
INTERNATIONAL
TRANSACTIONS

IN OPERATIONAL
RESEARCHIntl. Trans. in Op. Res. XX (20XX) 1–28

DOI: xx.xxxx/itor.xxxxx

Energy-aware flexible job shop scheduling problem with nonlinear
routes and position-based learning effect

Ernesto G. Birgina,∗, José Angel Riveauxa and Débora P. Ronconib
aDepartment of Computer Science, Institute of Mathematics and Statistics, University of São Paulo, Rua do Matão, 1010,

Cidade Universitária, 05508-090, São Paulo, SP, Brazil.
bDepartment of Production Engineering, Polytechnic School, University of São Paulo, Av. Prof. Luciano Gualberto, 1380,

Cidade Universitária, 05508-010 São Paulo, SP, Brazil
E-mail: egbirgin@ime.us.br [Ernesto G. Birgin]; jangel.riveaux@usp.br [José Angel Riveaux];

dronconi@usp.br [Débora P. Ronconi]

Received DD MMMM YYYY; received in revised form DD MMMM YYYY; accepted DD MMMM YYYY

Abstract

Sustainability has become one of the main objectives in all human activities and, in particular, in manufacturing
environments. In this paper we consider the flexible job shop scheduling problem with the objective of minimizing
energy consumption. As it is known that a considerable part of the energy consumption occurs when the machines
are on and idle, the addressed problem includes the possibility of turning the machines off and on between pro-
cessing operations. To bring the problem closer to the large variety of real-world problems it encompasses, we
include two relevant factors: nonlinear routes and position-based learning effect. The treated problem is formally
described through a mixed integer linear programming model. We propose constructive heuristics, two types of
neighborhood with which we construct local search schemes and three metaheuristics, namely, general variable
neighborhood search, greedy randomized adaptive search procedure and simulated annealing. We conduct a large
number of experiments to evaluate the performance of the introduced methods, on small-sized and large-sized
instances. In the large-sized instances, the general variable neighborhood search, that combines the two neighbor-
hoods into a single method, is particularly effective. In the small-sized instances with known optimal solution, the
greedy randomized adaptive search procedure finds solutions that, on average, are within 0.22% of the optimal
solution.

Keywords: energy-aware scheduling; flexible job shop; nonlinear routes; arbitrary precedence constraints; learning effect; con-
structive heuristics; local search; metaheuristics

1. Introduction

The flexible job shop (FJS) is a scheduling problem at the core of manufacturing environments that is
notable for its number of practical applications. The problem is NP-hard because it includes the job shop
(JS) scheduling problem, known to be NP-hard (Garey et al., 1976), as a particular case. Because of its

∗Author to whom all correspondence should be addressed (e-mail: egbirgin@ime.us.br).

© 2025 International Transactions in Operational Research © 2025 International Federation of Operational Research Societies

2 Running Author / Intl. Trans. in Op. Res. XX (20XX) 1–28

relevance and difficulty of solution, a wide variety of heuristic and metaheuristic methods have been de-
veloped in the recent literature for its solution, see Dauzère-Pérès et al. (2024); Xie et al. (2019). At the
same time, due to the large number of real-world problems that fall within its scope, various practical
aspects have been included in its formulation. In this work, we consider the FJS scheduling problem
with nonlinear routes and position-based learning effect. By learning effect we mean that the process-
ing times of the operations in the machines depend on the position that the operations occupy within
the machines, i.e. we consider a position-based learning effect. We refer to Biskup (1999); Cheng and
Wang (2000); Gupta and Gupta (1988) as the first applications of the learning effect idea in scheduling
problems. By nonlinear routes we refer to the fact that the operations that constitute a job do not have to
follow a linear order for their execution, but their precedence relations are given by an arbitrary directed
acyclic graph. In particular, this may allow different operations of the same job to be processed in paral-
lel. See Birgin et al. (2014) for details. It is worth noting that the inclusion of nonlinear routes in the FJS
makes it possible to tackle the online printing shop (OPS) scheduling problem, a real and challenging
problem in today’s printing industry (Araujo et al., 2024a,b; Birgin et al., 2015; Lunardi et al., 2020,
2021). As described in Lunardi et al. (2020), in the OPS scheduling problem, orders of products to be
manufactured, such as books, brochures, flyers, photo albums, and many others, are received online.
Each type of product has a different production plan, but they all involve a printing operation. When a
significant number of orders is reached, in order to save raw material (paper), a cutting stock problem
is solved to merge the printing operations of the different orders placed. The orders whose printing op-
erations are combined form a single job. Thus, the jobs in the OPS scheduling problem, which consist
of a heterogeneous set of operations with arbitrary precedence constraints, are extremely diverse. In the
study of the OPS problem carried out in Lunardi et al. (2020, 2021), several complicating features such
as periods of unavailability of the machines, resumable operations, sequence-dependent setup times,
partial overlapping of operations with precedence constraints, release times, and fixed operations were
addressed. However, a complicating factor of this real-world problem was neglected: several operations
are performed by human operators. These tasks include computer-aided layout of materials to be printed,
assembling the various parts of a book and collating the covers, handling the cutting tools, packaging
the finished products, and others. These tasks performed by human operators are subject to the learning
effect. Assuming that a human operator learns by repeatedly performing the same operation, it is rea-
sonable to say that, within certain limits, the ith execution will be faster than the (i− 1)th. While there
are other alternatives, this gives rise to the idea of a learning effect model based on the position of the
operation within the list of operations to be performed by the same operator.

In the present work, we recognize that sustainability has gained paramount importance over the past
few decades, becoming a top global objective. In a simple way, sustainability means meeting the needs
of the present without affecting future generations. Therefore, recent literature has referred as green
scheduling to scheduling problems that take into account workers’ safety (Gong et al., 2019), well-being
of workers (Destouet et al., 2024), machinery preservation (Wu and Sun, 2018), carbon emissions (Li and
Chen, 2023; Zhu et al., 2020), noise emissions and energy consumption and/or cost (Gahm et al., 2016),
among others. Energy, in particular, has been a focal point in The 2030 Agenda for Sustainable Devel-
opment (Assembly, 2015) adopted at the United Nations Sustainable Development Summit in 2015. For
this reason, in the present work we consider the energy-aware goal of minimizing energy consumption.
As it is known that a considerable part of the energy consumption occurs when the machines are on
and idle, the problem considered includes the possibility of turning the machines off and on between
processing operations. As most of the time the energy consumed comes from non-renewable sources,
there is a direct relationship between energy consumption and carbon emission, which intensifies the
warming effect.

© 2025 International Transactions in Operational Research © 2025 International Federation of Operational Research Societies

Running Author / Intl. Trans. in Op. Res.XX (20XX) 1–28 3

The energy consumption scheme in place takes into account the cost of turning machines on and off,
the cost of each machine in processing each operation, the cost of keeping a machine on and idle, and a
cost related to keeping the facility running. It should be noted that the possibility of switching a machine
off and on between the processing of two successive operations is considered if this results in a lower cost
than the cost of keeping the machine on and idle. However, at the same time that it may be less costly,
turning a machine off and on may take longer, increasing the completion time of one or more jobs. Thus,
the objective function of the problem is not regular. The starting point of this work is the modeling of the
problem under consideration with mixed integer linear programming. The modeling is twofold. On the
one hand, it aims to describe the problem exactly. On the other hand, it is used to solve small instances
of the problem with an exact solver in order to check the effectiveness of the proposed methods. In the
sequel, we develop a constructive list scheduling heuristic and two different neighborhoods: one based
on removing and reinserting a single operation and another based on removing a single operation, de-
stroying, reinserting, and reconstructing. On the basis of the neighborhoods, two local search algorithms
and three metaheuristics are developed. The metaheuristics considered are simulating annealing (SA),
greedy randomized adaptive search procedure (GRASP) and generalized variable neighborhood search
(GVNS).

The rest of this work is organized as follows. A literature review is presented in Section 2. In
Section 3, we formally describe the problem and formulate it as a mixed integer linear programming
(MILP) problem. In Sections 4 and 5, we introduce a constructive heuristic and two local search
strategies, respectively. In Section 6, we describe the metaheuristics considered. Extensive numeri-
cal experiments are presented in Section 7. Section 8 includes conclusions and directions for future work.

Notation. The symbol e represents the mathematical constant whose value is approximately 2.71828,
ln(·) is the natural logarithm, R>0 = {x ∈ R | x > 0}, and Z>0 = {x ∈ Z | x > 0}.

2. Literature review

In the following, we present a literature review of papers dealing with energy consumption in the FJS
environment. It should be noted that, while a few of them take into account a learning effect, none of
them consider nonlinear routes. The design of models for the FJS problem with the minimization of
energy consumption has been the subject of a few recent publications. In Mouzon et al. (2007) it is
highlighted that, in scheduling problems, a significant part of the energy consumption corresponds to
non-bottleneck machines that remain on and idle. Based on this premise, Meng et al. (2019); Zhang
et al. (2017a,b,c) propose mathematical models for the FJS scheduling problem, with the objective of
minimizing energy consumption and allowing machines to be turned on and off between processing
operations. (A constraint programming model and a minor modification to the MILP model proposed
in Meng et al. (2019) are presented in Ham et al. (2021).) In Meng et al. (2019) a comparison with the
models previously proposed in Zhang et al. (2017a,b,c) is presented, showing that the model proposed
in Meng et al. (2019) is more effective/efficient when trying to solve small instances with an exact
method. The model introduced in the present work, which uses the same binary variables as model 2.2
proposed in Meng et al. (2019), is based on the model proposed in Araujo et al. (2024b). The choice for
binary variables indicating whether an operation i is attributed to position r of a machine k was driven by
the need to model the learning effect that depends on the position that an operation takes in the machine
(the higher the position the shorter the processing time). When compared to the model in Meng et al.
(2019), it additionally includes the precedence relations between operations of the same job given by an

© 2025 International Transactions in Operational Research © 2025 International Federation of Operational Research Societies

4 Running Author / Intl. Trans. in Op. Res. XX (20XX) 1–28

arbitrary directed acyclic graph (nonlinear routes) and the effect of learning on processing time. When
compared to the model presented in Araujo et al. (2024b), it differs in the objective function, which
implies in considering, for example, the possibility of turning machines off and on between processing
operations. Besides, it is worth mentioning that the presence of the model in the present work serves to
clearly describe the problem under consideration.

In Li et al. (2020) the FJS environment with dual resources and the minimization of energy con-
sumption is considered. The problem is described through a MILP model. For its solution, different
neighborhoods, a local search, a restarting mechanism and an optimization method based on migrating
birds are proposed. In Lu et al. (2019), the problem of minimizing the energy consumption combined
with the completion time in an FJS environment is considered. As the makespan is multiplied by the
energy consumption per time unit, this component of the objective function corresponds to consider an
energy consumption relative to keeping the plant running. This means that the objective can be seen as
minimizing energy consumption only. For this problem, a water wave optimization algorithm is consid-
ered.

In Lei et al. (2016), the conflict between minimizing energy consumption and balancing between the
working lines is studied. The problem with the two objectives is modeled as a bi-objective problem and
a shuffled frog-leaping algorithm (SFLA) is proposed. In Ren et al. (2020) it is considered an FJS en-
vironment with a particular type of nonlinear routes: some operations are standard operations that must
be processed on machines while others are assembly operations that must be processed on assembly
stations and require a set of operations to be previously completed. The objective of minimizing the
makespan and energy consumption. For this bi-objective problem, a hybrid metaheuristic combining ge-
netic algorithms with particle swarm optimization is proposed. In Wu and Sun (2018), turning machines
off and on and controlling the speed at which machines operate are considered as ways to reduce energy
consumption. The considered problem simultaneously optimizes the makespan, the energy consumption
and the number of times the machines need to be turned off and on. For this problem, a non-dominated
sorted genetic algorithm (NSGA-II) that integrates a green scheduling heuristic is proposed. In Gong
et al. (2019), it is considered a multi-objective problem with five objectives, among them, the total en-
ergy cost. In an environment with dynamic electricity prices, it may be interesting to process operations
in the night period, which would increase the cost with labor. Therefore, another cost considered is the
labor cost. The other three objectives are the maximum load of a machine, the sum of all machines load
and the makespan. For this problem, a NSGA-III method is designed. In Wu et al. (2019), the problem
under consideration is a manufacturing problem of aerospace and military products, in which, due to the
long processing cycle of the components, tool wear affects the processing of the work. The problem fits
into an FJS environment and the goal is to simultaneously minimize makespan and energy consump-
tion, taking into consideration the deterioration effect of processing times. The deterioration model is
time-dependent and the energy consumption model follows a very specific energy consumption profile
for operations that are all cutting operations. For this problem, a bi-objective hybrid pigeon-inspired
optimization and simulated annealing algorithm is developed.

