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Abstract

A new method is introduced for packing items in convex regions of the Euclidian n-
dimensional space. By means of this approach the packing problem becomes a global finite-
dimensional continuous optimization problem. The strategy is based on the new concept of
sentinels. Sentinels sets are finite subsets of the items to be packed such that, when two items
are superposed, at least one sentinel of one item is in the interior of the other. Minimal sets
of sentinels are found in simple 2−dimensional cases. Numerical experiments and pictures
showing the potentiality of the new technique are presented.
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1 Introduction

The problem of packing a given set of pieces into defined regions maximizing the total number of
pieces or the used area occurs in a large range of practical situations, including manufacturer’s
pallet loading, packing of ship containers and establishing of layout in clothing industry. Many
papers have been published dealing with packing problems. A useful classification has been
given by (Dyckhoff, 1990). One of the most popular and useful problem in this area is to find
the maximum number of rectangles that can be orthogonally packed into a larger rectangle.
Polynomial algorithms for the guillotine version of the problem exist (Tarnowski et al, 1994)
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whereas the NP-completeness of the non-guillotine problem has been conjectured (Dowsland,
1987; Morabito and Morales, 1998). In (Lins et al, 2003; Birgin et al, 2005c) a very efficient
heuristic to solve this problem was introduced. The authors conjectured that their method
always finds an optimal solution and solved hard instances that remained unsolved by other
heuristics.

Several mixed 0-1 integer linear and nonlinear programming models have been proposed for
2D and 3D packing problems in which identical or non-identical boxes must be packed into a
bigger box. In general, the packed boxes can be rotated, but always with its sides parallel to
the sides of the bigger box. Sometimes constraints are imposed related to the number of each
type of box being packed. In general, the proposed models are difficult. When an exact method
is used, large-scale problems become impossible to solve. Fortunately, heuristic methods find
optimal or good quality solutions in many cases. See, for example, (Beasley, 1995; Beasley 2004;
Chen et al, 1995; Christofides and Hadjiconstantinou, 1995; Hadjiconstantinou and Christofides
1995; Tsai et al, 1993).

In (Beasley, 2004) a nonlinear formulation for the constrained two-dimensional non-guillotine
cutting problem is presented and the model is used for the elaboration of a populational heuris-
tic. The proposed model has two main difficulties: (i) the presence of integer variables; and
(ii) the non-differentiability of the nonlinear constraints used to avoid overlapping. The first
difficulty may be circumvented by replacing constraints of type x ∈ {0, 1} by x(1 − x) = 0.
However, this kind of constraints leads to hard-to-solve nonlinear problems with many local-
nonglobal solutions. Several strategies for fixing integer variables and solving the problem as a
sequence of continuous nonlinear problems have also been proposed. The second inconvenience
of the formulation can be overcome by approximating the nonsmooth constraints by smooth
ones. These two ideas lead to nonlinear formulations that are suitable for classical nonlinear
optimization solvers.

Several works related to packing irregular polygons have been also published. Most of them
are based on placement policies previously defined (for example, bottom-left) and aim to find op-
timal solutions related to the pre-established policy. In (Bennell, 2001) an easy way to compute a
placement policy known as “non-fit polygon” has been proposed. This idea is used in (Dowsland
et al, 2002), among other strategies, to develop a bottom-left placement algorithm for polygon
packing. See also (Amaral et al, 1990; Dowsland et al, 1998; Lamousin and Waggenspack Jr.,
1997; Li and Milenkovic, 1995).

The Method of Sentinels introduced in this paper is a procedure for packing items inside a
convex region without overlapping. The main idea is to define a set of points called sentinels for
each small item in such a way that two items are superposed if and only if at least a sentinel
of one of the items is in the interior of the other item. Based on the sentinels sets, a smooth
nonlinear decision model to determine if a fixed set of items can be packed inside the convex
region without overlapping is defined. The variables of the model are the ones that define a
displacement in the Euclidian space. In 2D problems, the displacement is defined by a vector of
translation and an angle of rotation. So, the method is not restricted to orthogonal (parallel to
the axes) patterns. The new concept of sentinels introduces some difficult theoretical problems
related to identification and minimality. Here we present minimal sets of sentinels for the case
of identical rectangles and regular polygons. More general items, convex or non-convex are also
considered. The non-linear decision model is solved using the well-established bound-constrained
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solver GENCAN (Birgin and Mart́ınez, 2002).
This paper is organized as follows. In Section 2 the Method of Sentinels for packing items on

arbitrary regions is introduced. In Section 3 we define an optimal set of sentinels for rectangular
items and regular polygons. In Section 4 we present numerical experiments using the Method
of Sentinels for packing rectangular items on arbitrary convex regions. In Section 5 we state
conclusions and lines for future research.

2 Using Sentinels for Packing

We begin with an informal and general description of the Method of Sentinels. Let A1 and A2

be nonempty, open, bounded and convex sets of IRn. Sets with these characteristics will be
called items from now onwards. Define B1 = Ā1 the closure of A1 and B2 = Ā2 the closure of
A2. Let D1,D2 : IRn → IRn be two displacement operators. So, D1 and D2 transform items in
items preserving distances, angles and orientation. If D1(A1) ∩ D2(A2) 6= ∅ then we say that
D1(B1) and D2(B2) (or D1(A1) and D2(A2)) are superposed.

