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1 Introduction

We are concerned with Nonlinear Programming problems defined in the following way:

Minimize f(x)
subject to h(x) = 0

g(x) ≤ 0
x ∈ Ω,

(1)

where h : IRn → IRm, g : IRn → IRp, f : IRn → IR are continuous and Ω ⊂ IRn is a closed set.
From now on ‖ · ‖ represents the Euclidean norm and v+ means max{0, v}. The set IR+ will be
the set of nonnegative real numbers.

The Powell-Hestenes-Rockafellar (PHR) Augmented Lagrangian [42, 54, 56] is given by:

Lρ(x, λ, µ) = f(x) +
ρ

2

{ m
∑

i=1

[

hi(x) +
λi

ρ

]2

+
p

∑

i=1

[(

gi(x) +
µi

ρ

)

+

]2}

(2)

for all x ∈ IRn, λ ∈ IRm, µ ∈ IRp
+.

PHR-based Augmented Lagrangian methods for solving (1) are based on the iterative (ap-
proximate) minimization of Lρ with respect to x ∈ Ω, followed by the updating of the penalty
parameter ρ and the Lagrange multipliers approximations λ and µ. The most popular practical
Augmented Lagrangian method gave rise to the Lancelot package [24, 25, 26]. Lancelot

does not use inequality constraints g(x) ≤ 0 in its problem formulation. When an inequality
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constraint gi(x) ≤ 0 appears in a practical problem, it is replaced by gi(x) + si = 0, si ≥ 0.
The convergence of the Lancelot algorithm to KKT points was proved in [24] using regularity
assumptions. Under weaker assumptions that involve the Constant Positive Linear Dependence
(CPLD) constraint qualification [4, 55], KKT-convergence was proved in [2] for a variation of
the Lancelot method. In the original Lancelot method Ω was a box. A generalization where
Ω is a polytope may be found in [23].

The motivation of (2) comes from the classical External Penalty method [27, 34, 36]. In this
method one minimizes the function given by

Φρ(x) = f(x) +
ρ

2

[ m
∑

i=1

hi(x)2 +
p

∑

i=1

[gi(x)+]2 (3)

for successive values of ρ that tend to infinity. If, after minimizing (3) for a given ρ, a satisfactory
feasibility is not achieved, the External Penalty philosophy leads to increase the value of ρ. If ρ
is very large, the problem of minimizing Pρ may become very difficult for ordinary minimization
solvers.

The Augmented Lagrangian philosophy is different. Assume that the result of minimizing Pρ,
for a given ρ is not satisfactory, in terms of feasibility. Then, instead of increasing ρ (or, perhaps,
besides increasing ρ) one modifies the origin with respect to which infeasibility is penalized. For
example, suppose that, after the minimization of Pρ we obtain x such that hi(x) = c 6= 0.
A common sense conjecture would be that this “disappointing” result was obtained because
we punished the deviation of hi(x) with respect to 0, whereas the correct strategy would be
to punish the deviation with respect to −c. This leads to the Shifted Penalty idea, in which,
instead of Pρ, one uses the Shifted Penalty function:

Φρ(x, c, d) = f(x) +
ρ

2

[ m
∑

i=1

(hi(x) + ci)
2 +

p
∑

i=1

[(gi(x) + di)+]2. (4)

Writing ci = λi/ρ and di = µi/ρ we observe that the Shifted Penalty strategy coincides with the
Augmented Lagrangian one. The naive modification of the shifts ci, di sketched above gives rise
to the best known (first-order) updating formulae for the Lagrange multipliers in the Augmented
Lagrangian method. It is interesting to observe that this intuitive reasoning is independent of the
smoothness of f, h and g. In this article we give preference to matrix-free updating procedures,
which excludes the consideration of higher order estimates [28, 35].

In [3] a new PHR-like algorithm was introduced that does not use slack variables to complete
inequality constraints and admits general constraints in the lower-level set Ω. In the box-
constraint case, subproblems are solved using a technique introduced in [13], which improves
the Gencan algorithm [12]. CPLD-based convergence and penalty-parameter boundedness were
also proved in [3] under suitable conditions on the problem.

