1, . . . ,N , the size of the squared regions should
be δ = 2maxi{ri}. Now, given an item, it is just necessary to compute the distances from its
center to the centers of the items which are in the same region or in an adjacent region.

Considering a squared object, the total number of squared regions needed to cover it is N2
reg,

where Nreg = ⌈Lub/δ⌉ and Lub is an upper bound on the squared object side. The squared
regions are then surrounded by unbounded regions just to make sure that any point in the space
belongs to a region, i.e., we are considering a partition of the whole space (see Figure 3). Given

4



x ∈ IRn (n = 2, 3 are the natural choices) the region to which it belongs can be computed in
constant time as

Reg(x) = (p(x1), . . . , p(xn)), (4)

where
p(a) = max{0,min{⌊a/δ⌋,Nreg + 1}}. (5)

ci

cj

}δ = 2r

Figure 2: If two items are in non-adjacent regions then they do not overlap. In the picture,
d(ci, cj) ≥ δ = 2r, so the items do not overlap.

Unbounded regionsSquared bounded region of size δ

Optimal object

Object upper bound

Reg(ci) = (2, 3)

Reg(cj) = (4, 3)

0 1 2 3 4 5 6

0

1

2

3

4

5

6

ci

cj

Figure 3: The space is partitioned into regions in such a way that the object is covered by
squared regions. Items whose centers are in non-adjacent regions can’t overlap. So, to verify
overlappings, we just need to consider pairs of items in the same region or in adjacent regions.

5



The method starts with an empty data structure that represents the partition. Each region
has a list of the items whose centers are in the region. There is a matrix with (Nreg + 2)2 ele-
ments with pointers to these lists. There is also a list with the non-empty regions (regions that
have at least an item). See Figure 4. All these lists start empty. Given the centers c1, c2, . . . , cN

of the circular items, these are the steps to compute the left hand side of (3):

0 1 2 3 4

0

1

2

3

4

Matrix of lists of items per regionList of non-empty regions

(0, 2)

(1, 1)

(1, 2)

(2, 3)

(2, 4)

(4, 3)

Figure 4: Data structure for the overlapping evaluation. Each region has a list of the items
within it. There is also a list of the non-empty regions.

Overlapping evaluation.

Step 0: sum← 0.

Step 1: For each item i = 1, . . . , N do:

Step 1.1: Determine its region Reg(ci) given by (4)–(5).

Step 1.2: Add item i to the list of items whose centers are in Reg(ci).

Step 1.3: If this is the first item assigned to Reg(ci), add Reg(ci) to the list of non-empty
regions.

Step 2: For each non-empty region R and for each item i in R do:

Step 2.1: For each item j in R or in a region adjacent to R do:

Step 2.1.1: Compute sum← sum + max{0, (ri + rj)
2 − d(ci, cj)

2}2.

Step 3: Clear the data structure and return sum.

6



Remark: At Step 2.1, in order to avoid computing all distances twice, two actions are taken:
(i) Inside the same region, compute the distances from item i just to the items that appears
after i in the list of items of region Reg(ci); (ii) Regarding adjacent regions, just a subset of the
adjacent regions needs to be considered, as the other ones will be considered when the regions
interchange their roles (see Figure 5).

R

A1

A2

A3A4

I1I2

I3

I4

Figure 5: When the items in region R are being considered, just the distances to the items in
regions A1, A2, A3 and A4 need to be computed. The distances to the items in regions I1, I2,
I3 and I4 are computed when the items in Ik, k = 1, 2, 3, 4, play the central role. In IR3 the
number of adjacent regions to consider is 13. The total number of adjacent regions in IR3 and
IR2 are 26 and 8, respectively.

Assuming that the number of items in each region is constant (independent of N) then,
clearly, the complexity of the whole process is O(N). The assumption of the constant number
of items per region is very reasonable as, when the method approaches the solution or even in a
random uniformly distributed initial configuration, the items are well distributed in the space.

In order to assess the practical impact of the partitioning approach in the overlapping eval-
uation, we compare its CPU time against the CPU time of the naive approach for an increas-
ing number of randomly distributed identical circular items. Figure 6 shows the results. As
expected, while the CPU time of the partitioning approach can be linearly approximated by
T ime(N) ≈ 0.00026943 N ms, the CPU time of the naive approach can be quadratically ap-
proximated by T ime(N) ≈ 0.0000028301 N2 ms.

We also performed the same experiment considering randomly distributed different-sized
circular items with uniformly distributed radii within the interval [Rmin, Rmax] and Rmax/Rmin =
10, 100, 1000. The figures were virtualy the same. The explanation for this behaviour relies on
the fact that, although a larger number of comparisons is done, while N goes to infinity the
number of neighbour items remains constant. Of course, extreme cases with just one large item
and many small items such that the object is partitioned in almost a unique region will make the
partitioning approach to behave as the naive approach (or even worse considering the overhead
of the data structures manipulation).

7



Figure 6: Practical performance of the naive and the partitioning approaches for the overlapping
evaluation of an increasing number of randomly distributed identical items.

2.2 Object dimension and placing constraints

In this subsection we focus on the problem of fitting the items within the object while minimizing
the object area or volume, and, in the cases in which it is not equivalent, the object perimeter
or surface area. We consider several kinds of 2D and 3D objects.

If the object is a circle, to minimize its area is equivalent to minimize its radius R. Moreover,
the fact that a circular item with radius ri belongs to the circular object (which, without loss
of generality, can be considered centered at the origin) can be modeled as d(ci, 0)

2 ≤ (R − ri)
2

and R ≥ ri. In the case of a squared object, to minimize its area is equivalent to minimize
its side L. Moreover, assuming that the bottom-left corner of the object is fixed at the origin
and that its sides are parallel to the axis, the fitting of a circular item with radius ri within
the squared object with side L can be modeled as ri ≤ ci ≤ L − ri. The cases in which the
object is an equilateral triangle, a rectangle or a strip are analogous. To consider the 3D objects
counterparts is also analogous. The rectangle, the cuboid and the cylinder are the only cases
we consider for which their dimensions depend on more than one parameter and, consequently,
minimizing the area or volume is not equivalent to minimizing the perimeter or surface area.
Tables 1 and 2 give the model for each 2D and 3D problem, respectively, as well as the number
of variables and constraints. The extension to consider convex objects represented by linear
constraints is trivial. General convex 2D regions were also considered in [11, 12].

According to the typology recently introduced in [37], problems in Tables 1 and 2 (identified
by object type) can be classified as follows: (i) two-dimensional circular ODP (Open Dimension
Problem): circle, square, 2D strip, rectangle and equilateral triangle; (ii) three-dimensional
spherical ODP: sphere, cube, 3D strip, cuboid, tetrahedron, pyramid and cylinder.

