
Accelerated derivative-free nonlinear least-squares

applied to the estimation of Manning coefficients∗

E. G. Birgin† J. M. Mart́ınez‡

April 6, 2021§

Abstract

A general framework for solving nonlinear least squares problems without the employment of
derivatives is proposed in the present paper together with a new general global convergence theory.
With the aim to cope with the case in which the number of variables is big (for the standards of
derivative-free optimization), two dimension-reduction procedures are introduced. One of them is
based on iterative subspace minimization and the other one is based on spline interpolation with
variable nodes. Each iteration based on those procedures is followed by an acceleration step in-
spired in the Sequential Secant Method. The practical motivation for this work is the estimation
of parameters in Hydraulic models applied to dam breaking problems. Numerical examples of the
application of the new method to those problems are given.

Key words: Nonlinear least-squares, derivative-free methods, acceleration, Manning coefficients.

1 Introduction

Many statistical learning problems require fitting models to large data sets. Frequently, the number
of unknown parameters is not small. Moreover, for different reasons, derivatives of the functions that
define the model may not be available, and the sum of squares of residuals is a natural function to be
minimized. These considerations lead to the problem

Minimize
1

2
‖F (x)||22 subject to x ∈ Ω ⊆ Rn, (1)

where F : Ω→ Rm.
Let us define f(x) = 1

2‖F (x)‖22. For obtaining a quadratic approximation of f(x) with the property
of being exact if f(x) is quadratic, 1 + n+ n(n+ 1)/2 evaluations of f(x) are needed. However, if the
structure 1

2‖F (x)‖22 of f(x) is used, the same property can be obtained using only n + 1 evaluations
of F (x); see [32, 34, 48]. Considering that evaluating f(x) and F (x) has the same cost, this seems to be
a strong argument to take advantage of the sum-of-squares structure of f(x), especially if derivatives
are not available.

∗This work was supported by FAPESP (grants 2013/07375-0, 2016/01860-1, and 2018/24293-0) and CNPq (grants
302538/2019-4 and 302682/2019-8).
†Department of Computer Science, Institute of Mathematics and Statistics, University of São Paulo, Rua do Matão,

1010, Cidade Universitária, 05508-090, São Paulo, SP, Brazil. e-mail: egbirgin@ime.usp.br
‡Department of Applied Mathematics, Institute of Mathematics, Statistics, and Scientific Computing (IMECC), State

University of Campinas, 13083-859 Campinas SP, Brazil. e-mail: martinez@ime.unicamp.br
§Revision made on August 16, 2021 and December 3, 2021.

1

Ralston and Jennrich [35] introduced a purely local method that, at each iteration, minimizes the
norm of the linear model that interpolates n+1 consecutive residuals, providing the first generalization
of the Sequential Secant Method [3, 44] to nonlinear least squares. Zhang, Conn, and Scheinberg [48]
employed different quadratic models for each component of the residual function in order to define con-
veniently structured trust-region subproblems. Therefore, as in [31, 32, 33, 34], at least 2n+1 residual
evaluations are computed per iteration. The use of quadratic models allow these authors to prove not
only global convergence, but also local quadratic convergence under suitable assumptions [47]. The
idea of interpolating a different quadratic for each component of the residual has also been exploited
in the POINDERS software [43] with trust-region strategies for obtaining global convergence. Cartis
and Roberts [10] introduced a derivative-free Gauss-Newton method for solving nonlinear least squares
problems. At each iteration of their method, n + 1 residuals are used to interpolate a linear model
of F (x). The norm of the linear model is approximately minimized over successive trust regions until
sufficient decrease of the sum of squares is obtained. The points used for interpolation are updated in
order to preserve well-conditioning. With this framework global convergence and complexity results
are proved. All mentioned methods suffer from a high linear algebra cost per iteration related to
construct the model and find a model’s solution; so a natural idea, explored in the present work,
is to apply dimensionality-reduction techniques. While developing this work, we became aware of
a work of Cartis and Roberts [11] in which this idea is explored. In [11], a method that performs
successive minimizations within random subspaces, employing the model-based framework based on
the Gauss-Newton method introduced in [10], is introduced.

The present work is motivated by the objectives of CRIAB, a research group of the State of São
Paulo, in Brazil, aimed at investigating, understanding, and mitigating the consequences of techno-
logical disasters caused by the rupture of dams, which, unfortunately, are occurring both in Brazil
and in the rest of the world with increasing frequency. Different hydraulic models are used for such
objectives. All of them tend to work correctly if the parameters that determine their behavior (along
with initial and boundary conditions) are correctly estimated. The goal of the present work is to offer
to the Hydraulic Engineering community an efficient methodology for parameter estimation, exempli-
fied, in this case, by Manning’s coefficients. As it is well known, such coefficients determine the level of
non-linearity in the evolution of the flow; and their correct estimation can lead to better forecasts and,
consequently, better chances of mitigating consequences and allocating resources in different regions
affected by the eventual flood. The algorithmic approach presented here has a strong mathematical
basis and the experiments carried out indicate its efficiency for forecasting real situations. We have
great expectations that the dissemination of these techniques in the Hydraulic Engineering community
will have significant effects in practical terms, both in economic and environmental and sanitary terms.

A derivative-free method for large-scale least-squares problems is introduced in the present work.
Mathematical models for the estimation of parameters in one-dimensional models that simulate water
or mud flow in natural channels consist of partial differential equations with boundary conditions that
simulate flood intensity. The initial conditions for this type of models are, in general, well known,
but the parameters reflecting density, friction, obstacles, or terrain features must be estimated from
data. We are particularly interested in Manning coefficients. Manning’s coefficients play a crucial
role in the correct modeling of mud or water flow in a natural channel influenced by a flood. In
principle, in perfectly straight channels with constant cross-sectional area, these coefficients account
for velocity reductions due to friction with the walls or viscosity of the fluid. In real situations, in
which the channel is not straight and the cross-sectional area is not constant, Manning’s coefficients
absorb the information due to these “irregularities”, which, in fact, detract the theoretical model from
the real situation. The realistic simulation of a natural channel cannot rely on theoretical estimates
of Manning’s coefficients based on physical considerations linked to ideal situations. Necessarily, such
coefficients must be estimated on the basis of (much or little) available data. This is the exercise we

2

propose in the present work, for which we use an ideal situation that allows us to infer the usefulness
of the introduced methods in more realistic situations. Incidentally, data collection in real cases was
dramatically interrupted in 2020 by the outbreak of the pandemic we are still suffering from. The use
of programs whose source code is not available is frequent in this type of research. For this reason,
we are interested in investigating the behavior of derivative-free methods to estimate parameters of
the models used. The introduced method combines dimensionality-reduction techniques [42, 45] and
acceleration steps based on the sequential secant approach [3, 44].

Acceleration schemes, by means of which, given an iterate xk and its predecessors, one obtains
a possible (accelerated) better approximation to the solution may be applied to any of the algo-
rithms mentioned in the previous paragraph. Let us provide a rough description of the sequential
secant idea applied to nonlinear least squares problems. Assume that p ∈ {1, 2, . . . n} is given and
x0, x−1, . . . , x−p ∈ Rn are arbitrary. Given k = 0, 1, 2, . . . , we define

sk−1 = xk − xk−1, . . . , sk−p = xk−p+1 − xk−p,

yk−1 = F (xk)− F (xk−1), . . . , yk−p = F (xk−p+1)− F (xk−p),

and
Sk = (sk−1, . . . , sk−p) and Yk = (yk−1, . . . , yk−p).

The Sequential Secant Method for nonlinear least-squares is defined by

xk+1 = xk − SkY †k F (xk), (2)

where Y †k denotes the Moore-Penrose pseudo-inverse of Yk. Its main drawback is that, according
to (2), xk+1−xk always lies in the subspace generated by {sk−1, . . . , sk−p}. Therefore, all the iterates
lie in the affine subspace that passes through x0 and is spanned by {s−1, . . . , s−p}. This is not a
serious inconvenient if p = n and the increments sk−1, . . . , sk−p remain linearly independent. However,
even when p = n, the vectors sk−1, . . . , sk−p may become linearly dependent and, consequently, all
the iterates xk+j would be condemned to lie in a fixed affine subspace of dimension strictly smaller
than n. For these reasons, the pure Sequential Secant Method is not appropriate for solving nonlinear
least-squares problems when n is large and, thus, it is required to maintain p reasonable small.

