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1 Introduction

Cauchy’s steepest descent algorithm [22] is the most ancient method for multidimensional un-
constrained minimization. Given f , a real smooth function defined on IRn, the idea is to iterate
according to:

xk+1 = xk − αk∇f(xk), (1)

with the expectancy that the sequence {xk} would approximate a minimizer of f . The greedy
choice of the steplength αk is

f(xk − αk∇f(xk)) = min
α≥0

f(xk − α∇f(xk)). (2)

The poor practical behavior of (1)-(2) has been known for many years. If the level sets of f
resemble long valleys, the sequence {xk} displays a typical zig-zagging trajectory and the speed
of convergence is very slow. In the simplest case, in which f is a strictly convex quadratic, the
method converges to the solution with a Q-linear rate of convergence whose factor tends to 1
when the condition number of the Hessian tends to infinity.

Nevertheless, the structure of the iteration (1) is very attractive, especially when one deals
with large-scale (many variables) problems. Each iteration only needs the computation of the
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gradient ∇f(xk) and the number of algebraic operations is linear in terms of n. As a conse-
quence, a simple paper by Barzilai and Borwein published in 1988 [4] attracted some justified
attention. Barzilai and Borwein discovered that, for some choices of αk, Cauchy’s method con-
verges superlinearly to the solution, if f : IR2 → IR is a convex quadratic. Some members of the
optimization community began to believe that the existence of an efficient method for large-scale
minimization based only on gradient directions could be possible.

In 1993, Raydan [60] proved the convergence of the Barzilai-Borwein method for arbitrary
strictly convex quadratics. He showed that the method was far more efficient than the steep-
est descent algorithm (1)-(2) although it was not competitive with the Conjugate Gradient
method of Hestenes and Stiefel [49] for quadratic problems. The possibility of obtaining super-
linear convergence for arbitrary n was discarded by Fletcher’s work [40] (see also [60]) and a
bizarre behavior of the method seemed to discourage the application to general (not necessarily
quadratic) unconstrained minimization: the sequence of functional values f(xk) did not decrease
monotonically and, sometimes, monotonicity was severely violated.

However, starting with the work by Grippo, Lampariello and Lucidi [47], nonmonotone
strategies for function minimization began to become popular. These strategies made it pos-
sible to define globally convergent algorithms without monotone decrease requirements. The
philosophy behind nonmonotone strategies is that, many times, the first choice of a trial point
by a minimization algorithm hides a lot of wisdom about the problem structure and that such
knowledge can be destroyed by the decrease imposition. For example, if one applies Newton’s
method to a problem in which several components of the gradient are linear, these compo-
nents vanish at the first trial point of each iteration, but the objective function value does not
necessarily decrease at this trial point.

Therefore, the conditions were given for the implementation of the Barzilai-Borwein method
for general unconstrained minimization with the help of a nonmonotone strategy. Raydan [61]
defined this method in 1997 using the GLL strategy [47]. He proved global convergence and
exhibited numerical experiments that showed that, perhaps surprisingly, the method was more
efficient than classical conjugate gradient methods for minimizing general functions. These nice
comparative numerical results were possible because, albeit the Conjugate Gradient method
of Hestenes and Stiefel continued to be the rule of choice for solving many convex quadratic
problems, its efficiency was hardly inherited by generalizations for minimizing general functions.
Therefore, there existed a wide space for variations of the Barzilai-Borwein idea.

The Spectral Projected Gradient (SPG) method [16, 17, 18] was born from the marriage of
the Barzila-Borwein (spectral) nonmonotone ideas with classical projected gradient strategies
[7, 46, 53]. This method is applicable to convex constrained problems in which the projection on
the feasible set is easy to compute. Since its appearance, the method has been intensively used
in applications [3, 6, 10, 14, 15, 19, 20, 24, 26, 35, 42, 50, 59, 63, 64, 65, 69]. Moreover, it has
been the object of several spectral-parameter modifications, alternative nonmonotone strategies
have been suggested, convergence and stability properties have been elucidated and it has been
combined with other algorithms for different optimization problems.
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2 Method

