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Abstract

The orthogonal packing of rectangular items in an arbitrary convex region is considered
in this work. The packing problem is modeled as the problem of deciding for the feasibility
or infeasibility of a set of nonlinear equality and inequality constraints. A procedure based
on nonlinear programming is introduced and numerical experiments which show that the
new procedure is reliable are exhibited.

Scope and purpose: We address the problem of packing orthogonal rectangles within an
arbitrary convex region. We aim to show that smooth nonlinear programming models are
a reliable alternative for packing problems and that well-known general-purpose methods
based on continuous optimization can be used to solve the models. Numerical experiments
illustrate the capabilities and limitations of the approach.

Key words: Packing of rectangles, orthogonal packing, feasibility problems, models, non-
linear programming.

1 Introduction

The problem of packing a given set of pieces into defined regions maximizing the total number of
pieces or the used area occurs in a large range of practical situations, including manufacturer’s
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sitária, 05508-090, São Paulo, SP, Brazil. This author was supported by FAPESP (Grant 03/00460-0). e-mail:
fhn@ime.usp.br

§Department of Production Engineering, EP, University of São Paulo, Av. Prof. Almeida Prado, 128, Cidade
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pallet loading, packing of ship containers and establishing of layout in clothing industry. Many
papers have been published dealing with packing problems. For a complete review we refer to
the annotated bibliography [13] and to the survey [16].

One of the most popular and useful problems in this area consists in finding the maximum
number of identical rectangles that can be orthogonally packed into a larger rectangle. Poly-
nomial algorithms for the guillotine version of the problem exist [21] and the NP-completeness
of the non-guillotine problem has been conjectured [12, 19]. In [14] a very efficient heuristic to
solve this problem was introduced (see also [10] for an available implementation and extensive
numerical experiments). The authors conjectured that their method always finds the optimal
solution and solved hard instances that could not be solved by other heuristics.

A nonlinear formulation for the constrained two-dimensional non-guillotine cutting problem
(which deals with limits in the number of each different type of rectangle that can be packed)
was presented in [2], where the model was used for the definition of a populational heuristic.
The Method of Sentinels for packing polygonal items within arbitrary objects was introduced
in [6]. The method is based on convex analysis and nonlinear formulations for overlapping and
belonging. Nonlinear models have also been successfully used for other related packing problems,
such as the packing of molecules with a specified minimum-atom distance [17]; and the packing
of identical or different circular pieces within several types of objects [9, 18, 20, 22]; among
others.

In the present work we are concerned with the problem of packing rectangular items in an
arbitrary region, generally convex. The axes of the rectangles must be parallel to the coordinate
axes and the loading is not restricted to guillotine cutting patterns. The strategy for solving
the problem is based on the fact that the question “Is it possible to pack m rectangles?” can
be answered by means of the resolution of a finite (although possible large) number of nonlin-
ear optimization problems. Therefore, the strategy for packing the largest possible number of
rectangles consists of answering the above question for increasing values of m.

This paper is organized as follows. Section 2 describes the nonlinear model and a procedure
to pack as many rectangles as possible. In Section 3 numerical results are presented. The last
section contains final remarks.

2 Nonlinear approach

We first consider the problem of packing a given set of m rectangles without rotations. Then,
the possibility of orthogonal rotations is incorporated and a procedure for identical rectangles is
devised. Finally, we deal with the problem of packing as many identical rectangles as possible
allowing orthogonal rotations.

2.1 Fixed-orientation-pack problem

Let Ω be a convex subset of IR2. We want to pack m rectangles in such a way that they are
contained in Ω and the interior of the intersection of any pair of different rectangles is empty.
Since Ω is convex, the fact that the vertices of a rectangle are in Ω is enough to guarantee that
the rectangle is contained in Ω. In addition, the axes of all the rectangles must be parallel, so,
we may consider that they are parallel to the natural x and y axes of IR2. This assumption
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represents no loss of generality if the original packing problem has such kind of constraint or if
we are dealing with the cutting problem of an anisotropic material.

