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Abstract

An optimization-based tool for flow predictions in natural rivers is introduced assuming that
some physical characteristics of a river within a spatial-time domain [xmin, xmax]× [tmin, ttoday] are
known. In particular, it is assumed that the bed elevation and width of the river are known at a
finite number of stations in [xmin, xmax] and that the flow-rate at x = xmin is known for a finite
number of time instants in [tmin, ttoday]. Using these data, given tfuture > ttoday and a forecast of the
flow-rate at x = xmin and t = tfuture, a regression-based algorithm informed by partial differential
equations produces predictions for all state variables (water elevation, depth, transversal wetted
area, and flow-rate) for all x ∈ [xmin, xmax] and t = tfuture. The algorithm proceeds by solving a
constrained optimization problem that takes into account the available data and the fulfillment of
Saint-Venant equations for one-dimensional channels. The effectiveness of this approach is corrob-
orated with flow predictions of a natural river.

Key words: Flow predictions in natural rivers, Saint-Venant equations, constrained optimization,
algorithms.

1 Introduction

Flow prediction in natural rivers is a relevant problem in Hydraulic Engineering because of its impact
on agricultural production planning and flood prevention. Moreover, this problem is an interesting
challenge for Mathematical Modelling, Numerical Analysis, and Optimization. The main tool regard-
ing the definition of the algorithm introduced in this paper relies on Optimization techniques. We
will see that, for each required prediction, a constrained optimization problem must be solved whose
complexity is related to the choice of model functions for water elevation.

Most published works for flow prediction in natural rivers are based on the solution of the Saint-
Venant equations [17], that require knowledge of the so called Manning roughness coefficients or,
simply, Manning coefficients. Since specific Manning coefficients for particular rivers are not known,
they need to be estimated using available data. Therefore, the standard procedure consists of applying
an optimization method to the minimization, with respect to the Manning coefficients, of the sum
of squares of the differences between real observations and observations predicted by the numerical
solution of Saint-Venant equations. A lot of research has been devoted to the problem of estimating
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Manning parameters using this approach. In [16] the performance of the HEC-RAS software [16] was
analyzed and suitable weighting discretization parameters were chosen in order to produce dynamic
probability maps of flooding during the event. In [1], HEC-RAS was used in connection with different
heuristic procedures for optimizing the Manning coefficient computation. Quasi-Newton methods
for the same purpose were used in [10]. Sequential quadratic programming was employed in [4].
Graduate Varied Flow equations and genetic algorithms were used in [13]. In [5], a secant derivative-
free optimization tool for determining the Manning coefficient in synthetic experiments was developed.

The approximate solution of Saint-Venant equations requires knowledge of initial conditions and
appropriate boundary conditions. Sometimes the approximate solution of these equations is painful
due to the need of maintaining very small time steps to avoid numerical instability. In addition,
the boundary conditions required for the mathematical solution of the equations are not available
in most cases, so artificial boundary conditions are necessary or, equivalently, questionable linear
extrapolations on the boundary are employed. Furthermore, as already mentioned, the integration
of the Saint-Venant equations requires either prior knowledge of the Manning coefficients, which, in
general, is not available, or the estimation of these coefficients using available data. In the latter case,
the estimation of the Manning coefficients using an optimization technique requires that the equations
be repeatedly solved numerically for different tentative values of the coefficients; see [1, 3, 4, 5, 9, 10,
13, 14, 16].

These inconveniences motivated us to introduce a new method strongly based on available data
and informed by the ubiquous fulfillment of the Saint-Venant equations. The method does not use
discretization schemes and it is strongly user-oriented in the sense that provides predictions of flow
variables at desired times in the future using forecasts of inlet discharge. The method exploits an
empirical relation between inlet discharge and water elevation for each fixed station in the course of
the river. This empirical relation allows us to postulate an analytic formula for the transversal area
whose coefficients are estimated in order to satisfy Saint-Venant equations as well as possible. This
defines a challenging constrained optimization problem, the solution of which is successfully obtained
by consolidated constrained optimization software.