In addition to its intrinsic adaptability to the case in which arbitrary constraints are included
in Ω, the following positive characteristics of the Augmented Lagrangian approach for solving (1)
must be mentioned:

1. Augmented Lagrangian methods proceed by sequential resolution of simple problems.
Progress in the analysis and implementation of simple-problem optimization procedures
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produces an almost immediate positive effect on the effectiveness of Augmented Lagrangian
algorithms. Box-constrained optimization is a dynamic area of practical optimization from
which we can expect Augmented Lagrangian improvements.

2. Global minimization of the subproblems implies convergence to global minimizers of the
Augmented Lagrangian method [11]. There is a large field for research on global optimiza-
tion methods for box-constraint optimization. When the global box-constraint optimiza-
tion problem is satisfactorily solved in practice, the effect on the associated Augmented
Lagrangian method for Nonlinear Programming problem is immediate.

3. Most box-constrained optimization methods are guaranteed to find stationary points. In
practice, good methods do more than that. The line-search procedures of [12], for example,
include extrapolation steps that are not necessary at all from the point of view of KKT
convergence. However, they enhance the probability of convergence to global minimiz-
ers. As a consequence, the probability of convergence to Nonlinear Programming global
minimizers of a practical Augmented Lagrangian method is enhanced too.

4. The global convergence theory of Augmented Lagrangian methods [11] does not need dif-
ferentiability of the functions that define the Nonlinear Programming problem. In practice,
this indicates that the Augmented Lagrangian approach may be successful in situations
were smoothness is dubious.

5. The Augmented Lagrangian approach can be adapted to the situation in which analytic
derivatives are not computed. See [47] for a derivative-free version of Lancelot.

6. In many practical problems the Hessian of the Lagrangian is structurally dense (in the
sense that any entry may be different from zero at different points) but generally sparse
(given a specific point in the domain, the particular Lagrangian Hessian is a sparse matrix).
As an example of this situation, consider the following formulation [18, 19] of the problem
of fitting circles of radii r within a circle of radius R without overlapping:

Min
∑

i<j

max{0, 4r2 − ‖pi − pj‖
2
2}

2 subject to ‖pi‖
2
2 ≤ (R− r)2.

The Hessian of the objective function is structurally dense but sparse at any point such that
points pi are “well distributed” within the big circle, since only pairs of overlapping small
circles appear in the expression of the objective function. Newtonian methods usually
have difficulties with this situation, both in terms of memory and computer time since
the sparsity pattern of the matrix changes from iteration to iteration. This difficulty
is almost irrelevant for the Augmented Lagrangian approach if one uses a low-memory
box-constraint solver.

7. Independently of the Lagrangian Hessian density, the structure of the KKT system may be
very poor for sparse factorizations. This is a serious difficulty for Newton-based methods
but not for suitable implementations of the Augmented Lagrangian PHR algorithm.
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8. If the Nonlinear Programming problem has many inequality constraints the usual slack-
variable approach of Interior-Point methods (also used in [2, 24]) may be inconvenient.
There are several approaches to reduce the effect of the presence of many slacks, but they
may not be as effective as not using slacks at all.

9. Huge problems have obvious inconvenients in terms of storage requirements. The Aug-
mented Lagrangian approach provides a radical remedy: problem data may be computed
“on the flight”, used when required in the subproblem, and not stored at all. This is not
possible if one uses matricial approaches, independently of the sparsity strategy adopted.

10. If, at the solution of the problem, some strong constraint qualification fails to hold, the
performance of Newton-like algorithms could be severely affected. The Augmented La-
grangian is not as sensitive to this type of inconvenient.

The amount of research dedicated to Augmented Lagrangian methods decreased in the 21-th
century. Modern methods, based on interior-point techniques, sequential quadratic program-
ming, trust regions, restoration, nonmonotone strategies and advanced sparse linear algebra
procedures attracted much more attention.