The Fixed-orientation-pack problem consists of packing a set of m given rectangles in a given
region Ω. Rotations (of any type) are not allowed. This problem is the nonlinear programming
basis of our general procedure. For all i = 1, . . . ,m, let Ci = (ci

1, c
i
2) be the (variable) center of

the rectangle Ri ≡ Ri(ai, bi) and let ai, bi > 0 be the (fixed) values of the horizontal and vertical
sides, respectively. Let

V i
sw ≡ V i

sw(Ri, Ci) = (ci
1 − ai/2, ci

2 − bi/2), V i
se ≡ V i

se(R
i, Ci) = (ci

1 + ai/2, ci
2 − bi/2),

V i
ne ≡ V i

ne(R
i, Ci) = (ci

1 + ai/2, ci
2 + bi/2), and V i

nw ≡ V i
nw(Ri, Ci) = (ci

1 − ai/2, ci
2 + bi/2),

be the four vertices of Ri centered at Ci. So we refer to the four vertices as V i
k for all k ∈ D ≡

{sw, se,ne,nw}.

Fixed-orientation-pack (FOP) problem:

Given a convex set Ω ⊂ IR2 and a set of m rectangles Ri ≡ Ri(ai, bi), i = 1, . . . ,m, find
C1, . . . , Cm ∈ IR2 such that

1. For all i = 1, . . . ,m and k ∈ D,
V i

k ∈ Ω. (1)

2. For all i, j = 1, . . . ,m, i 6= j,

|ci
1 − cj

1| ≥
ai + aj

2
(2)

or

|ci
2 − cj

2| ≥
bi + bj

2
. (3)

Condition (1) says that the vertices of Ri are in Ω. The fact that at least one of the conditions (2)
or (3) is satisfied means that rectangles Ri and Rj do not overlap (the interior of their intersection
is empty).

We will show now how to obtain a solution of FOP by means of the resolution of a continuous
feasibility problem. Let us define

f̄(C1, . . . , Cm) =
m−1
∑

i=1

m
∑

j=i+1

[

max

{

0,
(ai + aj)2

4
−(ci

1−cj
1)

2
}2

×max

{

0,
(bi + bj)2

4
−(ci

2−cj
2)

2
}2 ]

Clearly, the FOP problem consists in finding C1, . . . , Cm ∈ IR2 such that f̄(C1, . . . , Cm) = 0
with the constraints (1). The equation f̄(C1, . . . , Cm) = 0 and the inequalities (1) define a
feasibility problem that represents well our goal.

The FOP problem can be reduced to find a global minimizer of

Minimize f̄(C1, . . . , Cm) subject to (1) (4)
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The feasibility FOP problem has a solution if, and only if, the objective function value is null at
a global minimizer of (4). Our strategy for solving (4) is to consider this problem as an ordinary
nonlinear programming problem and try to solve it using a “local” solver, starting from different
initial points in order to enhance the probability of convergence to a global minimizer. The
objective function of (4) has continuous first (but not second) derivatives.

If Ω ⊂ IR2 is an easy set (i.e., a set onto which is computationally inexpensive to project an
arbitrary point), like a box, a ball, or a polyhedron, then problem (4) can be solved using an
optimization method which deals explicitly with the constraints (1), like, for example, GENCAN
[5], SPG [7, 8] or IVM [1], respectively. If an optimization method that deals explicitly with
constraints (1) is not available then (4) can be solved using an Augmented Lagrangian approach
for inequality constraints as the one implemented in ALGENCAN [4]. Finally, consider the case
in which Ω is given by Ω = Ω1 ∩ Ω2, where Ω1 is an easy set and Ω2 = {x ∈ IR2 | g(x) ≤ 0} is
not. Clearly, constraints (1) can be splitted into

V i
k ∈ Ω1, (5)

and
V i

k ∈ Ω2. (6)

As before, it is easy to see that to find C1, . . . , Cm satisfying (6) is equivalent to finding
C1, . . . , Cm that annihilates

∑m
i=1

∑

k∈D max{0, g(V i
k )}2. Therefore, problem (4) can be re-

formulated as

Minimize f(C1, . . . , Cm) ≡ f̄(C1, . . . , Cm) +
m

∑

i=1

∑

k∈D

max{0, g(V i
k )}2 subject to (5). (7)

We chose the approach (7) in this study. We consider Ω ≡ Ω1 ∩ Ω2, where Ω1 consists of the
box constraints in the definition of Ω and Ω2 consists of all the other constraints. So, problem
(7) becomes a box-constrained problem and GENCAN [5] is a good option for solving it. Note
that, as in problem (4), by the smoothness of g, the objective function of (7) has continuous
first (but not second) derivatives.