8



Object type Model # of variables # of constraints

Circle

Min R

s.t. (cx
i )2 + (cy

i
)2 ≤ (R − ri)

2, ∀ i

R ≥ rmax ≡ max
i=1,...,N

{ri}
non-overlapping constraint (3)

2N + 1
N + 2

(1 is a box constraint)

Square

Min L

s.t. ri ≤ cx
i ≤ L − ri, ∀ i

ri ≤ c
y

i
≤ L − ri, ∀ i

non-overlapping constraint (3)

2N + 1
4N + 1

(2N are box constraints)

Strip

Min W

s.t. ri ≤ cx
i
≤ L − ri, ∀ i

ri ≤ c
y

i
≤ W − ri, ∀ i

non-overlapping constraint (3)

2N + 1
4N + 1

(3N are box constraints)

Rectangle

Min LW or Min L + W

s.t. ri ≤ cx
i
≤ L − ri, ∀ i

ri ≤ c
y

i
≤ W − ri, ∀ i

non-overlapping constraint (3)

2N + 2
4N + 1

(2N are box constraints)

Equilateral triangle

Min L

s.t. c
y

i
≥ ri, ∀ i

6cx
i

+ 2
√

3c
y

i
≤ 3L − 4

√
3ri, ∀ i

−6cx
i + 2

√
3c

y

i
≤ 3L − 4

√
3ri, ∀ i

non-overlapping constraint (3)

2N + 1
3N + 1

(N are box constraints)

Table 1: 2D models for minimizing the object dimension when the object is a circle, a square,
a strip, a rectangle and an equilateral triangle. (In the nonlinear programming context, box (or
bound) constraints are considered easy constraints.)

3 Numerical experiments

We are interested in finding a global solution of the proposed nonlinear programming models.
To increase the probability of finding a global solution, we run a local solver starting from
several random initial points. Given the number of items to be packed and the shape of the
object, we first compute an upper bound for the parameter (or parameters) that defines the
object dimension. Then, we randomly distribute the items within the overestimated object and
run the local solver starting from this randomly generated configuration as initial guess. This
process is repeated until a maximum allowed CPU time T is exceeded. The best local solution
is returned as a solution.

We chose Algencan [2, 1, 10, 7] as the local solver. Algencan is a recently introduced
Augmented Lagrangian method for smooth general-constrained minimization. The method is
fully described in [2] where extensive numerical experiments assess its reliability. Algencan is
available as a part of the Tango Project (see the web site [6]). In the present implementation
Algencan uses Gencan [9] to solve the bound-constrained subproblems. Gencan is an active-
set method for bound-constrained minimization. Gencan adopts the leaving-face criterion of
[8], that employs the spectral projected gradients defined in [13, 14]. For the internal-to-the-face
minimization Gencan uses a general algorithm with a line search that combines backtracking
and extrapolation. In the present available implementation, Gencan employs, for the direction
chosen at each step inside the faces, a truncated-Newton approach with incremental quotients
to approximate the matrix-vector products and memoryless BFGS preconditioners [10].

All the experiments were run on a 2GHz AMD Opteron 244 processor, 2Gb of RAM memory

9



Object type Model # of variables # of constraints

Sphere

Min R

s.t. (cx
i
)2 + (cy

i
)2 + (cz

i
)2 ≤ (R − ri)

2, ∀ i

R ≥ rmax ≡ max
i=1,...,N

{ri}
non-overlapping constraint (3)

3N + 1
N + 2

(1 is a box constraint)

Cube

Min L

s.t. ri ≤ cx
i
≤ L − ri, ∀ i

ri ≤ c
y

i
≤ L − ri, ∀ i

ri ≤ cz
i ≤ L − ri, ∀ i

non-overlapping constraint (3)

3N + 1
6N + 1

(3N are box constraints)

3D strip

Min H

s.t. ri ≤ cx
i
≤ L − ri, ∀ i

ri ≤ c
y

i
≤ W − ri, ∀ i

ri ≤ cz
i
≤ H − ri, ∀ i

non-overlapping constraint (3)

3N + 1
6N + 1

(5N are box constraints)

Cuboid

Min LWH or Min LW + LH + WH

s.t. ri ≤ cx
i
≤ L − ri, ∀ i

ri ≤ c
y

i
≤ W − ri, ∀ i

ri ≤ cz
i
≤ H − ri, ∀ i

non-overlapping constraint (3)

3N + 3
6N + 1

(3N are box constraints)

Tetrahedron

Min L

s.t. 2
√

2cx
i
− 2

√
6c

y

i
+ 2cz

i
≤

√
6L − 6ri ∀ i

2
√

2cx
i + 2

√
6c

y

i
+ 2cz

i ≤
√

6L − 6ri ∀ i

−2
√

2cx
i

+ cz
i

+ ri ≤ 0, ∀ i

cz
i
≥ 0, ∀ i

non-overlapping constraint (3)

3N + 1
4N + 1

(N are box constraints)

Pyramid

Min L

s.t. 2cx
i

+
√

2cz
i
≤ L −

√
6ri, ∀ i

−2cx
i

+
√

2cz
i
≤ L −

√
6ri, ∀ i

2c
y

i
+

√
2cz

i
≤ L −

√
6ri, ∀ i

−2c
y

i
+

√
2cz

i
≤ L −

√
6ri, ∀ i

cz
i ≥ 0, ∀ i

non-overlapping constraint (3)

3N + 1
5N + 1

(N are box constraints)

Cylinder

Min R2H or Min R(R + H)
s.t. (cx

i
)2 + (cy

i
)2 ≤ (R − ri)2, ∀ i

R ≥ rmax ≡ max
i=1,...,N

{ri}
ri ≤ cz

i
≤ H − ri, ∀ i

non-overlapping constraint (3)

3N + 2
3N + 2

(N + 1 are box constraints)

Table 2: 3D models for minimizing the object dimension when the object is a sphere, a cube, a
3D strip, a cuboid, a pyramid with equilateral triangles as faces and a square as base, a regular
tetrahedron and a cylinder.

10



and Linux operating system. Codes are in Fortran77 and the compiler option “-O4” was adopted.
In a first set of experiments, we fixed T = 1 hour and T = 1.5 hours and solved all the

2D and 3D instances with up 50 unitary-radius items, respectively. In addition to the previous
set of problems, we fixed T = 4 hours and solved all the instances with 55, 60, . . . , 95 and 100
unitary-radius items. Tables 5, 6 and 7 show the solution the method found for each combination
of number of items and 2D and 3D object type, respectively. When the object is a circle or a
square, the obtained solutions coincide (up to a prescribed tolerance) with the ones reported
in [32]. For equilateral triangles with up to 15 items, the obtained results also coincide with
the ones reported in [16]. For all the other 2D and 3D objects there are no previously reported
results. (The results reported in [32] for rectangular objects assume that weight/width = 0.1.)
Figures 7 and 8 illustrates a few selected solutions (3D figures were generated using VMD [23]
and Raster3D [4]).

To give an idea of the computational cost of the present approach, Table 8 presents a few
figures related to the 2D problems with circular and squared objects. The table shows the total
number of nonlinear programming problems that were solved and the elapsed CPU time until
the best solution was found. (The remaining time, to complete the maximum allowed CPU time
T , was spent just to confirm that a better solution could not be found.) The computational effort
of the method deserves some explanation. Larger the number of items, larger the amount of
(undesired) local minimizers of the models. So, when the number of items increases, the simple
multi-start global optimization strategy needs more local minimizations to find the “global”
minimizer. The combination of the present approach with more sophisticated global optimization
techniques might improve the computational performance of the method.