The rest of this paper is organized as follows. Section 2 defines the tackled problem. Section 3
introduces the proposed method. Section 4 discusses the optimization problems solved by the main
algorithm. Section 5 evaluates the proposed approach applying it to a natural river. Conclusions and
lines for future research are given in the last section.

2 Definition of the problem

We consider that a natural river is well represented by state variables defined at spatial positions
x ∈ [xmin, xmax] and time t ∈ [tmin, tmax]. Given data for t ∈ [tmin, ttoday] and tfuture ∈ (ttoday, tmax],
one wishes to estimate the state variables for all x ∈ [xmin, xmax] and t = tfuture. This is the problem
that most people need to solve in practice, when ttoday represents the present instant and they wish
to predict what will happen at some point in the future. It is assumed that the river cross-sections
are rectangular and that the available data are

(a) zb(xk): bed elevation, in meters, measured from a datum, for a finite number of points xk ∈
[xmin, xmax] for k = 1, . . . , nzb .

(b) w(xk): width of the river, in meters, for a finite number of points xk ∈ [xmin, xmax] for k =
1, . . . , nw.

(c) Q(xmin, tk): Inlet discharge (i.e. flow-rate at x = xmin), in cubic meters per second, for a finite
number of time instants tk ∈ [tmin, ttoday] for k = 1, . . . , nQ.
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(d) z(xk, tk): water elevation, in meters, for a finite number of space-time pairs (xk, tk) ∈ [xmin, xmax]×
[tmin, ttoday] for k = 1, . . . , nobs.

Let x1 < x2 < · · · < xnzb be the points for which zb(xk) is given. We construct a natural cubic
spline interpolating the points (xk, zb(xk)) for k = 1, . . . , nzb and, with abuse of notation, we call
this spline zb(x). Then, from here on, we assume that the bed elevation is given by zb(x) for all
x ∈ [xmin, xmax]. It is worth noting that this may correspond to both interpolation and extrapolation
of available data. Analogously, the same is done with the width and inlet discharge. Then, from
here on, we assume that w(x) gives the river width for any x ∈ [xmin, xmax] and that Q(xmin, t) gives
the inlet discharge for any t ∈ [tmin, ttoday]. Using the available data (a)–(d) and a given forecast of
Q(xmin, tfuture), the goal is to predict

(e) z(x, tfuture): water elevation, in meters, for all x ∈ [xmin, xmax], and

(f) Q(x, tfuture): flow-rate, in cubic meters per second, for all x ∈ [xmin, xmax].

It is worth noting that, since the input data Q(xmin, tfuture) is a forecast, we may be interested in
predicting the state of the system at time tfuture, given by (e) and (f), for several different forecasts of
the inlet discharge Q(xmin, tfuture).

The Saint-Venant equations [17] are usually employed for river-flow simulations. These equations
are given by

∂A

∂t
+
∂Q

∂x
= 0 (1)

and
∂Q

∂t
+

∂

∂x

(
Q2

A

)
+ gA

∂z

∂x
+
n2
gQ|Q|
AR4/3

= 0 (2)

for x ∈ [xmin, xmax] and t ∈ [tmin, tmax], where h(x, t) = z(x, t)−zb(x) is the depth of the river at (x, t),
A(x, t) = h(x, t)w(x) is the transversal wetted area at (x, t), P (x, t) = w(x) + 2h(x, t) is the wetted
perimeter at (x, t), R(x, t) = A(x, t)/P (x, t) is the hydraulics radius at (x, t), V (x, t) = Q(x, t)/A(x, t)
is the speed of the fluid at (x, t), and g is the acceleration of gravity taken as 9.81m/s2. Equation (1)
describes mass conservation and equation (2) represents conservation of the linear momentum. The
coefficient ng is known as Manning roughness coefficient. It is unclear in which way this coefficient
depends on x or t. On the one hand, the roughness coefficient depends on x due to the morphological
differences of the river along its course. In particular, it should be noted that natural rivers are not
rectilinear as assumed by the Saint-Venant equations. On the other hand, sediment deposition can
also affect the roughness coefficients over time. In (2), ng has units m1/6. Following [12] we prefer
this definition to the one given by ng = ηclassic

√
g because the units of ηclassic are sm−1/3.