2.2 Allowing 90-degrees rotations

In many practical applications, the rectangle Ri with horizontal side ai and vertical side bi

can be considered equivalent to the rectangle with horizontal side bi and vertical side ai. This
means that rotations of 90 degrees are admissible for packing purposes. Assume that, for all
i = 1, . . . ,m, a choice is made according to which ai (or bi) is the horizontal side of Ri and, of
course, bi (respectively ai) is the vertical side. If, given this choice, we solve the corresponding
FOP problem and we obtain that f is null at the solution, the packing problem with orthogonal
rotations is solved.

Clearly, one has 2m possible choices but, in specific situations, this number can be consid-
erably reduced. For example, if ai = a, bi = b for all i = 1, . . . ,m then the number of different
possibilities is reduced to m + 1. In this case, for all p = 0, 1, . . . ,m, we may think that p
rectangles have horizontal side equal to a and vertical side equal to b and m− p rectangles have
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horizontal side equal to b and vertical side equal to a. So, we have m + 1 FOP problems of the
form (7). If we solve one of them finding f = 0 the new packing problem is solved.

The Orthogonal-rotations-pack problem defined below consists of packing m identical rect-
angles in a given region Ω, allowing 90-degrees rotations.

Orthogonal-rotations-pack (ORP) problem:

Given a convex set Ω ⊂ IR2 and a set of m identical rectangles Ri ≡ Ri(a, b), find C1, . . . , Cm ∈
IR2 and p ∈ {0, 1, . . . ,m} such that C1, . . . , Cm is a solution of the FOP problem defined by the
rectangles R̄i ≡ R̄i(a, b), i = 1, . . . , p, R̄i ≡ R̄i(b, a), i = p + 1, . . . ,m, and the set Ω.

2.3 Packing as many rectangles as possible allowing 90-degrees rotations

Given a convex set Ω and an unlimited number of identical rectangles, the problem of packing
as many rectangles as possible (allowing 90-degrees rotations) is equivalent to solve the ORP
problem for the biggest possible value of m. For a fixed value of m, solving the ORP problem is
equivalent to solve one of the m+1 associated FOP problems. Finally, solving one of these FOP
problems is equivalent to find a global solution of its associated nonlinear programming problem
(7) such that the objective function value is null. Moreover, most nonlinear optimization methods
find first-order stationary points (very likely, local minimizers) of problem (7). An alternative to
enhance the probability of finding a global minimizer is to start the method from many random
initial guesses.

In practice, we proceed as follows. First, we establish the maximum effort we are able to do
(defining, for example, a maximum CPU time T ). If the allowed computer time is exhausted, the
algorithm stops returning the best packing found. In the algorithmic context defined below, this
means that m ≡ k− 1 items were packed. On the other hand, while our effort is not exhausted,
we carry out the following steps:

Step 1: Set k ← mlb, where mlb is a known lower bound on the number of rectangles that can
be packed (note that mlb = 0 is an option).

Step 2: For solving the ORP problem of packing k rectangles, we select a random integer
p ∈ {0, 1, . . . , k} and try to solve its p-th associated FOP problem. For solving the p-th
FOP problem we consider a random initial guess from which we start a local minimization
with the expectation of finding a global solution of (7) that annihilates the objective
function.

Step 3: If a solution with null optimal cost was found and k = mub then we stop the execution
declaring “An optimal packing with m ≡ mub items was found”.

Step 4: If a solution with null optimal cost was found but k < mub then we increase k by one
and go back to Step 2. In this case, an ORP problem with k rectangles was solved and
now we will try to solve a larger one.

Step 5: If a solution with null optimal cost was not found, we go back to Step 2. In this case,
the current ORP problem we are trying to solve remains the same and we will just try

5



to solve it choosing another random number p of horizontal (and consequently vertical)
rectangles and another random initial guess.