Note, however, that, when m = n, under suitable assumptions, the method defined by (2) has Q-
superlinearly local converge to a solution of F (x) = 0, and its R-rate of convergence is the positive root
of tn+1− tn−1 = 0 [29]. When m = n, the problem consists of solving the nonlinear system F (x) = 0.
This case has been extensively considered in [4]. The drawback pointed out above was overcome in [4]
taking auxiliary residual-related directions. The idea of using residuals as search directions for solving
nonlinear systems of equations have been introduced and exploited in [23, 24, 27, 40] and analyzed from
the point of view of complexity in [12]. Unfortunately, in general nonlinear least-squares problems,
in which m 6= n, it is not possible to use residuals as search directions, since residuals are in Rm
and search directions are in Rn. Therefore, in the present paper, we suggest different alternatives for
choosing the first trial point without residual information at each iteration. This is the place where
the dimensionality-reduction techniques place their role – trial points are computed by minimizing
the least-squares function in a reduced space. Two alternatives are considered. In one of them,
minimizations within small random affine-subspaces are performed. On the other one, the reduced
problem has as variables nodes and values of a linear spline from which the values of the original
variables are obtained. After the computation of a suitable trial point, we try an acceleration step
using sequential secant ideas.

It is worth mentioning that sequential secant acceleration is closely connected with Anderson
acceleration [1, 7, 8, 9, 21, 28, 36, 41] and quasi-Newton acceleration [7, 16, 20, 26]. Moreover, the

3

sequential secant algorithm is a particular case of a family of secant methods described in [29] and [22],
whereas related multipoint secant methods for solving nonlinear systems and minimization have been
introduced in [5, 6, 18, 19, 38, 39] and others.

This paper is organized as follows. In Section 2, we introduce a general scheme that applies to
derivative-free optimization (not only nonlinear least-squares) and has the proposed algorithm for non-
linear least squares as particular case. Global convergence results for the general scheme are included
in this section. In Section 3, we define the specific algorithm that we use for derivative-free nonlinear
least-problems. In Section 4, we present the problem of estimating Manning coefficients and report
numerical experiments. Conclusions and lines for future research are stated in Section 5.

Notation. The symbol ‖ · ‖ will denote an arbitrary norm.

2 General optimization framework

In this section, we consider the general problem

Minimize f(x) subject to x ∈ Ω, (3)

where f : Rn → R is arbitrary and Ω ⊂ Rn is closed and convex, of which problem (1) is a particular
case. In principle, no assumption on the objective function f is made in order to define Algorithm 2.1.
However, well-definiteness and global convergence results that follow require continuity (Lemmas 2.1
and 2.2) and continuous differentiability (Lemma 2.3 and 2.4).

Algorithm 2.1 presented below applies to the solution of (3). It resembles the classical Frank-
Wolfe algorithm [17], conceived for the minimization of convex objective functions, because, at each
iteration, it minimizes a linear function subject to the true constraints of the problem and an addi-
tional constraints that guarantees that the problem is solvable. The linear approximation considered
at the subproblem of iteration k is given by 〈vk, d〉 with an arbitrary vk such that ‖vk‖ = 1. (The
requirement ‖vk‖ = 1 is arbitrary and it could be replaced by ‖vk‖ = c for any constant c > 0.) In its
more general form, this subproblem hardly approximates f at all. Thus, the goal of the subproblem
is, merely, to find a feasible trial point xk + dk in the intersection of the convex domain and a fixed
trust region defined by ∆. The practical role of ∆, other than making the subproblem solvable, is to
prevent the ocurrence of unreasonably large steps dk, whose appearance could cause the necessity of
many evaluations of the objective function to satisfy the desired descent criterion with a backtracking
procedure along the direction dk. The descent condition is nonmonotone and it can be satisfied by a
trial point of the form xtrial = xk + αdk provided that α > 0 be sufficiently small. The iteration ends
defining xk+1 = xtrial or any xk+1 such that f(xk+1) ≤ f(xtrial). Despite its generality and theoretical
properties, the efficiency of practical versions of the algorithm will depend on specific choices of vk

and ad-hoc strategies for the definition of xk+1 that will be shown in the next section.

Algorithm 2.1. Let ftarget ∈ R, ∆ > 0, γ ∈ (0, 1), a sequence {ηk} of positive numbers such that

∞∑
k=0

ηk <∞, (4)

and the initial guess x0 ∈ Ω be given. Set k ← 0.

Step 1. If f(xk) ≤ ftarget, then terminate the execution of the algorithm.

Step 2. Choose vk ∈ Rn such that ‖vk‖ = 1.

4

Step 3. Compute dk as a solution to the suproblem given by

Minimize〈vk, d〉 subject to ‖d‖ ≤ ∆ and xk + d ∈ Ω. (5)

Step 4. Set α← 1.

Step 5. Set xtrial ← xk + αdk.

Step 6. Test the descent condition

f(xtrial) ≤ f(xk) + ηk − γα2
[
f(xk)− ftarget

]
. (6)

Step 7. If (6) holds define αk = α, compute xk+1 ∈ Ω such that

f(xk+1) ≤ f(xtrial), (7)

set k ← k + 1, and go to Step 1. Otherwise, update α← α/2 and go to Step 5.

Remark. In Step 7, the new iterate xk+1 can be chosen as the trial point xtrial that satisfies (6).
However, xk+1 may also be chosen as any point that satisfies (7). On the one hand, this freedom does
not affect the algorithm’s theoretical results. On the other hand, it opens the possibility of defining
accelerations of the main procedure that can positively affect the practical behavior of the algorithm.

In Lemma 2.1, we prove that Algorithm 2.1 is well defined, so that given an iterate xk the next
iterate xk+1 necessarily exists. In Lemma 2.2, we prove that either f(xk) approximates a target value
ftarget up to arbitrary precision or the step αk tends to zero.

Lemma 2.1 Assume that f is continuous, xk ∈ Rn is an arbitrary iterate of Algorithm 2.1, and
f(xk) > ftarget. Then, xtrial and xk+1 satisfying (6) and (7) are well defined.

Proof: The thesis follows from the continuity of f using that ηk > 0 and that the successive trials
for α tend to zero. �

Lemma 2.2 Assume that f is continuous and, for all k ∈ N, we have that f(xk) > ftarget. Then,

lim
k→∞

α2
k

[
f(xk)− ftarget

]
= 0. (8)

Morever, at least one of the following two possibilities takes place:

lim
k→∞

αk = 0; (9)

or there exists an infinite subset of indices K1 ⊂ N such that

lim
k∈K1

f(xk) = ftarget. (10)

Proof: By Lemma 2.1 and the hypothesis, the algorithm generates an infinite sequence {xk} such that
{f(xk)} is bounded below. Assume that (8) is not true. Then, there exists c > 0 such that

α2
k[f(xk)− ftarget] ≥ c (11)

5

for infinitely many indices k ∈ K2. By the convergence of
∑∞

k=0 ηk, there exists k1 ∈ N such that

ηk < γc/2

for all k ≥ k1. Then, by (6), (7), and (11), for all k ∈ K2 such that k ≥ k1,

f(xk+1) ≤ f(xk) + γc/2− γc = f(xk)− γc/2. (12)

Let k2 ≥ k1 such that
∞∑

k=k2

ηk < γc/4.

Then, by (6) and (7), for all k ∈ N, k > k2 we have that

f(xk)− f(xk2) = [f(xk)− f(xk−1)] + [f(xk−1)− f(xk−2)] + · · ·+ [f(xk2+1)− f(xk2)]

≤ ηk−1 + ηk−2 + . . .+ ηk2 < γc/4.
(13)

Thus, between two consecutive terms (not smaller than k2) of the sequence K2, by (13), f increases
at most γc/4; but, by (12), decreases at least γc/2. This implies that limk→∞ f(xk) = −∞, which
contradicts the fact that {f(xk)} is bounded below. Therefore, (8) is proved.

Now, if (9) does not hold, there exists an infinite set of indices K1 such that αk is bounded away
from zero. By (8), we have that (10) must take place. �

By Lemmas 2.1 and 2.2, there are three possibilities for the sequence generated by Algorithm 2.1:
(i) The sequence terminates at some xk where f(xk) ≤ ftarget; (ii) The sequence terminates at some xk

where f(xk) ≤ ftarget + εf for a given tolerance εf > 0; and (iii) The sequence {αk} tends to zero.
Possibilities (i) and (ii) are symptoms of success of the algorithm. Possibility (iii) cannot be discarded
since, given εf > 0, f(x) may be bigger than ftarget + εf for every x ∈ Ω. Therefore, the implications
of αk → 0 need to be analyzed.

In Lemma 2.3 it is proved that, in the case that f(xk) is bounded away from ftarget, if the sequence
of iterates xk admits a limit point x∗, then the set of search directions generated in Step 3 is bounded
and every limit point of this sequence of directions is not a descent direction of f(x) emanating
from x∗. This fact has a positive consequence in terms of optimality if the choice of vk in Step 2 is,
in some sense, gradient-related. (Note that vk is the gradient of the linear function that, implicitly,
is taken as a linear approximation of f at Step 3.) The required gradient-relatedness of vk is given
by assumption (19) in Lemma 2.4, whose plausibility is discused after the lemma. The consequence,
proved in Lemma 2.4, is that at every limit point of {xk}, every feasible direction d is not a descent
direction. The final theorem in this section is a consequence of this fact.