In the present work, the prediction of z(x, tfuture) in (e) relies on constructing a functional form for
z(x, t). On the one hand, this functional form must fit the available data z(xk, tk) for k = 1, . . . , nobs

mentioned in (d). On the other hand, from the functional form of z(x, t), we derive functional forms of
A(x, t) and Q(x, t) that satisfy the Saint-Venant equations (1,2) for all x ∈ [xmin, xmax] and t = tfuture,
in such a way that the functional form of Q(x, t) can be used to make a reliable prediction for
Q(x, tfuture) for all x ∈ [xmin, xmax] as mentioned in (f).

3 PDE-informed regression

Based in observations of the behavior of natural rivers (see [6, 11, 15]), we postulate a particular
dependence of z(x, t) with respect to x and Q(xmin, t) of the form

z(x, t) = P(c, x,Q(xmin, t)), (3)
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where c ∈ Rncoef is a vector of coefficients that need to be determined. Specifically, we will postulate
that ncoef = 9 and P assumes the funcional form given by

P(c, x,Q(xmin, t)) = c1 + c2Q(xmin, t) + c3Q(xmin, t)
2+

10−3x
[
c4 + c5Q(xmin, t) + c6Q(xmin, t)

2
]

+

(10−3x)2
[
c7 + c8Q(xmin, t) + c9Q(xmin, t)

2
]
.

(4)

Given a trial set of coefficients c, the value of z(x, t) may be computed using (3). Consequently,
the values of the state variables h(x, t) and A(x, t) follow using the definitions h(x, t) = z(x, t)− zb(x)
and A(x, t) = h(x, t)w(x). Moreover, the values of the flow-rate Q(x, t) follows from (1) using

Q(x, t) = Q(xmin, t)−
∫ x

xmin

∂

∂t

[
(P(c, ξ,Q(xmin, t))− zb(ξ))w(ξ)

]
dξ. (5)

(Note that the integral in (5) can be analytically computed using the piecewise definition of both
splines zb(x) and w(x).) It remains the question of how to compute adequate coefficients c taking into
account available data z(xk, tk) for k = 1, . . . , nobs and fulfillment of (2). Obviously, the fulfillment
of (1) is guaranteed by (5).

On the one hand, the requirement to meet the available data translates into the fulfillment of the
equations

P(c, xk, Q(xmin, tk)) = z(xk, tk) for k = 1, . . . , nobs. (6)

At this point, it should be noted that, since we are interested in a physically meaningful estimate for
z(x, tfuture) for all x ∈ [xmin, xmax], we must include the constraint P(c, x,Q(xmin, tfuture)) ≥ zb(x) for
all x ∈ [xmin, xmax] that can be given by

P(c, xν , Q(xmin, tfuture)) ≥ zb(xν) (7)

for all xν in a grid of ngrid points belonging to [xmin, xmax]. Of course, this also assures that
h(xν , tfuture) ≥ 0 and A(xν , tfuture) ≥ 0 for all xν in the grid. On the other hand, the requirement to
satisfy equation (2) could be represented in discrete form as

∂Q

∂t

∣∣∣∣
(xν ,tfuture)

+

[
∂

∂x

(
Q2

A

)
+ gA

∂z

∂x

]∣∣∣∣
(xν ,tfuture)

+

[
n2
gQ|Q|
AR4/3

]∣∣∣∣∣
(xν ,tfuture)