A theoretical reason, and its practical consequence, seems to be behind this switch of interest.
Roughly speaking, under suitable assumptions, Interior-Point Newtonian techniques converge
quadratically (or, at least, superlinearly) whereas practical Augmented Lagrangian generally
converge only linearly. Therefore, if both methods converge to the same point, and the precision
required is strict enough, an Interior-Point Newtonian method will require less computer time
than an Augmented Lagrangian method, independently of the work per iteration. Several at-
tempts have been made to alleviate both the slow-convergence behavior as the ill-conditioning
of the subproblems [14, 21, 33, 32, 39, 49]. Behind these attempts is the fact that the optimality
conditions of the Augmented Lagrangian (and Penalty) subproblems may be decomposed in such
a way that, for ρ large, resemble the KKT conditions of the original problem. This fact may be
exploited in several ways and makes it possible that good implementations of the Augmented
Lagrangian method be quite competitive with Interior-Point Newtonian techniques, even when
high precision is the main requirement at the solution.

The general form of the Augmented Lagrangian method based on the PHR formula consid-
ered in this article is the following.

Algorithm 1.1

Let λmin < λmax, µmax > 0, γ > 1, 0 < τ < 1. Let {εk} be a sequence of nonnegative numbers
such that limk→∞ εk = 0. Let λ1

i ∈ [λmin, λmax], i = 1, . . . ,m, µ1
i ∈ [0, µmax], i = 1, . . . , p, and

ρ1 > 0. Initialize k ← 1.

Step 1. Solving the subproblem.

Compute xk ∈ IRn an approximate solution of

Minimize Lρk
(x, λk, µk) subject to x ∈ Ω. (5)
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Step 2. Define

V k
i = max

{

gi(x
k),−

µk
i

ρk

}

, i = 1, . . . , p.

If k = 1 or
max{‖h(xk)‖∞, ‖V k‖∞} ≤ τ max{‖h(xk−1)‖∞, ‖V k−1‖∞}, (6)

define ρk+1 = ρk. Otherwise, define ρk+1 = γρk.

Step 3. Compute λk+1
i ∈ [λmin, λmax], i = 1, . . . ,m and µk+1

i ∈ [0, µmax], i = 1, . . . , p. Set
k ← k + 1 and go to Step 1.

In the practical implementation of Algorithm 1.1, we will compute λk+1
i = min{max{λmin, λ

k
i +

ρkhi(x
k)}, λmax} and µk+1

i = min{max{0, µk
i + ρkgi(x

k)}, µmax}. These are safeguarded first-
order estimations of the Lagrange multipliers. The safeguards defined by λmin, λmax and µmax

are necessary to prove the global convergence results. Some authors prefer to define Augmented
Lagrangian algorithms without safeguards for the Lagrange multipliers [9, 26]. However, bound-
edness of the multiplier estimates are necessary to prove the main convergence results and, if
this boundedness is not algorithmically forced, it may be guaranteed only by means of strong
problem assumptions.

Different Augmented Lagrangian algorithms will differ only in Step 1. In each case we will
need a precise definition for the approximate solution of (5).

2 Cases

2.1 Augmented Lagrangians and Global Optimization

In this section we will only assume continuity of the functions f , h and g. Throughout the
section we will assume that a global minimizer of (1) exists. Several versions of the Augmented
Lagrangian method generate sequences that converge to global minimizers, provided that global
minimizers of the subproblems are available. This property is inherited from the analogous
property of the External Penalty method. A practical consequence of this property is the fact
that Augmented Lagrangian methods tend to find feasible points with lower objective function
values than other nonlinear programming solvers, when clever agressive algorithms are used for
solving the subproblems.

Here we will assume we are able to find an approximate global minimizer defined by the
tolerance εk. At each iteration, xk will belong to Ω ∩ Pk, where Pk is an auxiliary set to which
a global minimizer of (1) necessarily belongs. For example, Pk may be a set that contains the
feasible region of (1). The presence of the constraints defined by Pk helps in the global resolution
of the subproblems. Obviously, in the absence of algorithmic advantages, Pk may be defined as
being IRn. Algorithm 2.1 will be Algorithm 1.1, where Step 1 is defined as follows.

Step 1. Let Pk ⊂ IRn be a closed set such that a global minimizer z (the same for all k) belongs
to Pk. Find an εk-global minimizer xk of the problem Min Lρk

(x, λk, µk) subject to x ∈
Ω ∩ Pk. That is xk ∈ Ω ∩ Pk is such that:

Lρk
(xk, λk, µk) ≤ Lρk

(x, λk, µk) + εk (7)
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for all x ∈ Ω ∩ Pk. The εk-global minimum can be obtained using a deterministic global
optimization approach, such as the αBB method [37].