Lemma 2.3 Assume that f admits continuous derivatives for all x in an open set that contains Ω
and {xk} is generated by Algorithm 2.1. Assume that {f(xk) − ftarget} is bounded away from zero,
x∗ ∈ Rn, and there exists K1 ⊂ N such that limk∈K1 x

k = x∗. Then, the sequence {dk}k∈K1 admits at
least one limit point and, for every limit point d of {dk}k∈K1, we have that

〈∇f(x∗), d〉 ≥ 0. (14)

Proof: By Lemma 2.2,
lim
k→∞

αk = 0. (15)

Since the first trial value for αk at each iteration is 1, (15) implies that

lim
k→∞

αk,+ = 0,

6

and, for all k large enough,

f(xk + αk,+d
k) > f(xk) + ηk − γα2

k,+

[
f(xk)− ftarget

]
.

So, since ηk > 0,
f(xk + αk,+d

k)− f(xk)

αk,+
> −γαk,+

[
f(xk)− ftarget

]
for all k large enough. Thus, by the Mean Value Theorem, there exists ξk,+ ∈ [0, αk,+] such that

〈∇f(xk + ξk,+d
k), dk〉 > −γαk,+

[
f(xk)− ftarget

]
(16)

for all k large enough.
Since ‖dk‖ ≤ ∆ for all k, we have that {dk}k∈K1 admits at least one limit point. Let d be an

arbitrary limit point of {dk}k∈K1 and let K2 ⊆ K1 such that

lim
k∈K2

dk = d (17)

and ‖d‖ ≤ ∆. By continuity, since limk∈K2 x
k = x∗ we have that

lim
k∈K2

f(xk) = f(x∗). (18)

Then, taking limits for k ∈ K2 in both sides of (16), by (15), (17), (18), and the fact that (15) implies
limk∈K2 ξk,+ = 0, we get

〈∇f(x∗), d〉 ≥ 0

as we wanted to prove. �

Lemma 2.4 Assume that f admits continuous derivatives for all x in an open set that contains Ω
and {xk} is generated by Algorithm 2.1. Assume that {f(xk) − ftarget} is bounded away from zero,
x∗ ∈ Rn, and there exists K1 ⊂ N such that limk∈K1 x

k = x∗ and

lim
k∈K1

∥∥∥∥vk − ∇f(xk)

‖∇f(xk)‖

∥∥∥∥ = 0. (19)

Then, for all d ∈ Rn such that ‖d‖ ≤ ∆ and x∗ + d ∈ Ω we have that

〈∇f(x∗), d〉 ≥ 0.

Proof: If ∇f(x∗) = 0, we are done; so we assume ∇f(x∗) 6= 0 from now on. By Lemma 2.3, there
exists K2 ⊆ K1 and d̄ ∈ Rn such that

lim
k∈K2

dk = d̄ (20)

and
〈∇f(x∗), d̄〉 ≥ 0; (21)

and, since ∇f(x∗) 6= 0, (21) implies 〈
∇f(x∗)

‖∇f(x∗)‖
, d̄

〉
≥ 0. (22)

7

Given ε > 0, by (19), (20), and the continuity of ∇f , (22) implies that

〈vk, dk〉 ≥ −ε (23)

for all k ∈ K2 large enough. Since, by the definition of Algorithm 2.1, dk is a solution to (5), (23)
implies that

〈vk, d〉 ≥ −ε (24)

for all d ∈ Rn such that xk + d ∈ Ω and ‖d‖ ≤ ∆ and all k ∈ K2 large enough.
Consider the problem

Minimize

〈
∇f(x∗)

‖∇f(x∗)‖
, d

〉
subject to ‖d‖ ≤ ∆ and x∗ + d ∈ Ω (25)

that, by compactness, admits a solution d∗; and suppose, by contradiction, that〈
∇f(x∗)

‖∇f(x∗)‖
, d∗

〉
= −c < 0. (26)

Therefore, 〈
∇f(x∗)

‖∇f(x∗)‖
, x∗ + d∗ − x∗

〉
= −c < 0.

This implies, by (19), that 〈
vk, x∗ + d∗ − xk

〉
≤ −c/2 < 0 (27)

for k ∈ K2 large enough. Let us write d̃k = x∗+d∗−xk. Since x∗+d∗ ∈ Ω, we have that xk + d̃k ∈ Ω.
If, for some k ∈ K2 large enough, we have that ‖d̃k‖ ≤ ∆, taking ε < −c/2, we get a contradiction
between (27) and (24). This contradiction comes from the assumption (26), which, as a consequence,
is false, completing the proof.

We now consider the case in which ‖d̃k‖ > ∆ for all k ∈ K2 large enough. Since

‖d̃k‖ = ‖x∗ + d∗ − xk‖ ≤ ‖d∗‖+ ‖x∗ − xk‖ ≤ ∆ + ‖x∗ − xk‖,

defining

d̂k =
d̃k

1 + ‖xk − x∗‖/∆
, (28)

we have that ‖d̂k‖ ≤ ∆ and, by the convexity of Ω, xk+ d̂k ∈ Ω. Moreover, by (27), since limk∈K2 x
k =

x∗, 〈
vk, d̂k

〉
≤ −c/4 < 0 (29)

for k ∈ K2 large enough. Taking ε < −c/4, we get the contradiction between (29) and (24) and the
proof is complete. �

Remark. Let us show that Assumption (19) is plausible. With this purpose, assume that it does not
hold. Then, there exists ε > 0 such that for all k ∈ N,∥∥∥∥vk − ∇f(xk)

‖∇f(xk)‖

∥∥∥∥ > ε.

Clearly, if we choose randomly the vectors vk in the unitary sphere, the probability of this event is
zero. Therefore, assumption (19) holds with probability 1. In a deterministic setting, consider the

8

often used assumption that states that {vk} is dense on the unitary sphere of Rn; see, for example, [2].
If ‖∇f(xk)‖ does not tend to zero, then there exists a subsequence such that ‖∇f(xk)‖ is bounded
away from zero. Then, the sequence {∇f(xk)/‖∇f(xk)‖} admits a limit point w such that ‖w‖ = 1.
By the density of {vk}, there exists a subsequence of {vk} that converges to w. By continuity of
∇f(x), this implies that Assumption (19) holds for that subsequence. It is worth noting, the authors
make no claims about the practical implications of this fact.

Theorem 2.1 Assume that f admits continuous derivatives for all x in an open set that contains Ω
and {xk} is generated by Algorithm 2.1. Assume that the level set defined by f(x0) + η is bounded,
where η =

∑∞
k=0 ηk, and there exists an infinite sequence of indices K1 such that (19) holds. Then,

given ε > 0, either exists an iterate xk such that f(xk) ≤ ftarget + ε or there exists a limit point x∗ of
{xk} such that 〈∇f(x∗), d〉 ≥ 0 for all d such that x∗ + d ∈ Ω.

Proof: Since the level set defined by f(x0)+η is bounded, the sequence {xk}k∈K1 admits a limit point.
Therefore, the thesis follows from Lemma 2.4. �

3 Practical algorithm for nonlinear least-squares

In this section, we are interested in the application of Algorithm 2.1 to large scale nonlinear least
squares problems of the form

Minimize
x∈Rn

1

2
‖F (x)‖22, (30)

where F : Rn → Rm and ‖ · ‖2 is the Euclidean norm. Consequently, we define

f(x) =
1

2
‖F (x)‖22. (31)

The proposed algorithm for solving (30) is a particular case of Algorithm 2.1 for the case Ω = Rn,
but it includes two additional features: minimizations in reduced spaces and acceleration steps. Two
different ways of minimizing within reduced spaces are described in Sections 3.1 and 3.2; while the
acceleration strategy is described in Section 3.3. Only unconstrained problems are considered in this
section because, up to the present, we are unable to recommend efficient acceleration methods in
constrained cases.

Algorithm 3.1. Let ftarget ∈ R, ∆ > 0, γ ∈ (0, 1), a sequence {ηk} of positive numbers such that

∞∑
k=0

ηk <∞,

and the initial guess x0 ∈ Rn be given. Set k ← 0.

Step 1. If f(xk) ≤ ftarget, then terminate the execution of the algorithm.

Step 2. Compute xtrial ∈ Rn by means of a Reduction Algorithm.

Step 3. Test the descent condition

f(xtrial) ≤ f(xk) + ηk − γ
[
f(xk)− ftarget

]
. (32)

If xtrial 6= xk and (32) holds, set dk = xtrial − xk, αk = 1, vk = dk/‖dk‖, and go to Step 9.

9

Step 4. Choose vk ∈ Rn such that ‖vk‖ = 1.