2.1 The secant connection

Quasi-Newton secant methods for unconstrained optimization [36, 37] obey the recursive formula

xk+1 = xk + αkB
−1
k ∇f(xk). (3)

The sequence of matrices {Bk} satisfy the secant equation

Bk+1sk = yk, (4)

where sk = xk+1 − xk and yk = ∇f(xk+1)−∇f(xk). By (4), it can be shown that, at the trial
point xk − B−1

k ∇f(xk), the affine approximation of ∇f(x) that interpolates the gradient at xk

and xk−1 vanishes for all k ≥ 1.
Now assume that we want a matrix Bk+1 with a very simple structure that satisfies (4).

More precisely, we wish
Bk+1 = σk+1I,

with σk+1 ∈ IR. The equation (4) becomes:

σk+1sk = yk.

In general, this equation cannot be solved. However, accepting the least-squares solution that
minimizes ‖σsk − yk‖

2
2, we obtain:

σk+1 =
sT
k yk

sT
k sk

. (5)

This formula defines the most popular Barzilai-Borwein method [61]. Namely, the method for
unconstrained minimization is of the form (3), where, at each iteration,

dk = −
1

σk

∇f(xk)

and formula (5) is used to generate the coefficients σk provided that they are bounded away
from zero and that they are not very large. In other words, the method uses safeguards 0 <
σmin < σmax <∞ and defines, at each iteration:

σk+1 = min{σmax,max{σmin,
sT
k yk

sT
k sk

}}.

By the Mean-Value Theorem of Integral Calculus, one has:

yk = (

∫ 1

0

∇2f(xk + tsk)dt)sk.

Therefore, formula (5) defines a Rayleigh quotient relative to the average Hessian matrix (
∫ 1
0 ∇

2f(xk+
tsk)dt)sk. This coefficient is between the minimum and the maximum eigenvalue of the average
Hessian, which motivates the denomination of Spectral Method [16].

Writing the secant equation as Hyk = sk, which is also standard in the Quasi-Newton

tradition, we arrive to a different spectral coefficient:
yT

k
yk

sT

k
yk

. Curiously, both this dual and the

primal coefficient had been used for many years in practical quasi-Newton methods to define
the initial matrices B0 [58].
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2.2 The line search

The Spectral Projected Gradient method (SPG) aims to minimize f on a closed and convex set
Ω. The method, as well as its unconstrained counterpart [61] has the form

xk+1 = xk + αkdk. (6)

The search direction dk has been defined in [16] as

dk = P (xk −
1

σk

∇f(xk))− xk,

where P denotes the Euclidean projection on Ω. A related method with approximate projections
has been defined in [18]. The direction dk is a descent direction, which means that, if dk 6= 0,
one has that f(xk + αdk)≪ f(xk) for α small enough. This means that, in principle, one could
define convergent methods imposing sufficient decrease at every iteration. However, this leads
to disastrous practical results. For this reason, the spectral methods employ a nonmonotone
line search that does not impose functional decrease at every iteration. In [16, 17, 18] the GLL
[47] search is used. This line search depends on an integer parameter M ≥ 1 and imposes a
functional decrease every M iterations (if M = 1 then GLL line search reduces to a monotone
line search).

The line search is based on a safeguarded quadratic interpolation and aims to satisfy an
Armijo-type criterion with a sufficient decrease parameter γ ∈ (0, 1). The safeguarding proce-
dure acts when the minimum of the one-dimensional quadratic lies outside [τ1, τ2α], and not
when it lies outside [τ1α, τ2α] as usually implemented. This means that, when interpolation
tends to reject 90% (for σ1 = 0.1) of the original search interval ([0, 1]), we judge that its pre-
diction is not reliable and we prefer the more conservative bisection. The complete line search
procedure is described below.

Algorithm 3.1: Line search

Compute fmax = max{f(xk−j) | 0 ≤ j ≤ min{k,M − 1}}, x+ ← xk + dk, δ ← 〈∇f(xk)), dk〉 and
set α← 1.