Let S1 and S2 be finite subsets of B1 and B2 respectively. We say that S1 and S2 are sentinels
sets relatively to B1 and B2 if the following property holds:

For all displacements D1,D2, if D1(B1) and D2(B2) are superposed, then

D1(S1) ∩D2(A2) 6= ∅ or D2(S2) ∩D1(A1) 6= ∅. (1)

Roughly speaking, if, after the displacements, the items B1 and B2 are superposed, then at
least one sentinel of B1 becomes interior to B2 or one sentinel of B2 becomes interior to B1.

Now, assume that B1, . . . , Bm ⊂ IRn, Ω ⊂ IRn and we want to pack the items B1, . . . , Bm

into the region Ω. This means that we want to find displacements D1, . . . ,Dm such that

Dj(Bj) ⊂ Ω ∀ j = 1, . . . ,m (2)

and
Di(Bi) and Dj(Bj) are not superposed ∀ i, j = 1, . . . ,m, i 6= j. (3)

Assume that S1 ⊂ B1, . . . , Sm ⊂ Bm are such that Si and Sj are sentinels sets relatively to
Bi and Bj . For all i, j = 1, . . . ,m, i 6= j, define

κ(Di,Dj) = #{[Di(Si) ∩Dj(Aj)] ∪ [Dj(Sj) ∩Di(Ai)]}. (4)

Then, condition (3) can be formulated as follows:

κ(Di,Dj) = 0 ∀ i, j = 1, . . . ,m, i 6= j. (5)

So, the packing problem defined by (2)-(3) is related to the optimization problem

Minimize
∑

i6=j

κ(Di,Dj) s. t. Dk(Bk) ⊂ Ω ∀ k = 1, . . . ,m. (6)
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If a global solution of (6) is found such that the objective function value vanishes, then the
packing problem (2)-(3) is solved. The objective function of (6) represents the total number of
sentinels of one item that, after the displacements, fall in the interior of some other item.

The optimization problem (6) defines the Method of Sentinels. However, this minimization
problem needs to be reformulated in order to transform it into a solvable nonlinear programming
problem. Let us consider the case in which Ω is a closed and convex set defined by a set of
inequalities. So,

Ω = {x ∈ IRn | gi(x) ≤ 0, i = 1, . . . , p}. (7)

Moreover, assume that each item Bk is a bounded polytope, so it is the convex hull of its vertices
V1(Bk), . . . , Vν(k)(Bk). Then, the constraints of (6) take the form

gi(Dk[Vℓ(Bk)]) ≤ 0 ∀ ℓ = 1, . . . , ν(k), k = 1, . . . ,m, i = 1, . . . , p. (8)

The displacements Dk can always be described by a finite set of parameters. For example,
displacements in IR2 are given by three parameters, the first two representing a translation and
the third the angle of rotation. Displacements in IR3 are given by three translation parameters
and two angles of rotation, and so on. Therefore, the constraints (8) have the usual form adopted
in nonlinear programming problems.

Let us analyze now the objective function of (6). This function depends on the continuous
variables that define the displacements but it takes only discrete integer nonnegative values.
For nonlinear programming reformulations we need to replace it by a continuous function of the
displacement variables. As before, we restrict ourselves to the case in which the sets Bk are
bounded polytopes. In this case, Bk is described by a set of linear inequalities:

〈ck,j, x〉 ≤ bk,j, j = 1, . . . , µ(k). (9)

If s is a sentinel of Bi and Di(s) is in Dk(Ak) with k 6= i, then D−1
k Di(s) belongs to Ak and, so,

it satisfies:
〈ck,j ,D

−1
k Di(s)〉 < bk,j, j = 1, . . . , µ(k). (10)

Thus, the displaced sentinel s belongs to the displaced Ak if, and only if,

µ(k)∏

j=1

max{0, bk,j − 〈ck,j ,D
−1
k Di(s)〉} > 0. (11)

Therefore, a degree of the superposition of Bi and Bk under the displacements Di and Dk

is given by
Φ(Di,Dk) = (12)

∑

s∈Si

µ(k)∏

j=1

[max{0, bk,j − 〈ck,j ,D
−1
k Di(s)〉}]

2 +
∑

s∈Sk

µ(i)∏

j=1

[max{0, bi,j − 〈ci,j ,D
−1
i Dk(s)〉}]

2.

The function Φ(Di,Dk) is nonnegative and continuously differentiable with respect to the param-
eters that define the displacements Di and Dk and it vanishes if, and only if, Di(Bi) and Dk(Bk)
are not superposed. Therefore, it can replace the function κ in the optimization problem (6).
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Summing up, in the case in which Ω is a convex set defined by inequalities and the items
are bounded polytopes, the packing problem can be formulated as the following nonlinear pro-
gramming problem:

Minimize
∑

i6=j

Φ(Di,Dj) (13)

subject to (8). Moreover, since we are only interested in global solutions of (13) where the
objective function must vanish, the problem can be reformulated as the feasibility problem
given below: ∑

i6=j

Φ(Di,Dj) = 0, (14)

gi(Dk[Vℓ(Bk)]) ≤ 0 ∀ ℓ = 1, . . . , ν(k), k = 1, . . . ,m, i = 1, . . . , p. (15)

Finally, (14)-(15) is equivalent to the following unconstrained continuously differentiable
global optimization problem:

Minimize
∑

i6=j

Φ(Di,Dj) +
p∑

i=1

m∑

k=1

ν(k)∑

ℓ=1

[max{0, gi(Dk[Vℓ(Bk)])}]
2. (16)

3 Sentinels for Planar Polygons

In this section we restrict ourselves to 2D packing problems of polygons. We present examples
of polygons for which any set of sentinels is infinite and characterize a class of polygons that
have finite sets of sentinels. We explain how to define sentinels for polygons in this last class
and also provide optimal sentinels sets for rectangles and regular polygons. The results in this
sections are based on a mathematical theory described in (Birgin et al, 2004). For the sake of
brevity, here we explain only the intuitive aspects of (Birgin et al, 2004) and ask the interested
reader to look at this reference for a more rigorous treatment of this subject.