Step 5. Compute dk as a solution to the subproblem given by

Minimize〈vk, d〉 subject to ‖d‖ ≤ ∆.

Step 6. Set α← 1.

Step 7. Set xtrial ← xk + αdk.

Step 8. Test the descent condition

f(xtrial) ≤ f(xk) + ηk − γα2
[
f(xk)− ftarget

]
. (33)

If (33) does not hold, update α← α/2 and go to Step 7. Otherwise, set αk = α.

Step 9. Compute, by means of the Acceleration Algorithm, xk+1 ∈ Rn such that

f(xk+1) ≤ f(xtrial).

Set k ← k + 1 and go to Step 1.

Lemmas 2.1, 2.2, 2.3, 2.4, and Theorem 2.1 hold for Algorithm 3.1 exactly in the same way as
they do for Algorithm 2.1. In order to complete the definition of Algorithm 3.1, we now introduce two
possible Reduction Algorithm and an Acceleration Algorithm. Both Reduction algorithms employ
BOBYQA [34] for minimizing f(x) over manifolds of moderate dimension.

3.1 Affine-subspaces-based Reduction Algorithm

In this Reduction Algorithm the manifold over which we minimize f(x) at each iteration is an affine
subspace. At iteration k, we consider an affine transformation Tk : Rnred → Rn, with nred ≤ n, given
by Tk(d) := xk + Mkd, where Mk ∈ Rn×nred is a matrix with random (with uniform distribution)
elements mij ∈ [−1, 1]. So the problem to be solved at iteration k is given by

Minimize
d∈Rnred

1

2
‖F (Tk(d))‖22. (34)

The natural initial guess for this problem is given by d = 0. Since (34) is expected to be small, its
(approximate) solution xtrial may be computed with any derivative-free method capable of dealing
with small unconstrained problems. The minimization on small-dimensional subspaces has been used
in [42, 45]. Moreover, in the context of derivative-free optimization, it has been recently employed in
[11].

3.2 Linear-interpolation-based Reduction Algorithm

The Reduction Algorithm described in this section is suitable for problems in which the variables
x1, . . . , xn exhibit some continuity with respect to i ∈ {1, . . . n}. For example, these variables may
represent discrete realizations of a continuous function, discretized by the indices i.

At iteration k, we consider a linear-spline-based transformation Sk : Rnred → Rn, with nred ≤ n,
where nred = 2κ + 2 for some κ ≥ 0. Variables of the reduced model are the κ knots p1, . . . , pκ, and
κ+ 2 values v0, v1, . . . , vκ, vκ+1, with 0 ≤ pj ≤ 1 for j = 1, . . . , κ. We now describe how Sk transforms
(v0, . . . , vκ+1, p1, . . . , pκ) ∈ Rnred into (x1, . . . , xn) ∈ Rn. Define two additional knots p0 = 0 and

10

pκ+1 = 1. Roughly speaking, each knot pj is associated with the value vj and x1, . . . , xn are computed
by linear interpolation. The detail that must be taken into considerations is that the variable knots
pj ∈ [0, 1], for j = 1, . . . , κ, do not satisfy p0 < p1 < · · · < pκ < pκ+1 and they can even be such that
pj1 = pj2 = . . . for j1 6= j2 6= . . . If pj1 = pj2 = . . . for j1 6= j2 6= . . . , then redefine vj1 , vj2 , . . . as their
average. Let p̄0 < · · · < p̄κ̄+1 (with κ̄ ≤ κ) be a permutation of p0, . . . , pκ+1 in which repeated values
were eliminated and let v̄0, . . . , v̄κ̄+1 be the corresponding (reordered) values. We define a piecewise
linear function L : [0, 1]→ R such that L(p̄j) = v̄j for j = 0, . . . , κ̄+ 1. The transformation Sk is given
by Sk(v0, . . . , vκ+1, p1, . . . , pκ) := xk + d(v, p), where [d(v, p)]i = L((i− 1)/(n− 1)) for i = 1, . . . , n. So
the bound constrained problem to be solved at iteration k is given by

Minimize
(v,p)∈Rnred

1

2
‖F (Sk(v, p))‖22 subject to 0 ≤ pj ≤ 1 for j = 1, . . . , κ. (35)

As initial guess, we consider v = 0 and p with random (with uniform distribution) components
pj ∈ [0, 1] for j = 1, . . . , κ. Once again, since (35) is expected to be small, it can be approximately
solved by any derivative-free method capable of dealing with small unconstrained problems. In the
present work we intend to use BOBYQA [34].

3.3 Acceleration Algorithm

We adopt a Sequential Secant approach for defining the acceleration. The scheme, that generalizes
the one adopted in [4] for solving nonlinear sytems of equations, is as follows.

1. If k = 0, then define xk+1 = xtrial.

2. If k > 0, then choose kold ∈ {0, 1, . . . , k − 1},

sj = xj+1 − xj for all j = kold, . . . , k − 1,

sk = xtrial − xk,

yj = F (xj + sj)− F (xj) for all j = kold, . . . , k.

Sk = (skold , . . . , sk),

Yk = (ykold , . . . , yk),

xkaccel = xk − SkY †k F (xk).

3. If f(xkaccel) ≤ f(xtrial), then define xk+1 = xkaccel. Otherwise, define xk+1 = xtrial.

This algorithm differs from the plain acceleration scheme defined in (2) in a very substantial
way. In (2), the definition of xk+1 depends only on the previous iterates and lies in the affine subspace
determined by them. Therefore, in (2), the successive iterates do not escape from a fixed p-dimensional
affine subspace, where p is the number of previous iterates that contribute to the acceleration process.
On the contrary, here, we define xk+1 as the possible result of an acceleration that includes the
trial point xtrial which, in principle, does not belong to any pre-determined affine subspace. As a
consequence, the accelerated point has the chance of exploring the whole domain in a more efficient
way.

11

4 Estimation of Manning coefficients in the Saint-Venant equation

In the present work, we are interested in the estimation of parameters in one-dimensional models that
simulate water or mud flow in natural channels. The presence of extreme boundary conditions can be a
consequence of upstream levee breakage, a subject that is studied in the context of the interdisciplinary
research and action group CRIAB (acronym for “Dams Conflicts, Risks and Impacts” in Portuguese)
at the University of Campinas. The initial conditions for this type of models are, in general, well
known, but the parameters reflecting density, friction, obstacles, or terrain features must be estimated
from data. Mathematical models for this type of phenomena consist of partial differential equations
with boundary conditions that simulate flood intensity. The use of programs whose source code is
not available is frequent in this type of research. For this reason we are interested in investigating the
behavior of derivative-free methods to estimate parameters of the models used.

For simplicity, in this study we assume that the phenomenon we are interested in is well represented
by the Saint-Venant equations [37]. More sophisticated tools are beyond the scope of the present work.
The Saint-Venant equations

At +Qx = 0 (36)

and

Qt + (QV)x + g A ẑ +
ξ P V |V |

8
= 0. (37)

simulate the evolution of mean velocity, wetted cross-sectional area, depth, and flow in a one-dimensional
channel. In (36) and (37), A = A(x, t) is the wetted cross sectional area at position x and time t;
V = V (x, t) is the mean velocity; Q = Q(x, t) = A(x, t)V (x, t) is the flow rate; P = P (x, t) is
the wetted perimeter, that is, the perimeter enclosing the wetted area taking away the air contact
surface; g is the acceleration of gravity, approximately 9.8m/s2; ẑ = ẑ(x, t) = zx/(1 + (zx)2), where
z = z(x, t) = h(x, t) + zb(x), h(x, t) is the maximum channel depth at point x and time t, and zb(x) is
the vertical coordinate of the channel bottom at point x (therefore, zx = hx + (zb)x); and ξ = ξ(x) is
the adimensional Manning coefficient whose estimation using data is the subject of the present study.
The estimation of Manning coefficients is a very hard problem related with the simulation of floods
in natural channels [14]. In the present work, we adopt that (a) Manning coefficients vary at different
points of the channel but are invariant in time and (b) the best estimation of Manning coefficients is
the one that provides the best predictions of streams in a period of time.

We assume that the channel under consideration extends one-dimensionally from x = xmin to
x = xmax. The boundary condition on the left (xmin) simulates a flow rate that grows linearly
from 8.245 m3/s to 200 m3/s in 1,200 seconds a decreases to the initial flow rate between 1,200
seconds and 3,600 seconds, remaining stationary thereafter. The initial depth is 1.2 meters. The
second derivatives of other state variables are assumed to be zero both in x = xmin and in x = xmax.
We consider that wetted cross-sectional areas and velocities are measured between times t = tmin and
t = tobs

max, at equally spaced points in the interval [xmin, xmax]. The physical characteristics of this
channel were taken from [30] and [15]. Synthetic data were created with xmin = 0 meters, ∆x = 6
meters, xmax ∈ {3,000, 3,600, . . . , 9,000} meters, tmin = 0 seconds, and ∆t = 0.1 seconds. The value

of tobs
max, maximum observation time, was subject to experimentation; while tpred

max , maximum time for
prediction, was set to tpred

max = 3,600 seconds. The transversal area was considered to be rectangular
with a width of 5 meters. We assumed that the true value for the adimensional Manning coefficients
at the discretizated space points is 0.0366 plus a random uniform perturbation of up to 1%. We set
(zb)x = 0.001. For the purposes of this research, we found it satisfactory to solve the Saint-Venant
equations by finite differences using a Lax-Friedrichs type scheme [25] with artificial diffusion coefficient
equal to 0.9.