In Li and Chen (2023), a bi-objective problem in which makespan and carbon emissions are min-
imized is considered. The processing times are affected by Dejong’s learning effect (De Jong, 1957),
but the carbon emission from the processing of each operation is considered to be fixed and does not
depend on its processing time. Therefore, even if there were a direct relationship between energy con-
sumption and carbon emissions, minimization of one would not be equivalent to minimization of the
other, since energy consumption is related to processing time. For this problem, a multiobjective spar-
row search algorithm is proposed. For an overview of carbon emission as a performance measure in the
manufacturing industry, see Laurent et al. (2010). More recently, Gong et al. (2024) dealt with the simul-

© 2025 International Transactions in Operational Research © 2025 International Federation of Operational Research Societies

Running Author / Intl. Trans. in Op. Res.XX (20XX) 1–28 5

taneous minimization of makespan and energy consumption in an FJSP environment. In the considered
scenario, some operations have a linear route, while others are independent and have no precedence re-
lationship linking them to any other operation. The calculation of energy consumption does not take into
account the possibility of turning off and on the machines. The authors proposed an algorithm based on
a combination of the Memetic Algorithm (MA) and the Non-Dominated Sorting Genetic Algorithm II
(NSGA-II).

3. Problem definition and formulation

The FJS scheduling problem is an extension of the JS scheduling problem. In the JS there is a set O of
operations and a set F of machines. For each operation i ∈ O, a machine fi ∈ F is given that must
process operation i. The operations are divided into jobs J1, J2, . . . , Jn such that O = ∪nk=1Jk and
Jk1 ∩Jk2 = ∅ whenever k1 ̸= k2. The operations of the same job must be executed in a predefined linear
order. The “F” in the FJS stands for “flexible” and refers to the fact that instead of there being only one
machine fi capable of processing operation i, for each operation i there is a subset of machines Fi ⊆ F
that can process it. This feature is known as routing flexibility. The objective is to allocate each operation
to a machine and decide in which order the machine should execute the operations allocated to it, so that
the precedences between operations are honored and some predefined objective is minimized.

The FJS with nonlinear routes is an extension of the FJS scheduling problem. (See (Dauzère-Pérès
et al., 2024, §6.1) for a discussion of the different designations given in the literature for this problem.)
The extension consists in relaxing the precedence constraints of the operations of the same job. Instead
of a linear order, the relationships can be given by an arbitrary directed acyclic graph (DAG). This
relaxation corresponds to important practical cases in the modern printing industry. For example, a job
may be to produce a book and the operations may, simplistically, include a layout operation preceding
all others, the printing (in parallel and without precedence between them) of different blocks of sheets,
and, finally, gathering all the sheets blocks and gluing them together with the covers. Clearly, lots of
other real-world problems fit into the same description.

The FJS with nonlinear routes and position-based learning effect adds a further real-world ingredient
to the problem. In classical scheduling problems, given an operation i ∈ O and a machine k ∈ Fi, the
processing time pik that machine k needs to process operation i is part of the problem data. However,
in the real world a machine (human operator) learns through the repetitive execution of operations. The
first time it does something it takes some time, the second time it does it faster and so on. That is why we
consider in the present work that the actual processing time is a function that depends on a standard time
pik and on the position that operation i occupies in the list of operations to be executed by machine k.
If we call this function ψα, then we say that the effective processing time of operation i, on machine k,
if it occupies the position r in the list of machine k, is given by ψα(pik, r). In this work, we consider
ψα(p, r) = ⌊p/rα+1/2⌋, where α > 0 is a given learning rate. Adding 1/2 and taking the floor has the
purpose of rounding the potentially non-integer value p/rα.

It now remains to mention the goal to be minimized. In general, the makespan is considered. In
this work we consider the energy consumption. The data we have for this purpose, related to each
machine k ∈ F , are: (a) how much the machine consumes, per unit of time, when it is processing
an operation (named γprock), (b) how much the machine consumes, per unit of time, when it is on and
idle (named γidlek), (c) how long it takes for the machine to be turned on and what is the consumption
of turning it on (named τonk and γonk , respectively), (d) how long it takes for the machine to be turned
off and what is the consumption of turning it off (named τoffk and γoffk , respectively) and (e) what is the

© 2025 International Transactions in Operational Research © 2025 International Federation of Operational Research Societies

6 Running Author / Intl. Trans. in Op. Res. XX (20XX) 1–28

maximum time the machine can be on and idle (named τ idlek). In addition, we also know the energy
cost, per unit of time, of having the plant running (named γextra). We consider that all machines start
off and must be shut down at the end. Of course, a machine must be turned on before processing its
first operation. The plant should start running the instant the first machine is turned on and stop running
the instant the last machine completes its shutdown process. With this data, for each machine and each
pair of operations that are processed on it consecutively, we must decide whether the machine should be
turned off and on again or whether it should remain on and idle. Naturally, if the decision is to be turned
off and on, there must be, between the completion of one operation and the start of the next, enough
time to turn the machine off and on. An interval greater than the minimum imposed by the precedence
relations between two successive operations may allow the machine to be turned off and on. This can be
advantageous from the point of view of energy consumption, while increasing the completion time of
one or more jobs. Therefore, the objective function considered in this work is non-regular.

In some sense, considering that there is a cost, per unit of time, for having the plant running, one
might think that minimizing energy consumption is nearly the same thing as minimizing makespan. The
following example shows that this is not the case. Let us consider the instance with 16 operations divided
into 4 jobs whose precedence DAG is shown in Figure 1. In this instance, we have O = {1, 2, . . . , 16}
and F = {1, 2, . . . , 7}. The Fi sets for i ∈ O and the standard processing times pik for i ∈ O and
k ∈ Fi are represented in Table 1. The data from (a) to (e) specified in the previous paragraph and
describing the machines’ energy consumption are shown in Table 2. The cost per unit of time to operate
the plant is γextra = 422. We solved this instance by considering two different objectives. In one case,
we minimized the energy consumption. In the other case, we solved a problem whose solution is the
minimum energy solution among those that minimize the makespan. The solutions to these two problems
are shown in Figures 2a and 2b, respectively. The optimal solution of the problem corresponding to
minimizing energy consumption has energy consumption E = 200,793 and makespan Cmax = 270.
The solution of the second problem has energy consumption E = 200,955 and makespan Cmax = 267,
i.e., higher consumption and lower makespan. This clearly shows that the problems are different.

1 3

2

4

5 6

7

8

9 10 12

11

13 14 15 16

Fig. 1. DAG representing the precedence relationships of an instance with 16 operations divided into 4 jobs. The number of
jobs corresponds to the number of connected components of the DAG.

We now introduce the mathematical MILP formulation of the FJS scheduling problem with nonlinear
routes and position-based learning effect, in order to minimize the energy consumption. We first define
the data of an instance of the problem, most of which were already mentioned. Subsequently, we
describe the decision variables of the model and the model itself.

Instance data:

© 2025 International Transactions in Operational Research © 2025 International Federation of Operational Research Societies

Running Author / Intl. Trans. in Op. Res.XX (20XX) 1–28 7

O
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

F

1 – 52 155 – – – – – 59 – – 41 – – 189 –
2 185 90 21 142 – – 99 – – – – – – 179 50 –
3 26 86 – – 32 – – 199 – – 159 55 – – – –
4 – – 144 195 – – – – 129 – 30 195 81 132 95 163
5 – 121 65 77 185 – 96 199 65 33 – – – – 91 –
6 126 – – 146 – – – – 84 146 151 188 – 52 – 21
7 144 55 101 125 76 150 197 62 – – 62 177 – 103 – –

Table 1
Standard processing times and representation of the sets Fi for all i ∈ O of the small illustrative instance with 16 operations
and 7 machines whose precedence relations are given in the DAG of Figure 1.

k γprock γidlek τonk γonk τoffk γoffk τ idlek

1 87 8 15 750 11 550 162
2 86 5 11 638 14 812 290
3 81 8 19 1653 14 1218 358
4 85 8 15 930 11 682 201
5 93 9 27 2025 13 975 333
6 92 9 28 1960 18 1260 357
7 96 5 19 1672 19 1672 668

Table 2
Data describing the energy consumption of the machines of the small illustrative instance with 16 operations and 7 machines
whose precedence relations are given in the DAG of Figure 1.

0 50 100 150 200 250

time

1

2

3

4

5

6

7

m
ac

h
in

es

1 2

3

4

5

6

7

8

9 10

11

12

13

14

15

16

0 50 100 150 200 250

time

1

2

3

4

5

6

7

m
ac

h
in

es

1 2

3

4

5

6

7

8

9 10

11

12

13

14

15

16

(a) (b)

Fig. 2. Graphical representation of optimal solutions to (a) the problem of minimizing energy consumption and (b) the
problem that consists in choosing the solution of minimum energy consumption among the solutions that minimize the

makespan. In the pictures, the triangles represent the process of turning the machines on and off.

O set of operations,
F set of machines,
Ok set of operations that can be processed by machine k ∈ F ,
Fi set of machines that can process operation i ∈ O,

© 2025 International Transactions in Operational Research © 2025 International Federation of Operational Research Societies

8 Running Author / Intl. Trans. in Op. Res. XX (20XX) 1–28

Â set of directed arcs in O ×O that represent operations’ precedence constraints (the precedence con-
straints DAG is given by D = (O, Â)),

pik standard processing time of operation i ∈ O in machine k ∈ Fi,
γprock energy consumption, per unit of time, of machine k ∈ F when it is processing an operation,
γidlek energy consumption, per unit of time, of machine k when it is on and idle,
τonk time required to turn on machine k ∈ F ,
γonk fixed energy consumption of turning on machine k ∈ F ,
τoffk time required to turn off machine k ∈ F ,
γoffk fixed energy consumption of turning off machine k ∈ F ,
τ idlek time limit for machine k ∈ F to remain on and idle,
γextra energy consumption, per unit of time, of having the plant running.
Constants pik, γprock , γidlek , τonk , γonk , τoffk , γoffk , τ idlek , and γextra are assumed to be non-negative.

Decision variables:
xikr is 1 if operation i ∈ O is the r-th operation in the list of operations to be processed by machine
k ∈ Fi and 0 otherwise (here r varies from 1 to |Ok|),

ykr is 1 if machine k ∈ F is turned off and on after processing the operation that is in the r-th position
in the list of operations that the machine processes and 0 if the machine remains on and idle during
that period (here r varies from 1 to |Ok| − 1),

si starting time of the processing of operation i ∈ O,
hkr starting time of the processing of the operation that is in the r-th position in the list of operations

processed by machine k ∈ F (here r varies from 1 to |Ok|),
p′i actual processing time of operation i ∈ O (this is an auxiliary variable that simplifies the presentation

of the model),
tidlekr time that the machine k ∈ F remains idle between operations at positions r and r + 1 in the list of

operations it processes (here r varies from 1 to |Ok| − 1).
The proposed model uses decision variables that determine the position of each operation within

each machine’s list. This is the most natural way to model the problem, since it allows to compute the
effective processing time of an operation on a machine, which depends on the position of the operation
in the machine’s list. The model is based on the models presented in Birgin et al. (2014) and Araujo et al.
(2024b), but the entire part related to energy consumption and the decision whether a machine should
remain on and idle or should be turned off and on between the processing of two consecutive operations
is new. Position-based decision variables for scheduling problems were initially used in Wagner (1959)
and were also considered in Wilson (1989) in the flowshop scheduling problem.