To evaluate the quality of the obtained solutions for the problems that minimize the object
area (volume), we compared them with a simple lower bound given by the sum of the items
area (volume). To compute a lower bound on the perimeter (surface area) of an object, we
proceeded as follows. First, a lower bound alb (vlb) on its area (volume) was computed. Then,
we analiticaly solved the problem of minimizing its perimeter (surface area) subject to the object
area (volume) being greater than or equal to alb (vlb) and fitting at least the largest item. Table
3 shows, for each type of object, the average relative distance to the lower bound, computed as

relative distance =
solution found− lower bound

lower bound
,

and the average density of the packings obtained. Note that, as it is known that optimal solutions
were found for circular and squared objects (and also for equilateral triangular objects up to 15
items), the comparison against the figures (average relative distance to the bound and average
packing density) of those cases can be used to evaluate the quality of the other cases. However,
the comparison must be done with care, as it is expected, for example, that the density of a
packing within a square to be worse than the density of a packing within a rectangle.

In another set of experiments, we fixed T = 24 hours and tested the behaviour of the proposed
method in the strip packing problems with different-sized circular and spherical items considered
in [35] and [36], respectively. The number of items varies from 25 to 60 and the value of the fixed
dimensions of the strips as well as the radii of the items can be found in [36, 35]. Table 4 shows
the results. The table shows a lower bound based on the areas or volumes ratio, the solutions
obtained in [36, 35] and by the present approach, the total number of nonlinear programming

11



(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7: Selected pictures of 2D unitary-radius circle packing problems: (a) 46 circles in a square
of size 13.4626063029, (b) 31 circles in a circle of radius 6.2907435849, (c)-(d) 42 and 50 circles
in equilateral triangles of size 19.4045801371 and 21.2440452846, respectively, (e) 33 circles in a
strip of fixed length 9.5 and width 13.8305751217, (f)-(g) 7 circles within a rectangle, minimizing
area (13.998199825 × 2.0) and perimeter (5.8609504075 × 5.4637640106), respectively, (h)-(i)
35 circles within a rectangle, minimizing area (23.9970048173 × 5.463736504) and perimeter
(12.3910375234 × 10.9989629363), respectively.

problems that were solved and the elapsed CPU time until the best solution was found. Figure
9 displays the graphical representation of the solutions. While the present approach failed to
obtain good quality solutions in the two 2D problems, it was able to find better solutions in four
over the six 3D problems.

As final examples of the wide range of applicability the present unified approach can have,
Figure 10a shows the solution found for the problem of packing 100 different-sized spheres in a

12



(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 8: Selected pictures of 3D unitary-radius sphere packing problems: (a) 17 spheres in a
sphere of radius 3.2711271196, (b) 24 spheres in a squared pyramid of size 9.8116682857, (c)
18 spheres in a cube of size 5.3279843248, (d) 44 spheres in a three-dimensional strip of fixed
length 9.5, fixed width 9.5 and height 3.9867870680, (e) 23 spheres in a regular tetrahedron of size
12.2090353736, (f)-(g) 17 spheres within a cylinder minimizing the volume (height 33.9972524429
and radius 1.0) and the surface area (height 5.2362405719 and radius 2.9018413949), respectively,
and (h)-(i) 17 spheres within a cuboid minimizing the volume (11.4636013874 × 5.9997955157 ×
2.0) and the surface area (5.4638212027 × 6.9742074355 × 3.7319493416), respectively.

13



Object Type
Average distance
to lower bound

Average
density

2D

Circle 0.3143 0.7661
Square 0.3091 0.7681
Strip 0.4216 0.7494

Rectangle (area) 0.2197 0.8206
Rectangle (perimeter) 0.1259 0.7919
Equilateral triangle 0.2878 0.7846

3D

Sphere 1.0598 0.4997
Cube 1.0497 0.4960
Strip 2.9543 0.4082

Cuboid (volume) 0.8211 0.5501
Cuboid (surface area) 0.5877 0.5364

Tetrahedron 1.1965 0.4706
Pyramid 1.2277 0.4622

Cylinder (volume) 0.4999 0.6667
Cylinder (surface area) 0.5742 0.5228

Table 3: Statistics related to the solutions found for the 2D and 3D instances with up 50
unitary-radius items.

tetrahedron. Finally, we also consider the case in which the object is given by a set of linear
equations. In this case, we will define the objective of the problem as minimizing the object
dimension (area, perimeter, volume or surface area) by preserving its “shape and proportion
among sides or faces”. In this case, the problem can be posed as

Minimize L
s.t. Aci + riu ≤ Lb, ∀ i

non-overlapping constraint (3)
(6)

where A ∈ IRk×n, b, u = (‖a1‖2, . . . , ‖ak‖2)
T ∈ IRk, aj is the j-th row of A and k is the number

of constraints that represent the object. As an example (see Figure 10b), consider the three-
dimensional object given by:

A =















−16 4
48 24

16 24
−48 24

−1















, b =















160
96
32
96
0















. (7)

4 Final remarks

We introduced a large variety of twice-differentiable nonlinear programming models for the
problem of minimizing the object dimension in 2D and 3D packing problems. Identical and

14



Solutions found Effort measurements

Problem Lower
bound In [36, 35] Using GENPACK Number of

trials
CPU time

is secs.

2D
(a) 12.2332 14.3785 14.9509618123 529 184.70
(b) 14.5496 17.1968 18.0340842834 54221 27735.22

3D

(c) 5.0712 9.8667 9.7941763980 58563 29320.06
(d) 5.7561 9.6220 11.0128604540 33918 52060.52
(e) 4.8487 9.4728 9.3089999467 26851 41308.01
(f) 5.8572 11.0862 11.0962093979 26806 85617.91
(g) 6.1663 11.6453 11.6210793508 6418 28081.08
(h) 6.8115 12.8415 12.7215414636 3829 19170.46

Table 4: Performance of the method in the strip packing problems with different-sized circular
and spherical items from [36, 35].

different-sized items were considered. We implemented an efficient methodology to reduce the
computational cost of computing the overlapping. A practical method was used to solve all
the proposed models, attesting its applicability. Moreover, the presented methodology is fully
parallelizable. The combination of the present approach with clever problem-dependent global
optimization techniques like the one developed in [34, 36, 35] would be a line for future research.

The complete Fortran 77 sources codes of the algorithms and models presented in this paper
are available in http://www.ime.usp.br/∼egbirgin/.

Acknowledgements

The authors are thankful to Marcel Kenji, Renato Bortolatto and Ricardo Andrade for the
careful reading of the manuscript. They are also indebted to two anonymous referees whose
comments helped to improve this paper.

15



(a) (b)

(c) (d) (e)

(f) (g) (h)

Figure 9: Problems of packing different-sized circular and spherical items within strips from
[36, 35].