Step 1. Test nonmonotone Armijo-like criterion

If f(x+) ≤ fmax + γαδ then set αk ← α and stop.

Step 2. Compute a safeguarded new trial steplength

Compute αtmp ← −
1
2
α2δ/(f(x+)− f(xk)− αδ).

If αtmp ≥ σ1 and αtmp ≤ σ2α then set α← αtmp. Otherwise, set α← α/2.

Step 3. Compute x+ ← xk + αdk and go to Step 1.
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Remark. In the case of rejection of the first trial point, the next ones are computed along the
same direction. As a consequence, the projection operation is performed only once per iteration.

2.3 General form and convergence

The Spectral Projected Gradient method SPG aims to solve the problem

Minimize f(x) subject to x ∈ Ω, (7)

where f admits continuous first derivatives and Ω ⊂ IRn is closed and convex.
We say that a point x ∈ Ω is stationary if

∇f(x)T d ≥ 0

for all d ∈ IRn such that x + d ∈ Ω.
In [18], SPG method has been presented as a member of a wider family of “Inexact Variable

Metric” methods for solving (7). Let IB be the set of n× n positive definite matrices such that
‖B‖ ≤ L and ‖B−1‖ ≤ L. Therefore, IB is a compact set of IRn×n. In the spectral gradient
approach, the matrices will be of the form σI, with σ ∈ [σmin, σmax].

Algorithm 4.1: Inexact Variable Metric Method

Assume η ∈ (0, 1], γ ∈ (0, 1), 0 < τ1 < τ2 < 1, M ≥ 1 an integer number. Let x0 ∈ Ω be an
arbitrary initial point. We denote gk = ∇f(xk) for all k = 0, 1, 2, . . .. Given xk ∈ Ω, Bk ∈ IB,
the steps of the k−th iteration of the algorithm are:

Step 1. Compute the search direction

Consider the subproblem

Minimize Qk(d) subject to xk + d ∈ Ω, (8)

where

Qk(d) =
1

2
dT Bkd + gT

k d.

Let d̄k be the minimizer of (8). (This minimizer exists and is unique by the strict convexity of
the subproblem (8), but does not need to be computed.)

Let dk be such that xk + dk ∈ Ω and

Qk(dk) ≤ η Qk(d̄k).

If dk = 0, stop the execution of the algorithm declaring that xk is a stationary point.

Step 2. Compute the steplength

Compute fmax = max{f(xk−j) | 0 ≤ j ≤ min{k,M − 1}}, δ ← 〈gk, dk〉 and set α← 1.
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If
f(xk + αdk) ≤ fmax + γαδ, (9)

set αk = α, xk+1 = xk + αkdk and finish the iteration. Otherwise, choose αnew ∈ [τ1α, τ2α], set
α← αnew and repeat test (9).

Remarks. (a) Algorithm 3.1 is a particular case of Step 2 of Algorithm 4.1. (b) In the definition
of Algorithm 4.1 the possibility η = 1 corresponds to the case in which the subproblem (8) is
solved exactly.

The main theoretical results [18] are stated below. Firstly, it is shown that an iteration
necessarily finishes and then it is shown that every limit point of a sequence generated by the
algorithm is stationary.

Theorem 4.1. The algorithm is well defined.

Theorem 4.2. Assume that the level set {x ∈ Ω | f(x) ≤ f(x0)} is bounded. Then, either the
algorithm stops at some stationary point xk, or every limit point of the generated sequence is
stationary.

2.4 Numerical example

In [17] a family of location problems was introduced. Given a set of npol disjoint polygons in
IR2 we wish to find the point y that minimizes the sum of the distances to those polygons.
Therefore, the problem is

min
zi,y

npol∑
i=1

‖zi − y‖2

subject to zi ∈ Pi, i = 1, . . . , npol.