The proposed MILP model follows:

Minimize
∑
k∈F

γprock

 ∑
i∈Ok

|Ok|∑
r=1

ϕ(pik, r) xikr

+

(
γonk + γoffk

) ∑
i∈Ok

xik1 +

|Ok|−1∑
r=1

ykr

+ γidlek

|Ok|−1∑
r=1

tidlekr

+ γextraCmax

(1)

subject to

∑
k∈Fi

|Ok|∑
r=1

xikr = 1, i ∈ O, (2)

© 2025 International Transactions in Operational Research © 2025 International Federation of Operational Research Societies

Running Author / Intl. Trans. in Op. Res.XX (20XX) 1–28 9

∑
i∈Ok

xikr ≤ 1, k ∈ F , r = 1, . . . , |Ok|, (3)

∑
i∈Ok

xi,k,r+1 ≤
∑
i∈Ok

xikr, k ∈ F , r = 1, . . . , |Ok| − 1, (4)

p′i =
∑
k∈Fi

|Ok|∑
r=1

ϕ(pik, r)xikr, i ∈ O, (5)

si + p′i ≤ sj , (i, j) ∈ Â, (6)

si + p′i −
(
2− xikr − xj,k,r+1

)
M ≤ sj ,

i ̸= j ∈ O, k ∈ Fi ∩ Fj ,
r = 1, . . . , |Ok| − 1,

(7)

hkr ≤ si +M(1− xikr), i ∈ O, k ∈ Fi, r = 1, . . . , |Ok|, (8)

si −M(1− xikr) ≤ hkr, i ∈ O, k ∈ Fi, r = 1, . . . , |Ok|, (9)

hk,r+1 −

hkr +
∑
i∈Ok

ϕ(pik, r)xikr

−Mykr ≤ tidlekr , k ∈ F , r = 1, . . . , |Ok| − 1, (10)

tidlekr ≤ τ
idle
k (1− ykr), k ∈ F , r = 1, . . . , |Ok| − 1, (11)

tidlekr ≥ 0, k ∈ F , r = 1, . . . , |Ok| − 1, (12)

hk,r+1 −

hkr +
∑
i∈Ok

ϕ(pik, r)xikr

+M(1− ykr) ≥ τoffk + τonk , k ∈ F , r = 1, . . . , |Ok| − 1, (13)

hkr +

 ∑
i∈Ok

ϕ(pik, r)xikr

+ τoffk

∑
i∈Ok

xikr ≤ Cmax, k ∈ F , r = 1, . . . , |Ok|, (14)

hkr ≥ τonk

∑
i∈Ok

xikr, k ∈ F , r = 1, (15)

si ≥ 0, i ∈ O, (16)

xikr ∈ {0, 1}, i ∈ O, k ∈ Fi, r = 1, . . . , |Ok|, (17)

ykr ∈ {0, 1}, k ∈ F , r = 1, . . . , |Ok| − 1. (18)

The objective function (1) represents the minimization of energy consumption. The objective function
is composed by the sum of two terms. The first term is a sum over all machines, while the second term
refers to the energy consumption related to keeping the plant running. The latter cost is simply the
product of the energy consumption per unit of time multiplied by the time elapsed from the moment the
first machine is turned on to the moment the last machine is turned off. The machines’ term sums, for
each machine, the energy consumption associated with turning it on and off, the energy consumption
associated with processing operations, and the energy consumption of the periods when it is on and idle.
The consumption associated with turning a machine on and off is the consumption of turning it on and
off once multiplied by the number of times the machine must be turned on and off. The consumption
associated with processing operations is the product of the consumption per unit of time multiplied by
the time the machine spends processing operations. This time is influenced by the learning effect. The
idle time of the machine corresponds to the sum of the intervals between the processing of consecutive
operations in which it was decided not to turn off the machine.

Constraints (2) define that each operation must be processed by exactly one machine and occupy only
one position. Constraints (3) impose that a machine position can only be associated with at most one
operation. Constraints (4) say that a machine position can only be occupied by an operation if all pre-
vious positions are also occupied. Constraints (5) define the actual processing time of each operation,
taking into account the learning effect, in order to simplify the presentation of the model. Constraints
(6) enforce that the precedence constraints between operations in the DAG be respected. Constraints

© 2025 International Transactions in Operational Research © 2025 International Federation of Operational Research Societies

10 Running Author / Intl. Trans. in Op. Res. XX (20XX) 1–28

(7) state that, if both operations i and j are assigned to the same machine k and operation i precedes
operation j, i and j do not overlap. Constraints (8) and (9) associate the two types of variables that
refer to the start time of operations. Variable si refers to the start time of operation i. Variable hkr refers
to the start time of the r-th operation of machine k. If xikr = 1, then these two variables must coin-
cide. Constraints (10) say that, if between two operations processed consecutively on the same machine,
the machine remains on and idle, then the variable defining the idle time must be not smaller than the
difference between the completion time of the first operation and the starting time of the second opera-
tion. Constraints (11) and (12) say that, if between two operations processed consecutively on the same
machine, the machine is turned off and on, then the variable defining the idle time in-between these
two operations must be zero. When a machine remains on and idle between processing two consecutive
operations, constraints (11) state that the machine’s idle time cannot exceed its given upper limit. Con-
straints (13) ensure that if machine k is turned off and on after processing the r-th operation, then there
is sufficient time to do so before starting the processing of the operation at position r + 1. Constraints
(14) state that the makespan be greater than or equal to the completion time of each operation plus the
machine (processing the operation) shutdown time. Combining these constraints with the minimization
of (1), Cmax is set to be the instant at which the last machine shuts down. (Note the abuse of notation
here, as this is not the usual definition of makespan). Constraints (15) say that before the processing of
the first operation of each machine, there must be enough time to turn on the machine. Constraints (16)
to (18) refer to the domain of the decision variables.

In the model, M is a sufficiently large number. In practice, the value of M may be different in each
constraint. In (7), M needs to be an upper bound on the completion time of any operation in an optimal
solution. In (8) and (9), M needs to be an upper bound on the starting time of any operation in an
optimal solution. In (10), M needs to be an upper bound on the interval between any pair of consecutive
operations in any machine, in an optimal solution. In (13), we can have an Mk for each k and Mk can be
equal to τoffk + τonk . In (7), (8), (9) and (10), all necessary bounds are upper bounded by an upper bound
on the optimal makespan, which can be given by Γ1 =

∑
i∈Omaxk∈Fi

{pik}.
As mentioned above, for every machine k ∈ F and every position r ∈ {1, . . . , |Ok| − 1}, the con-

straints (10) say that, if machine k remains on and idle between the operations processed in position r
and r + 1, then the variable tidlekr must be greater than or equal to the difference between the completion
time of the rth operation and the starting time of the operation at position r + 1. However, this variable
appears multiplied by the positive constant γidlek in the objective function in a minimization problem.
Therefore, in an optimal solution, the constraint must be active. Thus, the valid constraints

hk,r+1 −

(
hkr +

∑
i∈Ok

ϕ(pik, r)xikr

)
≥ tidlekr , k ∈ F , r = 1, . . . , |Ok| − 1, (19)

that force the equality to hold, reduce the feasible region of the model by cutting off non-optimal feasible
solutions.

As a curiosity, the optimal solution illustrated in Figure 2b, which corresponds to calculating a so-
lution with minimum energy consumption from among the solutions that minimize the makespan, was
calculated by substituting (1) by the objective function given by

Minimize Γ2 Cmax +

∑
k∈F

γprock

 ∑
i∈Ok

|Ok|∑
r=1

ϕ(pik, r) xikr

+

(
γonk + γoffk

) ∑
i∈Ok

xik1 +

|Ok|−1∑
r=1

ykr

+ γidlek

|Ok|−1∑
r=1

tidlekr

+ γextraCmax

 . (20)

© 2025 International Transactions in Operational Research © 2025 International Federation of Operational Research Societies

Running Author / Intl. Trans. in Op. Res.XX (20XX) 1–28 11

The objective function (20) corresponds to summing (1) with Cmax multiplied by Γ2, where Γ2 is an
upper bound on the optimal value of the energy consumption. Since all the quantities involved in an
instance definition are integers, the optimal value of the makespan is an integer value. Since Cmax ap-
pears multiplied by Γ2, reducing Cmax by a single unit is more advantageous than any possible reduction
related to energy consumption. For that reason, the minimization of (20) results in an optimal makespan
solution. The term in (20) that coincides with (1) has the role of, from among optimal makespan solu-
tions, finding one that minimizes energy consumption.

4. Constructive heuristic

In this section we describe a greedy constructive heuristic (GCH) that schedules one operation per iter-
ation until a feasible solution is constructed. The proposed heuristic is of the list scheduling type. This
means that a measure related to the insertion of a new operation in the partial solution built so far is
defined. The measure of all the operations that can be scheduled is calculated and the operation that
optimizes that measure is chosen to be included in the partial solution. As the measure is related to en-
ergy consumption, the selected operation is not necessarily programmed to start as soon as possible. For
this reason, the constructed schedule is not necessarily semi-active. (As all the methods considered in
the present work use this constructive heuristic in one way or another, this property of the constructed
solutions is inherent to all of them). The method continues until all operations have been scheduled. In
the present work, the measure is related to energy consumption. Heuristics of this type have already been
successfully employed in the FJS environment. See for example Birgin et al. (2014, 2015).

The heuristic builds two types of structures: (a) structures that represent the instance and will later be
used by other methods and (b) structures that represent the constructed solution. Both types of structure
contain redundancies, which serve to simplify the description of the heuristic and other methods later
described. The structures representing the instance are:
• A directed acyclic graph G = (V,A). The set of vertices V is formed by the set of operations O and

two fictitious operations s and t. The set of edges A is formed by all edges in Â, edges that exit from
s to every operation i that has no precedents (i.e., i such that (·, i) ̸∈ Â) and edges that exit from every
operation i with no successors (i.e., i such that (i, ·) ̸∈ Â) to t.

• Given the directed graph G = (V,A), we assume that the sets
←−
N i(G) ⊂ V and

−→
N i(G) ⊂ V with the

immediate predecessors and successors of any node i ∈ V , respectively, are provided.
• We also assume that, for each i ∈ V , the sets

−→
Ri(G) and

←−
Ri(G) with the nodes that can be reached

from i and the nodes from which i can be reached in the graph G, respectively, are also available.
The structures that represent the constructed feasible solution are:
• For each machine k ∈ F , a list Qk = ik1, i

k
2, . . . i

k
|Qk| representing the operations attributed to machine

k and their order.
• For a given set of machine lists Q = {Qk}k∈F , we assume that a set of edges AM (Q), known as the

set of machine edges, with edges that goes from each operation in Qk to the operation following it in
Qk, for all k ∈ F , is available.

• For a given set of machine lists Q = {Qk}k∈F and i ∈ O, the information fi(Q) representing the
machine to which operation i is assigned is assumed to be available at constant cost.

• For each operation i ∈ O, information si and p′i indicating its starting time and its effective processing
time, respectively.

• The E and Cmax values of the energy consumption and the makespan of the constructed solution,

© 2025 International Transactions in Operational Research © 2025 International Federation of Operational Research Societies

12 Running Author / Intl. Trans. in Op. Res. XX (20XX) 1–28

respectively.
In the description of the parameters of the heuristic, and of the methods that will follow, the set of

lists Qk for all k ∈ F is denoted by Q. The same abuse of notation occurs with all other parameters and
structures. When the set of machines F appears as a parameter, it also includes the sets Fi for all i ∈ O.

At each iteration, the heuristic begins by determining the set of operations C that corresponds to the
operations whose predecessors have already been scheduled. That is, the set of operations that could
be scheduled in that iteration. For each operation i ∈ C and for each machine k ∈ Fi, the heuristic
determines the most economical starting time, considering the options of (i) turning the machine off and
on or (ii) leaving the machine on and idle before processing i. The option in which operation i is the
first operation of machine k is also considered separately when an empty machine k ∈ Fi exists. From
among these possibilities and from among all possible pairs operation-machine, the heuristic chooses
the option that represents the lowest energy consumption and schedules it. Scheduling involves updating
the aforementioned structures. The heuristic terminates when all operations have been scheduled. The
heuristic is described in Algorithms 1 and 2. Algorithm 1 constructs a partial solution with zero sched-
uled operations and calls Algorithm 2 which receives a partially constructed solution and completes it.
In Algorithm 2, the set Π represents the set of operations already scheduled. The heuristic is presented
in this form because Algorithm 2 will soon be used, in the context of a local search, to complete partially
constructed solutions.

In Algorithm 2, the calculation of the initial set C corresponds to lines 1–3. Lines 4–7 calculate the
instant when each machine is free. The main loop, from lines 8 to 27 is executed as long as there are
unscheduled operations. Within the loop, each operation i ∈ C and each machine k ∈ Fi are considered.
To schedule an operation i on a machine k ∈ Fi, there can be one or two alternatives. The alternative
is only one if the machine is empty. In this case, the energy consumption is associated with turning on
the machine, processing the operation and turning off the machine. If the scheduling of that operation
increases the makespan of the existing partial solution, there is the extra cost of keeping the plant running
longer. This is the calculation made in lines 15–16. The alternatives are two when machine k already
has operations allocated to it. The two options are to keep the machine on and idle before processing
operation i or to turn it off when the previous operation is completed and turn it on before processing
operation i. These two options correspond to the calculations in lines 18–19 and 20–21, respectively.
When there are two options, line 22 chooses the better of the two. Line 23 compares the best option for
the pair (i, k) with the best of all the pairs already considered, saving the best of them. When the best
pair is determined, the solution structures are updated in line 24 and in lines 25–27 the set C is updated.
In Algorithm 2 and hereafter, the expression (·)+ means max(0, ·), while the expression L⊕ ℓ, where L
is a list and ℓ is an element, corresponds to add ℓ to the end of L.