16



(a) (b)

Figure 10: (a) Packing of 100 different-sized spheres within a tetrahedron. There are 50 unitary-
radius spheres and 50 spheres with radius 1.025, 1.050, . . . , 2.250. The dimension of the tetrahe-
dron is given by L = 27.3333464485. (b) Packing of 25 unitary-radius spheres into a 3D object
given by the arbitrary linear constraints (6–7). Solution: L = 1.4999323248.

17



Number of Circle Square Strip Triangle Rectangle (area) Rectangle (perimeter)
items R L L L L W L W

1 1.0000000000 1.9999986363 2.0000000000 3.4641016146 2.0000000000 2.0000000000 2.0000000000 2.0000000000
2 1.9996222546 3.4137477127 2.0000000000 5.4633621099 3.9994547642 2.0000000000 3.9992604948 2.0000000000
3 2.1544558927 3.9313808636 1.9999911315 5.4636533311 2.0000000000 5.9991345164 3.9995011744 3.7317273490
4 2.4139375051 3.9996299811 2.0000000000 6.9274637829 3.9996565400 3.9996565400 3.9996302816 3.9996302816
5 2.7010098451 4.8279613489 2.6952686399 7.4634468126 9.9986261610 2.0000000000 3.9998611307 5.4633052124
6 2.9996508504 5.3277596117 3.3224368208 7.4636709802 3.9997150028 5.9994299921 3.9997760936 5.9993282244
7 2.9997761921 5.7315971190 3.5608566245 8.9273837492 13.9981998250 2.0000000000 5.8609504075 5.4637640106
8 3.3044206851 5.8632353309 3.6884793600 9.2930737754 7.9993979180 3.9997993110 5.9995344103 5.4637633218
9 3.6127740710 5.9995518554 3.9993016842 9.4634763151 5.9996222843 5.9996222843 5.9995521684 5.9995521684
10 3.8126788316 6.7466961038 4.6951121788 9.4636358192 9.9992644508 3.9998161178 5.9996594681 7.1956196062
11 3.9228091423 7.0210502213 5.1211545417 10.7276943421 5.4634407024 7.9987047809 5.9991924047 7.4624830643
12 4.0286834176 7.1437936464 5.3765047895 10.9264246875 7.9986295356 5.9990863749 7.9982454190 5.9991228063
13 4.2349654525 7.4630289424 5.8523347064 11.4044366767 2.0000000000 25.9938432497 7.4627500826 7.4627500827
14 4.3275521837 7.7309165102 5.9980828464 11.4625024049 9.9984346514 5.4635325793 7.9984352858 7.1953665961
15 4.5206216997 7.8626415945 6.6937425787 11.4627797055 7.9988353651 7.4630923328 7.9986635705 7.4630647263
16 4.6143481044 7.9989556782 7.0649643624 12.7110751779 3.7318388122 16.9966762489 7.9986841453 7.9986841451
17 4.7912398107 8.5309003541 7.4495386792 12.9261773819 5.4635902166 11.9981939658 8.9131925338 7.9543346939
18 4.8627806310 8.6552029299 7.8517294049 13.2910260295 3.7318475438 18.9964440023 7.9990444062 8.9268910590
19 4.8629278433 8.9061300551 7.9976715063 13.4456687039 7.4632082242 9.9985864965 9.4625659570 7.9990156750
20 5.1212784390 8.9768656326 8.6935864074 13.4625490829 5.4636308244 13.9979711566 8.9272322541 8.9986390784
21 5.2512555209 9.3563084678 9.1690829563 13.4627429100 5.4636886104 14.9975772973 9.2167842122 9.4339701956
22 5.4390007858 9.4622675308 9.4490464873 14.6101271902 3.7318614400 22.9960005512 9.9407136592 8.9271510823
23 5.5445265607 9.7309291904 9.8510937710 14.8805620808 5.4636615016 15.9977610644 8.9273391176 9.9986129160
24 5.6508749142 9.8625920424 9.9971058011 14.9264967836 5.4637089641 16.9973842151 9.4629665387 9.9986287544
25 5.7520474056 9.9989092425 10.6930072130 15.2915870167 3.7318697115 25.9956839018 10.9982515685 8.9275611421
26 5.8274395455 10.3761296161 11.1687967336 15.4568486004 5.4636857741 17.9975609058 10.6588451987 9.9409595292
27 5.9054946032 10.4788058721 11.4484657320 15.4625744338 5.4637257927 18.9971982173 10.6591024240 9.9988547158
28 6.0141566559 10.6754220133 11.8505484609 15.4627172406 11.9985828103 8.9273321305 9.9989366878 10.9268949096
29 6.1377763523 10.8137503471 11.9966464202 16.6030248601 5.4637056254 19.9973689183 11.4625890050 9.9989080012
30 6.1970915627 10.9072687500 12.6932092975 16.7281252215 20.9970183919 5.4637400405 10.6592978781 10.9986516064
31 6.2907435849 11.1915352105 13.1685323354 16.9263595271 15.9979597338 7.4633846242 10.9270095378 11.4247556202
32 6.4287631231 11.3803881756 13.4480140426 17.2453120324 21.9971838652 5.4637222711 11.9404852062 10.6593828953
33 6.4856320243 11.4625012404 13.8472008358 17.4039294262 13.9984103697 8.9273990398 11.9985032730 10.6594384363
34 6.6101463641 11.7309249171 13.9962078766 17.4587344689 7.1956075610 17.9977228032 11.9986028314 10.9272272456
35 6.6964365742 11.8625361315 14.6929957747 17.4625898173 23.9970048173 5.4637365040 12.3910375234 10.9989629363
36 6.7459641444 11.9988792034 15.1690615764 17.4626981458 5.4637630915 24.9966743828 10.6595680742 12.9983311035
37 6.7579310827 12.1804216686 15.4475690694 18.5287831373 5.4637358338 25.8578787169 12.3031569983 11.9965783735
38 6.9610838204 12.2374434375 15.8270155555 18.7266870206 5.4637488666 25.9968310515 11.9817725699 12.3908769558
39 7.0571911486 12.2887512850 15.9957923056 18.9140027395 5.4637726295 26.9965090852 10.6596663838 13.9981945067
40 7.1231096220 12.6267382011 16.6927575874 18.9265358552 20.9974831288 7.1956410497 12.9268799669 11.9988610018
41 7.2592804090 12.7456257952 17.1686399573 19.2916298956 5.4637597441 27.9966619868 12.9406947738 12.3912989627
42 7.3462119818 12.8518646718 17.4477019156 19.4045801371 7.1956025496 21.9971608203 12.3913577634 12.9986607790
43 7.4192209173 13.0972405183 17.8098929473 19.4596912793 17.9980933123 8.9274901429 13.5989755952 12.3917670632
44 7.4972867738 13.1939383256 17.9953961237 19.4625983940 29.9964971470 5.4637694187 12.3914982006 13.9404577794
45 7.5722836395 13.3803865970 18.6925377387 19.4626504950 5.4637888824 30.9961898134 13.9814312021 12.3913995511
46 7.6494228038 13.4626063029 19.1682027497 20.5249300923 7.1956672420 23.9972574437 13.9985220814 12.6593249459
47 7.7233640079 13.6751033111 19.4475892668 20.7011666871 5.4637781024 31.9963361352 12.9271460134 13.9985889130
48 7.7905553343 13.8047806547 19.8069204856 20.8799581334 19.9979450130 8.9275232377 12.9989194323 14.1231541809
49 7.8860817787 13.9472637804 19.9948589623 20.9264402987 5.4637306400 33.9945655425 12.6173802384 15.0112526170
50 7.9468087710 14.0083589613 20.6923384169 21.2440452148 5.4637859581 33.9961786161 13.6373330997 14.3820364308
55 8.2101683532 14.6923955360 22.6835225197 21.4622516388 8.9275832375 22.9976175240 14.1524486932 14.9442580942
60 8.6454213199 15.3755552334 24.6785675081 22.9265606115 17.9983545775 12.3913421248 14.1235217033 15.9985449327
65 9.0166711986 15.8203131072 26.6507629243 23.4622014647 5.4638164895 43.9954346000 15.7232054364 15.9601095466
70 9.3451963876 16.4998033416 28.6306926662 24.8807696211 8.9276367873 28.9972283659 15.8552623767 16.9113958554
75 9.6711933041 17.0956713219 30.6445646992 25.4558282921 8.9276510682 30.9971052432 17.9965380801 15.8417107227
80 9.9673713500 17.4293700602 32.6135139169 26.5919337671 8.9276638633 32.9969839021 18.9231113668 15.9766418153
85 10.1624343053 17.9585744521 34.5997299255 27.2455664377 34.9968654011 8.9276756174 17.9969843318 17.8547723425
90 10.5452581347 18.6092727313 36.6010872992 27.4621886433 10.6597334412 30.9978987556 19.1320378453 17.9971314230
95 10.8393458264 19.0830329823 38.5727471051 28.7283473468 12.3916727778 27.9982222555 19.9950093368 18.0780528627
100 11.0816840023 19.4522055083 40.5514750264 29.3893128146 12.3916727778 27.9982222555 19.5888129645 19.3655902612