In this section we work with polygons, by which we mean a sequence of points p0, p1, . . . , pn−1

connected by segments pipi+1 that do not cross. The only contact the segments have is at the
vertices pi. We also assume that no three consecutive points pi are aligned. According to this
definition, polygons are not open sets. However, in order to simplify the language, we will say
that S1, . . . , Sn are sets of sentinels for a family of polygons P1, . . . , Pn even when, to be one
hundred percent rigorous, we should say that S1, . . . , Sn are sets of sentinels for the interior of
P1, . . . , Pn.

We are now ready to state a negative result: triangles do not have finite sentinels sets. In
fact, any two polygons with an internal angle smaller than π/2 that could be superposed like
in Figure 1, with contact only at the acute tips, cause problems. In this case, one can place
any finite number of sentinels near the touching tips and it will always be possible to move the
polygons slightly and have them to intersect in such way that one polygon does not touch the
sentinels of the other.

Figure 1 by here.
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On the other hand, this is as bad as things may get, as stated in the next theorem:

Theorem 1 If P1, . . . , Pn is a family of n planar polygons such that all internal angles of all
Pi’s are bigger than or equal to π/2 then there exist a family of finite sets of sentinels S1, . . . , Sn

for P1, . . . , Pn.

The sentinels sets used to prove this theorem are built in two steps. First we use the next two
lemmas to reduce the problem to the convex case:

Lemma 1 Every polygon with internal angles bigger than or equal to π/2 can be decomposed as
the union of convex polygons with internal angles bigger than or equal to π/2.

Lemma 2 Let A1, . . . , An be a family of open sets such that each Ai is decomposed as Ai =
∪ni

j=1Aij , for some open sets Aij . Consider the set of n-uples K = {(k1, . . . , kn) with 1 ≤ ki ≤
ni for i = 1, . . . , n}. If S1k1

, S2k2
, . . . , Snkn

are sentinels sets for A1k1
, A2k2

, . . . , Ankn
for all

(k1, . . . , kn) ∈ K then the sets Si = ∪ni

j=1Sij are sentinels sets for A1, . . . , An.

In words, Lemma 2 states that we can obtain sentinels sets for the whole sets by combining the
sentinels sets for their parts. As a consequence of the last two lemmas, we care mostly about
convex polygons and the next lemma is of interest:

Lemma 3 If P1, . . . , Pn, n ≥ 2, is a family of strictly convex polygons and S1, . . . , Sn is a family
of finite sets of sentinels for the Pi’s then each Si contains all the vertices of Pi.

Thus, vertices are natural candidates to sentinels. Moreover, in the case when some Pi are
repeated we must have internal sentinels. Otherwise we could just put one copy right above the
other. This observation proves the following lemma.

Lemma 4 Let A1, . . . , An be a family of open sets and S1, . . . , Sn be a family of finite sets of
sentinels for the Ai’s. If Ai = Aj for i 6= j then (Si ∩Ai) ∪ (Sj ∩Aj) 6= ∅.

We are now ready to explain the construction used to prove Theorem 1. First we decompose
each polygon as the union of convex parts with internal angles bigger than or equal to π/2. We
take the vertices of such parts as sentinels. Next, for each convex part C = c0c1 . . . ck, ck = c0,
we take an arbitrary internal sentinel in the set

I =
k⋂

i=1

Ci,

where Ci is the convex polygon with vertices cj with j 6= i. Each Ci is the convex set obtained
from C by the removal of the ear ci−1cici+1 and their intersection is illustrated in Figure 2.

Figure 2 by here.

Since each C has at least four vertices, Helly’s theorem implies that I is not empty, because
the intersection of any three Ci’s, for i ∈ {i1, i2, i3}, contains at least a vertex cj for some

6



j 6∈ {i1, i2, i3}. Therefore, we can always pick an internal sentinel for C as described above.
Finally we take a small δ and populate the sides of the parts with sentinels which are at most
δ apart, as in Figure 5.

Figure 3 by here.

If no polygon has parallel sides which are close to each other then we can take δ as the length
of the smallest side among all the polygons. In cases similar to the rectangle, when there are
two consecutive internal angles of π/2, we must take δ slightly smaller than the side connecting
the corresponding vertices. In (Birgin et al, 2004) we provide a precise value for δ and a formal
justification of this procedure.

Lemmas 3 and 4 show that the sets of sentinels we propose are optimal for families of regular
polygons with sides of the same length and with more than four vertices. However, rectangles
are different. Since they are so important in practice we devote the last part of this section
to them. Using the theory developed in (Birgin et al, 2004), we found the following optimal
sentinels sets when all the Pi’s equal the rectangle Rλ with vertices (±λ,±1) and λ ≥ 1.