Algorithm 1: Greedy constructive heuristic.
Input:O, F , p, Â
Output: G = (V,A), Q, s, p′, E, Cmax

Function: GCH(O, F , p, Â, G, Q, s, p′, E, Cmax)
1 A← Â ∪ {(s, j) | (·, j) ̸∈ Â} ∪ {(i, t) | (i, ·) ̸∈ Â}, V := O ∪ {s, t}, G := (V,A)
2 Qk is an empty list for all k ∈ F , E ← 0, Cmax ← 0, Π← ∅
3 PartialGCH(O, F , p, G, Π, Q, s, p′, E, Cmax)

Consider a minimalist example with two machines and 3 operations. Assume that operation 2 must
precede operation 3, i.e., F = {1, 2}, O = {1, 2, 3}, Â = {(2, 3)}. (Note that the precendence con-
straints are linear). Assume that operations 1 and 3 can only be processed by machine 1 and operation 2

© 2025 International Transactions in Operational Research © 2025 International Federation of Operational Research Societies

Running Author / Intl. Trans. in Op. Res.XX (20XX) 1–28 13

Algorithm 2: Completes a partial solution with the greedy constructive heuristic.
Input:O, F , p, G = (V,A), Π, Q, s, p′, E, Cmax

Output: Q, s, p′, E, Cmax

Function: PartialGCH(O, F , p, G, Π, Q, s, p′, E, Cmax)
1 C ← ∅
2 for v ∈ O \Π do
3 if

←−
N v(G) ⊆ Π then C ← C ∪ {v}

4 for k ∈ F do
5 rmach

k ← 0

6 if |Qk| ̸= 0 then
7 Let v be the last operation of Qk then, rmach

k ← sv + p′v

8 while C ≠ ∅ do
9 Γ̃← +∞

10 for v ∈ C do
11 µ← max

{
sj + p′j | j ∈

←−
N v(G)

}
12 for k ∈ Fv do
13 ρ← ψα(pv,k, |Qk|+ 1)

14 if |Qk| = 0 then
15 ζ ← max

{
rmach
k + tonk , µ

}
16 Γ← γprock ρ+ γextra

(
ζ + ρ+ toffk − Cmax

)
+

+ γoffk + γonk

17 else
18 ζ1 ← max

{
rmach
k , µ

}
19 Γ1 ← γprock ρ+ γextra

(
ζ1 + ρ+ toffk − Cmax

)
+

+ γiddlek (ζ1 − (si|Qk| + p′i|Qk|
)), where

Qk = i1, . . . , i|Qk|
20 ζ2 ← max

{
rmach
k + toffk + tonk , µ

}
21 Γ2 ← γprock ρ+ γextra

(
ζ2 + ρ+ toffk − Cmax

)
+

+ γoffk + γonk
22 if Γ1 ≤ Γ2 then ζ,Γ← ζ1,Γ1 else ζ,Γ← ζ2,Γ2

23 if (Γ, ζ) < (Γ̃, ζ̃) then ṽ, k̃, ζ̃, ρ̃, Γ̃← v, k, ζ, ρ,Γ

24 Qk̃ ← Qk̃ ⊕ ṽ, sṽ := ζ̃, p′ṽ := ρ̃, E ← E + Γ̃, Cmax ← max{Cmax, sṽ + p′ṽ + toff
k̃
}

25 C ← C \ {ṽ}, rmach
k̃

← sṽ + p′ṽ , Π← Π ∪ {ṽ}

26 for j ∈
−→
N ṽ(G) do

27 if
←−
N j(G) ⊆ Π then

28 C ← C ∪ {j}

can only be processed by machine 2, i.e., F1 = F3 = {1}, F2 = {2}, O1 = {1, 3}, O2 = {2}. For the
processing times, let us consider p11 = p31 = 10 and p22 = 20. To simplify the example, let us assume
that there is no learning effect. Assume that both machines take 6 units of time to turn on and 6 units
of time to turn off, i.e., τonk = τoffk = 6 for k = 1, 2. The GCH heuristic starts with an empty solution
and C = {1, 2}. Since operation 1 has a shorter processing time, operation 1 is assigned to machine
1. Since it takes 6 time units to turn on the machine, operation 1 is scheduled to start at time 6. In the
next iteration, we have C = {2} (operation 3 does not have all its predecessors scheduled yet). Then,
operation 2 is assigned to machine 2 and scheduled to start processing at time 6. Figure 3(a) shows the
partial solution with operations 1 and 2 already scheduled. At iteration 3, we have C = {3}. Operation 3
can only be assigned to machine 1. But here we have 2 options (shown in Figure 3(b) and Figure 3(c),
respectively):

Option 1: Schedule operation 3 to start at time 26. In this case, machine 1 would be idle between the

© 2025 International Transactions in Operational Research © 2025 International Federation of Operational Research Societies

14 Running Author / Intl. Trans. in Op. Res. XX (20XX) 1–28

end of the processing of operation 1 at instant 16 and instant 26. Since this is not enough time to turn
the machine off and on, this option incurs an energy cost of 10γidle1 . In addition to that, this scheduling
of operation 3 increases the makespan by 10 time units, at an additional cost of 10γextra.

Option 2: Schedule operation 3 to start at instant 28. By delaying the start of operation 3 by 2 time
units, we construct a non-semi-active schedule. This delay allows machine 1 to be turned off and
on between the end of the processing of operation 1 and the start of the processing of operation 3,
with an associated cost of γoff1 + γon1 . Still, this scheduling increases the makespan by 12 time units,
incurring an additional cost of 12γextra.

If the instance data is such that γoff1 + γon1 + 12γextra < 10γidle1 + 10γextra, then the heuristic chooses
option 2. Otherwise, it chooses option 1.

1

2

0 6 16 26
time

m
ac
h
in
es

1

2

1

2

0 6 16 26 36 42
time

m
ac
h
in
es

1

2

3
1

2

0 6 16 28 38 44
time

m
ac
h
in
es

1

2

3

(a) (b) (c)

Fig. 3. Example of a non-semi-active solution computed by the constructive heuristic CGH. The graphic (a) shows the partial
solution constructed after two iterations. The graphics (b) and (c) show options 1 and 2 in iteration 3.

5. Local search strategies

In this section we present two different local search strategies. Both generate neighbors by removing and
reinserting an operation in the current solution, but the ways of removing and reinserting the operation
are different. In the first local search, the neighborhood, called SRRN (single-operation removal and
reinsertion neighborhood), is based on a move that removes and reinserts a single operation v ∈ O at
a location where no cycle is formed. In the second local search, the neighborhood, called SRDRRN
(single-operation removal, destruction, reinsertion, and reconstruction neighborhood), is based on a
move such that if a v ∈ O operation is removed, then all its successors are also removed. Then, if v
is reinserted in the place of another operation w, w and all successor operations of w are removed. The
partially “destroyed” solution then needs to be reconstructed with the GCH constructive heuristic.

Let Q, s, p′, E and Cmax be the data of the current solution. In the first strategy, the neighborhood
is constructed by considering one at a time, the operations v ∈ O. For each operation, the operation is
removed from the machine to which it is assigned, i.e., from the machine fv(Q). Let Q̂ be the set of
machine lists representing the current solution with operation v removed. Then, an attempt is made to
reinsert this same operation in all possible positions of all machines k ∈ Fv, i.e., in all machines that
can process operation v. Let Q̂k = h1, . . . , h|Q̂k| be the list of operations of a machine k in which we are

trying to reinsert v. The possible positions are r = 1, . . . , |Q̂k|+1. For all possible values of r, we need to
verify if the insertion is possible. What must be verified is if the insertion does not generate a cycle in the

© 2025 International Transactions in Operational Research © 2025 International Federation of Operational Research Societies

Running Author / Intl. Trans. in Op. Res.XX (20XX) 1–28 15

directed graph representing the solution. A cycle will be generated if any operation among h1, . . . , hr−1
is reachable from v in the directed graph (V,A∪AM (Q̂)). The set of operations reachable from v in this
directed graph is given by

−→
Rv((V,A∪AM (Q̂))). Then, if {h1, . . . , hr−1}∩

−→
Rv((V,A∪AM (Q̂))) ̸= ∅,

then the insertion of v in the r-th position of machine k will generate a cycle in the directed graph and
that directed graph will not represent a feasible solution. Another way to form a cycle is when any of the
operations that would remain after v reaches v, i.e., when {hr+1, . . . , h|Q̂k|}∩

←−
Rv((V,A∪AM (Q̂))) ̸= ∅.

Putting the two conditions together, the condition for v to be inserted at position r of the machine k is

{h1, . . . , hr−1}∩
−→
Rv((V,A∪AM (Q̂))) = ∅ and {hr+1, . . . , h|Q̂k|}∩

←−
Rv((V,A∪AM (Q̂))) = ∅.

Let Q be the set of lists representing the current solution with the operation v removed and reinserted
at position r of machine k. The processing time of v is given by ψα(pv,k, r). The processing time of its
successors in the list Qk needs to be recalculated, since those operations are now one position further
in the list and we are dealing with a position-based learning effect. With the allocations of operations to
machines all defined and the processing times of all operations also defined, it is necessary to recalculate
the starting time of each operation, the energy consumption, and the makespan of the newly constructed
solution. This recalculation must be done from scratch by considering each operation in a topological
order of the directed acyclic graph (V,A∪AM (Q)). In addition, it must be decided, for each operation,
whether before processing it the machine would remain on and idle or whether it would be turned off
and on again. (If the operation is the first one of the machine, the machine must be simply turned on.)
The construction of the whole neighborhood, including the choice of the best neighbor, is described
in Algorithm 3. Algorithm 3 uses Algorithm 4 to do the reinsertion and recalculation of the structures
defining the neighbor, its energy consumption, and its makespan.

Let Q, s, p′, E and Cmax be the data of the current solution. The neighborhood of the second strategy
is also constructed by removing each operation and reinserting it at every possible position of each
machine. The difference is that, when an operation v is removed, all operations reachable from v in the
directed graph (V,A ∪AM (Q)) are removed as well. Let us call Q the set of machine lists representing
the current solution with v and all operations in

−→
Rv((V,A ∪ AM (Q))) removed. When the operation

is reinserted at position r of a machine k ∈ Fv, there are two possibilities. If r = |Qk| + 1, then,
since the position is empty, there is nothing else to be removed. Otherwise, if Qk = i1, . . . , i|Qk|

, then
ir and all operations reachable from ir in the directed graph (V,A ∪ AM (Q)), i.e., all operations in
−→
Rir((V,A∪AM (Q))), must be removed. These two mass removals are what is called “destruction”. In
order that the insertion of v in the r-th position of machine k generates a feasible solution, we cannot, in
the removal of ir and the nodes it reaches, remove any operation that reaches v. Otherwise v would not
be ready to be reinserted because it would have unscheduled precedents. Therefore, the condition for v
to be inserted in the r-th position of machine k is given by

r = |Qk|+ 1 or
(
{ir} ∪

−→
Rir((V,A ∪AM (Q)))

)
∩
←−
Rv((V,A ∪AM (Q))) = ∅. (21)

This condition is equivalent to

r = |Qk|+ 1 or ir ̸∈
←−
Rv((V,A ∪AM (Q))). (22)

The equivalence between (21) and (22) holds because if the intersection at (21) is empty then ir ̸∈←−
Rv((V,A ∪ AM (Q))) and if ir does not reach v then no operation reachable by ir can reach v. Other-

© 2025 International Transactions in Operational Research © 2025 International Federation of Operational Research Societies

16 Running Author / Intl. Trans. in Op. Res. XX (20XX) 1–28

wise, by transitivity, ir would reach v. If condition (22) is satisfied, v is reinserted. Its processing time
is calculated, taking into consideration the learning effect, and it is decided as it was done before, what
should be done with the machine (between leaving it on and idle or turning it off and on) to minimize en-
ergy consumption. This generates a partial solution that is then completed with the constructive heuristic
of Algorithm 2. This is the phase called “reconstruction”. Algorithm 5 describes the generation of all
neighbors of the current solution, including the choice of the best of them. Algorithm 5 makes use of
Algorithm 6 for the two destructions that precede the reconstruction.

Algorithm 7 describes the local search that, using exclusively one of the two neighborhoods, iterates
until it finds a solution that is better than all its neighbors. Algorithm 7 already receives as input an initial
feasible solution represented by Q, s, p′, E, Cmax and the instance data represented by O, F , p, G. For
this reason, when the local search is used as a stand-alone method, we assume that before making a call
to the local search, a call to the constructive heuristic GCH (Algorithm 1) is made giving as input the data
O, F , p, Â of the instance to which the local search is to be applied. This call to GCH returns the graph
G representing the instance and a feasible solution represented by Q, s, p′, E, Cmax. For this reason,
from now on, we name the method that consists of calculating an initial solution using the constructive
heuristic GCH and applying the local search with the SRRN neighborhood as GCH-LS-SRRN. This
method corresponds to the combination of Algorithms 1, 2, 3, 4, and 7. Analogously, we call GCH-LS-
SRDRR the method using the local search with the SRDRR neighborhood, which corresponds to the
combination of Algorithms 1, 2, 5, 6, and 7.