12

The considerations above lead to a problem of the form

Minimize
ξ∈Rnx

nt∑
i=1

nx∑
j=0

2∑
k=1

(
y(ξ, ti, xj , k)− yobs

ijk

)2
, (38)

where xj = xmin + j∆x for j = 0, . . . , nx, ti = tmin + i∆t for i = 1, . . . , nt and nx, xmin, ∆x, nt, tmin,
and ∆t are given. When k = 1, yobs

ijk (i = 1, . . . , nt, j = 0, . . . , nx) corresponds to a given observation
of transversal area; while, when k = 2, it corresponds to a given observed velocity. The problem
has nx unknowns and 2nt(nx + 1) terms in the summation. y(ξ, tmin, xj , k) does not depend on ξ and
it assumed to be known for k = 1, 2 and j = 0, . . . , nx; while the given values of ∆x and ∆t are such
that, if ξ and y(ξ, ti, xj , k) for j = 0, . . . , nx are known, then y(ξ, ti+1, xj , k), for j = 0, . . . , nx, may be
computed in finite time. In a generalization to (38), it is assumed that most of the observations are
not available and, then, (38) is substituted with

Minimize
ξ∈Rnx

∑
{(i,j,k)∈S}

(
y(ξ, ti, xj , k)− yobs

ijk

)2
, (39)

where S ⊆ Ŝ is given, Ŝ = {(i, j, k) | i = 1, . . . , nt, j = 0, . . . , nx, k = 1, 2}, and |S| � |Ŝ|. For
further reference, we denote by no = |S| the number of available observations. Note that, if S = Ŝ,
then no = 2nt(nx + 1); while if, for example, only 10% of the observations are available, then we have
no = 0.2nt(nx + 1).

Approximately solving (39) provides a value ξ̄; and this value ξ̄ is then used to predict that

yobs
ijk ≈ y(ξ̄, ti, xj , k) for (i, j, k) ∈ Ŝ+,

where tobs
max = tmin + nt∆t is the largest time instant at which observations considered in (39) were

collected, tpred
max > tobs

max, and Ŝ+ = {(i, j, k) | tobs
max < ti ≤ tpred

max , j = 0, . . . , nx, k = 1, 2} represents the
set of indices of the yobs

ijk , not yet observed, whose predicted value is given by y(ξ̄, ti, xj , k).

4.1 Numerical results

We implemented Algorithm 3.1, together with the two Reduction Algorithms (Sections 3.1 and 3.2)
and the Acceleration Algorithm (Section 3.3) in Fortran 90. In the Reduction Algorithms, subproblems
are solved using BOBYQA [34]. All tests were conducted on a computer with a 3.4 GHz Intel Core i5
processor and 8GB 1600 MHz DDR3 RAM memory, running macOS Mojave (version 10.14.6). Code
was compiled by the GFortran compiler of GCC (version 8.2.0) with the -O3 optimization directive
enabled. Source codes are freely available for download at https://www.ime.usp.br/~egbirgin/. In
the rest of this section, mainly in figures and tables, Algorithm 3.1 is sometimes referred to as SESEM,
that stands for “Sequential Secant Method”. Based on [4] and on preliminar numerical experiments,
we set γ = 10−4, ηk = 2−k for k = 0, 1, . . . , and ∆ = 10 in Algorithm 3.1, and p = 1000, i.e.
kold = max{0, k − p}, in the Acceleration Algorithm.

In section 4.1.1, we aim to determine (i) the amount of observations (starting at tmin = 0 and at
intervals ∆t = 0.1 seconds), determined by the maximum observation time tobs

max, and (b) the precision
of the optimization process that are required to recover Manning coefficients ξ suitable for making
predictions up to tpred

max = 3,600 seconds. Sections 4.1.2 and 4.1.3 are related to the calibration and
analysis of the proposed method. In Section 4.1.2, the dimension of the subproblem solved at each
iteration is determined; while in Section 4.1.3 the influence of the Acceleration Algorithm in the overall
process is observed. In Section 4.1.4, a set of instances of increasing size, mimic the the size of real-life
instances, is solved. Section 4.1.5 presents the behavior of the solvers BOBYQA [34] and DFBOLS [48]
in the set of considered instances.

13

https://www.ime.usp.br/~egbirgin/

4.1.1 Choice of a tolerance that leads to acceptable solutions

Given data coming from observations, we seek to estimate the Manning coefficients by means of which
the Saint-Venant equations produce the best reproduction of data. In real cases, we are tempted to
believe that an accuracy of around 10% in the prediction of depths and velocity is sufficiently good
and that more accurate reproduction is not justified since observation and modeling errors may be,
many times, of that order. However, we have no guarantees about the quality of predictions for data
that are not available yet; and it can be argued that, although an excessive precision in the available
data has no effect in the reproduction of these data, it may have a significant effect in the reproduction
of observations that are not available yet. Therefore, it is sensible to test our inversion procedure not
only up to the precision compatible with observation and modeling errors but also with moderate
higher precisions.

Assume that an iterative optimization process is applied to (39) to compute ξ̄; and that this process
stops when it finds ξ̄ satisfying ∑

{(i,j,k)∈S}

(
y(ξ̄, ti, xj , k)− yobs

ijk

)2

 ≤ ε
 ∑
{(i,j,k)∈S}

(
yobs
ijk

)2

 , (40)

where ε > 0 is a given tolerance. Of course, ξ̄ depends on ε and on the problem data. In particular, ξ̄
depends on the set of available observations S, that depends on tobs

max. Assume that, after computing ξ̄,
tpred
max > tobs

max is chosen and observations yobs
ijk with (i, j, k) ∈ S+ ⊆ Ŝ+ become available. We define

that, for the given S+ and tpred
max , ξ̄ is acceptable if we have that

η(ξ̄) :=

∑
{(i,j,k)∈S∪S+}

(
y(c̄, ti, xj , k)− yobs

ijk

)2

∑
{(i,j,k)∈S∪S+}

(
yobs
ijk

)2 ≤ 10−4. (41)

Let the problem data nx, xmin, ∆x, tmin, and ∆t (note that nt is missing here) be given and

assume that an instant tpred
max is chosen. The question is: Which are the number of observations no

and the optimization tolerance ε that make the computed ξ̄ to be acceptable? We aim to answer this
question empirically considering a typical instance of (39) with nx = 500, xmin = 0, ∆x = 6, tmin = 0,
∆t = 0.1, and S randomly chossen in such a way that no = |S| ≈ 0.1(2nt(nx + 1)), i.e. assuming that
approximately 90% of the observations are not available. (Units of measure are meters for space and

seconds for time.) Setting tpred
max = 3,600 and varying a constant ν ∈ {10−4, 2 × 10−4, . . . , 40 × 10−4},

used to define nt(ν) such that tobs
max ≈ ν t

pred
max , we defined 40 instances of problem (39). (The number of

observations is no ≈ 0.2nt(ν)(nx+1); ν = 10−4 corresponds to no = 427, while ν = 4×10−3 corresponds
to no = 14,460.) For each instance, a solution satisfying (40) was computed considering 36 different
tolerances ε ∈ {7.5×10−13, 5×10−13, 2.5×10−13, . . . , 10−4}. For each combination (ν, ε), we obtained
a solution ξ̄(ν, ε), that is said to be acceptable if (41) holds. Figure 1 displays, as a function of ν and ε,
the value of the prediction error η(ξ̄(ν, ε)) defined in (41). In the figure, cold colors (blue, cyan, and
green) correspond to solutions that are not acceptable; while hot colors (yellow, orange, red, and dark
red) correspond to acceptable solutions. The figure shows (on the left) that acceptable solutions were
not found when the number of observations no(ν) was smaller than the number of unknowns nx = 500.
When the number of observations is larger than the number of unknowns, acceptable solutions are
only found when ε ≤ 10−9.