Figure 4 by here.

For technical reasons, we must look at two ranges for λ: λ < 4 and λ ≥ 4, and the horizontal
distance δλ among the points is at most

δλ = λ/2 if 1 ≤ λ < 4, (17)

δλ =
2λ

⌊λ⌋+ 1
if λ ≥ 4. (18)

The optimal sentinels set Sλ is defined in terms of the auxiliary sets Mλ and Bλ as follows

Bλ = {(−λ,−1), (−λ, 0), (−λ, 1), (λ,−1), (λ, 0), (λ, 1)}, (19)

nλ = 1 for λ < 4 and nλ = ⌊λ⌋ − 2 otherwise, (20)

Mλ = {(kδλ − λ, 0), for 2 ≤ k ≤ nλ + 1}, (21)

Sλ = Bλ ∪Mλ ∪ {(−λ + δλ, 1), (λ − δλ,−1)}. (22)

In (Birgin et al, 2004) we give a formal proof that these configurations Sλ are indeed sentinels
sets and that they are minimal. A reader that is not interested in these proofs could still get a
heuristic verification of the validity of Sλ by copying either of the rectangles in Figure 4 in two
pieces of paper and trying to rotate and translate these copies in such a way that they overlap
and no sentinel of a rectangle falls inside of the other. The reader will soon find out that this is
impossible.
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4 Numerical results

We solved 2D problems of packing identical rectangles within arbitrary convex regions using
the Method of Sentinels (equivalent to the unconstrained continuously differentiable global op-
timization problem (16)). The unknowns of (16) are the translation vectors and the rotation
angles for each rectangle. We use as sentinels the points of Sλ given by (22).

4.1 Basic optimization procedure

Given a convex set Ω and an unlimited number of identical rectangles, the problem of packing as
many rectangles as possible is equivalent to finding a null-cost global solution of problem (16) for
the biggest possible value of m. Most nonlinear optimization methods find first-order stationary
points (very likely, local minimizers) of problem (16). An alternative to enhance the probability
of finding a global minimizer is to start the method from many random initial guesses.

In practice, we proceed as follows. First, we establish the maximum effort we are able to do
(defining, for example, a maximum CPU-time T ). If the allowed computer time is exhausted,
the algorithm stops returning the best packing found. In the algorithmic context defined below,
this means that m ≡ r − 1 rectangles were packed. On the other hand, while our maximum
effort is not exhausted, we carry out the following steps:

Step 1: Set r ← mlb, where mlb is a known lower bound on the number of rectangles that can
be packed (note that mlb = 0 is a feasible option).

Step 2: For solving problem (16) of packing r rectangles, we consider a random initial guess
from which we start a local minimization, with the expectation of finding a global solution
that annihilates the objective function.

Step 3: If a solution with null optimal cost was found and r = mub, we stop the execution
declaring “An optimal packing with m ≡ mub rectangles was found”.

Step 4: If a solution with null optimal cost was found but r < mub, we increase r by 1 and
return to Step 2. In this case, the packing problem with r rectangles was solved and, now,
we will try to solve a larger one.

Step 5: If a solution with null optimal cost was not found, we return to Step 2. In this case,
the packing problem we are trying to solve remains the same and we will try to solve it
choosing another random initial guess.

Figure 5 gives a graphical representation of these steps, including the stopping criterion based
on exhaustion. If the algorithm stops with m ≡ mlb − 1 we conclude that even a packing with
mlb rectangles was not found. Moreover, when the method stops declaring “A packing with m
rectangles was found”, this means that it was the best the method could do within the available
time. There is no optimality certification apart from the one that might be given attaining a
known upper bound.

Figure 5 by here.
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We chose GENCAN (Birgin and Mart́ınez, 2002) as the local solver. GENCAN is a recently
introduced active-set method for smooth box-constrained minimization. For a description of
basic techniques of continuous optimization and active-set methods see, for example, (Dennis Jr
and Schnabel, 1983) and (Luenberger, 1984) (pp. 326–330). GENCAN adopts the leaving-face
criterion of (Birgin and Mart́ınez, 2001), that employs the spectral projected gradients defined
in (Birgin et al, 2000; Birgin et al, 2001). For the internal-to-the-face minimization GENCAN
uses a general algorithm with a line search that combines backtracking and extrapolation. In
the present available implementation, GENCAN employs, for the direction chosen at each step
inside the faces, a truncated-Newton approach. This means that the search vector is an approx-
imate minimizer of the quadratic approximation of the function in the current face. Conjugate
gradients are used to find this direction. The method is fully described in (Birgin and Mart́ınez,
2002) where extensive numerical experiments assess its reliability. GENCAN is available as a
part of the TANGO project (see www.ime.usp.br/˜egbirgin/tango/).

4.2 Improving the initial random configuration

The whole packing procedure consists of solving a potentially large number of unconstrained
optimization problems. Each time we try to solve an instance of the smooth nonlinear uncon-
strained optimization problem (16), a random configuration is used as an initial guess to run
a local solver. No information of the previous trials is considered. Information of preceding
problems with a small number of rectangles is not useful because the optimal configuration may
vary a lot when the number of rectangles increases. Information of preceding problems with
the same number of rectangles is not useful either. Note that, if we are still trying to solve a
problem repeating the number of rectangles, this is because we failed in the previous trials. So,
the final points of those trials are undesired stationary points of the nonlinear model, and to
start near to them would trap us in the basin of convergence of a spurious solution. Starting
from random initial guesses hopefully provides the method with the necessary diversification to
find the desired global solution.