Algorithm 3: Given a current approximation of a solution, returns the best neighbor of a neigh-
borhood based on removing and reinserting a single operation.

Input:O, F , p, G = (V,A), Q, s, p′, E, Cmax

Output: Q, s, p′, E, Cmax

Function: SRRN(O, F , p, G, Q, s, p′, E, Cmax)
1 Ẽ ← +∞
2 for v ∈ O do
3 Q̂, ŝ, p̂′, Ê, Ĉmax ← Q, s, p′, E, Cmax

4 Let η = fv(Q̂) be the machine to which v is assigned and ℓ the position of v in Q̂η , i.e., Q̂ = j1, . . . j|Q̂η| and jℓ = v

5 for λ = ℓ+ 1, . . . , |Q̂η | do p̂′jλ ← ψα(pjλ,η , λ− 1)

6 Remove v from Q̂η

7 for k ∈ Fv do
8 Let Q̂k = h1, . . . , h|Q̂k|

9 for r ∈ {1, . . . , |Q̂k|+ 1} do
10 if {h1, . . . , hr−1} ∩

−→
Rv(V,A ∪AM (Q̂)) = ∅ and {hr, . . . , h|Q̂k|

} ∩
←−
Rv(V,A ∪AM (Q̂)) = ∅ then

11 Q, s, p′, E, Cmax ← Q̂, ŝ, p̂′, Ê, Ĉmax

12 Reinsert(O, F , p, G, v, k, r, Q, s, p′, E, Cmax)
13 if E < Ẽ then Q̃, s̃, p̃′, Ẽ, C̃max ← Q, s, p′, E, Cmax

14 if Ẽ < E then Q, s, p′, E, Cmax ← Q̃, s̃, p̃′, Ẽ, C̃max

6. Metaheuristics

In this section, we describe the three metaheuristics considered, namely, greedy randomized adap-
tive search procedure (GRASP), simulated annealing (SA) and general variable neighborhood search

© 2025 International Transactions in Operational Research © 2025 International Federation of Operational Research Societies

Running Author / Intl. Trans. in Op. Res.XX (20XX) 1–28 17

Algorithm 4: Constructs the neighbor of the current approximation of a solution that is obtained
by reinserting the removed operation v at the r-th position of machine k.

Input:O, F , p, G = (V,A), v, k, r, Q, s, p′, E, Cmax

Output: Q, s, p′, E, Cmax

Function: Reinsert(O, F , p, G, v, k, r, Q, s, p′, E, Cmax)
1 Let Qk = i1, . . . , i|Qk|
2 for λ ∈ {r, . . . , |Qk|} do p′iλ ← ψα(piλ,k, λ+ 1)

3 Insert v in Qk at position r, p′v ← ψα(pv,k, r)

4 for u ∈ V do du ← |
←−
N u(G

+
v = (V,A ∪AM (Q)))|

5 U ←
−→
N s(G), E ← 0, Cmax ← 0

6 while U ̸= ∅ do
7 Select a vertex u from U , let η = fu(Q) and U ← U \ {u}
8 µ← max

{
sj + p′j | j ∈

←−
N u(G

+
v = (V,A ∪AM (Q)))

}
9 if (·, u) /∈ AM (Q) then

10 su ← max
{
tonη , µ

}
11 Γ← γprocη p′u + γextra

(
su + p′u + toffη − Cmax

)
+

+ γoffη + γonη

12 else
13 Let w be such that (w, u) ∈ AM (Q)

14 ζ1 ← max {sw + p′w, µ}
15 Γ1 ← γprocη p′u + γextra

(
ζ1 + p′u + toffη − Cmax

)
+

+ γiddleη (ζ1 − (sw + p′w))

16 ζ2 ← max
{
sw + p′w + toffη + tonη , µ

}
17 Γ2 ← γprocη p′u + γextra

(
ζ2 + p′u + toffη − Cmax

)
+

+ γoffη + γonη

18 if Γ1 ≤ Γ2 then su,Γ← ζ1,Γ1 else su,Γ← ζ2,Γ2

19 E ← E + Γ
20 Cmax ← max

{
Cmax, su + p′u + toffη

}
21 for w ∈

−→
N u(G

+
v = (V,A ∪AM (Q))) do

22 dw ← dw − 1
23 if dw = 0 and w ̸= t then U ← U ∪ {w}

(GVNS).
GRASP (Feo and Resende, 1995) is described in Algorithm 8 and follows the basic scheme. It starts

by initializing the incumbent with the solution given by the GCH constructive heuristic (Algorithms 1–
2). It then iterates by constructing an initial solution with a randomized version of the GCH constructive
heuristic and performing a local search starting from the constructed initial solution. The local search
corresponds to Algorithm 7 and can use either the SRRN neighborhood (Algorithms 3–4) or the SRDRR
neighborhood (Algorithms 5–6), resulting in two versions of GRASP that we call GRASP-LS-SRRN and
GRASP-LS-SRDRR, respectively. It remains to explain the randomization of the constructive heuristic
GCH. The GCH heuristic schedules one operation per iteration until all operations are scheduled. At
each iteration, it checks which operations can be scheduled (because all their precedents are already
scheduled). This set of operations is called C ⊆ O. For each operation v ∈ C and for each machine
k ∈ Fv, it checks the best possible schedule and selects the pair (v, k) with the lowest energy consump-
tion. In the randomized version, all (v, k) pairs with their respective energy consumption are stored in a
list of candidates L and one pair is drawn from among those max{1, ⌊α|L|⌋} pairs with the lowest en-
ergy consumption. The drawn pair is scheduled in that iteration. This randomization actually affects the
PartialGCH routine described in Algorithm 2. We call RandomizedPartialGCH the randomized version
of PartialGCH and call RandomizedGCH the GCH routine (Algorithm 1) that uses RandomizedPartial-
GCH instead of PartialGCH. The parameter α ∈ [0, 1] ⊂ R is the only parameter of GRASP.

© 2025 International Transactions in Operational Research © 2025 International Federation of Operational Research Societies

18 Running Author / Intl. Trans. in Op. Res. XX (20XX) 1–28

Algorithm 5: Given a current approximation of a solution, returns the best neighbor of a neigh-
borhood based on removing a single operation, destroying, reinserting, and reconstructing.

Input:O, F , p, G = (V,A), Q, s, p′, E, Cmax

Output: Q, s, p′, E, Cmax

Function: SRDRR(O, F , p, G, Q, s, p′, E, Cmax)
1 Ẽ ←∞
2 for v ∈ O do
3 Q, s, p′, E, Cmax ← Q, s, p′, E, Cmax

4 Π← O \ (
−→
Rv((V,A ∪AM (Q))) ∪ {v})

5 Unschedule(O, F , p, G, v, Q, s, p′, E, Cmax)

6 µ← max{sj + p′j | j ∈
←−
N v((V,A ∪AM (Q)))}

7 for k ∈ Fv , r ∈ {1, . . . , |Qk|+ 1} do
8 Let Qk = i1, . . . , i|Qk|

9 if r = |Qk|+ 1 or ir ̸∈
←−
Rv((V,A ∪AM (Q))) then

10 Q̂, ŝ, p̂′, Ê, Ĉmax ← Q, s, p′, E, Cmax

11 if r ̸= |Q̂k|+ 1 then
12 Π̂← Π \ (

−→
Rir ((V,A ∪AM (Q̂)) ∪ {ir})

13 Unschedule(O, F , p, G, ir , Q̂, ŝ, p̂′, Ê, Ĉmax)

14 ρ← ψα(pv,k, r)

15 if |Q̂k| = 0 then
16 ζ ← max

{
tonk , µ

}
17 Γ← γprock ρ+ γextra

(
ζ + ρ+ toffk − Ĉmax

)
+

+ γoffk + γonk

18 else
19 ζ1 ← max

{
ŝir−1 + p̂′ir−1

, µ
}

20 Γ1 ← γprock ρ+ γextra
(
ζ1 + ρ+ toffk − Ĉmax

)
+

+ γiddlek (ζ1 − (sir−1 + p′ir−1
))

21 ζ2 ← max
{
ŝir−1 + p̂′ir−1

+ toffk + tonk , µ
}

22 Γ2 ← γprock ρ+ γextra
(
ζ2 + ρ+ toffk − Ĉmax

)
+

+ γoffk + γonk

23 if (Γ1, ζ1) ≤ (Γ2, ζ2) then ζ,Γ← ζ1,Γ1 else ζ,Γ← ζ2,Γ2

24 Q̂k ← Q̂k ⊕ v, ŝv := ζ, p̂′v := ρ, Ê ← Ê + Γ, Ĉmax ← max{Ĉmax, ŝv + p̂′v + toffk }
25 Π̂← Π̂ ∪ {v}
26 PartialGCH(O, F , p, G, Π̂, Q̂, ŝ, p̂′, Ê, Ĉmax)
27 if Ê < Ẽ then Q̃, s̃, p̃′, Ẽ, C̃max ← Q̂, ŝ, p̂′, Ê, Ĉmax

28 if Ẽ < E then Q, s, p′, E, Cmax ← Q̃, s̃, p̃′, Ẽ, C̃max

SA (Kirkpatrick et al., 1983) is described in Algorithm 10 and also follows its basic scheme. Each
iteration consists of constructing a perturbation of the current solution, which is accepted or not with the
usual test that depends on the current temperature. The temperature starts at t0 ∈ R>0, goes to tf ≤ t0
and is updated at every jmax ∈ Z>0 iterations by multiplying it by δ ∈ (0, 1) ⊂ R. The perturbation of
the current solution is performed by the Shake routine. We consider two versions of the Shake routine,
one based on the SRRN neighborhood and another based on the SRDRR neighborhood. In the SRRN
neighborhood, each operation-machine pair (v, k) with v ∈ O and k ∈ Fv is considered. The operation v
is removed from the machine to which it was assigned and reinserted in the positions r = 1, . . . , |Qk|+1
of the list Qk of machine k that do not generate cycles, i.e., that correspond to feasible solutions. Of
all possible combinations of v, k and r, the one with the lowest energy consumption is chosen. The
Shake based on the SRRN neighborhood consists of drawing an operation v ∈ O and then drawing a

© 2025 International Transactions in Operational Research © 2025 International Federation of Operational Research Societies

Running Author / Intl. Trans. in Op. Res.XX (20XX) 1–28 19

Algorithm 6: Unschedule operation v and all its successors’s in (V,A ∪AM (Q))

Input:O, F , p, G = (V,A), v, Q, s, p′, E, Cmax

Output: Q, s, p′, E, Cmax

Function: Unschedule(O, F , p, G, v, Q, s, p′, E, Cmax)
1 LetW = w1, . . . , w|V | be a topological order of the operations in V \ {s, t} according to the directed graph (V,B ∪BM (Q)),

where B = {(j, i) | (i, j) ∈ A} and BM (Q) = {(j, i) | (i, j) ∈ AM (Q)}. Let v = wℓ.
2 for u = w1, . . . , wℓ do
3 if u ∈

−→
Rv((V,A ∪AM (Q))) ∪ {v} then

4 Let η = fu(Q). Delete u from Qη and E ← E − γprocη p′u.
5 if |Qη | = 0 then E ← E − γonη + γoffη

6 else E ← E −min

{
γonη + γoffη , γidleη (su − (si|Qη| + p′i|Qη|

))

}
, where Qη = i1, . . . , i|Qη|

7 if su + p′u + toffη = Cmax then
8 C′

max ← 0
9 for k ∈ F such that |Qk| > 0 do

10 C′
max ← max

{
C′

max, si|Qk| + p′i|Qk|
+ toffk

}
, where Qk = i1, . . . , i|Qk|

11 E ← E − γextra(Cmax − C′
max)

12 Cmax ← C′
max

Algorithm 7: Local search strategy based on the single reinsertion neighborhood.
Input:O, F , p, G
Output: Q, s, p′, E, Cmax

Function: LocalSearch(O, F , p, G, Q, s, p′, E, Cmax)
1 do
2 Q, s, p′, E, Cmax ← Q, s, p′, E, Cmax

3 SRRN(O, F , p, G, Q, s, p′, E, Cmax) (or SRDRR(O, F , p, G, Q, s, p′, E, Cmax))
4 ∆E ← E − E
5 if ∆E > 0 then
6 Q, s, p′, E, Cmax ← Q, s, p′, E, Cmax

7 while ∆E > 0

Algorithm 8: Greedy randomized adaptive search procedure
Input:O, F , p, Â, α
Output: Q⋆, s⋆, p′⋆, E⋆, C⋆

max

Function: GRASP(O, F , p, Â, α, Q⋆, s⋆, p′⋆, E⋆, C⋆
max)

1 GCH(O, F , p, Â, G, Q⋆, s⋆, p′⋆, E⋆, C⋆
max)

2 while the stopping criterion is not satisfied do
3 RandomizedGCH(O, F , p, G, α, Q, s, p′, E, Cmax)
4 LocalSearch(O, F , p, G, Q, s, p′, E, Cmax)
5 if E < E⋆ then
6 Q⋆, s⋆, p′⋆, E⋆, C⋆

max ← Q, s, p′, E, Cmax

machine k ∈ Fv. For that pair, the positions r = 1, . . . , |Qk|+1 corresponding to a feasible solution are
determined and, among these, one is drawn at random. Let E be the energy of the current solution and
E(v, k, r) be the energy of the reinsertion of operation v at the r-th position of machine k. The first triple
that satisfies the acceptance criterion E(v, k, r) ≤ E(1 + ϵ), where ϵ ∈ R>0 is a given parameter, is
accepted. The number of draws is limited to

∑|O|
i=1 |Fvi | ≤ |O||F|, where vi is the i-th drawn operation.