Figure 1 gives a graphical representation of these steps, including the stopping criterion based
on effort exhaustion. If the algorithm stops with m ≡ mlb−1 it means that even a packing with
mlb items was not found. Moreover, when the method stops saying “A packing with m items
was found” it means that it was the best the method could do within the available time. There
is no optimality certification apart from the one that might be given attaining a known upper
bound.

The whole packing procedure consists of solving a potentially large number of box-constrained
optimization problems. Each time we try to solve an instance of the smooth nonlinear bound-
constrained optimization problem (7), a random configuration is used as initial guess to run
a local solver. No information of the previous trials is considered. Information of preceding
problems with a small number of items is not useful because the optimal configuration may
vary a lot when the number of items increases. Information of preceding problems with the
same number of items is not useful either. Note that, if we are still trying to solve a problem
repeating the number of items, this is because we failed in the previous trials. So, the final
points of those trials are undesired stationary point of the nonlinear model, and to start near to
them would leave us trapped in the basin of convergence of a spurious solution. Starting from
random initial guesses hopefully provides the method with the necessary diversification to find
the desired global solution.

The influence of the lower and upper bounds on the behaviour of the algorithm is a relevant
practical issue. First, note that there is no other stopping criterion, before the effort exhaustion,
than reaching the upper bound. So, to have a sharp upper bound or, in other words, to know the
optimal number of items that can be packed, is the unique alternative to confirm that an optimal
solution was attained and, consequently, to stop the process. On the other hand, a lower bound
could be useful to skip the resolution of some problems. However, as the numerical experiments
will show, while finding a packing of a “near-to-the-optimal” number of items is a relatively hard
task, to pack e few less items than this number is a trivial problem. Therefore, the availability
of a lower bound is, in practice, useless. This is the reason why we start the process packing
one item and then increasing one item per step instead of using bisection approaches.

We chose GENCAN [5] as the local solver. GENCAN is a recently introduced active-set
method for smooth box-constrained minimization. For a description of basic techniques of
continuous optimization and active-set methods see, for example, [11] and [15] (pp. 326–330).
GENCAN adopts the leaving-face criterion of [3], that employs the spectral projected gradients
defined in [7, 8]. For the internal-to-the-face minimization it uses a general algorithm with
a line search that combines backtracking and extrapolation. In the present form, GENCAN
uses, for the direction chosen at each step inside the faces, a truncated-Newton approach. This
means that the search vector is an approximate minimizer of the quadratic approximation of the
function in the current face. Conjugate gradients are used to find this direction. The method is
fully described in [5] where extensive numerical experiments assess its reliability.
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Figure 1: Fluxogram of the algorithm. When the method stops, m represents the number of
packed items. It is assumed that the value of “time” corresponds with the elapsed time since it
was zeroed at the beginning of the process.

3 Numerical experiments

We consider the set of rectangle packing problems in arbitrary convex regions introduced in
[6], where the possibility of arbitrary θ-rotations was considered. In addition, we considered
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an interesting problem in which the convex region is given by the Lamé curve. Table 1 shows
the description of each problem (inequalities that describe the convex region Ω, the area of Ω,
dimensions of the rectangles to be packed, and the area of the rectangles).

Problem Convex Region Rectangular item
Description Area Dimensions Area

1

g1(x1, x2) = −x1

g2(x1, x2) = −x2

g3(x1, x2) = −x1 − x2 + 3
g4(x1, x2) = x2

1
+ x2

2
− 100

74.1 2 × 1 2

2
g1(x1, x2) = −7x1 + 6x2 − 24
g2(x1, x2) = 7x1 + 6x2 − 108
g3(x1, x2) = (x1 − 6)2 + (x2 − 8)2 − 9