Objective functions having products like the ones in (11) exhibit deep valleys that make
the task of finding its global minimizer very hard. This is the case of function (12) which is
part of the objective function of our nonlinear optimization problem (16). So, starting from a
random initial guess will probably lead us to the basin of convergence of a near local non-global
minimizer.

With the purpose of overcoming this inconvenience, we formulate another smoother (and
hopefully easier) optimization problem that, in some sense, approximates the optimization prob-
lems (16). Consider some circles that “almost cover” the rectangle, as shown in Figure 6. (The
number of circles and their distribution inside the rectangle are completely arbitrary and based
on empirical evidences.)

Figure 6 by here.

Given a random initial guess, we first solve the problem of finding displacements such that
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the above mentioned circles that belong to different rectangles do not overlap. The model for
this auxiliary problem follows closely the model for packing cylinders introduced in (Birgin et al,
2005b). This problem turns out to be much easier than (16). Its minimizers (global or not) are
not necessarily solutions of (16) but almost always provide improved initial points for solving
the rectangle packing problem.

Of course, there is a trade-off between spending time for improving the initial random guess
(solving the auxiliary problem) and using the time for solving more problems, starting from
(cheaply generated) initial random guesses. In the next subsection we will see that the auxiliary
problem helps to find better solutions with less global time.

4.3 Experiments

We consider the set of rectangle packing problems in arbitrary convex regions described in
Table 1. Table 1 shows the description of each problem (inequalities that describe the convex
region Ω, the area of Ω, dimensions of the rectangles to be packed, and the area of the rectangles).

Problems 26 to 30, in which some special items are packed, deserve some explanations. The
special black items in problems 26 to 29 are items that will be fixed within the convex regions.
The special items in problem 30 will be packed as regular items, allowing free displacements
and rotations inside the convex region. All these items are unions of rectangles (sometimes
overlapped and sometimes not). The special item in problems 26 and 29 corresponds to two
non-overlapped rectangles and its area is 4. The special item in problem 27 corresponds to 8
non-overlapped rectangles and its area is 16. The special item in problem 28 corresponds to
two overlapped rectangles and its area is 3. Finally, the first, the second and the fourth special
items in problem 30 correspond to 2, 2 and 3 non-overlapped rectangles and their areas are
0.665, 0.665 and 0.9975, respectively, while the third special item corresponds to two overlapped
rectangles and its area is 0.5425. In all these cases, we first try to pack the special items in the
order and quantities that appear in Table 1. Then, we continue packing as many rectangles as
possible.

Table 1 by here.

Table 1 (cont.) by here.

All the experiments were run on an 1.8GHz AMD Opteron 244 processor, 2Gb of RAM
memory and Linux operating system. Codes are in Fortran77 and the compiler option “-O” was
adopted.

In the experiments we set our maximum effort in terms of CPU-time, fixing T = 6 hours.
Since, for arbitrary convex regions, it is not easy to find tight bounds, we set mlb = 1 and mub

as the upper bound based on the areas showed in Table 1. Table 2 shows, for each problem, the
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number of items that were packed, the total number of nonlinear programming problems that
were solved and the elapsed CPU-time until the best solution was found. (The remaining time,
to complete the 6 hours, was spent just to confirm that a better solution could not be found.)
Figures 7 and 8 illustrate the solutions. In Table 2, the column “Upper bound” deserves some
explanation. Assuming that the special items (in problems 26 to 30) can be packed, the upper
bound on the number of items that can be packed is computed as follows:

Upper bound = # special items + ⌊
Convex region area− Sum of the special items areas

rectangular item area
⌋

In these cases, the column “Number of packed items” also corresponds to the number of special
items packed plus the number of rectangles packed.

Problems 1–10 show how the method packs rectangles in arbitrary convex regions. In (Ma-
honey, 1985) the problem of packing containers in airplanes is analyzed. This practical problem
resembles the geometrical problems studied here. Problems 11–15 consist in packing unitary
squares in equilateral triangles. Problems 16–23 consist in packing unitary squares in bigger
squares. Both problems are related to classical combinatorial and geometrical problems (see
(Erdös and Graham, 1975; Friedman, 2000); namely, to find the smaller “big” square (or equi-
lateral triangle) that contains a fixed number of “small” squares. The duality relationships
between this problem and the one considered in the present paper can be used to obtain ap-
proximations to the solution of the first. Problems 24 and 25 show that our approach is able
to obtain non-guillotine and guillotine solutions of the problem of packing rectangles within a
rectangle. In Problems 26–29 we show that the method can be used to pack items in regions
that have prohibited zones (Viana and Arenales, to appear; Bischoff and Dowsland, 1982), when
these zones can be described as unions of rectangles. In this case, the corresponding problem
is handled using constraints that impose a fixed position to the rectangles that represent the
forbidden regions. Finally, observe that, at a first sight, in problem 30, the packed items are
not rectangles, as in (Amaral et al, 1990; Bennell et al, 2001; Dowsland et al, 1998; Dowsland
et al, 2002; Lamousin and Waggenspack Jr., 1997; Li and Milenkovic, 1995). However, each
item is also a union of rectangles and the desired configuration is obtained using the basic
rectangle-packing procedure and imposing additional constraints to force that the packed rect-
angles preserve adequate relative positions. In other words, the problem of packing items that
are union of rectangles can be handled employing, essentially, the same technique introduced
for rectangles.