© 2025 International Transactions in Operational Research © 2025 International Federation of Operational Research Societies

20 Running Author / Intl. Trans. in Op. Res. XX (20XX) 1–28

If no triple satisfies the acceptance criterion, the routine returns the current solution. The Shake routine
was developed in this way to be used also in the context of other metaheuristics. In the particular case of
SA, the acceptance criterion is an intrinsic part of the metaheuristic. Thus, we consider ϵ = +∞ and the
first triple drawn is returned. The Shake based on the SRDRR neighborhood follows exactly the same
idea. The only difference is that after the destruction, to introduce more randomness into the process, the
partial solutions are reconstructed with the RandomizedPartialGCH routine instead of the PartialGCH
routine. We call the SA using the Shake routine based on the SRRN neighborhood of SA-SRRN and
the SA using the Shake routine based on the SRDRR neighborhood of SA-SRDRR. In addition to the
aforementioned parameters t0, tf , δ, and jmax, the SA-SRRN has the parameter ϵ for the Shake while
the SA-SRDRR has the parameters ϵ and α for the Shake.

In fact, t0 is not a parameter of the SA. Let E > 0 be the energy consumption of the current solution
and E be the energy consumption of a candidate solution. The candidate solution is accepted as the new
current solution if e−∆E/t ≥ ρ where ∆E = (E −E)/E and ρ ∈ [0, 1] is a random number. If E ≤ E,
then ∆E ≤ 0, −∆E/t ≥ 0 for all t > 0 and e−∆E/t ≥ 1 ≥ ρ for any ρ ∈ [0, 1]. This means that if the
candidate solution is better than or equal to the current solution, then it will meet the acceptance criterion.
IfE > E then ∆E > 0 and the acceptance criterion is satisfied if ∆E ≤ −t ln(ρ). As a result, candidate
solutions E satisfying ∆E = (E−E)/E ≤ θ, i.e. that are up to 100% θ worse than the current solution
E, will satisfy the acceptance test if t is such that θ ≤ −t ln(ρ), where ρ ∈ [0, 1] is a random number.
To satisfy this with probability ν, all that is needed is that t = −θ/ ln(ν). For this reason, we choose
to consider the relative difference ∆E = (E − E)/E instead of the absolute difference ∆E = E − E
in the SA implementation. Moreover, the choice of t0 is given by t0 = −θ/ ln(ν), where θ ∈ R>0 and
ν ∈ (0, 1) ⊂ R are dimensionless parameters to be determined. See Johnson et al. (1989) for ways to
select the initial temperature in SA.

Algorithm 9: Simulated Annealing
Input:O, F , p, Â, t0, tf , δ, jmax, α
Output: Q⋆, s⋆, p′⋆, E⋆, C⋆

max

Function: SA(O, F , p, Â, t0, tf , δ, jmax, α, ϵ, Q⋆, s⋆, p′⋆, E⋆, C⋆
max)

1 GCH(O, F , p, Â, G, Q, s, p′, E, Cmax)
2 Q⋆, s⋆, p′⋆, E⋆, C⋆

max ← Q, s, p′, E, Cmax

3 t← t0
4 while the stopping criterion is not satisfied do
5 for j = 1, . . . , jmax do
6 Q, s, p′, E, Cmax ← Q, s, p′, E, Cmax

7 Shake(O, F , p, G, α, ϵ ≡ +∞, Q, s, p′, E, Cmax)
8 ∆E ← (E − E)/E

9 if e−∆E/t ≥ ρ, where ρ ∈ [0, 1] is a random number then
10 Q, s, p′, E, Cmax ← Q, s, p′, E, Cmax

11 if E < E⋆ then
12 Q⋆, s⋆, p′⋆, E⋆, C⋆

max ← Q, s, p′, E, Cmax

13 t← max{δ t, tf}

The GVNS (Hansen et al., 2018) is described in Algorithm 10 and corresponds exactly to (Hansen
et al., 2018, Alg.8, p.64). It is a generalized version of VNS because it uses different neighborhoods in
both Shake and local search. In classic VNS, different neighborhoods are used to generate initial points
from which a local search (which always uses the same type of neighborhood) is launched. In GVNS,
local searches with different neighborhoods are also considered. In the considered implementation, we

© 2025 International Transactions in Operational Research © 2025 International Federation of Operational Research Societies

Running Author / Intl. Trans. in Op. Res.XX (20XX) 1–28 21

have jmax = 2, j = 1 corresponds to the Shake based on the SRRN neighborhood and j = 2 corre-
sponds to the Shake based on the SRDRR neighborhood. Similarly, kmax = 2 and, with k = 1, the
NeighborhoodSearch routine corresponds to the SRRN routine, while, with k = 2, the Neighborhood-
Search routine corresponds to the SRDRR routine.

Algorithm 10: General variable neighborhood search
Input:O, F , p, Â, α, ϵ, kmax, jmax

Output: Q, s, p′, E, Cmax

Function: GVNS(O, F , p, Â, α, ϵ, kmax, jmax, Q, s, p′, E, Cmax)
1 GCH(O, F , p, Â, G, Q, s, p′, E, Cmax)
2 while the stopping criterion is not satisfied do
3 k ← 1

4 while k ≤ kmax do
5 Q, s, p′, E, Cmax ← Q, s, p′, E, Cmax

6 Shake(O, F , p, G, k, α, ϵ, Q, s, p′, E, Cmax)
7 j ← 1

8 while j ≤ jmax do
9 Q̂, ŝ, p̂′, Ê, Ĉmax ← Q, s, p′, E, Cmax

10 NeighborhoodSearch(O, F , p, G, j, Q̂, ŝ, p̂′, Ê, Ĉmax)
11 if Ê < E then
12 j ← 1

13 Q, s, p′, E, Cmax ← Q̂, ŝ, p̂′, Ê, Ĉmax

14 else j ← j + 1

15 if E < E then
16 k ← 1

17 Q, s, p′, E, Cmax ← Q, s, p′, E, Cmax

18 else k ← k + 1

7. Numerical experiments

In this section we present numerical experiments to evaluate the introduced local searches and the con-
sidered metaheuristics. In Section 7.1 we compare the local searches using the two introduced neigh-
borhood variants. In Section 7.2 we calibrate the parameters of the metaheuristics and compare their
performance. In Section 7.3 we consider the best performing metaheuristics and compare the quality of
the solutions they achieve with an exact solver as a reference.

The local search and the metaheuristics were implemented in C++ programming language. The code
was compiled using g++ 10.2.1. The experiments were carried out in an Intel i9-12900K (12th Gen)
processor operating at 5.200GHz and 128 GB of RAM.

In the experiments of Sections 7.1 and 7.2, we consider the 50 large-sized instances of the FJS with
nonlinear routes introduced in Birgin et al. (2014). To the instances, we must add the data related to
energy consumption. For each instance, following Wu et al. (2019), we draw, with discrete uniform
distribution γextra ∈ [100, 2500] and γprock ∈ [80, 100], γidlek ∈ [5, 20], τonk ∈ [10, 30], γonk ∈ [50, 90],
τoffk ∈ [10, 20], and γoffk ∈ [50, 90] for all k ∈ F . For each machine k ∈ F , we set τ idlek = max{τonk +
τoffk , ⌊(γonk + γoffk)/γidlek ⌋}. This means that a machine is not allowed to be idle for a longer time than is
necessary to turn the machine off and on if this time consumes more than is consumed by turning the
machine off and on. This is a condition naturally satisfied by an optimal solution, but this constraint helps

© 2025 International Transactions in Operational Research © 2025 International Federation of Operational Research Societies

22 Running Author / Intl. Trans. in Op. Res. XX (20XX) 1–28

in solving the model by an exact method. Following Araujo et al. (2024a,b), we consider learning rates
α ∈ {0.1, 0.2, 0.3}, totaling 150 instances. Details of instance characteristics can be found in (Birgin
et al., 2024, Table S1). It is worth noting that the largest instance has almost 74,000 binary variables and
almost 4 million constraints. The instances and solutions found are available at http://www.ime.usp.br/
∼egbirgin/ for future reference.

7.1. Experiments with the local search strategies

In this section we show the results of applying the local searches LS-SRRN and LS-SRDRR to the
considered 150 large-sized instances. Details of the results obtained by applying each method to each
instance can be found in (Birgin et al., 2024, Table S2). Table 3 shows a summary of the results. In the
table we show the average energy consumption of the solutions found by the GCH constructive heuristic
and, for each of the two local searches, the average energy consumption of the solutions found, the aver-
age number of iterations and the average CPU time in miliseconds. The number of best solutions found
and the average gap to the solution found by the GCH constructive heuristic are also displayed. GCH
spends, on average, 0.37 milliseconds per instance and in no instance it takes more than 2 milliseconds.

Instances GCH LS-SRRN LS-SRDRR
type α E #wins gap(%) E #it T ime #wins gap(%) E #it T ime

D
A

0.1 1,245,668.07 6 -6.21 1,157,385.23 20.23 849.92 24 -9.69 1,109,529.97 7.43 2,272.45
0.2 1,043,387.03 6 -4.49 996,649.17 17.10 723.87 24 -8.29 950,481.00 6.60 2,045.01
0.3 906,801.00 3 -4.65 864,704.50 15.27 540.29 27 -9.63 818,844.27 6.77 2,027.10

Y

0.1 1,622,068.05 6 -4.30 1,553,797.40 20.35 8,745.91 14 -9.11 1,487,848.90 6.35 6,333.98
0.2 1,436,712.65 3 -4.97 1,370,043.95 20.60 9,280.43 17 -9.38 1,315,247.10 6.05 4,791.40
0.3 1,280,518.20 2 -4.70 1,222,768.95 20.40 8,266.10 18 -9.25 1,174,502.65 6.95 7,043.83

All 26 -4.93 124 -9.22

Table 3
Summary of the results obtained by applying the constructive heuristic GCH and the local searches LS-SRRN and LS-SRDRR
to the 50 large-sized instances based on the instances introduced in Birgin et al. (2014), with learning rates α ∈ {0.1, 0.2, 0.3}.

It is clear that LS-SRRN iterations (search in a neighborhood) are cheaper than LS-SRDRR iterations.
At the same time, LS-SRRN is expected to do more iterations than LS-SRDRR. Experiments confirm
that the former does, on average, about three times as many iterations as the latter. Yet, in DA-type
instances, LS-SRRN takes three times less time than the latter, suggesting that the iterations of LS-SRRN
are an order of magnitude faster. The same is not confirmed for Y-type instances. In those instances, the
ratio between the number of iterations of the two local searches remains the same, but LS-SRDRR takes
less time than LS-SRNN. The explanation for this is the level of flexibility and routes’ nonlinearity of
the two instance types. Instances of type DA have higher flexibility levels than instances of type Y and
that justifies that generating all neighbors of a solution is more expensive. Overall, LS-SRRN improves
the initial solution constructed by the GCH constructive heuristic by 4.93% while LS-SRDRR improves
by 9.22%. LS-SRDRR is also superior to LS-SRRN in number of best solutions found. The CPU times
used by the two local searches show that instances with more than 100 operations might be challenging.
The application of local searches, which use the best neighbor technique and at each iteration inspect the
complete neighborhood of the current solution, is slightly demanding from a computational cost point
of view. Which of the two local searches, or their neighborhoods, will be better when embedded in the
context of a metaheuristic is something to be analyzed in the next section.