Table 5: Numerical results for the 2D problems.

18



Number of Sphere Cube Cuboid (volume) Cuboid (surface)
items R L L W H L W H

1 1.0000005143 1.9999987021 1.9999994082 1.9999994082 1.9999994082 1.9999998015 1.9999998015 1.9999998015
2 1.9999202433 3.1546039826 2.0000000000 3.9998520179 2.0000000000 3.9998520181 2.0000000000 2.0000000000
3 2.1546210616 3.4141527373 2.0000000000 5.9997650951 2.0000000000 2.0000000000 2.0000000000 5.9997650951
4 2.2246870768 3.4141480640 3.9999067784 3.9999067784 2.0000000000 3.9999153028 2.0000000000 3.9999153028
5 2.4141267898 3.7887647862 9.9996271139 2.0000000000 2.0000000000 5.4639348176 2.0000000000 3.9999512713
6 2.4141694573 3.8855478230 3.9999226428 5.9998452847 2.0000000000 3.9999355322 2.0000000000 5.9998549455
7 2.5911991946 3.9977338382 3.9999400751 2.0000000000 7.4638804452 3.9999563663 2.0000000000 7.4638868064
8 2.6452822222 3.9999345267 3.9999353642 3.9999353642 3.9999353642 5.9998908944 2.0000000000 5.4640108186
9 2.7320034623 4.3093402273 5.9998707285 5.9998707285 2.0000000000 5.9998870712 2.0000000000 5.9998870712
10 2.8324167450 4.6666081946 3.9999370664 9.9997482632 2.0000000000 3.7320243621 3.7320243621 5.9998991367
11 2.9019556947 4.8159601052 2.0000000000 5.4639222153 7.9996484758 5.4638610588 2.0000000000 7.9994404199
12 2.9020105031 4.8280686639 3.9998824683 3.9998824683 5.9997649343 7.9994337904 2.0000000000 5.9996461265
13 2.9997977416 4.8282131208 2.0000000000 5.9997946298 8.9278206589 3.9999337537 3.9999337537 6.8277518754
14 3.0910230631 4.8282912625 2.0000000000 9.9995751531 5.4639471485 5.9997880092 3.9999467126 4.8281141461
15 3.1415101582 5.1997445225 7.4638276614 2.0000000000 7.9996838961 5.9997645604 3.7319723788 5.4638832882
16 3.2155339532 5.2964155013 3.7319816590 8.9996807054 3.7319816590 6.2423258359 3.4142320441 6.2423258359
17 3.2711271196 5.2996749577 5.9997955157 2.0000000000 11.4636013874 6.9742074355 3.7319493416 5.4638212027
18 3.3188360708 5.3279843248 9.9996565716 3.7319855151 3.7319855151 5.4639276546 3.7319915897 6.9996882715
19 3.3858513801 5.4586383844 9.4637456920 7.9997083203 2.0000000000 4.8282103240 3.9999557695 7.9996695729
20 3.4733633429 5.6048721029 3.7319889320 10.9996304432 3.7319889320 7.1958225538 3.7319840261 5.9998330126
21 3.4862092764 5.6431452803 5.4639638751 7.9997917071 3.7319840662 7.9996463417 3.7320008721 5.4639501784
22 3.5796881818 5.7710452688 5.9998723682 5.9998723682 4.8282875226 5.4639607819 3.9999031097 7.9996349464
23 3.6273889908 5.8199237336 7.6565874480 4.8283548413 4.8283548413 7.1956140331 3.7319880108 6.9995678216
24 3.6852536176 5.8633943713 5.4639744767 8.9997659859 3.7319892222 7.1958834279 3.7320005199 6.9997694833
25 3.6872896999 5.9589662351 5.9998979005 8.9279025044 3.7319795011 8.9277722105 3.7319917901 5.9998728297
26 3.7471886302 5.9952148260 3.7319762835 9.9742707123 5.4639484659 7.1959593106 3.7320172791 7.9658996899
27 3.8132974881 5.9998355203 9.9997461864 5.4639818590 3.7319928014 9.9995542616 3.7320141670 5.4639826430
28 3.8415149358 6.2421317695 7.9998295947 7.1959606322 3.7319897620 7.1959176362 3.7320092538 7.9997307495
29 3.8769556364 6.2423824504 3.7319826950 10.9742467685 5.4639615210 8.9278148456 3.7320060834 6.9997214200
30 3.9163640724 6.2424721518 10.9997251845 5.4639882208 3.7319958897 8.9278471493 3.7320065066 6.9998178874
31 3.9506163857 6.2425174557 7.9996954592 5.4639083563 5.4638915004 8.9996802550 3.7320300978 7.1959753668
32 3.9873139176 6.2425285827 5.4639777146 7.9998611848 5.4639777146 7.9997796243 5.4639770041 5.4639770041
33 4.0197789249 6.4689813902 11.9997062916 5.4639933032 3.7319983540 9.8130876582 3.7320307315 7.1960389489
34 4.0475629785 6.5735658875 5.4639912617 12.8589488963 3.7319936763 9.9664645648 3.7320116113 7.4612564245
35 4.0842793950 6.5931612342 5.4639946940 12.9996092372 3.7319987413 9.0706267144 4.8284135759 6.2425430006
36 4.1128778440 6.6970889746 5.4639977043 12.9996874801 3.7320004885 9.9996505797 3.7320211822 7.1959652997
37 4.1546179855 6.7083709308 7.6566693014 7.6566712985 4.8283733467 7.6565995398 4.8284183539 7.6565980201
38 4.1575074608 6.7093947495 4.8283780629 7.6566840081 7.6566840081 7.6566177480 4.8284198756 7.6566177480
39 4.2238096708 6.7739983433 5.4640014512 13.9996696629 3.7320023049 7.9997871781 5.4640126543 6.9978553162
40 4.2551873286 6.7998570644 7.1959946200 10.9997719786 3.7320006207 7.9997867024 5.2659037464 7.3884098761
41 4.2961778465 6.9039667243 5.4639942369 9.9998247954 5.4639942369 7.9996918020 5.4639887407 7.1958647739
42 4.3080119020 6.9906644142 7.1959834279 7.9998806718 5.4639906152 7.1959619143 5.4639991620 7.9998289682
43 4.3528504653 7.0610542561 11.9992433167 7.1959553361 3.7319926669 7.9998102754 5.4640058977 7.4638869282
44 4.3827055183 7.0991542522 11.9997554903 7.1960017830 3.7320029043 7.4638315875 5.7112633939 7.9998952839
45 4.4068820245 7.1269867567 10.9997985680 5.4640016367 5.4640016367 6.9998991121 5.4639942298 8.9279089439
46 4.4409860772 7.1396025069 7.1959915445 12.9657366193 3.7320002792 8.9944778512 5.4640390355 7.1960161968
47 4.4739825106 7.1447631846 12.9997061426 7.1960058286 3.7320057053 8.9996324205 5.4640009566 7.1959237566
48 4.4961576629 7.2254788705 7.1960079302 12.9997392813 3.7320048642 8.9997922699 5.4640138768 7.1959859052
49 4.5191083524 7.3396050716 11.9995595224 5.4639889656 5.4639845156 8.9279159160 5.2659430685 7.9998131188
50 4.5504157703 7.3606467872 11.9997927906 5.4640048144 5.4640048144 7.6566831702 6.2425762929 7.6566831702
55 4.6849920452 7.6497254384 11.9997854621 8.9280146257 3.7320062218 9.9997441915 5.4640300646 7.4639258867
60 4.7748065618 7.6567160689 10.9998345830 7.1960136241 5.4640104777 8.9998349213 5.4640250495 8.9279785504
65 4.9241573261 7.9389780072 8.9280289549 13.9997569867 3.7320096198 9.9994110181 5.4640152915 8.9278768296
70 5.0328821287 8.1572766782 7.6567464615 10.4850757364 6.2425743011 10.4849680177 6.2426124333 7.6567505843
75 5.1642307312 8.2424863321 10.9998561341 8.9280296531 5.4640168915 11.1805242617 5.5583422100 9.1634519725
80 5.2752317706 8.5400043137 7.6567555710 11.8992578456 6.2425798506 11.9991661607 5.4639641616 8.9277971955
85 5.3792538717 8.6924540639 11.9996488835 7.1959794230 7.1959936564 10.9993312884 5.4640567077 10.6601156192
90 5.4771826035 8.8678323052 13.3134414952 7.6567626911 6.2425842090 8.9269377677 7.1941376138 10.3636092004
95 5.5716172496 9.0184678703 8.9280290941 13.9997110994 5.4640176971 9.0875358264 6.3481408059 12.2608997182
100 5.6661018170 9.1663256540 8.9280659172 14.9594160981 5.4640342817 10.4850433554 7.6567796673 9.0709141038