4.1.2 Choice of the subproblems’ dimension

We now consider an instance of problem (39) with nx = 500, xmin = 0, ∆x = 6, nt = 10, tmin = 0,
∆t = 0.1, and S randomly chossen in such a way that no = |S| ≈ 0.1(2nt(nx + 1)), i.e. assuming

14

0.001 0.002 0.003 0.004

ν

10−12

10−10

10−8

10−6

10−4

ε

10−10

10−8

10−6

10−4

10−2

Figure 1: Acceptability of solutions ξ̄(ν, ε) to instances with varying number of observations nt(ν)
solved with varying tolerances ε. Hot colors show that acceptable solutions can be computed when
the number of observations is larger than the number of unknowns and the tolerance to stop the
optimization process is tight (smaller than 10−9).

that approximately 90% of the observations are not available. The choice nt = 10 combined with
∆t = 0.1 means that observations are collected at intervals of 0.1 seconds during 1 second; and since
we are assuming that 90% of the observations will not be available, this means that there will be
no ≈ 0.1× 2× 10× (nx + 1) = 2(nx + 1) > nx observations available. We aim to find solutions to this
instance satisfying (40) with ε = 10−9 that, for this instance, corresponds to ftarget ≈ 1.9633× 10−5.
Due to analysis in the previous paragraph, it is expected the computed solution to be acceptable
according to (41); so the solution can be used to make predictions for the next 3,559 seconds.

The instance in the previous paragraph will be used to observe the behavior of two variants
of Algorithm 3.1, with affine-subspaces-based and with linear-interpolation-based subproblems, under
variations of the subproblems’ dimension nred. Each variation of Algorithm 3.1 uses, at every iteration,
the same reduction strategy and the same subproblem’s dimension. As mentioned in the previous
paragraph, ftarget ≈ 1.9633 × 10−5; while the initial guess is always x0 = 0. Figures 2 and 3 show
the results. Since both reduction strategies have a random component, the instance was solved ten
times for each considered value of nred. Figure 2 shows boxplots of two performance measures (CPU
time and number of functional evaluations) of Algorithm 3.1 with affine-subspace-based subproblems
and nred ∈ {4, 5, . . . , 9} ∪ {10, 15, . . . , 50}. (It is worth noting that in all cases the method stopped
satisfying the stopping criterion (40) with ε = 10−9 as desired.) The boxplots show that the efficiency
of the method is inversely proportional to the size of the subproblems. It must be observed that with
nred ∈ {2, 3} (that are not being shown in the picture) the performance measures present a large
standard deviation and some outliers, while the method fails a few times, characterizing a situation in
which the method has difficulties in improving the current approximation to a solution by inspecting
a very small search space. Figure 3 shows boxplots of two performance measures (CPU time and

15

number of functional evaluations) of Algorithm 3.1 with linear-interpolation-based subproblems and
nred ∈ {8, 10, 12, 14, 16, 18, 20, 30, 40, 50}. The boxplots show a uniform performance of the method
for nred ≤ 20; while, for nred > 20, the efficiency decreases when nred increases.

Comparing Figures 2 and 3 and disregarding the difference in scale, it can be observed a dif-
ference in the standard deviation (over each batch of ten runs) when affine-subspaces-based and
linear-interpolation-based subproblems are considered. The interpolation by splines is clearly problem
oriented whereas the minimization in affine subspaces is not. Different Manning functions generated
by interpolation are all meaningful, which is not the case when the Manning functions lie in more or
less random affine subspaces. The subspace idea “ignores” the fact that the Manning is a continuous
one-dimensional function. In this sense, it would be expected to observe smaller standard deviations
in the case in which linear-interpolation-based subproblems are considered which, unfortunately, is
not the case. Therefore, we presume that the observed behavior of both strategies is related to their
sensitivity with respect to the initial guess used to solve the subproblems (described in Sections 3.1
and 3.2).

2

3

4

5

6

7

8

4 5 6 7 8 9 10 15 20 25 30 35 40 45 50

C
P

U
T

im
e

(i
n

se
co

n
d

s)

Dimension of the subproblems

5000

10000

15000

20000

25000

30000

35000

40000

4 5 6 7 8 9 10 15 20 25 30 35 40 45 50N
u

m
b

er
of

fu
n

ct
io

n
al

ev
al

u
at

io
n

s

Dimension of the subproblems

Figure 2: Boxplots of performance metrics of Algorithm 3.1 with the affine-subspaces-based reduction
strategy applied to the instance with nx = 500 varying the subproblems’ dimension nred.

16

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

8 10 12 14 16 18 20 30 40 50

C
P

U
T

im
e

(i
n

se
co

n
d

s)

Dimension of the subproblems

0

5000

10000

15000

20000

25000

8 10 12 14 16 18 20 30 40 50N
u

m
b

er
of

fu
n

ct
io

n
al

ev
al

u
at

io
n

s

Dimension of the subproblems

Figure 3: Boxplots of performance metrics of Algorithm 3.1 with the linear-interpolation-based reduc-
tion strategy applied to the instance with nx = 500 varying the subproblems’ dimension nred.

4.1.3 Influence of the acceleration scheme

Still considering the same instance, we now analyze the influence of the acceleration in the performance
of Algorithm 3.1 with affine-subspaces-based subproblems (nred = 4) and with linear-interpolation-
based subproblems (nred = 20). Figure 4 shows the results. The figure shows that, when the affine-
subspaces reduction strategy is considered, the acceleration improves the efficiency of the method in
approximately two orders of magnitude; while it appears to have no relevant effect in combination with
the linear-interpolation-based reduction strategy; although it appears to speed up the convergence of
the method in its final iterations.

4.1.4 Solving larger instances

We now consider a set of instances exactly as the one already described but with nx ∈ {500, 600, . . . ,
1,500}. (These values correspond to xmax = 3,000, 3,600, 4,200, . . . , 9,000, respectively.) Table 1
presents the performance of Algorithm 3.1 with affine-subspaces-based subproblems (nred = 4) and
with linear-interpolation-based subproblems (nred = 20). As before, the initial guess x0 is always the
origin, ftarget corresponds to the value of the right-hand-side in (40) with ε = 10−9. In the table,

17

10−5

10−4

10−3

10−2

10−1

0 20 40 60 80 100 120

ftarget = 1.9633× 10−5

O
b

je
ct

iv
e

fu
n

ct
io

n

CPU Time (in seconds)

Accelerated SESEM (default)
SESEM without acceleration

10−5

10−4

10−3

10−2

10−1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

ftarget = 1.9633× 10−5

O
b

je
ct

iv
e

fu
n

ct
io

n

CPU Time (in seconds)

Accelerated SESEM (default)
SESEM without acceleration

Figure 4: Influence of the acceleration in the performance of Algorithm 3.1 with affine-subspaces-
based subproblems (top) and with linear-interpolation-based subproblems (bottom) when applied to
the instance with nx = 500.

‖F (ξ̄)‖22 corresponds to the left-hand-side in (40), i.e.,

‖F (ξ̄)‖2 =
∑

{(i,j,k)∈S}

(
y(ξ̄, ti, xj , k)− yobs

ijk

)2
,

#it stands for the number of iterations, #fcnt stands for the number of functional evaluations, and
Time stands for the CPU time in seconds. Since the method is run ten times per instance, values in the
table correspond to averages. In addition, for the CPU time, the standard deviation is also presented
in the table; and boxplots are given in Figures 5 and 6. A comparison between Figures 5 and 6 makes
it clear that the cost of the affine-subspaces strategy grows together with the size of the instances;
while the linear-interpolation strategy appears to absorve the cost of increasing sizes by incorporation
some knowledge of the problem’s solution. It is worth noticing that the trial point xtrial computed by
the Reduction Algorithm at Step 2 satisfied the descent condition (32) 100% of the times; while the
accelerated point xkaccel at the Acceleleration Algorithm of Step 9 improved xtrial 99.16% of the times,
in average.

18

nx no

SESEM with affine subspaces (nred = 4) SESEM with linear splines (nred = 20)

‖F (ξ̄)‖2 #it #fcnt
Time ‖F (ξ̄)‖2 #it #fcnt

Time
avg stdev avg stdev

500 1,058 1.86e-05 464 6,293 2.18 0.06 1.92e-05 38 4,598 0.64 0.29
600 1,257 2.10e-05 568 7,765 4.26 2.23 2.12e-05 39 5,094 0.80 0.45
700 1,471 2.64e-05 669 9,265 5.72 1.14 2.63e-05 42 5,109 0.92 0.54
800 1,669 3.06e-05 740 10,051 7.76 0.17 2.97e-05 43 4,984 1.02 0.49
900 1,908 3.53e-05 829 11,192 10.63 0.17 3.30e-05 45 5,513 1.26 0.51

1,000 2,106 3.83e-05 921 12,538 14.43 0.27 3.75e-05 45 6,021 1.62 0.66
1,100 2,312 4.26e-05 1,024 14,089 19.12 0.75 4.02e-05 41 5,304 1.47 0.77
1,200 2,484 4.67e-05 1,360 19,924 35.85 2.19 4.58e-05 45 5,372 1.62 0.81
1,300 2,677 5.05e-05 1,713 26,404 55.81 3.39 4.94e-05 46 5,802 1.89 1.06
1,400 2,885 5.45e-05 2,124 33,796 84.39 9.25 5.10e-05 43 5,227 1.84 0.94
1,500 3,090 5.84e-05 2,725 44,896 137.36 7.85 5.35e-05 48 5,916 2.39 1.04

Table 1: Performance of Algorithm 3.1 with affine-subspaces-based subproblems (nred = 4) and with
linear-interpolation-based subproblems (nred = 20) applied to instances of increasing size with xmax ∈
{3,000, 3,600, . . . , 9,000}.