Let us write x = (z1
1 , z1

2 , . . . , znpol
1 , znpol

2 , y1, y2). We observe that the problem has 2× (npol + 1)

variables. The number of (linear inequality) constraints is
∑npol

i=1 νi, where νi is the number of
vertices of the polygon Pi. Each constraint defines a half-plane in IR2. Figure 1 shows the
solution of a small five-polygons problem.

For projecting x onto the feasible set observe that we only need to project each zi separately
onto the corresponding polygon Pi. In the projection subroutine we consider the half-planes
that define the polygon. If zi belongs to all these half-planes, then zi is the projection onto Pi.
Otherwise, we consider the set of half-planes to which zi does not belong. We project zi onto
these half-planes and we discard the projected points that do not belong to Pi. Let Ai be the
(finite) set of nondiscarded half-plane projections and let Vi be the set of vertices of Pi. Then,
the projection of zi onto Pi is the point of Ai∪Vi that is closest to zi. The projection subroutine
are included in the test driver for SPG method [17].

Varying npol and choosing randomly the localization of the polygons and the number of
vertices of each one, several test problems were generated and solved by the SPG method in
[17]. The biggest problem had 48,126 polygons, 96,254 variables and 578,648 constraints. Using
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Figure 1: Five-polygons problem.

the origin as initial approximation, it was solved by the SPG method in 17 iterations, using
19 function evaluations and 12.97 seconds of CPU time on a Sun SparcStation 20 with the
following main characteristics: 128Mbytes of RAM, 70MHz, 204.7 mips, 44.4 Mflops. (Codes
were in Fortran 77 and the compiler option adopted was “-O”.)

2.5 Further developments

Developments on spectral gradient and spectral projected gradient ideas include:

1. Application and implementation of the spectral methods to particular optimization prob-
lems: Linear inequality constraints were considered in [1]. In [38] the SPG method was
used to solve Augmented Lagrangian subproblems. The spectral gradient method solves
the subproblems originated by the application of an exponential penalty method to linearly
constrained optimization in [56].

2. Preconditioning: The necessity of preconditioning for very ill-conditioned problems has
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been recognized in several works [5, 23, 45, 54, 57].

3. Extensions: The spectral residual direction was defined in [51] to introduce a new method
that aims to solve nonlinear systems of equations using only the vector of residues. See,
also, [48, 52, 70]. The SPG method has been extended for solving non-differentiable convex
constrained problems [25].

4. Association with other methods: The SPG method has been used in the context of active-
set methods for box-constrained optimization in [2, 13, 12]. Namely, SPG iterations are
used in these methods for abandoning faces whereas Newtonian iterations are employed
inside the faces of the feasible region. The opposite idea was used in [44], where spectral
directions were used inside the faces and a different orthogonal strategy was employed to
modify the set of current active constraints (see also [9]). Spectral ideas were also used in
association with conjugate gradients in [11]. Combinations of the spectral gradient method
with other descent directions were suggested in [21, 28].

5. Nonmonotone alternative rules: Dai and Fletcher [30] observed that, in some cases, even
the descent GLL strategy was very conservative and, so, more chance should be given to
the pure spectral method (αk = 1 for all k). However, they showed that, for quadratic
minimization with box constraints, the pure method is not convergent. Therefore, alter-
native tolerant nonmonotone rules were suggested. Dai and Zhang [31] noted that the
behavior of spectral methods heavily depend on the choice of the parameter M of the
GLL search and proposed an adaptive nonmonotone search independent of M . Over and
under relaxations of the spectral step were studied by Raydan and Svaiter [62].

6. Alternative choices of the spectral parameter: In [43] it was observed that the convergence
theory of the spectral gradient method for quadratics remains valid when one uses Rayleigh
coefficients originated in retarded iterations (see also [55]). In [32], for unconstrained
optimization problems, the same stepsize is reused for m consecutive iterations (CBB
method). This cyclic method is locally linearly convergent to a local minimizer with
positive definite Hessian. Numerical evidence indicates that when m > n/2 >= 3, where
n is the problem dimension, CBB is locally superlinearly convergent. In the special case
m = 3, n = 2, the convergence rate is, in general, no better than linear [32].