Table 6: Numerical results for the 3D problems.

19



Number of 3D strip Tetrahedron Pyramid Cylinder (surface) Cylinder (volume)
items L L L H R H R

1 2.0000000000 4.8989794855 3.8637033034 2.0000000000 1.0000000000 2.0000000000 1.0000000000
2 1.9999999511 6.8987786397 5.2777419314 2.0000000000 1.9998851315 3.9999799164 1.0000000000
3 1.9999996826 6.8988829315 5.7954078635 2.0000000000 2.1546325115 5.9999681193 1.0000000000
4 1.9999997558 6.8989186607 5.8636236011 7.9995822321 1.0000000000 7.9999582245 1.0000000000
5 1.9999998012 8.1648125393 5.8636160349 3.6329467608 2.1546454674 9.9999598635 1.0000000000
6 1.9999998345 8.7817120034 6.6919872393 3.6329550792 2.1546531385 11.9999534257 1.0000000000
7 1.9999998574 8.8988016274 7.1456607739 3.9999562296 2.3228259410 13.9999474063 1.0000000000
8 1.9999998750 8.8988805540 7.2778333226 3.6817732264 2.4141690175 15.9999417139 1.0000000000
9 1.9999998889 8.8989049422 7.5660753093 5.2659119030 2.1546760712 17.9999362872 1.0000000000
10 1.9999998872 8.8989186535 7.7273237304 3.7012882426 2.7012496035 19.9999310827 1.0000000000
11 1.9999998908 10.1473178899 7.8588071332 3.6532929729 2.8209499930 21.9979915089 1.0000000000
12 1.9999999018 10.3327450473 7.8632345878 5.3634470841 2.4141288826 23.9978597508 1.0000000000
13 1.9999998503 10.5039904936 7.8634093587 3.7111744027 2.9998379486 25.9977315770 1.0000000000
14 1.9999999132 10.7497129642 7.8634553793 3.9994148462 2.9961624606 27.9976076192 1.0000000000
15 1.9999998995 10.8777393372 8.6303103460 5.4025004405 2.7011994854 29.9974864572 1.0000000000
16 1.9999998967 10.8983529191 8.8467717390 7.0451550000 2.4141488724 31.9973681489 1.0000000000
17 1.9999999316 10.8985312575 8.9751441419 5.2362405719 2.9018413949 33.9972524429 1.0000000000
18 1.9999999092 10.8986448409 9.1412510454 5.4201459445 2.9567222851 35.9971391244 1.0000000000
19 1.9999999091 10.8986690234 9.2769864393 5.4223037529 2.9998633645 37.9970280076 1.0000000000
20 1.9999999175 10.8987161340 9.2776202362 5.4223197427 2.9998806834 39.9969189309 1.0000000000
21 1.9999999449 11.9107290304 9.5209353533 5.9988407441 2.9896028065 41.9968117522 1.0000000000
22 1.9999999378 12.1644939511 9.5954475686 6.9596198256 2.8210553449 43.9967063459 1.0000000000
23 2.5159516472 12.2090353736 9.7466361361 6.7723208885 2.9612676153 45.9966026003 1.0000000000
24 2.6231977042 12.4099719051 9.8116682857 7.1300489686 2.9567312663 47.9965004154 1.0000000000
25 2.6956448382 12.5741811638 9.8544161043 7.4064098865 2.9232129228 49.9963997013 1.0000000000
26 2.9617066600 12.6747046630 9.8627741922 7.1334431350 2.9998954899 51.9963003768 1.0000000000
27 3.0684401131 12.7736673573 9.8633027680 7.1334608972 2.9999050186 53.9962023683 1.0000000000
28 3.1196255500 12.8600469119 9.8634416955 7.9968894897 2.9844231581 55.9961056087 1.0000000000
29 3.1913632493 12.8842225810 9.8634679168 7.9997982380 3.0407002526 57.9960100366 1.0000000000
30 3.2086893898 12.8980309149 9.8635090748 7.1505964007 3.3044734720 59.9959155958 1.0000000000
31 3.2859642224 12.8984986467 10.5305062334 7.1507270283 3.3046552989 61.9958222347 1.0000000000
32 3.3086949340 12.8986547111 10.6235488127 8.8348924555 2.9999147311 63.9957298179 1.0000000000
33 3.3178381842 12.8986989768 10.7625054766 8.8445826634 2.9999150187 65.9956385637 1.0000000000
34 3.3204768911 12.8987169455 10.8335071538 8.8446035999 2.9999206841 67.9955481688 1.0000000000
35 3.3224991941 12.8987348085 11.0171361880 9.9954742176 2.9760543713 69.9954586825 1.0000000000
36 3.3227701051 13.8016667112 11.0838846064 7.1616804229 3.6130019962 71.9953700694 1.0000000000
37 3.5030791690 14.0412319624 11.1960904966 7.1623926235 3.6381953396 73.9952822965 1.0000000000
38 3.5474588054 14.1657928132 11.2697974969 8.8673378976 3.3046009656 75.9951953326 1.0000000000