In most deterministic global optimization methods for solving (7) the point xk−1 is not
used as “initial approximation” as most local optimization solvers do. In fact, the concept of
“initial point” has no meaning at all in this case. The information used by the Outer iteration
k is the set of approximate Lagrange multipliers computed after iteration k−1, and nothing else.

Theorems 2.1 [11] is the main convergence result related to Algorithm 2.1. Limit points of
sequences generated by this algorithm are feasible global minimizers.

Theorem 2.1. Assume that the sequence {xk} is well defined and admits a limit point x∗.
Then, x∗ is a global minimizer of (1). If, instead of εk → 0 we assume only that εk → ε ≥ 0, x∗

will be feasible and f(x∗) ≤ f(x) + ε for all feasible x.

The problem of finding xk ∈ Ω∩Pk satisfying (7) consists of finding an εk-global solution of
the problem:

Minimize Lρk
(x, λk, µk) subject to x ∈ Ω ∩ Pk. (8)

When Ω and Pk are defined by linear equality and/or inequality constraints and f, h, g admit
continuous second derivatives, this problem has been solved in [11] using the αBB algorithm
[37].

The practical results presented in [11] corroborate the theory and give hints on the effectivity
of the Augmented Lagrangian method for global optimization.

2.2 Augmented Lagrangian Algorithm with arbitrary lower-level constraints

In [2, 3] safeguarded Augmented Lagrangian methods were defined that converge to KKT points
under the CPLD constraint qualification and exhibit good properties in terms of penalty pa-
rameter boundedness. Algencan, which is publicly available in the Tango Project web page
http://www.ime.usp.br/∼egbirgin/tango/, is the application of the main algorithm in [3] to prob-
lem (1).

In this section we will assume that f, h, g admit continuous first (and, sometimes, second)
derivatives. Observe that the function Lρ, defined in (2) has continuous first derivatives with
respect to x, but second derivatives are not defined at the points such that gi(x) + µi/ρ = 0.

In Algorithm 3.1 we will assume that the set Ω is defined by

Ω = {x ∈ IRn | h(x) = 0, g(x) ≤ 0}, (9)

where h : IRn → IRm, g : IRn → IRp are as smooth as necessary. The constraints defined by Ω
are called lower-level constraints. Algorithm 3.1 is identical to Algorithm 1.1 except at Step 1.
The subproblem resolution at Algorithm 3.1 is as given below.
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Step 1. Compute (if possible) xk ∈ IRn such that there exist vk ∈ IRm, uk ∈ IRp satisfying

‖∇Lρk
(xk, λk, µk) +

∑m
i=1 vk

i∇hi(x
k) +

∑p

i=1 uk
i∇g

i
(xk)‖ ≤ εk, (10)

uk
i ≥ 0, g

i
(xk) ≤ εk for all i = 1, . . . , p, (11)

g
i
(xk) < −εk ⇒ uk

i = 0 for all i = 1, . . . , p, (12)

‖h(xk)‖ ≤ εk. (13)

(14)

The conditions (10–13) are approximate KKT conditions for the minimization of Lρk
subject

to the lower level constraints. If Ω = IRn these conditions reduce to ‖∇Lρk
(xk, λk, µk)‖ ≤ εk.

The CPLD (Constant Positive Linear Dependence) condition defined by Qi and Wei [55] is a
crucial tool in the convergence theory of Algorithm 3.1. In [4] it has been proved that CPLD is a
constraint qualification and its relation with other constraint qualifications have been reported.

A First-Order Constraint Qualification is a property of feasible points of a Nonlinear Pro-
gramming problem such that, when verified at a local minimizer, implies that the local mini-
mizer is a KKT point. The Linear-Independence Constraint Qualification (LICQ), also called
regularity, says that the gradients of the active constraints at the feasible point x are linearly
independent.