= 0 (8)

for the same xν in the grid. Due to the analytic form of Q, given by (5), (8) is a set of ngrid algebraic
equations. Moreover, the well definiteness of (8) requires that zb(x) and w(x) should be differentiable
and Q(xmin, t) should be twice differentiable. These differentiability requirements are satisfied in the
present case since the three mentioned functions are cubic splines. However, considering, as mentioned
in the introduction, that ng ≥ 0 may depend both on x and t, the equation (8) may be written as

∂Q

∂t

∣∣∣∣
(xν ,tfuture)

+

[
∂

∂x

(
Q2

A

)
+ gA

∂z

∂x

]∣∣∣∣
(xν ,tfuture)

≤ 0, if Q(xν , tfuture) ≥ 0,

∂Q

∂t

∣∣∣∣
(xν ,tfuture)

+

[
∂

∂x

(
Q2

A

)
+ gA

∂z

∂x

]∣∣∣∣
(xν ,tfuture)

≥ 0, if Q(xν , tfuture) ≤ 0.

(9)

Assuming Q(xν , tfuture) 6= 0 for all ν ∈ {1, . . . , ngrid}, (9) is equivalent to(
∂Q

∂t

∣∣∣∣
(xν ,tfuture)

+

[
∂

∂x

(
Q2

A

)
+ gA

∂z

∂x

]∣∣∣∣
(xν ,tfuture)

)
Q(xν , tfuture) ≤ 0. (10)
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Moreover if, for some empirical reason, it is known that Q(x, tfuture) > 0 for all x ∈ [xmin, xmax], we
can replace (10) with

Q(xν , tfuture) ≥ 0 (11)

plus
∂Q

∂t

∣∣∣∣
(xν ,tfuture)

+

[
∂

∂x

(
Q2

A

)
+ gA

∂z

∂x

]∣∣∣∣
(xν ,tfuture)

≤ 0 (12)

for all ν ∈ {1, . . . , ngrid}.
Equations and inequations (6,7,10) or, alternatively, (6,7,11,12) define a system of nonlinear alge-

braic equalities and inequalities. Due the arbitrary nature of the functional form imposed to z(x, t)
in (3), they may be incompatible. Therefore, we consider the constrained optimization problem given
by

Minimize
c∈Rncoeff

nobs∑
k=1

(P(c, xk, Q(xmin, tk))− z(xk, tk))2 (13)

subject to (7,10) or subject to (7,11,12). It is worth noticing that the objective function as well as the
constraints of these optimization problems are all differentiable with respect to the unknowns c.

4 Constrained Optimization problems

For solving the problems (13,7,10) or (13,7,11,12) we used Algencan. This is a well-established soft-
ware based on Safeguarded Augmented Lagrangians (SAL) for solving possibly large-scale constrained
optimization problems; see [2, 7]. In [8], complexity results for Algencan were proved which consider
even the case of unbounded penalty parameters. Moreover, in that paper extensive numerical results
were reported. We use the name Algencan for both the SAL algorithm and the Fortran subrou-
tine that implements it, which is freely available at http://www.ime.usp.br/~egbirgin/tango/. Of
course, the mathematical algorithm described in [2, 7, 8] may be implemented by means of different
subroutines. We employed a version of Algencan that needs only first derivatives. First derivatives
of the objective function (13) and of the constraints (7,10) or (7,11,12) are available because, due to
(5), differentiable analytic expressions of the objective function and of the constraints are available.
It should be noted, however, that coding analytic derivatives in an efficient and economic way is not
free of cumbersome difficulties. Anyway, we developed efficient codes for this purpose, that may be
easily adapted in the case of alternative definitions of P.

For simplicity, let us concentrate in problem (13,7,11,12), which has objective function (13) and
constraints (7), (11), and (12). The variables of this problem are the coefficients c1, . . . , cncoeff

. There-
fore, the number of variables n depends on the choice of the approximating function P. In the present
work P is given by (4), so that n = ncoeff = 9. The number of constraints is m = 3ngrid. Although the
number of variables is small, we should be ready to employ more complex approximating functions P,
in which ncoeff could be big.