In [34] the stepsize in the spectral gradient method was interpreted from the point of
view of interpolation and two competitive modified spectral-like gradient methods were
defined. Yuan [68] defined a new stepsize for unconstrained optimization that seems to
possess spectral gradient properties preserving monotonicity.

7. Asymptotic behavior analysis: A careful consideration of the asymptotic practical and
theoretical behavior of the Barzilai-Borwein method may be found in [41]. Dai and Fletcher
[29] showed interesting transition properties of the spectral gradient method for quadratic
functions as depending on the number of variables. Dai and Liao [33] proved the R-linear
convergence of the spectral gradient method for general functions and, as a consequence,
established that the spectral stepsize is always accepted by the non-monotone line search
when the iterate is close to the solution. The convergence of the inexact SPG method was
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established in [66, 67] under different assumptions than the ones used in [18]. Assuming
Lipschitz-continuity of the objective functions, these authors eliminated the bounded-level-
set assumption of [18].
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[36] J. E. Dennis and J. J. Moré, Quasi-Newton methods, motivation and theory, SIAM Review
19, pp. 46–89, 1977.

[37] J. E. Dennis and R. B. Schnabel, Methods for Unconstrained Optimization and Nonlinear
Equations, Prentice-Hall, NJ, 1983.

[38] M. A. Diniz-Ehrhardt, M. A. Gomes-Ruggiero, J. M. Mart́ınez and S. A. Santos, Aug-
mented Lagrangian algorithms based on the spectral projected gradient method for solving
nonlinear programming problems, Journal of Optimization Theory and Applications 123,
pp. 497–517, 2004.

[39] R. Fletcher, Practical methods of Optimization, John Wiley, 1987.

[40] R. Fletcher, Low storage methods for unconstrained optimization, Lectures in Applied
Mathematics (AMS), 26, pp. 165–179, 1990.

[41] R. Fletcher, On the Barzilai-Borwein method, Department of Mathematics, University of
Dundee, NA/207, Dundee, Scotland, 2001.

11



[42] J. B. Francisco, J. M. Mart́ınez and L. Mart́ınez, Density-based globally convergent trust-
region methods for self-consistent field electronic structure calculations, Journal of Math-
ematical Chemistry 40, pp. 349–377, 2006.

[43] A. Friedlander, J. M. Mart́ınez, B. Molina and M. Raydan, Gradient method with retards
and generalizations, SIAM Journal on Numerical Analysis 36, pp. 275–289, 1998.

[44] A. Friedlander, J. M. Mart́ınez and M. Raydan, A new method for large-scale box con-
strained convex quadratic minimization problems, Optimization Methods and Software 5,
pp. 57–74, 1995.

[45] W. Glunt, T. L. Hayden and M. Raydan, Preconditioners for distance matrix algorithms,
J. Comp. Chem., 15, pp. 227–232, 1994.

[46] A. A. Goldstein, Convex Programming in Hilbert Space, Bulletin of the American Math-
ematical Society 70, pp. 709–710, 1964.

[47] L. Grippo, F. Lampariello and S. Lucidi, A nonmonotone line search technique for New-
ton’s method, SIAM Journal on Numerical Analysis 23, pp. 707–716, 1986.

[48] L. Grippo and M. Sciandrone, Nonmonotone Derivative Free Methods for Nonlinear Equa-
tions, Computational Optimization and Applications, to appear (DOI: 10.1007/s10589-007-
9028-x).

[49] M. R. Hestenes and E. Stiefel, Methods of conjugate gradients for solving linear systems,
J. Res. NBS 49, pp. 409–436, 1952.

[50] Z. Jiang, Applications of conditional nonlinear optimal perturbation to the study of the
stability and sensitivity of the Jovian atmosphere, Advances in Atmospheric Sciences 23,
pp. 775–783, 2006.

[51] W. La Cruz and M. Raydan, Nonmonotone spectral methods for large-scale nonlinear
systems, Optimization Methods and Software 18, pp. 583–599, 2003.