Assume that the feasible set of a nonlinear programming problem is given by h(x) = 0, g(x) ≤
0, where h : IRn → IRm and g : IRn → IRp. Let I(x) ⊂ {1, . . . , p} be the set of indices of the
active inequality constraints at the feasible point x. Let I1 ⊂ {1, . . . ,m}, I2 ⊂ I(x). The subset
of gradients of active constraints that correspond to the indices I1 ∪ I2 is said to be positively
linearly dependent if there exist multipliers λ, µ such that

∑

i∈I1

λi∇hi(x) +
∑

i∈I2

µi∇gi(x) = 0, (15)

with µi ≥ 0 for all i ∈ I2 and
∑

i∈I1
|λi|+

∑

i∈I2
µi > 0. Otherwise, we say that these gradients

are positively linearly independent.
The Mangasarian-Fromovitz Constraint Qualification MFCQ says that, at the feasible point

x, the gradients of the active constraints are positively linearly independent [48, 57].
The CPLD Constraint Qualification says that, if a subset of gradients of active constraints

is positively linearly dependent at the feasible point x (i.e. (15) holds), then there exists δ > 0
such that the vectors

{∇hi(y)}i∈I1 , {∇gj(y)}j∈I2

are linearly dependent for all y ∈ IRn such that ‖y − x‖ ≤ δ.
The main convergence theorems related to Algorithm 3.1 were proved in [3]. Theorem 3.1

says that, if a limit point satisfies the CPLD condition with respect to the lower-level constraints,
then this point is stationary with respect to a natural infeasibility measure. In other words, this
theorem says that, if the limit point is not feasible, then (very likely) it is a local minimizer of
the upper-level infeasibility, subject to lower-level feasibility.

7



Theorem 3.1. Let {xk} be a sequence generated by Algorithm 3.1. Let x∗ be a limit point of
{xk}. Then, if the sequence of penalty parameters {ρk} is bounded, the limit point x∗ is feasible.
Otherwise, at least one of the following possibilities hold:

(i) x∗ is a KKT point of the problem

Minimize
1

2

[ m
∑

i=1

hi(x)2 +
p

∑

i=1

[gi(x)+]2
]

subject to x ∈ Ω. (16)

(ii) x∗ does not satisfy the CPLD constraint qualification associated with Ω.

From the point of view of optimality, we are interested in the status of feasible limit points.
Theorem 3.2 says that, under the CPLD constraint qualification, feasible limit points are station-
ary (KKT) points of the original problem. Since CPLD is strictly weaker than the Mangasarian-
Fromovitz (MF) constraint qualification, it turns out that Theorem 3.2 is stronger than results
where KKT conditions are proved under MF or regularity assumptions.

Theorem 3.2. Let {xk} be a sequence generated by Algorithm 3.1. Assume that x∗ is a feasible
limit point of (1)-(9) that satisfies the CPLD constraint qualification related to set of all the
constraints. Then, x∗ is a KKT point of the problem (1)-(9).

Theorems 3.1 and 3.2 are interesting and useful but they do not explain why it is better to use
the Augmented Lagrangian instead of a pure penalty method. In fact, if we define λk = 0, µk = 0
for all k these two theorems remain valid and we are in presence of a variation of the External
Penalty method. The use of Lagrange multipliers estimates is justified in Theorem 3.3, which
is also proved in [3]. Theorem 3.3 says that, under appropriate conditions, the sequence of
penalty parameters {ρk} do not tend to infinity. In practice, this means that the minimization
subproblems tend to remain well-conditioned and that minimization algorithms for solving the
subproblems will not face difficulties associated to very large values of ρk.

Theorem 3.3. Assume that:

1. The sequence {xk} is generated by the application of Algorithm 3.1 to problem (1)-(9) and
limk→∞ xk = x∗.

2. In Algorithm 3.1 we use the updating rules λk+1
i = max{λmin,min{λk

i + ρkhi(x
k), λmax}}

and µk+1
i = max{0,min{µk + ρkgi(x

k), µmax}}.

3. The point x∗ is feasible (h(x∗) = 0, h(x∗) = 0, g(x∗) ≤ 0 and g(x∗) ≤ 0).

4. The gradients of the active constraints at x∗ are linearly independent. The associated
(unique) Lagrange multipliers are λ∗, µ∗, u∗, v∗.