The requirements (7), (11), and (12) define algebraic constraints for each point x1, . . . , xngrid
in a

grid contained in [xmin, xmax]. The presence of multiple local minimizers forced us to define an oppor-
tunistic two-phases scheme for using Algencan. In the first phase, starting from the initial approxi-
mation c1 = · · · = cncoeff

= 0, we solved the optimization problem disregarding the constraints (12).
In the second phase, starting from the final point obtained in the first case, we incorporated the con-
straints (12) and we run again Algencan in order to obtain a suitable solution. This process is repeated
from scratch each time a prediction for a different instant tfuture is sought. As the starting point of the
first phase, instead of c1 = · · · = cncoeff

= 0, we could have used the unconstrained minimizer of (13),
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which corresponds to a linear least squares problem. However, that supposedly better starting point
brought no additional advantage.

In both phases, we used Algencan with all its default parameters. These parameters include
tolerances εfeas > 0 and εopt > 0 for feasibility and optimality, respectively. If we define

f(c) =

nobs∑
k=1

(P(c, xk, Q(xmin, tk))− z(xk, tk))2

gν(c) = zb(xν)− P(c, xν , Q(xmin, tfuture)) for ν ∈ {1, . . . , ngrid}

gngrid+ν(c) = −Q(xν , tfuture) for ν ∈ {1, . . . , ngrid}

g2ngrid+ν(c) =
∂Q

∂t

∣∣∣∣
(xν ,tfuture)

+

[
∂

∂x

(
Q2

A

)
+ gA

∂z

∂x

]∣∣∣∣
(xν ,tfuture)

for ν ∈ {1, . . . , ngrid}

then the problem of the second phase is given by

Minimize f(c) subject to gj(c) ≤ 0 for j = 1, . . . , 3ngrid.

The Algencan stopping criterion for this particular problem corresponds to finding c ∈ Rn and µ ∈ Rm
(Lagrange multipliers) with n = ncoeff and m = 3ngrid such that∥∥∥∇f(c) +

∑m
j=1 µj∇g(c)

∥∥∥
∞
≤ εopt,

gj(c) ≤ εfeas for j = 1, . . . ,m,

|gj(c)µj | ≤ εfeas for j = 1, . . . ,m.

In the numerical experiments, we considered εfeas = 10−8 and εopt = 10−4, which are “typical values”
in solving problems that are “well scaled” and for which only first order derivatives are available.

The entire process is coded in the freely available code ALGENFLOW code, improved versions of
which will be posted on the website http://www.ime.usp.br/~egbirgin/ as soon as they become
available. Communication with potential users will be vital for making this software increasingly
useful and friendly.

5 Numerical corroboration with real data

The development of ALGENFLOW is motivated by the objectives of CRIAB (acronym for “Dams
Conflicts, Risks and Impacts” in Portuguese), a research group of the State of São Paulo, in Brazil,
aimed at investigating, understanding, and mitigating the consequences of technological disasters
caused by the rupture of dams, which, unfortunately, are occurring both in Brazil and in the rest of
the world with increasing frequency.

In order to assess the reliability of ALGENFLOW, we addressed the prediction of the state variables
of the East Fork River, a tributary of approximately 45 miles (72 km) of the New Fork River in the
U.S. state of Wyoming, for which it is possible to find the necessary data in the literature; see [11, 15].
Specifically, the data extracted from [11, 15] correspond, for a time period in 1979, to 39 values of
zb(x) and w(x) at the same non-equidistant points ranging from x = 0 to x = 3213 m and to 94 values
of Q(x, t) corresponding to x = −39 m and values of t starting at t = 0 and increasing at intervals
of 12 hours. We extracted still 122 observations of z(x, t). Of these 122 observations, 60 correspond to
x = 751 m and t starting at hour zero on day 3 and increasing by 12 hours. The other 62 observations
correspond to x = 3256 m, starting at the same time instants and with the same interval. With these
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data, we defined xmin = −39 m and xmax = 3256 m. We also defined tmin = 3 days and, assuming
it would not make much sense to make predictions without using at least 5 days of observations, we
stipulated that tfuture could vary from day 8 to day 32. Figures 1, 2, and 3 show zb(x) and w(x) for
x ∈ [xmin, xmax] and Q(x, t) for x = −39 m and t varying from day 3 to day 33, respectively. The
figures display the data as well as the computed splines. Figure 4 displays the available water level
observations.
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Figure 1: Available data of the East Fork River bed elevation zb(x) and computed natural cubic spline
for x ∈ [xmin, xmax].