Table 2 by here.

Figure 7 by here.
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Figure 8 by here.

In addition to the previous set of problems, we also consider a few problems of packing (l, w)-
rectangles within an (L,W )-rectangle from the problems set Cover I. We apply the Method of
Sentinels, the orthogonal packing procedure GENPACK described in (Birgin et al, 2005a) and
the L-Approach introduced in (Lins et al, 2003, Birgin et al, 2005c). Table 3 shows the obtained
results and Figure 9 illustrates the solutions.

Table 3 by here.

Figure 9 by here.

From these results it becomes evident that the nonlinear approaches described in this work
and in (Birgin et al, 2005a) are not competitive with clever methods developed for this specific
problem. The Method of Sentinels found the optimal solution in 3 cases and GENPACK found
the optimal solution in 9 problems, while the L-Approach found the optimal solution in all the
10 problems. Moreover, the nonlinear approaches used a CPU-time several orders of magnitude
bigger than the L-Approach. Remembering that we are using a CPU-time limit of 6 hours,
and noting that without a time limit the nonlinear approaches find the optimal solution of any
problem with probability one, we can concentrate the “comparison” in the efficiency of the
methods instead of in their robustness. Then, we can say that the Method of Sentinels is the
less efficient method while the L-Approach is the more efficient one for this type of problems.
This is due to the amount of information about the specific problem that the method uses.

In fact, for the special case of packing rectangles within rectangles, and for this set of
problems, at least two properties are well known:

1. An optimal solution with the sides of the (l, w)-rectangles parallel to the sides of the
(L,W )-rectangle exists.

2. Consider the set C = {c = a l + b w | c ≤ min(L,W )} ⊂ IN , with a and b non-negative
integer numbers. Assume,without loss of generality, that the (L,W )-rectangle has its left-
down corner in the origin. Then an optimal solution with the left-down corner (xi, yi) of
each (l, w)-rectangle such that xi, yi ∈ C exists.

The L-Approach uses both properties, while GENPACK uses only the orthogonality property
and the Method of Sentinels does not use any of them. So, the advantage of the Method of
Sentinels of being able to deal with a wide range of problems becomes a disadvantage when
known properties of particular problems (not being used by the method) exist.

12



Finally, to verify the usefulness of the auxiliary problem in the generation of improved initial
solutions, we also applied the Method of Sentinels to the 10 problems of packing rectangles within
a rectangle, but without using the auxiliary model. In problem P23(25, 13, 7, 2), 21 rectangles
were packed instead of 18. In 3 problems the number of packed rectangles was the same and in
the other 6 problems 3.5 less rectangles were packed in average. In the 3 problems in which the
same number of rectangles was packed, the time was more than 4 times the time used by the
Method of Sentinels plus the auxiliary problem. So, the application of the auxiliary problem for
the generation of improved initial solutions seems to be very useful in practice.

5 Conclusions

In this paper we introduced the concept of sentinels. We proved the existence of finite sets of
sentinels for polygons with their internal angles larger than or equal to π/2. Moreover, we found
minimal sets of sentinels to pack identical rectangles. An interesting and challenging problem is
to find minimal sets of sentinels for arbitrary non-regular polygons or for 3D items.

We introduced a nonlinear-programming oriented algorithm for packing items within arbi-
trary regions. The method is based in the new concept of sentinels. To improve the efficiency of
the proposed method, the initial approximations are chosen using an auxiliary simpler nonlinear-
programming procedure. However, the initial procedure alone is not able to find solutions of the
packing problem and using sentinels is necessary.

The main limitation of the proposed model for solving packing problems relies in the com-
plexity of the continuous optimization problem. Basically, this is a global optimization problem
with many local-nonglobal minimizers. General and specific novel strategies for global optimiza-
tion must be useful for improving the efficiency of the new approach.

Acknowledgement: The authors are indebted to three anonymous referees whose comments
helped a lot to improve this paper.
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Figure 1: Polygons with internal angles smaller than π/2 may not have finite sets of sentinels.

Figure 2: The set I for the rectangle (just one point) and the hexagon (hatched).

Figure 3: A family of polygons and their sentinels. The rectangle has smallest side of length
slightly bigger than 1 and the other polygons have sides of length 1. The sentinels in the borders
are 1 apart, except for the ones in the smallest side of the rectangle, which are roughly 1/2 apart.

Figure 4: Minimal sentinels sets for the rectangles Rλ, with λ = 3 and 7.
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Figure 5: Fluxogram of the algorithm. When the method stops, m represents the number of
packed items.
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Figure 6: Partial covering of the rectangle by circles used to generate initial configurations.