4.1.5 Comparison with BOBYQA and DFBOLS

This section ends presenting the performance of BOBYQA and DFBOLS1 applied to the same in-
stances of Table 1. Aiming a fair comparison, both methods were modified to stop as soon as they
reach a solution ξ satisfying ‖F (ξ)‖22 ≤ ftarget. Table 2 shows the results. Figures in the table show
that both variants of Algorithm 3.1 outperforms BOBYQA and DFBOLS by several orders of mag-
nitude when the CPU time is considered as performance measure. While DFBOLS is the most time
consuming method, it is the most efficient if the number of functional evaluations is considered. It is
worth noticing that the comparison between the behaviors of the considered methods is restricted to
their application to the problem under consideration.

5 Final remarks

In this paper, we presented a general scheme under which globally convergent derivative-free algorithms
for nonlinear least squares with sequential secant acceleration can be defined. Our main motivation
was the estimation of parameters in hydraulic models governed by partial differential equations. The
non-availability of derivatives come from the fact that these models may be computed by “partially
black-box” codes and the possible uncertainty of function evaluations motivated by the lack of precise
geometrical parameters during the estimation process.

Algorithms based on interpolating quadratic models like BOBYQA [34] (see, also, [13]) use to be
effective for this type of optimization problems. However, big costs associated with model building
and its minimization make it necessary to employ schemes in which the number of variables is not
very large. Partial minimization over random affine subspaces is an adequate dimension-reduction
procedure [11, 42, 45]; and we showed that acceleration based on the sequential secant framework is
effective to increase the performance of that approach. In addition, we developed a new reduction
procedure based on variable linear interpolation in which the variables of subproblems are a set of

1Provided by Hongchao Zhang on January 11th, 2021.

19

0

20

40

60

80

100

120

140

3000 3600 4200 4800 5400 6000 6600 7200 7800 8400 9000

C
P

U
T

im
e

(i
n

se
co

n
d

s)

xmax

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

3000 3600 4200 4800 5400 6000 6600 7200 7800 8400 9000N
u

m
b

er
of

fu
n

ct
io

n
al

ev
al

u
at

io
n

s

xmax

Figure 5: Boxplots of performance metrics of Algorithm 3.1 with affine-subspaces-based subproblems
(nred = 4) applied to instances of increasing size with xmax ∈ {3,000, 3,600, . . . , 9,000}.

independent variables with coordinates corresponding to (also) variable nodes. The effectiveness of
this new approach is associated with the structure of the variables of the problem. If, in the original
underlying problem, the unknown is a continuous function that depends on a single variable, the
one-dimensional interpolatory scheme tends to be quite effective. This is the case of our problem of
estimating the Manning coefficients, which, as a consequence, does not need acceleration to obtain
the best possible results. In more complicated cases, the “true” unknown of the problem may be a
continuous function of 2, 3, or more variables. In this case, our variable-node interpolation scheme
should be conveniently adapted by means of incorporation of multi-dimensional interpolation devices.
In the present work, the implementation of the proposed method, which combines a dimensionality
reduction scheme and an acceleration process, made use of the general purpose derivative-free solver
BOBYQA [34] to solve the small-sized subproblems arising at each iteration. For the latter purpose,
any of the derivative-free least-squares methods such as those introduced in [10, 11, 48] could also be
used instead.

The proposed method was tailored to solve a specific Engineering problem; and the developed
framework includes steps whose implementation is dependent on the problem addressed. For the
Manning coefficients problem, the linear-interpolation-based reduction technique had a crucial effect.
In a different context, if F (x) = (f1(x), . . . , fm(x))T , in a given iteration k we could choose vk consid-

20

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

3000 3600 4200 4800 5400 6000 6600 7200 7800 8400 9000

C
P

U
T

im
e

(i
n

se
co

n
d

s)

xmax

0

2000

4000

6000

8000

10000

12000

14000

3000 3600 4200 4800 5400 6000 6600 7200 7800 8400 9000N
u

m
b

er
of

fu
n

ct
io

n
al

ev
al

u
at

io
n

s

xmax

Figure 6: Boxplots of performance metrics of Algorithm 3.1 with linear-interpolation-based subprob-
lems (nred = 20) applied to instances of increasing size with xmax ∈ {3,000, 3,600, . . . , 9,000}.

ering the separability of the fj or trying to minimize some specific subset of fj , for exemple the ones
with a larger contribution to ‖F (xk)‖2, with a block coordinate descent flavour. Another problem-
dependent factor is the parameter ftarget, which affects the sufficient descent criterion – knowing
whether the problem has null residue or not, influences the performance of the method. Thus, the
proposed method can be seen as a general framework, and a deep study of the many possibilities it
embeds is out of the scope of the present work.

In small problems, reduction techniques are meaningless. On the other hand, acceleration might
work well, but it cannot be combined with independent calls to BOBYQA, seen as a black box, to
compute each vk. (vk could be obtained by solving the original problem with a tolerance that goes to
zero when k goes to infinity.) That way, in each call, BOBYQA is prevented from using the memory
of the problems solved in the previous iterations, and the method as a whole ends up being inefficient.
The correct way to use acceleration in BOBYQA would be to modify the BOBYQA source code.
Each “standard BOBYQA new iterate” would play the role of xtrial. Using that xtrial and the previous
iterates, an accelerated point xkaccel would be calculated with the sequential secant approach and the
best of the two would be taken as the new iterate xk+1. However, modifying the BOBYQA source
code is difficult and that task might be the subject of future work.

Considerations above lead to the claim that the implementation of Algorithm 3.1 introduced in

21

nx no
BOBYQA DFBOLS

‖F (ξ̄)‖2 #fcnt Time ‖F (ξ̄)‖2 #fcnt Time

500 1,058 1.96e-05 7,593 278.68 2.63e-07 1,006 1,907.91
600 1,257 2.34e-05 8,176 511.07 2.39e-07 1,206 5,679.65
700 1,471 2.73e-05 10,601 1,057.75 5.16e-07 1,406 13,413.81
800 1,669 3.14e-05 15,353 1,948.76 1.16e-07 1,606 31,103.48
900 1,908 3.58e-05 12,901 2,133.89 – – >10h

1,000 2,106 3.92e-05 21,674 4,376.88 – – –
1,100 2,312 4.32e-05 18,916 5,967.14 – – –
1,200 2,484 4.67e-05 22,419 11,584.94 – – –
1,300 2,677 5.06e-05 26,074 16,742.44 – – –
1,400 2,885 5.46e-05 34,286 26,692.62 – – –
1,500 3,090 5.84e-05 29,473 26,325.37 – – –

Table 2: Performance of BOBYQA and DFBOLS applied to instances of increasing size with xmax ∈
{3,000, 3,600, . . . , 9,000}.

the present work performs well in large-scale least-squares problems in which variables of the problem
correspond to the discretization of a continuous one-dimensional function. The present work makes
no claims about the performance of the proposed method in other families of large scale problems,
where it performance remains to be assessed.

References

[1] D. G. Anderson, Iterative procedures for nonlinear integral equations, Journal of the Association
for Computing Machinery 12, pp. 547–560, 1965.

[2] Ch. Audet and J. E. Dennis, Jr., Mesh adaptive direct search algorithms for constrained opti-
mizationSIAM Journal on Optimization 17, pp. 188–217, 2006.

Read More: https://epubs.siam.org/doi/abs/10.1137/040603371

[3] J. G. P. Barnes, An algorithm for solving nonlinear equations based on the secant method,
Computer Journal 8, pp. 66–72, 1965.

[4] E. G. Birgin and J. M. Mart́ınez, Secant acceleration of sequential residual methods for large
scale nonlinear systems of equations, arXiv:2012.13251v1.

[5] N. Boutet, R. Haelterman, and J. Degroote, Secant update version of quasi-Newton PSB with
weighted multisecant equations, Computational Optimization and Applications pp. 1–26, 2020.

[6] N. Boutet, R. Haelterman, and J. Degroote, Secant update generalized version of PSB: a new
approach, Computational Optimization and Applications 78, pp. 953–982, 2021.

[7] C. Brezinski, Convergence acceleration during the 20th century, Journal of Computational and
Applied Mathematics 122, pp. 1–21, 2000.