39 3.6033087937 14.2196073802 11.2890658063 8.8676233722 3.3046726654 77.9951528898 1.0000000000
40 3.6427538524 14.3444779177 11.4043727618 10.5557274333 2.9999277002 79.9950671884 1.0000000000
41 3.7221021534 14.4386612980 11.5140686475 10.5557491304 2.9999315502 81.9959862095 1.0000000000
42 3.8536666422 14.5640872361 11.6082371018 8.7907404838 3.5579717977 83.9959193185 1.0000000000
43 3.9249852736 14.6375723666 11.6669595312 8.8804026948 3.5693360047 85.9958535090 1.0000000000
44 3.9867870680 14.7494779827 11.7267093766 7.1694333250 3.9417801321 87.9957876533 1.0000000000
45 4.1307639555 14.8022341879 11.7669103726 8.8822182115 3.6130144699 89.9957228992 1.0000000000
46 4.2650163216 14.8666473324 11.8183969887 7.1833112011 3.9434227567 91.9956583385 1.0000000000
47 4.3919831741 14.8843583422 11.8389199288 12.2668751642 2.9999367635 93.9955940066 1.0000000000
48 4.4702282327 14.8888916898 11.8543855969 12.2668975375 2.9999394941 95.9955306328 1.0000000000
49 4.5479606952 14.8977952472 11.8602390935 8.8864887258 3.7543441279 97.9954674610 1.0000000000
50 4.6361497395 14.8980720507 11.8631629616 10.1548109139 3.6130894764 99.9954044402 1.0000000000
55 4.8415441305 14.8987433181 11.8635296721 13.9780304659 2.9999509413 109.9950972151 1.0000000000
60 5.3118320575 16.1509800447 12.7654145569 10.6125761426 3.8506973721 119.9947990625 1.0000000000
65 5.7279874805 16.5478815306 13.1924098309 10.6151070070 3.9236949232 129.9945087687 1.0000000000
70 5.9680473558 16.8200872202 13.4726646298 15.7352137761 3.3047042663 139.9942266038 1.0000000000
75 6.4032451608 16.8976376228 13.7256661130 12.3341346475 3.9235372581 149.9939509187 1.0000000000
80 6.9617540267 16.8986738106 13.8486607110 13.7717708962 3.9236584875 159.9936813790 1.0000000000
85 7.2908059511 17.6079959898 13.8632029690 13.7807630028 3.9237709088 169.9934168155 1.0000000000
90 7.4688349216 18.2065359049 13.8635411877 15.3806065880 3.9237168589 179.9931591781 1.0000000000
95 7.9994329832 18.5235744448 14.5689221176 15.1764940219 3.9237791996 189.9929003178 1.0000000000
100 8.5044325927 18.7913616667 14.9342481081 15.7490442120 3.9236938448 199.9926489863 1.0000000000

Table 7: Numerical results for the 3D problems (cont.).

20



Circle Square

Number of Number of CPU time Number of CPU time
items trials in seconds trials in seconds

1 1 0.00 1 0.00
2 9 0.14 1 0.00
3 978 10.81 12 0.01
4 49382 270.93 1 0.00
5 2194 19.15 1 0.00
6 7497 64.19 38 0.56
7 200231 1154.91 16 1.19
8 194651 1291.75 50 5.69
9 99678 809.78 4 0.74
10 1457 15.98 148 23.07
11 76924 650.97 14 1.95
12 10444 112.07 22 5.32
13 9003 95.65 191 32.21
14 14242 180.95 15 4.60
15 30803 417.10 812 148.67
16 96878 1390.54 1 0.00
17 112173 1555.73 615 131.41
18 6031 96.12 52 13.27
19 399 6.47 9 3.20
20 33934 694.50 13 4.31
21 5447 137.53 208 60.78
22 24829 679.90 107 22.41
23 89 3.41 38 9.34
24 84943 3049.42 974 223.51
25 201 9.16 2 0.03
26 39288 1731.99 10 2.35
27 35280 1865.71 268 70.48
28 4386 252.17 384 92.88
29 3575 223.01 50 16.81
30 2 0.09 79 23.47
31 1 0.02 375 102.02
32 2 0.13 257 53.67
33 1167 89.87 35 8.58
34 1029 83.38 228 50.41
35 46 3.48 4564 1029.51
36 3 0.22 31 16.93
37 2306 189.48 1011 297.64
38 25562 2430.00 4803 1318.76
39 7 0.64 215 83.36
40 20665 2191.25 56 20.97
41 96 10.51 166 64.72
42 246 29.63 179 59.08
43 527 70.99 6654 1698.42
44 139 37.10 173 54.16
45 3007 456.26 192 39.47
46 32 4.79 213 52.13
47 64 10.05 475 119.72
48 2422 425.56 2748 753.35
49 10859 2087.76 3335 1011.08
50 50 10.02 1315 437.59
55 102 24.64 2 0.19
60 179 56.58 512 204.70
65 5361 2049.69 6848 3559.31
70 2647 1245.92 11360 6237.46
75 13143 7411.86 18817 10339.88
80 628 457.77 8661 6661.87
85 16759 13277.81 12261 11589.59
90 10123 8783.84 9824 10765.19
95 12937 13321.23 5790 7871.10
100 11553 13760.70 987 1678.37

Table 8: Effort measurements for the packing problems with circular and squared objects.