(1) (2) (3) (4)

(5) (6) (7) (8)

(9) (10) (11) (12)

(13) (14) (15)

Figure 7: Graphical representation of the solutions. The pictures are automatically generated
by the software using MetaPost.
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(16) (17) (18) (19)

(20) (21) (22) (23)

(24) (25) (26) (27)

(28) (29) (30)

Figure 8: Graphical representation of the solutions. The pictures are automatically generated
by the software using MetaPost (cont.).
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Using only
Problem Method of Sentinels Orthogonal rotations L-Approach

P22(36, 19, 10, 3)

P23(25, 13, 7, 2)

P23(39, 20, 11, 3)

P24(14, 7, 4, 1)

P24(26, 13, 7, 2)

P25(27, 13, 7, 2)

P24(39, 19, 10, 3)

P26(15, 7, 4, 1)

P6(3, 2, 1, 1)

P9(12, 9, 4, 3)

Figure 9: Comparison between the Method of Sentinels, GENPACK (for orthogonal packing)
and the L-Approach in the particular problem of packing identical rectangles within a rectangle.
When more information of the problem the method uses, better is its performance. This is the
reason why the nonlinear approaches for packing rectangles within arbitrary convex regions are
not competitive with clever methods developed for this particular case.
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Problem Convex Region Rectangular item
Description Area Dimensions Area

1

g1(x1, x2) = −x1 − x2 + 3
g2(x1, x2) = x2

1
+ x2

2
− 100

g3(x1, x2) = −x1

g4(x1, x2) = −x2

74.1 2 × 1 2

2
g1(x1, x2) = −7x1 + 6x2 − 24
g2(x1, x2) = 7x1 + 6x2 − 108
g3(x1, x2) = (x1 − 6)2 + (x2 − 8)2 − 9

21.7 1.1 × 0.55 0.61

3

g1(x1, x2) = (x1 − 6)2 + x2

2
− 81

g2(x1, x2) = (x1 − 1.7)2 + (x2 − 10)2 − 81
g3(x1, x2) = −x1

g4(x1, x2) = x1 − 8

54.4 2 × 0.6 1.2

4
g1(x1, x2) = x2

1
− x2

g2(x1, x2) = x2

1
/4 + x2 − 5

13.3 1 × 0.4 0.40

5
g1(x1, x2) = x2

1
− x2

g2(x1, x2) = −x1 + x2

2
− 6x2 + 6

g3(x1, x2) = x1 + x2 − 6
10.9 0.9 × 0.3 0.27

6
g1(x1, x2) = −x1 + x2

2
− 6x2 + 6

g2(x1, x2) = x1 + x2

2
− 3x2 − 3/4

10.2 0.9 × 0.3 0.27

7 g1(x1, x2) = (x1 − 2)2/4 + (x2 − 4)2/16 − 1 25.1 2 × 0.5 1

8

g1(x1, x2) = (x1 − 6)2/4 + (x2 − 6)2/36 − 1
g2(x1, x2) = (x1 − 6)2/36 + (x2 − 6)2/4 − 1
g3(x1, x2) = x1 − x2 − 3
g4(x1, x2) = −x1 + x2 − 2

13.2 0.7 × 0.5 0.35

9

g1(x1, x2) = (x1 − 3)2/4 + (x2 − 4)2/16 − 1
g2(x1, x2) = (x1 − 2.65)2/4 + (x2 − 4)2/16 − 1
g3(x1, x2) = x1 − x2 − 1
g4(x1, x2) = x1 + x2 − 9
g5(x1, x2) = −x1 + 1

13.7 0.8 × 0.6 0.48

10
g1(x1, x2) = (x1 − 6)2/36 + (x2 − 6)2/4 − 1
g2(x1, x2) = (x1 − 6)2/9 + (x2 − 8)2/9 − 1

13.6 0.95 × 0.35 0.33

11
g1(x1, x2) =

√
3x1 + x2 −

√
3(3/2 +

√
3)

g2(x1, x2) = −
√

3x1 + x2

g3(x1, x2) = −x2

32.2 1 × 1 1

12
g1(x1, x2) =

√
3x1 + x2 −

√
3(2 + 4/

√
3)

g2(x1, x2) = −
√

3x1 + x2

g3(x1, x2) = −x2

33.3 1 × 1 1

13
g1(x1, x2) =

√
3x1 + x2 −

√
3(3 + 4/

√
3)

g2(x1, x2) = −
√

3x1 + x2

g3(x1, x2) = −x2

36.3 1 × 1 1

14
g1(x1, x2) =

√
3x1 + x2 −

√
3(2 + 2

√
3)

g2(x1, x2) = −
√

3x1 + x2

g3(x1, x2) = −x2

37.5 1 × 1 1

15
g1(x1, x2) =

√
3x1 + x2 −

√
3(4 + 4/

√
3)

g2(x1, x2) = −
√

3x1 + x2

g3(x1, x2) = −x2

37.5 1 × 1 1

16

g1(x1, x2) = −x1

g2(x1, x2) = x1 − (2 +
√

2/2)
g3(x1, x2) = −x2

g4(x1, x2) = x2 − (2 +
√

2/2)

7.3 1 × 1 1

17

g1(x1, x2) = −x1

g2(x1, x2) = x1 − (3 +
√

2/2)
g3(x1, x2) = −x2

g4(x1, x2) = x2 − (3 +
√

2/2)

13.7 1 × 1 1

Table 1: Problems definition.
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Problem Convex Region Rectangular item
Description Area Dimensions Area