In these experiments we considered the objective function (13), the constraints (7,11,12), and the
first derivatives of both in Fortran 90. We used the version 3.1.1 of Algencan.

All tests were conducted on a computer with a 5.2 GHz 12th Gen Intel(R) Core(TM) i9-12900K
processor and 128GB 3200 MHz DDR4 RAM memory, running Ubuntu 22.04.1 LTS. Code was com-
piled by the GFortran compiler of GCC (version 11.3.0) with the -O3 optimization directive enabled.
The program reads the aforementioned required data (numbered from (a) to (d) in Section 2) from
files and calculates the corresponding splines. Then it asks for values of xmin, xmax, tmin, ttoday, tfuture,
and a forecast for Q(xmin, tfuture). In all the experiments, considering the available data, we used
xmin = −39 m, xmax = 3256 m, tmin = 3 days. We arbitrarily set ngrid = 100 and used, as forecast
for Q(xmin, tfuture), the available data. In a first experiment, we consider ttoday = 10 days and tfuture

varying from day 11 to day 33. This determines 33− 11 + 1 = 23 different optimization problems. In
each of these problems, we used the water level observations available between day tmin and day ttoday

as training data to find the best value of the coefficients c such that the prediction for day tfuture has
physical sense by satisfying the imposed constraints and agrees as well as possible with the training
data. The observations of the water level for day tfuture are not used in the optimization process
and are only used as test data to verify the accuracy of the predictions. Table 1 shows the results.
Mean absolute and relative error of the predictions are, respectively, 1.69E-01 meters and 2.12E-02
for x = 751 m and 5.00E-02 meters and 8.47E-03 for x = 3256 m. Figure 5 shows in a graphical
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Figure 2: Available data of the East Fork River width w(x) and computed natural cubic spline for
x ∈ [xmin, xmax].
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Figure 3: Available data of the East Fork River inlet discharge Q(xmin, t) for t ranging from day 3 to
day 33.
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Figure 4: Available observations of the water level z(x, t) for x = 751 m (in blue) and x = 3256 m
(in red). For the first case there are 60 observations starting at hour zero on day 3 at intervals of 12
hours. For the latter case, there are 62 observations starting at the same time instants and with the
same interval.

form the same information presented in Table 1. As an illustration, Figures 6 and 7 show, for all
x ∈ [xmin, xmax], the predicted value of the water height h(x, tfuture) and flow-rate Q(x, tfuture) for
day tfuture = 14. Massive numerical experiments, varying ttoday between 7 and 32 and tfuture between
ttoday + 1 and 33 showed similar results in all cases. As a whole, we solved 351 problems similar to
the one described above. The solution of each problem (including phases 1 and 2) took, on average,
15.52 seconds in the described computational environment. The results were in all cases analogous to
the one described and the mean absolute and relative error of the predictions were 8.18E-02 meters
and 1.16E-02, respectively.

6 Conclusions

In this work, we presented a new algorithm for flow predictions in natural rivers based on an arbitrary
number of past observations and ubiquous fulfillment of Saint-Venant equations. This defined a
challenging constrained optimization problem, whose solution was successfully obtained by employing
Algencan.