5. The functions f, h, g, h and g admit continuous second derivatives in a neighborhood of x∗.
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6. Define the tangent subspace T as the set of all z ∈ IRn such that ∇h(x∗)T z = ∇h(x∗)T z =
0, ∇gi(x

∗)T z = 0 for all i such that gi(x
∗) = 0 and ∇g

i
(x∗)T z = 0 for all i such that

g
i
(x∗) = 0. Then, for all z ∈ T, z 6= 0,

zT [∇2f(x∗) +
∑m

i=1 λ∗
i∇

2hi(x
∗) +

∑p
i=1 µ∗

i∇
2gi(x

∗) +
∑m

i=1 v∗i∇
2hi(x

∗) +
∑p

i=1 u∗
i∇

2gi(x
∗)]z > 0.

7. For all i = 1, . . . ,m, j = 1, . . . , p, λ∗
i ∈ (λmin, λmax), µ∗

j ∈ [0, µmax).

8. For all i such that gi(x
∗) = 0, we have µ∗

i > 0. (Strict complementarity in the upper level.)

9. There exists a sequence ηk → 0 such that εk ≤ ηk max{‖h(xk)‖, ‖V k‖} for all k = 0, 1, 2 . . ..

Then, the sequence of penalty parameters {ρk} is bounded.

Observe that strict complementarity is imposed only to the constraints in the upper-level set.
In the lower-level set it is admissible that g

i
(x∗) = u∗

i = 0. Observe, too, that the assumption
on the reduced positive definiteness on the Hessian of the Lagrangian is weaker than the usual
second-order sufficiency assumption [36], since the subspace T is orthogonal to the gradients
of all active constraints, and no exception is made with respect to active constraints with null
multiplier u∗

i . In fact, this is not a second-order sufficiency assumption for local minimizers. It
holds for the problem of minimizing x1x2 subject to x2 − x1 ≤ 0 at (0, 0) although (0, 0) is not
a local minimizer of this problem.

The last hypothesis of Theorem 3.3 imposes that the precision in which subproblems are
solved should tend to zero faster than the measure of infeasibility-noncomplementarity. Some
authors [30, 31, 40, 41], in slightly different contexts, also used convergence tolerances that
depend on the degree of infeasibility of the current inner iterate.

The Augmented Lagrangian method is the only efficient nonlinear programming algorithm
that can take obvious advantage of the existence of case-oriented optimization solvers for prob-
lems whose constraints are a subset of the original problem constraints. The partition of the
constraints in “easy” and “complicate” is very common in Engineering applications. In the Aug-
mented Lagrangian framework, easy constraints go to the lower level and complicate constraints
contribute to the Augmented Lagrangian function. The most common situation is the one in
which lower level constraints are linear. Location problems of this type are described in [3].
Problems with more than 3×106 variables and 14×106 constraints are solved in this way, using
moderate computer time. The codes are free for download through the Tango Project web
page http://www.ime.usp.br/∼egbirgin/tango/. The key for the efficiency of the Augmented
Lagrangian method in these problems is the use of the Spectral Projected Gradient method
[15, 16, 17] for solving the subproblems.

2.3 Lower level box constraints

In most applications, the definition of the lower level set Ω in (1) is:

Ω = {x ∈ IRn | a ≤ x ≤ b}, (17)

where a, b ∈ IRn, a ≤ b. In other words, Ω is an n-dimensional box. By the continuity of the
Augmented Lagrangian function and the compactness of Ω, this definition guarantees that a
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global minimizer of the subproblem exists. Many times one adds bound constraints in the lower
level of a nonlinear programming problem in order to guarantee solubility of the subproblems
and boundedness of the sequence {xk}.

Obviously, the constraints (17) may be written in the form (9) and, so, Algorithm 3.1 may
be applied and Theorems 3.1, 3.2 and 3.3 hold. However, many specific algorithms for box-
constrained optimization exist that use stronger convergence criteria than the one given in
(10-13). Namely, in box-constrained minimization one usually declares convergence when

xk ∈ Ω and ‖PΩ(xk −∇Lρk
(xk, λk, µk)‖k ≤ εk, (18)

where PΩ denotes de Euclidean projection on Ω. The condition (18) implies (10-13). This leads
us to define Algorithm 4.1 as Algorithm 1.1 where Step 1 is defined by (18). Theorems 3.1,
3.2 and 3.3 obviously apply to Algorithm 4.1. It must be observed, however, that, since all
the points of Ω satisfy CPLD, Theorem 3.1 guarantees that the limit points of the generated
sequence {xk} are KKT points of

∑m
i=1 hi(x)2 +

∑p
i=1[gi(x)+]2 subject to x ∈ Ω.