18

g1(x1, x2) = −x1

g2(x1, x2) = x1 − 3.878
g3(x1, x2) = −x2

g4(x1, x2) = x2 − 3.878

15.0 1 × 1 1

19

g1(x1, x2) = −x1

g2(x1, x2) = x1 − 4.676
g3(x1, x2) = −x2

g4(x1, x2) = x2 − 4.676

21.9 1 × 1 1

20

g1(x1, x2) = −x1

g2(x1, x2) = x1 − (7 +
√

7/2)
g3(x1, x2) = −x2

g4(x1, x2) = x2 − (7 +
√

7/2)

23.3 1 × 1 1

21

g1(x1, x2) = −x1

g2(x1, x2) = x1 − (3 + 4
√

2/3)
g3(x1, x2) = −x2

g4(x1, x2) = x2 − (3 + 4
√

2/3)

23.9 1 × 1 1

22

g1(x1, x2) = −x1

g2(x1, x2) = x1 − (7/2 + 3
√

2/2)
g3(x1, x2) = −x2

g4(x1, x2) = x2 − (7/2 + 3
√

2/2)

31.6 1 × 1 1

23

g1(x1, x2) = −x1

g2(x1, x2) = x1 − 6.621
g3(x1, x2) = −x2

g4(x1, x2) = x2 − 6.621

43.9 1 × 1 1

24

g1(x1, x2) = −x1

g2(x1, x2) = x1 − 23
g3(x1, x2) = −x2

g4(x1, x2) = x2 − 21

483.0 6 × 5 30

25

g1(x1, x2) = −x1

g2(x1, x2) = x1 − 10
g3(x1, x2) = −x2

g4(x1, x2) = x2 − 8

80.0 2 × 1 2

26

g1(x1, x2) = −x1

g2(x1, x2) = x1 − 10
g3(x1, x2) = −x2

g4(x1, x2) = x2 − 8

80.0 3 fixed items
plus 2 × 1 rectangles

2

27

g1(x1, x2) = −x1

g2(x1, x2) = x1 − 10
g3(x1, x2) = −x2

g4(x1, x2) = x2 − 8

80.0 the fixed item
plus 2 × 1 rectangles

2

28

g1(x1, x2) = −x1

g2(x1, x2) = x1 − 10
g3(x1, x2) = −x2

g4(x1, x2) = x2 − 8

80.0 4 fixed items
plus 2 × 1 rectangles

2

29

g1(x1, x2) = −x1 + x2 − 6
g2(x1, x2) = x1 − x2 − 6
g3(x1, x2) = −x1 − x2 + 6
g4(x1, x2) = x1 + x2 − 18
g5(x1, x2) = −x1 + 1
g6(x1, x2) = x1 − 11
g7(x1, x2) = −x2 + 1
g8(x1, x2) = x2 − 11

68.0 the fixed item
plus 2 × 1 rectangles

2

30
g1(x1, x2) = (x1 − 6)2/36 + (x2 − 6)2/4 − 1
g2(x1, x2) = (x1 − 6)2/9 + (x2 − 6)2/9 − 1

13.6

the following non-fixed items:

3 , 3 , 1 , 2 ,
plus 0.95 × 0.35 rectangles

0.3325

Table 1: Problems definition (cont.)
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Problem Upper Number of Number of CPU-time
bound packed items trials in seconds

1 37 32 1990 14078.67
2 35 30 91 958.27
3 45 37 332 7887.49
4 33 28 5862 18177.95
5 40 35 927 6951.79
6 37 32 976 5801.68
7 25 20 391 557.09
8 37 32 197 530.12
9 28 24 4021 3750.76
10 40 33 4965 17772.39
11 32 27 278 267.53
12 33 28 74 85.37
13 36 29 38 22.29
14 37 30 69 97.28
15 37 31 53 56.47
16 7 5 6 0.02
17 13 10 12 0.28
18 15 11 408 53.43
19 21 17 74 23.28
20 23 18 25 5.58
21 23 19 521 268.89
22 31 26 68 45.04
23 43 37 1253 2841.36
24 16 16 225 405.03
25 40 40 156 249.24
26 37 37 89 146.03
27 35 35 143 191.25
28 38 38 482 670.25
29 33 29 32 12.68
30 31 18 4144 10228.52

Table 2: Performance of the Method of Sentinels.
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Method of Sentinels Using only L-approach
Problem orthogonal rotations

n # trials CPU-time n # trials CPU-time n CPU-time

P22(36, 19, 10, 3) 17 533 5083.22 22 66710 4429.52 22 0.25
P23(25, 13, 7, 2) 18 1835 9923.40 23 320554 8464.60 23 0.15
P23(39, 20, 11, 3) 21 212 1730.03 23 66347 5046.09 23 0.32
P24(14, 7, 4, 1) 24 9030 14313.55 24 62359 1199.32 24 0.08
P24(26, 13, 7, 2) 22 2035 12055.44 23 62439 2659.11 24 0.23
P25(27, 13, 7, 2) 21 607 4640.60 25 60378 2434.14 25 0.22
P24(39, 19, 10, 3) 19 754 8766.18 24 62611 5357.32 24 0.52
P26(15, 7, 4, 1) 25 581 1105.93 26 60766 1451.70 26 0.13
P6(3, 2, 1, 1) 6 7 0.03 6 8 0.00 6 0.00
P9(12, 9, 4, 3) 9 303 28.38 9 114996 224.24 9 0.00

Table 3: Performance of the Method of Sentinels, GENPACK and the L-Approach in the par-
ticular problem of packing identical rectangles within a rectangle.
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