© 2025 International Transactions in Operational Research © 2025 International Federation of Operational Research Societies

http://www.ime.usp.br/~egbirgin/
http://www.ime.usp.br/~egbirgin/

Running Author / Intl. Trans. in Op. Res.XX (20XX) 1–28 23

7.2. Experiments with the metaheuristics

In this section we present results of applying GRASP-LS-SRRN, GRASP-LS-SRDRR, SA-SRRN, SA-
SRDRR and GVNS to the 150 large-sized instances. We calibrated the five methods using the irace pack-
age (López-Ibáñez et al., 2016). Let Λ = {0.1, 0.2, . . . , 0.5} and Θ = {0, 0.05, 0.10, . . . , 0.95, 0.99}.
For the two versions of GRASP we considered α ∈ Λ. For the GVNS, we considered α ∈ Λ and ϵ ∈ Θ.
For the two versions of the SA, we considered α ∈ Λ, t0 = −θ/ ln(ν) with θ ∈ Θ and ν ∈ Θ, tf ∈
{1, 10−1, 10−2, . . . , 10−5}, δ ∈ {0.80, 0.85, 0.90, 0.95, 0.99, 0.999}, and jmax ∈ {1, 10, 20, . . . , 100}.
We ran irace with maxExperiments = 2,000 and all its other default parameters. We used 30 instances
for training and 30 instances for testing (10 for each learning factor value α ∈ {0.1, 0.2, 0.3}). These
instances were generated with the generator introduced in Birgin et al. (2014), with the same parameters
that were used in Birgin et al. (2014) to generate the large-sized instances. Energy consumption data
was also added as described at the beginning of Section 7. In this parameter calibration phase, we used a
CPU time limit of 5 minutes as the stopping criterion for the five methods. As all the considered methods
have random components, we ran each instance 10 times. As a result, we selected α = 0.2 for the two
versions of the GRASP, α = 0.1 and ϵ = 0.60 for GVNS, θ = 0.25, ν = 0.30, tf = 10−3, δ = 0.90 and
jmax = 50 for SA-SRRN, and α = 0.50, θ = 0.10, ν = 0.40, tf = 10−2, δ = 0.95 and jmax = 50 for
SA-SRDRR.

Details of the results obtained by applying each method to each instance can be found in (Birgin et al.,
2024, Tables S3, S4, and S5). Table 4 shows a summary of the results. In the table, we show the average
energy consumption when considered the average of the 10 runs per method/instance, the average energy
consumption when considering the lowest value of the 10 runs per method/instance, the average CPU
time (in seconds) considering for each pair method/instance the time of the run that found the lowest
energy consumption. The number of best solutions found and the average gap to the solution found by
the GCH constructive heuristic are also displayed. Out of the total of 150 instances, each of the methods
GRASP-LS-SRRN, GRASP-LS-SRDRR, GVNS, SA-LS-SRRN, and SA-LS-SRDRR found the best
solution in 38, 52, 64, 0 and 2 instances each. Each of the methods improved the initial solution given by
the GCH constructive heuristic by 12.43%, 11.51%, 11.92%, 2.97% and 10.59%, respectively. Figure 4
shows the evolution of the energy consumption of the solutions constructed by each of the methods as a
function of time. To strengthen the comparison between methods, we used the Wilcoxon test (Wilcoxon,
1945) for each pair of methods, with a significance level of ᾱ = 0.05, to accept or reject the null
hypothesis that “the samples of the two methods come from the same distribution” or, equivalently,
“the difference between the samples of the two methods follows a symmetric distribution around zero”.
Table 5 shows the results. This shows that GVNS and GRASP-LS-SRRN are equivalent. Furthermore,
both are better than all other methods that are different from each other. GRASP-LS-SRDRR is the third
best method, followed by SA-LS-SRDRR and finally SA-LS-SRRN.

Figure 4 shows that the comparison between the methods in the previous paragraph is valid when
considering a CPU time limit of 5 minutes. For lower CPU time limits, the ranking between the meth-
ods, in terms of average power consumption, may vary. When we compare the two versions of GRASP
using local searches with neighborhoods SRRN and SRDRR we observe that: (i) for small time budgets,
they behave similarly, (ii) for intermediate values of time budget, the intensity of neighborhood SRDRR
leads to better solutions on average, and (iii) for larger time budgets, neighborhood SRRN, which is
cheaper, allows the method to make a higher diversification by performing more local searches of differ-
ent initial solutions and that leads, in the end, to better solutions, on average. On the other hand, GVNS
seems to make better use of the combination of the two existing neighborhoods and outperforms, when
evaluating the average energy consumption, the two versions of GRASP. The SA, with either of the two

© 2025 International Transactions in Operational Research © 2025 International Federation of Operational Research Societies

24 Running Author / Intl. Trans. in Op. Res. XX (20XX) 1–28

Instances GRASP-LS-SRRN GRASP-LS-SRDRR
type α #wins gap(%) E Emin Time #wins gap(%) E Emin Time

D
A

0.1 7 -12.71 1,089,544.74 1,077,181.30 275.11 6 -11.84 1,095,389.50 1,087,000.47 205.18
0.2 7 -11.40 935,288.63 924,574.67 276.96 6 -10.31 945,413.83 936,549.37 202.52
0.3 8 -11.89 809,016.94 800,324.43 305.50 5 -10.89 815,644.53 809,252.77 163.57

Y

0.1 4 -13.34 1,445,083.76 1,427,460.25 310.04 11 -12.61 1,457,253.89 1,450,942.15 200.66
0.2 4 -13.01 1,283,622.88 1,269,477.20 276.27 12 -12.15 1,297,485.71 1,291,717.60 212.16
0.3 8 -12.85 1,143,387.66 1,131,684.50 265.87 12 -11.98 1,155,404.40 1,151,201.50 209.29

All 38 -12.43 52 -11.51

Instances GVNS
type α #wins gap(%) E Emin Time

D
A

0.1 18 -13.13 1,080,904.47 1,062,464.40 24.58
0.2 17 -11.43 924,694.28 917,809.47 26.61
0.3 16 -11.81 802,414.55 796,975.97 26.12

Y

0.1 6 -12.23 1,447,009.73 1,434,069.70 46.56
0.2 4 -11.38 1,289,193.43 1,281,924.55 42.25
0.3 3 -11.20 1,147,983.68 1,143,420.50 41.35

All 64 -11.92

Instances SA-LS-SRRN SA-LS-SRDRR
type α #wins gap(%) E Emin Time #wins gap(%) E Emin Time

D
A

0.1 0 -4.25 1,233,066.26 1,184,646.63 22.90 0 -11.61 1,107,158.51 1,089,523.03 190.43
0.2 0 -2.96 1,037,538.97 1,011,472.83 16.49 1 -10.04 953,753.95 938,522.93 188.95
0.3 0 -3.75 900,615.48 878,058.83 19.98 1 -10.53 826,519.04 812,194.93 163.53

Y

0.1 0 -1.63 1,610,423.48 1,599,004.00 2.19 0 -10.88 1,501,692.65 1,477,110.30 133.30
0.2 0 -2.38 1,425,396.49 1,406,635.35 4.79 0 -10.45 1,338,861.23 1,312,209.35 107.78
0.3 0 -1.84 1,274,202.92 1,258,199.90 4.74 0 -9.83 1,197,182.75 1,176,760.10 128.27

All 0 -2.97 2 -10.59

Table 4
Summary of the results obtained by applying the metaheuristics GRASP-LS-SRRN, GRASP-LS-SRDRR, GVNS, SA-LS-
SRRN, and SA-LS-SRDRR to the 50 large-sized instances based on the instances introduced in Birgin et al. (2014), with
learning rates α ∈ {0.1, 0.2, 0.3}.

neighborhoods, which does not use a local search strategy, does not present a competitive performance
when compared to the other methods.

comparison R+ R− p-value

GRASP-LS-SRRN versus GRASP-LS-SRDRR 7,588 3,734 0.0003
GRASP-LS-SRRN versus GVNS 5,361 5,964 0.5716
GRASP-LS-SRRN versus SA-LS-SRRN 11,325 0 0.0000
GRASP-LS-SRRN versus SA-LS-SRDRR 11,275 50 0.0000

GRASP-LS-SRDRR versus GVNS 4,329 6,996 0.0124
GRASP-LS-SRDRR versus SA-LS-SRRN 11,325 0 0.0000
GRASP-LS-SRDRR versus SA-LS-SRDRR 10,540 785 0.0000

GVNS versus SA-LS-SRRN 11,325 0 0.0000
GVNS versus SA-LS-SRDRR 9,667 1,658 0.0000

SA-LS-SRRN versus SA-LS-SRDRR 0 11,324 0.0000
Table 5
Details of the Wilcoxon test comparing each pair of methods, when applied to the large-sized instances, to accept or reject the
null hypothesis “the difference between the two methods follows a symmetrical distribution around zero”.

© 2025 International Transactions in Operational Research © 2025 International Federation of Operational Research Societies

Running Author / Intl. Trans. in Op. Res.XX (20XX) 1–28 25

106000

108000

110000

112000

114000

116000

118000

120000

122000

0 10 100

Ē

CPU time (s) (log scale)

GRASP-LS-SRRN
GRASP-LS-SRDRR

GVNS
SA-SRRN

SA-SRDRR

108000

110000

112000

114000

116000

118000

120000

122000

0 10 100

Ē

CPU time (s) (log scale)

GRASP-LS-SRRN
GRASP-LS-SRDRR

GVNS
SA-SRRN

SA-SRDRR

Fig. 4. This figure shows the average energy of the solutions found by each method as a function of CPU time. The average is
calculated over the total of 150 large-sized instances. In the graphic on the left, the average considers, for each instance, the
minimum over the 10 runs. In the graphic at the right, the average considers, for each instance, the average of the 10 runs.

7.3. Comparison with solutions from an exact solution method

In this section, we consider the two best performing metaheuristics (GVNS and GRASP-LS-SRRN) and
analyze their performance considering solutions computed with an exact method. For these experiments,
we considered the 50 large-sized instances from the previous section, plus 60 small-sized instances
introduced in Araujo et al. (2024b), for which we included the energy consumption data in exactly
the same way as for the large-sized instances (see the description at the beginning of Section 7). For
details on the characteristics of small-sized instances, see (Birgin et al., 2024, Table S12). Since in this
experiment we will also consider learning rates α ∈ {0.1, 0.2, 0.3}, we will have a total of 150 large-
sized instances plus 180 small-sized instances.

Models were solved using IBM ILOG CPLEX Optimization Studio version 22.1, using default pa-
rameters, with concert library and C++. The code was compiled using g++ 10.2.1. We provided as initial
solution the solution calculated with the GCH constructive heuristic (Algorithm 1). A solution is reported
as optimal by CPLEX when

absolute gap = best feasible solution− best lower bound ≤ ϵabs (23)

or

relative gap =
|best feasible solution− best lower bound|

10−10 + |best feasible solution|
≤ ϵrel, (24)

where, by default, ϵabs = 10−6 and ϵrel = 10−4, and “best feasible solution” means the smallest value
of the objective function related to a feasible solution generated by the method. Since the optimal value
of the objective function of the instances considered in this paper is always an integer, we chose ϵabs =
1− 10−6 and ϵrel = 0. Choosing ϵrel = 0 avoids premature stops in a solution that may not be optimal.
The choice ϵabs = 1− 10−6 allows stopping early when a relative gap less than 1 clearly indicates that
the optimal solution has already been found. A CPU time limit of 1 hour was set. All other CPLEX
parameters were used with their default values. Details of the solutions found by the exact method are

© 2025 International Transactions in Operational Research © 2025 International Federation of Operational Research Societies

26 Running Author / Intl. Trans. in Op. Res. XX (20XX) 1–28

available in (Birgin et al., 2024, Tables S6, S7, S8, S13, S14, and S15). Out of the 150 large-sized
instances, CPLEX was able to find a single provably optimal solution. As for the small-sized instances,
despite their relatively small size, CPLEX was able to find a provably optimal solution in only 137 out
of 180 instances.

Details of the solutions found by the GVNS and GRASP-LS-SRRN metaheuristics when applied to
the small-sized instances are available in (Birgin et al., 2024, Tables S16, S17, and S18). The heuristics
were used with the parameters calibrated for the large-sized instances. That is, they were not recalibrated.
Since these are random component methods, each method was applied 10 times to each instance. When
comparing the solutions found by the metaheuristics with the solutions found by CPLEX, we consider
(a) the mean of the 10 runs and (b) the minimum of the 10 runs. In each case, we calculate the relative
gap with respect to the solution found by CPLEX. Let us first consider case (b).