21.7 1.1 × 0.55 0.61

3

g1(x1, x2) = −x1

g2(x1, x2) = x1 − 8
g3(x1, x2) = (x1 − 6)2 + x2

2
− 81

g4(x1, x2) = (x1 − 1.7)2 + (x2 − 10)2 − 81

54.4 2 × 0.6 1.2

4
g1(x1, x2) = x2

1
− x2

g2(x1, x2) = x2

1
/4 + x2 − 5

13.3 1 × 0.4 0.40

5
g1(x1, x2) = x2

1
− x2

g2(x1, x2) = −x1 + x2

2
− 6x2 + 6

g3(x1, x2) = x1 + x2 − 6
10.9 0.9 × 0.3 0.27

6
g1(x1, x2) = −x1 + x2

2
− 6x2 + 6

g2(x1, x2) = x1 + x2

2
− 3x2 − 3/4

10.2 0.9 × 0.3 0.27

7 g1(x1, x2) = (x1 − 2)2/4 + (x2 − 4)2/16 − 1 25.1 2 × 0.5 1

8

g1(x1, x2) = (x1 − 6)2/4 + (x2 − 6)2/36 − 1
g2(x1, x2) = (x1 − 6)2/36 + (x2 − 6)2/4 − 1
g3(x1, x2) = x1 − x2 − 3
g4(x1, x2) = −x1 + x2 − 2

13.2 0.7 × 0.5 0.35

9

g1(x1, x2) = (x1 − 3)2/4 + (x2 − 4)2/16 − 1
g2(x1, x2) = (x1 − 2.65)2/4 + (x2 − 4)2/16 − 1
g3(x1, x2) = −x1 + 1
g4(x1, x2) = x1 − x2 − 1
g5(x1, x2) = x1 + x2 − 9

13.7 0.8 × 0.6 0.48

10
g1(x1, x2) = (x1 − 6)2/36 + (x2 − 6)2/4 − 1
g2(x1, x2) = (x1 − 6)2/9 + (x2 − 8)2/9 − 1

13.6 0.95 × 0.35 0.33

11
g1(x1, x2) = (x1/6)4 + (x2/2)4 − 1
g2(x1, x2) = 8x1 − 11x2 − 26

34.7 1.9 × 0.5 0.95

12
g1(x1, x2) =

√
3x1 + x2 −

√
3(3/2 +

√
3)

g2(x1, x2) = −
√

3x1 + x2

g3(x1, x2) = −x2

32.2 1 × 1 1

13
g1(x1, x2) =

√
3x1 + x2 −

√
3(2 + 4/

√
3)

g2(x1, x2) = −
√

3x1 + x2

g3(x1, x2) = −x2

33.3 1 × 1 1

14
g1(x1, x2) =

√
3x1 + x2 −

√
3(3 + 4/

√
3)

g2(x1, x2) = −
√

3x1 + x2

g3(x1, x2) = −x2

36.3 1 × 1 1

15
g1(x1, x2) =

√
3x1 + x2 −

√
3(2 + 2

√
3)

g2(x1, x2) = −
√

3x1 + x2

g3(x1, x2) = −x2

37.5 1 × 1 1

16
g1(x1, x2) =

√
3x1 + x2 −

√
3(4 + 4/

√
3)

g2(x1, x2) = −
√

3x1 + x2

g3(x1, x2) = −x2

37.5 1 × 1 1

Table 1: Problems definition.

All the experiments were run on an 1.8GHz AMD Opteron 244 processor, 2Gb of RAM
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memory and Linux operating system. Codes are in Fortran77 and the compiler option “-O4”
was adopted.

In the experiments we set our maximum effort in terms of CPU time fixing T = 6 hours.
Since, for arbitrary convex regions, it is not easy to find tight bounds, we set mlb = 1 and mub

as the upper bound based on the areas showed in Table 1. Table 2 shows, for each problem,
the number of rectangles that were packed in [6] allowing arbitrary θ-rotations and the number
of rectangles that were packed in this study considering only orthogonal rotations. Table 2 also
shows the total number of nonlinear programming problems that were solved and the elapsed
CPU time until the best solution was found. (The remaining time, to complete the 6 hours,
was spent just to confirm that a better solution could not be found.) Figure 2 illustrates the
solutions.

Number of packed rectangles Effort measurements
Problem Upper Using arbitrary Using only Number of CPU time

bound rotations orthogonal rotations trials in seconds

1 37 32 32 94921 6453.80
2 35 30 28 417 31.94
3 45 38 40 148870 19508.71
4 33 28 26 14734 485.29
5 40 35 33 4778 329.65
6 37 28 30 14573 780.77
7 25 20 19 6396 157.71
8 37 30 32 19422 880.40
9 28 23 22 6041 108.11
10 40 32 34 149935 5554.20
11 36 Not available 31 70613 4199.44
12 32 27 25 68 1.13
13 33 28 26 67 1.21
14 36 29 29 49 0.35
15 37 30 29 42 0.34
16 37 31 30 68 1.19

Table 2: Performance of the nonlinear orthogonal-packing procedure.