[52] W. La Cruz, J. M. Mart́ınez and M. Raydan, Spectral residual method without gradient
information for solving large-scale nonlinear systems of equations, Mathematics of Com-
putations 75, pp. 1429–1448, 2006.

[53] E. S. Levitin and B. T. Polyak, Constrained Minimization Problems, USSR Computational
Mathematics and Mathematical Physics 6, pp. 1–50, 1966.

[54] F. Luengo, M. Raydan, W. Glunt and T. L. Hayden, Preconditioned Spectral Gradient
Method, Numerical Algorithms 30, pp. 241–258, 2002.

[55] F. Luengo and M. Raydan, Gradient method with dynamical retards for large-scale opti-
mization problems, Electronic Transactions on Numerical Analysis (ETNA) 16, pp. 186–
193, 2003.

12



[56] J. M. Mart́ınez, E. A. Pilotta and M. Raydan, Spectral gradient methods for linearly
constrained optimization, Journal of Optimization theory and Application 125, pp. 629–
651, 2005.

[57] B. Molina and M. Raydan, Preconditioned Barzilai-Borwein method for the numerical
solution of partial differential equations, Numerical Algorithms 13, pp. 45–60, 1996.

[58] S. S. Oren, On the selection of parameters in self-scaling variable metric algorithms, Math-
ematical Programming 7, pp. 351–367, 1974.

[59] A. Ramirez-Porras and W. E. Vargas-Castro, Transmission of visible light through oxidized
copper films: feasibility of using a spectral projected gradient method, Applied Optics 43,
pp. 1508–1514, 2004.

[60] M. Raydan, On the Barzilai and Borwein choice of steplength for the gradient method,
IMA Journal of Numerical Analysis 13, pp. 321–326, 1993.

[61] M. Raydan, The Barzilai and Borwein gradient method for the large scale unconstrained
minimization problem, SIAM Journal on Optimization 7, pp. 26–33, 1997.

[62] M. Raydan and B. F. Svaiter, Relaxed steepest descent and Cauchy-Barzilai-Borwein
method, Computational Optimization and Applications 21, pp. 155–167, 2002.

[63] T. Serafini, G. Zanghirati and L. Zanni, Gradient projection methods for quadratic pro-
grams and applications in training support vector machines, Optimization Methods and
Software 20, pp. 347–372, 2005.

[64] W. E. Vargas, Inversion methods from Kiabelka-Munk analysis, Journal of Optics A -
Pure and Applied Optics 4, pp. 452–456, 2002.

[65] W. E. Vargas, D. E. Azofeifa and N. Clark, Retrieved optical properties of thin films
on absorbing substrates from transmittance measurements by application of a spectral
projected gradient method, Thin Solid Films 425, pp. 1–8, 2003.

[66] C. Y. Wang and Q. Liu, Convergence properties of inexact projected gradient methods,
Optimization 55, pp. 301–310, 2006.

[67] C. Y. Wang, Q. Liu and X. M. Yang, Convergence properties of nonmonotone spectral
projected gradient methods, Journal of Computational and Applied Mathematics 182, pp.
51–66, 2005.

[68] Y-X. Yuan, A new stepsize for the steepest descent method, Journal of Computational
Mathematics 24, pp. 149–156, 2006.

[69] N. Zeev, O. Savasta and D. Cores, Non-monotone spectral projected gradient method
applied to full waveform inversion, Geophysical Prospecting 54, pp. 525–534, 2006.

[70] L. Zhang and W. J. Zhou, Spectral gradient projection method for solving nonlinear
monotone equations, Journal of Computational and Applied Mathematics 196, pp. 478–
484, 2006.

13



[71] B. Zhou, L. Gao and Y. H. Dai, Gradient methods with adaptive step-sizes, Computational
Optimization and Applications 35, pp. 69–86, 2006.

[72] B. Zhou, L. Gao and Y. H. Dai, Monotone projected gradient methods for large-scale
box-constrained quadratic programming, Science in China Series A - Mathematics 49,
pp. 688–702, 2006.

14