Algorithm 4.1, with the subproblems solved by the box-constraint solver Gencan [12], with
the modifications introduced in [13], is called Algencan. The code that implements Algencan

is free for download in the Tango Project web page http://www.ime.usp.br/∼egbirgin/tango/. It
is written in Fortran 77 (double precision) and interfaces with AMPL, Cuter, C/C++, Python
and R (language and environment for statistical computing) are available.

The default version of Algencan uses τ = 0.5, γ = 10, λmin = −1020, µmax = λmax = 1020,

εk = 10−4 for all k, λ1 = 0, µ1 = 0 and ρ1 = max

{

10−6,min

{

10, 2|f(x0)|
‖h(x0)‖2+‖g(x0)+‖2

}}

. The

default convergence criterion is max{‖h(xk)‖∞, ‖V k‖∞} ≤ 10−4. The condition ‖V k‖∞ ≤ 10−4

guarantees that, for all i = 1, . . . , p, gi(x
k) ≤ 10−4 and that (µk

i + ρkgi(x
k))+ = 0 whenever

gi(x
k) < −10−4. This means that, approximately, feasibility and complementarity hold at the

final point. Dual feasibility with tolerance 10−4 is guaranteed by (18) and the choice of εk.
The celebrated package Lancelot also solves the basic Nonlinear Programming problem

with box constraints, but each inequality constraint is completed with a slack variable to become
an equality constraint plus a lower-level bound.

A comparison between the default versions of Algencan and Lancelot B using all the
(1023) problems of the Cuter collection was reported in [3]. The executions were stopped when
the precision 10−4 was achieved or when the allowed CPU time (5 minutes on an 1.8GHz AMD
Opteron 244 processor, 2Gb of RAM memory and Linux operating system) was exhausted.
Codes are in Fortran 77 and the compiler option “-O” was adopted.

Given a fixed problem, for each method M ∈ {Lancelot, Algencan }, xM
final was defined

in [3] as the final point obtained by M when solving the given problem. The point xM
final is

considered to be feasible if

max{‖h(xM
final)‖∞, ‖g(xM

final)+‖∞} ≤ 10−4.

Define
fbest = min

M
{f(xM

final) | x
M
final is feasible}.

It is said that the method M found a solution of the problem if xM
final is feasible and

f(xM
final) ≤ fbest + 10−3|fbest|+ 10−6 or max{fbest, f(xM

final)} ≤ −1020.
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Algencan Lancelot B

Efficiency 692 544
Robustness 809 763

Table 1: Efficiency means number of times that method M obtained the best rM . Robustness
means the number of times in which rM <∞.

Finally, let tM be the computer CPU time that method M used to arrive to xM
final. Define

rM =

{

tM, if method M found a solution,
∞, otherwise.

The quantity r was used as performance measurement in [3]. The results of the comparison are
reported in the form of performance profiles [29] and a small numerical table. See Figure 1 and
Table 1. 1

2.4 Alternative Augmented Lagrangians

The main drawback of the PHR formula (2) is that the objective function of the subproblems is
not twice continuously differentiable. This is the main motivation for the introduction of many
alternative Augmented Lagrangian methods. See, for example, [1, 5, 6, 7, 8, 22, 38, 43, 45, 46,
50, 51, 52, 53, 58]. Most of them have interesting interpretations as proximal point methods
for solving the dual problem, when the original nonlinear programming problem is convex [44].
In [10] a comparison of many different Augmented Lagrangian formulae within an algorithmic
framework similar to the one of Algorithm 1.1 has been performed using the Cute collection
[20]. In general, the PHR formula seems to be more efficient than the alternative ones for the
resolution of the selected problems.
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Figure 1: Performance profiles of Algencan and Lancelot B in the problems of the Cuter
collection. Note that there is a CPU time limit of 5 minutes for each pair method/problem. The
second graphic is a zoom of the left-hand side of the first one.
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