Table 2 deserves some explanations. Since the feasible set of the orthogonal packing prob-
lem is included in the feasible set of the free-rotations version of the problem, the number of
orthogonal-packed rectangles should not be greater than the number of free-rotated-packed rect-
angles. This is confirmed in most of the considered problems with the exception of problems 3,
6, 8 and 10 in which the orthogonal packing approach found solutions with more rectangles.

In addition to the previous set of problems, and based on the small effort needed for solving
problems 12–16, we also considered these problems but trying to pack a larger number of smaller
rectangles. In particular, we consider the problem of packing rectangles two times smaller
(dividing one of their sides by two). We call these problems 12’–16’. Table 3 shows the obtained
results and Figure 3 illustrates the solutions. It is easy to see that the number of rectangles
packed in problems 12–16 multiplied by two is a lower bound for the expected number of packed
rectangles in problems 12’–16’. Note in Table 3 that these lower bounds were improved by a
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(1) (2) (3) (4)

(5) (6) (7) (8)

(9) (10) (11) (12)

(13) (14) (15) (16)

Figure 2: Graphical representation of the solutions. The pictures are automatically generated
by the software using MetaPost.

number of rectangles between 4 and 6.
Finally, to give an idea of the amount of time that could be saved if a reasonably tight lower

bound is available, Table 4 show the (relatively small) effort needed by the nonlinear orthogonal-
packing procedure to find a “near-to-the-best” packing. On average, to find a packing with 2.62
items less than the best packing found requires less than 0.44% of the time.

4 Final remarks

This work presented a methodology, based on a feasibility problem and its nonlinear program-
ming reformulation, to solve the problem of orthogonally packing rectangles in an arbitrary
region. The numerical results show that this is a promising approach. Moreover, we provided
a family of challenging global optimization problems that may be useful for future research on
this subject.

10



Problem Lower Upper Number of Number of CPU time
bound bound packed rectangles trials in seconds

12’ 50 64 55 114945 12812.07
13’ 52 66 57 113685 13575.78
14’ 58 72 62 4031 640.35
15’ 58 74 64 89271 14811.55
16’ 60 74 64 6138 1126.21

Table 3: Performance of the nonlinear orthogonal-packing procedure for problems 12’–16’ –
packing a larger number of smaller rectangles.

(12’) (13’) (14’)

(15’) (16’)

Figure 3: Graphical representation of the solutions for problems 12’–16’.

For the case of a packing problem which does not impose the condition that the sides of the
rectangles must be parallel to some fixed axes or the case of a cutting problem of an isotropic
material, the nonlinear formulations presented in this work are applicable but may give an
incomplete answer. The whole package (formulations plus algorithms) can be extended to give
a complete answer to the mentioned problems just adding a unique angle of rotation for all the
rectangular items.

The complete Fortran 77 sources codes of the algorithms presented in this paper are available
in www.ime.usp.br/∼egbirgin.

Acknowledgement: The authors are indebted to two anonymous referees whose comments
helped a lot to improve this paper.
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Problem Difference to the Number of CPU time
best solution found trials in seconds

1 -1 53 2.54
2 -1 57 1.61
3 -3 47 0.74
4 -1 298 6.58
5 -3 116 2.90
6 -4 133 3.66
7 -1 36 0.27
8 -3 177 2.75
9 -1 112 1.35
10 -3 376 6.94
11 -4 40 0.89
12 -1 30 0.13
13 -1 42 0.40
14 -1 47 0.27
15 -1 41 0.32
16 -1 51 0.34
12’ -2 316 22.40
13’ -3 615 71.68
14’ -2 452 39.65
15’ -2 665 95.09
16’ -3 659 96.93

Table 4: Effort measurements of the nonlinear orthogonal-packing procedure showing how rela-
tively easy is to find a “near-to-the-best” packing.
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