If we consider just the 137 small-sized instances in which CPLEX found a provably optimal solution,
GVNS finds solutions that are, on average, 2.02% away from the optimal solution, while this number is
0.22% for GRASP-LS-SRRN. If we consider all 180 small-sized instances, these values are 2.16% and
0.02%, respectively. In the only large-sized instance in which CPLEX found a proven optimal solution,
the GVNS and GRASP-LS-SRRN metaheuristics found a solution with a gap of 3.98% and 0.09%,
respectively. Considering all 150 large-sized instances, the GVNS and GRASP-LS-SRRN metaheuristics
found solutions with average gaps of -8.70% and -9.32%, respectively. When we consider case (a), i.e.,
the average of the 10 runs for each method/instance, these same four values for the small-sized instances
are 2.16%, 0.24%, 2.29% and 0.04%, respectively, while they are 4.50%, 0.09%, -8.00%, and -8.42% for
the large-sized instances, i.e., little significant variation. The most relevant data from these experiments
is that GRASP-LS-SRRN finds solutions at, on average, 0.22% of the 137 known optima and, when we
include the 43 instances with non-guaranteed known optima, the average gap is 0.02%.

8. Concluding remarks

In this work we considered the flexible jobshop environment with two special features: nonlinear routes
(or precedences between operations of the same job given by an arbitrary directed acyclic graph) and
learning effect on the processing time. In alignment with contemporary sustainability concerns, we con-
sidered the minimization of energy consumption. We formulated the problem as a mixed-integer linear
programming problem. We proposed a constructive heuristic, two neighborhoods, and three metaheuris-
tics. We conducted comprehensive experiments to demonstrate the efficacy of the studied methods. The
GVNS that uses the two neighborhoods concomitantly was the most effective in the large-sized in-
stances. In the small-sized instances, the GRASP with the removing-and-reinserting neighborhood was
the most effective. It found solutions that are, on average, 0.22% of the known optimal solutions.

As future work, we intend to consider the FJS environments with nonlinear routes and, instead of
energy consumption, the total energy cost (TEC). This means considering energy costs that vary over
time, including the consideration of peak times and seasonal tariffs or electricity tariffs by time of use
(TOU). See Shen et al. (2023) and references therein for details. Another possibility that brings the
problem under consideration closer to reality is to consider that a machine can operate at different speeds
and that its energy consumption depends on its speed. See Wu and Sun (2018). Alternative learning
models to the one considered in the present work, as well as deterioration models, are reviewed in Pei
et al. (2022). Analyzing the different learning models as well as including the influence of deterioration
in the context of the studied problem are possible tasks for future work.

© 2025 International Transactions in Operational Research © 2025 International Federation of Operational Research Societies

Running Author / Intl. Trans. in Op. Res.XX (20XX) 1–28 27

Acknowledgments

This work was founded by the Brazilian agencies FAPESP (grants 2013/07375-0, 2022/05803-3,
2022/16743-1, and 2023/08706-1) and CNPq (grants 311536/2020-4 and 302073/2022-1).

References

Araujo, K.A.G., Birgin, E.G., Ronconi, D.P., 2024a. Local search and trajectory metaheuristics for the flexible job shop schedul-
ing problem with nonlinear routes and position-based learning effect. Technical Report MCDO19032024, University of
São Paulo, São Paulo, SP, Brazil.

Araujo, K.A.G., Birgin, E.G., Ronconi, D.P., 2024b. Models, constructive heuristics, and benchmark instances for the flexible
job shop scheduling problem with nonlinear routes and position-based learning effect. Technical Report MCDO02022024,
University of São Paulo, São Paulo, SP, Brazil.

Assembly, U.N.G., 2015. Transforming our world: The 2030 Agenda for Sustainable Development, A/RES/70/1, https://
wedocs.unep.org/20.500.11822/11125.

Birgin, E.G., Feofiloff, P., Fernandes, C.G., de Melo, E.L., Oshiro, M.T.I., Ronconi, D.P., 2014. A MILP model for an extended
version of the flexible job shop problem. Optimization Letters 8, 4, 1417–1431.

Birgin, E.G., Ferreira, J.E., Ronconi, D.P., 2015. List scheduling and beam search methods for the flexible job shop scheduling
problem with sequencing flexibility. European Journal of Operational Research 247, 2, 421–440.

Birgin, E.G., Riveaux, J.A., Ronconi, D.P., 2024. Supplementary material to the article “Energy-aware flexible job shop schedul-
ing problem with nonlinear routes and position-based learning effect”. Technical Report MCDO27062024, University of
São Paulo, São Paulo, SP, Brazil.

Biskup, D., 1999. Single-machine scheduling with learning considerations. European Journal of Operational Research 115, 1,
173–178.

Cheng, T.C.E., Wang, G., 2000. Single machine scheduling with learning effect considerations. Annals of Operations Research
98, 1/4, 273–290.

Dauzère-Pérès, S., Ding, J., Shen, L., Tamssaouet, K., 2024. The flexible job shop scheduling problem: A review. European
Journal of Operational Research 314, 2, 409–432.

De Jong, J.R., 1957. The effects of increasing skill on cycle time and its consequences for time standars. Ergonomics 1, 1,
51–60.

Destouet, C., Tlahig, H., Bettayeb, B., Mazari, B., 2023. Flexible job shop scheduling problem under industry 5.0: A survey
on human reintegration, environmental consideration and resilience improvement. Journal of Manufacturing Systems 67,
155–173.

Destouet, C., Tlahig, H., Bettayeb, B., Mazari, B., 2024. Multi-objective sustainable flexible job shop scheduling problem:
Balancing economic, ecological, and social criteria. Computers & Industrial Engineering 195, 110419.

Feo, T.A., Resende, M.G.C., 1995. Greedy randomized adaptive search procedures. Journal of Global Optimization 6, 2,
109–133.

Gahm, C., Denz, F., Dirr, M., Tuma, A., 2016. Energy-efficient scheduling in manufacturing companies: A review and research
framework. European Journal of Operational Research 248, 3, 744–757.

Garey, M.R., Johnson, D.S., Sethi, R., 1976. The complexity of flowshop and jobshop scheduling. Mathematics of Operations
Research 1, 2, 117–129.

Gong, G., Tang, J., Huang, D., Luo, Q., Zhu, K., Peng, N., 2024. Energy-efficient flexible job shop scheduling problem
considering discrete operation sequence flexibility. Swarm and Evolutionary Computation 84, 101421.

Gong, X., De Pessemier, T., Martens, L., Joseph, W., 2019. Energy- and labor-aware flexible job shop scheduling under dynamic
electricity pricing: A many-objective optimization investigation. Journal of Cleaner Production 209, 1078–1094.

Gupta, J.N.D., Gupta, S.K., 1988. Single facility scheduling with nonlinear processing times. Computers and Industrial
Engineering 14, 4, 387–393.

Ham, A., Park, M.J., Kim, K.M., 2021. Energy-aware flexible job shop scheduling using mixed integer programming and
constraint programming. Mathematical Problems in Engineering 2021, 1–12.

Hansen, P., Mladenović, N., Brimberg, J., Pérez, J.A.M., 2018. Variable Neighborhood Search, Springer International Publish-
ing. pp. 57–97.

Johnson, D.S., Aragon, C.R., McGeoch, L.A., Schevon, C., 1989. Optimization by simulated annealing: An experimental

© 2025 International Transactions in Operational Research © 2025 International Federation of Operational Research Societies

https://wedocs.unep.org/20.500.11822/11125
https://wedocs.unep.org/20.500.11822/11125
http://www.ime.usp.br/~egbirgin/publications/briro2024-supplementary-material.pdf

28 Running Author / Intl. Trans. in Op. Res. XX (20XX) 1–28

evaluation – Part I, graph partitioning. Operations Research 37, 6, 865–892.
Kahn, A.B., 1962. Topological sorting of large networks. Communications of the ACM 5, 11, 558–562.
Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P., 1983. Optimization by simulated annealing. Science 220, 4598, 671–680.
Laurent, A., Olsen, S.I., Hauschild, M.Z., 2010. Carbon footprint as environmental performance indicator for the manufacturing

industry. CIRP Annals 59, 1, 37–40.
Lei, D., Zheng, Y., Guo, X., 2016. A shuffled frog-leaping algorithm for flexible job shop scheduling with the consideration of

energy consumption. International Journal of Production Research 55, 11, 3126–3140.
Li, H., Zhu, H., Jiang, T., 2020. Modified migrating birds optimization for energy-aware flexible job shop scheduling problem.

Algorithms 13, 2, 44.
Li, Z., Chen, Y., 2023. Minimizing the makespan and carbon emissions in the green flexible job shop scheduling problem with

learning effects. Scientific Reports 13, 6369.
Lu, Y., Lu, J., Jiang, T., 2019. Energy-conscious scheduling problem in a flexible job shop using a discrete water wave

optimization algorithm. IEEE Access 7, 101561–101574.
Lunardi, W.T., Birgin, E.G., Laborie, P., Ronconi, D.P., Voos, H., 2020. Mixed integer linear programming and constraint

programming models for the online printing shop scheduling problem. Computers and Operations Research 123, 105020,
105020.

Lunardi, W.T., Birgin, E.G., Ronconi, D.P., Voos, H., 2021. Metaheuristics for the online printing shop scheduling problem.
European Journal of Operational Research 293, 2, 419–441.

López-Ibáñez, M., Dubois-Lacoste, J., Pérez Cáceres, L., Birattari, M., Stützle, T., 2016. The irace package: Iterated racing for
automatic algorithm configuration. Operations Research Perspectives 3, 43–58.

Meng, L., Zhang, C., Shao, X., Ren, Y., 2019. MILP models for energy-aware flexible job shop scheduling problem. Journal
of Cleaner Production 210, 710–723.

Mouzon, G., Yildirim, M.B., Twomey, J., 2007. Operational methods for minimization of energy consumption of manufacturing
equipment. International Journal of Production Research 45, 18-19, 4247–4271.

Pei, J., Zhou, Y., Yan, P., Pardalos, P.M., 2022. A concise guide to scheduling with learning and deteriorating effects. Interna-
tional Journal of Production Research 61, 6, 2010–2031.

Ren, W., Wen, J., Yan, Y. Y.and Hu, Guan, Y., Li, J., 2020. Multi-objective optimisation for energy-aware flexible job-shop
scheduling problem with assembly operations. International Journal of Production Research 59, 23, 7216–7231.

Shen, L., Dauzère-Pérès, S., Maecker, S., 2023. Energy cost efficient scheduling in flexible job-shop manufacturing systems.
European Journal of Operational Research 310, 3, 992–1016.

Wagner, H.M., 1959. An integer linear-programming model for machine scheduling. Naval Research Logistics Quarterly 6, 2,
131–140.

Wilcoxon, F., 1945. Individual comparisons by ranking methods. Biometrics Bulletin 1, 6, 80–83.
Wilson, J.M., 1989. Alternative formulations of a flow-shop scheduling problem. Journal of the Operational Research Society

40, 4, 395–399.
Wu, X., Shen, X., Li, C., 2019. The flexible job-shop scheduling problem considering deterioration effect and energy consump-

tion simultaneously. Computers and Industrial Engineering 135, 1004–1024.
Wu, X., Sun, Y., 2018. A green scheduling algorithm for flexible job shop with energy-saving measures. Journal of Cleaner

Production 172, 3249–3264.
Xie, J., Gao, L., Peng, K., Li, X., Li, H., 2019. Review on flexible job shop scheduling. IET Collaborative Intelligent Manu-

facturing 1, 3, 67–77.
Zhang, H., Deng, Z., Fu, Y., Lv, L., Yan, C., 2017a. A process parameters optimization method of multi-pass dry milling for

high efficiency, low energy and low carbon emissions. Journal of Cleaner Production 148, 174–184.
Zhang, L., Tang, Q., Wu, Z., Wang, F., 2017b. Mathematical modeling and evolutionary generation of rule sets for energy-

efficient flexible job shops. Energy 138, 210–227.
Zhang, Y., Liu, Q., Zhou, Y., Ying, B., 2017c. Integrated optimization of cutting parameters and scheduling for reducing carbon

emissions. Journal of Cleaner Production 149, 886–895.
Zhu, H., Deng, Q., Zhang, L., Hu, X., Lin, W., 2020. Low carbon flexible job shop scheduling problem considering worker

learning using a memetic algorithm. Optimization and Engineering 21, 4, 1691–1716.

© 2025 International Transactions in Operational Research © 2025 International Federation of Operational Research Societies

	Introduction
	Literature review
	Problem definition and formulation
	Constructive heuristic
	Local search strategies
	Metaheuristics
	Numerical experiments
	Experiments with the local search strategies
	Experiments with the metaheuristics
	Comparison with solutions from an exact solution method

	Concluding remarks