[8] C. Brezinski and M. Redivo-Zaglia, Extrapolation Methods Theory and Practice, North-Holland,
Amsterdam, 1991.

22

https://arxiv.org/abs/2012.13251v1

[9] C. Brezinski, M. Redivo-Zaglia, and Y. Saad, Shanks sequence transformations and Anderson
acceleration, SIAM Review 60, pp. 646–669, 2018.

[10] C. Cartis and L. Roberts, A derivative-free Gauss-Newton method, Mathematical Programming
Computations 11, pp. 631–674, 2019.

[11] C. Cartis and L. Roberts, Scalable subspace methods for derivative-free nonlinear least-squares
optimization, arXiv:2102.12016.

[12] F. Chorobura, Worst-case complexity analysis of derivative-free nonmonotone methods for solving
nonlinear systems of equations, Master Dissertation, Federal University of Paraná, Curitiba, PR,
Brazil, 2020.

[13] A. R. Conn, K. Scheinberg, and L. N. Vicente, Introduction to Derivative-Free Optimization,
MPS-SIAM Series on Optimization, 2009.

[14] Y. Ding, Y. Jia, S. S. Y. Wang, Identification of Manning’s roughness coefficients in shallow water
flows, Journal of Hydraulic Engineering, pp. 501–510, 2004.

[15] W. H. Graf and M. S. Altinakar, Hydraulique Fluviale - Tome 1: Ecoulement permanent uniforme
et non uniforme, Presses Polytechniques e Universitaires Romandes, Lausanne, 1993.

[16] H. R. Fang and Y. Saad, Two classes of multisecant methods for nonlinear acceleration, Numerical
Linear Algebra and Applications 16, pp. 197–221, 2009.

[17] M. Frank and P. Wolfe, An algorithm for quadratic programming, Naval Research Logistics Quar-
terly 3, pp. 95–110, 1956.

[18] S. Gratton and Ph. L. Toint, Multi-secant equations, approximate invariant subspaces and multi-
grid optimization, Technical Report 07/11, Department of Mathematics, University of Namur –
FUNDP, Namur, Belgium, 2007.

[19] S. Gratton, V. Malmedy, and Ph. L. Toint, Quasi-Newton updates with weighted secant equations,
Optimization Methods and Software 30, pp. 748–755, 2015.

[20] R. Haelterman, A. Bogaers, J. Degroote, and N. Boutet, Quasi-Newton methods for the accel-
eration of multi-physics codes, IAENG International Journal of Applied Mathematics 47, pp.
352–360, 2017.

[21] N. Ho, S. D. Olson, and H. F. Walker, Accelerating the Uzawa algorithm, SIAM Journal on
Scientific Computing 39, pp. 461–476, 2017.

[22] J. Jankowska, Theory of Multivariate Secant Methods, SIAM Journal on Numerical Analysis 16,
pp. 547–562, 1979.

[23] W. La Cruz, J. M. Mart́ınez, and M. Raydan, Spectral residual method without gradient infor-
mation for solving large-scale nonlinear systems of equations, Mathematics of Computation 75,
pp. 1429–1448, 2006.

[24] W. La Cruz and M. Raydan, Nonmonotone Spectral Methods for Large-Scale Nonlinear Systems,
Optimization Methods and Software 18, pp. 583–599, 2003.

[25] R. J. LeVeque, Numerical Methods for Conservation Laws, Lectures in Mathematics, ETH Zürich,
Birkäuser, 1992.

23

https://arxiv.org/abs/2102.12016

[26] T. Martini dos Santos, L. Reips, and J. M. Mart́ınez, Under-relaxed quasi-Newton acceleration
for an inverse fixed-point problem coming from positron-emission tomography, Journal of Inverse
and Ill-Posed Problems 26, pp. 755–770, 2018.

[27] E. Meli, B. Morini, M. Porcelli, and C. Sgattoni, Solving nonlinear systems of equations via
spectral residual methods: stepsize selection and applications, arXiv:2005.05851v2.

[28] P. Ni and H. F. Walker, Anderson acceleration for fixed-point iterations, SIAM Journal on Nu-
merical Analysis 49, pp. 1715–1735, 2011.

[29] J. M. Ortega and W. C. Rheinboldt, Iterative solution of nonlinear equations in several variables,
Academic Press, 1970.

[30] R. M. Porto, Hidráulica Básica, EESC-USP, São Carlos, SP, Brazil, 2004.

[31] M. J. D. Powell, UOBYQA, Unconstrained optimization by quadratic approximation, Mathemat-
ical Programming 92, pp. 555–582, 2002.

[32] M. J. D. Powell, Least Frobenius norm updating of quadratic models that satisfy interpolation
conditions, Mathematical Programming 100, pp. 183–215, 2004.

[33] M. J. D. Powell, Beyond symmetric Broyden for updating quadratic models in minimization
without derivatives, Mathematical Programming 138, pp. 475–500, 2013.

[34] M. J. D. Powell, The BOBYQA algorithm for bound constrained optimization without derivatives,
Report No. DAMTP 2009/NA06, Centre for Mathematical Sciences, University of Cambridge,
2009.

[35] M. L. Ralston and R. I. Jennrich, Dud, a derivative free algorithm for nonlinear least squares,
Technometrics 20, pp. 7–14, 1978.

[36] T. Rohwedder and R. Schneider, An analysis for the DIIS acceleration method used in quantum
chemistry calculations, Journal of Mathematical Chemistry 49, article number 1889, 2011.

[37] A. J. C. Saint-Venant, Théorie du mouvement non-permanent des eaux, avec application aux
crues des rivière at à l’introduction des marées dans leur lit, Comptes Rendus des Séances de
Académie des Sciences 73, pp. 147–154, 1871.

[38] K. Scheufele and M. Mell, Robust multisecant Quasi-Newton variants for parallel fluid-structure
simulations–and other multiphysics applications, SIAM Journal on Scientific Computing 39, pp.
404–433, 2017.

[39] R. B. Schnabel, Quasi-Newton methods using multiple secant equations, Technical Report CU-
CS-247-83, Deptartment of Computer Science, University of Colorado, Boulder, CO, USA, 1983.

[40] R. Varadhan and P. D. Gilbert, BB: An R package for solving a large system of nonlinear equations
and for optimizing a high-dimensional nonlinear objective function, Journal of Statistical Software
32, article number 4, 2009.

[41] H. F. Walker, C. S. Woodward, and U. M. Yang, An accelerated fixed-point iteration for solution of
variably saturated flow, in Proceedings of the XVIII International Conference on Water Resources,
CMWR 2010, J. Carrera, ed., CIMNE, Barcelona, 2010 (available online at http://congress.

cimne.com/CMWR2010/Proceedings/Start.html).

24

https://arxiv.org/abs/2005.05851v2
http://congress.cimne.com/CMWR2010/Proceedings/Start.html
http://congress.cimne.com/CMWR2010/Proceedings/Start.html

[42] Z. Wang, Z. Wen, and Y.-X. Yuan, A subspace trust region method for large scale unconstrained
optimization, in Numerical Linear Algebra and Optimization, Ya-Xiang Yuan ed., Science Press,
2004, pp. 264–274.

[43] S. M. Wild, Solving derivative-free nonlinear least squares problems with POUNDERS, in Ad-
vances and Trends in Optimization with Engineering Applications, T. Terlaky, M. F. Anjos, and
S. Ahmed (eds.), SIAM, Philadephia, PA, USA, 2017, pp. 529–540.

[44] P. Wolfe, The secant method for simultaneous nonlinear equations, Communications of ACM 2,
pp. 12–13, 1959.

[45] Y.-X. Yuan, Subspace methods for large scale nonlinear equations and nonlinear least squares,
Optimization and Engineering 10, pp. 207–218, 2009.

[46] N. Zeev, O. Savasta and D. Cores, Nonmonotone Spectral Projected Gradient method applied to
full waveform inversion, Geophysical Prospecting 54, pp. 525–534, 2006.

[47] H. Zhang and A. R. Conn, On the local convergence of a derivative-free algorithm for least-squares
minimization, Computational Optimization and Applications 51, pp. 481–507, 2012.

[48] H. Zhang, A. R. Conn, and K. Scheinberg, A derivative-free algorithm for least-squares minimiza-
tion, SIAM Journal on Optimization 20, pp. 3555–3576, 2010.

25

	Introduction
	General optimization framework
	Practical algorithm for nonlinear least-squares
	Affine-subspaces-based Reduction Algorithm
	Linear-interpolation-based Reduction Algorithm
	Acceleration Algorithm

	Estimation of Manning coefficients in the Saint-Venant equation
	Numerical results
	Choice of a tolerance that leads to acceptable solutions
	Choice of the subproblems' dimension
	Influence of the acceleration scheme
	Solving larger instances
	Comparison with BOBYQA and DFBOLS

	Final remarks