21



References

[1] R. Andreani, E. G. Birgin, J. M. Mart́ınez and M. L. Schuverdt, Augmented Lagrangian
methods under the Constant Positive Linear Dependence constraint qualification, Mathe-
matical Programming, to appear.

[2] R. Andreani, E. G. Birgin, J. M. Mart́ınez and M. L. Schuverdt, On Augmented Lagrangian
methods with general lower-level constraints, Technical Report MCDO-050303, Department
of Applied Mathematics, UNICAMP, Brazil, 2005 (Available in Optimization On Line and
in www.ime.usp.br/∼egbirgin/).

[3] A. W. Appel, An Efficient Program for Many-Body Simulations, SIAM Journal on Scientific
and Statistical Computing 6, pp. 85–103, 1985.

[4] D. J. Bacon and W. F. Anderson, A Fast Algorithm for Rendering Space-Filling Molecule
Pictures, Journal of Molecular Graphics 6, 219-220, 1988.

[5] J. Barnes and P. Hut, A Hierarchical O(n log n) force calculation algorithm, Nature 324,
1986.

[6] E. G. Birgin, http://www.ime.usp.br/∼egbirgin/tango/

[7] E. G. Birgin, R. Castillo and J. M. Mart́ınez, Numerical comparison of Augmented La-
grangian algorithms for nonconvex problems, Computational Optimization and Applications
31, pp. 31–56, 2005.

[8] E. G. Birgin, J. M. Mart́ınez, A box constrained optimization algorithm with negative
curvature directions and spectral projected gradients, Computing [Suppl] 15, pp. 49–60,
2001.

[9] E. G. Birgin and J. M. Mart́ınez, Large-scale active-set box-constrained optimization
method with spectral projected gradients, Computational Optimization and Applications
23, pp. 101–125, 2002.

[10] E. G. Birgin and J. M. Mart́ınez, Structured minimal-memory inexact quasi-Newton method
and secant preconditioners for Augmented Lagrangian Optimization, Computational Opti-
mization and Applications, to appear.

[11] E. G. Birgin, J. M. Mart́ınez, W. F. Mascarenhas and D. P. Ronconi, Method of Sentinels
for Packing Objects within Arbitrary Regions, Journal of the Operational Research Society
57, pp. 735–746, 2006.

[12] E. G. Birgin, J. M. Mart́ınez, F. H. Nishihara and D. P. Ronconi, Orthogonal packing of
rectangular items within arbitrary convex regions by nonlinear optimization, Computers &
Operations Research 33, pp. 3535–3548, 2006.

[13] E. G. Birgin, J. M. Mart́ınez and M. Raydan, Nonmonotone spectral projected gradient
methods on convex sets, SIAM Journal on Optimization 10, pp. 1196–1211, 2000.

22



[14] E. G. Birgin, J. M. Mart́ınez and M. Raydan, Algorithm 813: SPG - Software for convex-
constrained optimization, ACM Transactions on Mathematical Software 27, pp. 340–349,
2001.

[15] E. G. Birgin, J. M. Mart́ınez and D. P. Ronconi, Optimizing the Packing of Cylinders into a
Rectangular Container: A Nonlinear Approach, European Journal of Operational Research
160, pp. 19–33, 2005.

[16] E. Friedman, http://www.stetson.edu/∼efriedma/packing.html

[17] A. Brooke, D. Kendrick and A. Meeraus, GAMS: A user’s guide, Release 2.25, The Scientific
Press, Redwood City, CA, 1992.

[18] M. Goldberg, The packing of equal circles in a square, Mathematics Magazine 43, pp. 24–30,
1970.

[19] L. Greengard and V. Rokhlin, A Fast Algorithm for Particle Simulations, Comp. Phys. 73,
1987.

[20] L. Greengard and V. Rokhlin, The rapid evaluation of potential fields in 3 dimensions,
Lecture Notes in Mathematics 1360, pp. 121–141, 1988.

[21] C. de Groot, R. Peikert and D. Würtz, The optimal packing of ten equal circles in a square,
IPS Research Report 90-12, ETH, Zürich, 1990.

[22] R. W. Hockney and J. W. Eastwood, Computer Simulation using Particles, McGraw Hill,
New York, 1981.

[23] W. Humphrey, A. Dalke and K. Schulten, VMD -Visual Molecular Dynamics, J. Molecular
Graphics, vol. 14, pp. 33–38, 1996.

[24] J. Katzenelson, Computational structure of the N-body problem, SIAM Journal on Scien-
tific and Statistical Computing 10, pp. 787–815, 1989.

[25] M. Locatelli and U. Raber, Packing equal circles in a square: a deterministic global opti-
mization approach, Discrete Applied Mathematics 122, pp. 139–166, 2002.

[26] C. D. Maranas, C. A. Floudas and P. M. Pardalos, New results in the packing of equal
circles in a square, Discrete Mathematics 142, pp. 287–293, 1995.

[27] J. M. Mart́ınez and L. Mart́ınez, Packing optimization for automated generation of complex
system’s initial configurations for molecular dynamics and docking, Journal of Computa-
tional Chemistry 24, pp. 819–825, 2003.

[28] W. F. Mascarenhas and E. G.Birgin, Using sentinels to detect intersections, submitted, 2006
(Available in www.ime.usp.br/∼egbirgin/).

[29] N. Mladenović, F. Plastria and D. Urošević, Reformulation descent applied to circle packing
problems, Computers & Operations Research 32, pp. 2419–2434, 2005.

23



[30] B. A. Murtagh and M. A. Saunders, MINOS 5.5 User’s Guide, Report SOL 83-20R, Systems
Optimization Laboratory, Stanford University (revised July 1998).

[31] K. J. Nurmela and P. R. J. Österg̊ard, Packing up to 50 equal circles in a square, Discrete
& Computational Geometry 18, pp. 111–120, 1997.

[32] E. Specht, http://www.packomania.com/

[33] Yu. G. Stoyan, Mathematical methods for geometric design, In: T. M. R. Ellis and O.
J. Semenkoc (eds), Advances in CAD/CAM, Proceedings of PROLAMAT 82, Leningrad,
Amsterdam, pp. 67–86, 1983.

[34] Yu. G. Stoyan and G. N. Yas’kov, Mathematical model and solution method of optimiza-
tion problem of placement of rectangles and circles taking into account special constraints,
International Transactions in Operational Research 5, pp. 45–57, 1998.

[35] Yu. G. Stoyan and G. N. Yas’kov, A mathematical model and a solution method for the
problem of placing various-sized circles into a strip, European Journal of Operational Re-
search 156, pp. 590–600, 2004.

[36] Yu. G. Stoyan, G. N Yas’kov and G. Scheithauer, Packing spheres of various radii into a
parallelepiped, Preprint MATH-NM-15-2001, TU Dresden, 2001.

[37] G. Wäscher, H. Haussner and H. Schumann, An improved typology of cutting and packing
problems, European Journal of Operational Research, to appear.

[38] F. Zhao, An 0(N) algorithm for three-dimensional n-body simulations, Technical Report,
AI-TR-995, MIT Al Lab, Cambridge, MA, 1987.

24