As a consequence, we developed the software ALGENFLOW, in a fully user-oriented form and
we tested it using real data, obtaining satisfactory results. We took into account the specific need
of the users and the inherent limitations to the feasibility of reliable predictions. For example, when
we talk about inflow forecasts, we are aware that, in general, the accuracy of such forecasts is quite
uncertain, perhaps with a degree of uncertainty of no less than 10%. Similar levels of uncertainty
appear for level and width of the river, apart from the fact that the cross-sectional areas are often far
from rectangular. These warnings are necessary to understand that high precisions in the prediction
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tfuture
x = 751 m x = 3256 m

observation prediction absolute relative observation prediction absolute relative

11 8.31 9.04 7.34E−01 8.84E−02 6.48 6.39 -8.66E−02 -1.34E−02
12 8.26 8.85 5.86E−01 7.09E−02 6.39 6.35 -3.95E−02 -6.18E−03
13 8.29 9.04 7.51E−01 9.06E−02 6.45 6.38 -6.99E−02 -1.08E−02
14 7.91 7.95 4.12E−02 5.21E−03 6.00 6.04 3.70E−02 6.17E−03
15 7.61 7.70 8.63E−02 1.13E−02 5.73 5.77 4.21E−02 7.36E−03
16 7.43 7.56 1.29E−01 1.73E−02 5.58 5.61 2.96E−02 5.31E−03
17 7.39 7.52 1.32E−01 1.78E−02 5.52 5.55 3.35E−02 6.07E−03
18 7.53 7.64 1.06E−01 1.40E−02 5.65 5.71 6.13E−02 1.08E−02
19 7.77 7.85 8.01E−02 1.03E−02 5.84 5.93 9.06E−02 1.55E−02
20 7.93 7.98 5.29E−02 6.68E−03 5.97 6.07 9.82E−02 1.64E−02
21 8.01 8.10 9.32E−02 1.16E−02 6.08 6.14 5.54E−02 9.11E−03
22 7.78 7.85 7.41E−02 9.53E−03 5.87 5.93 6.34E−02 1.08E−02
23 7.52 7.61 8.53E−02 1.13E−02 5.64 5.67 3.10E−02 5.50E−03
24 7.36 7.50 1.43E−01 1.94E−02 5.51 5.54 2.65E−02 4.81E−03
25 7.35 7.50 1.46E−01 1.98E−02 5.50 5.52 2.18E−02 3.96E−03
26 7.55 7.63 8.17E−02 1.08E−02 5.67 5.71 3.92E−02 6.91E−03
27 7.68 7.76 8.11E−02 1.06E−02 5.77 5.84 6.72E−02 1.16E−02
28 7.84 7.91 7.11E−02 9.07E−03 5.91 6.00 8.51E−02 1.44E−02
29 7.91 7.96 4.53E−02 5.73E−03 6.00 6.04 4.16E−02 6.93E−03
30 7.75 7.82 6.56E−02 8.47E−03 5.85 5.90 4.69E−02 8.03E−03
31 7.59 7.67 7.63E−02 1.01E−02 5.69 5.74 5.25E−02 9.22E−03
32 7.51 7.57 5.79E−02 7.71E−03 5.60 5.63 2.60E−02 4.65E−03
33 5.60 5.60 4.29E−03 7.66E−04

Table 1: In the table, “observation” correspond to an observation of the water level z(x, t) for x =
751 m or x = 3256 m and t = tfuture days, “prediction” corresponds to the prediction of the observed
data, “absolute” corresponds to the difference prediction minus observation, and “relative” corresponds
to the same difference divided by the observed value. Note that observed data z(x, t) with t > 10
are being used in the table to be contrasted with the predictions but were not used for the prediction
calculation, which used only observed data z(x, t) with t ≤ 10.

of the state variables are meaningless.
One of the objectives of this paper is to bring developers of optimization methods in contact with

relevant hydraulic prediction problems. The optimization problems at the core of the ALGENFLOW
algorithm define an interesting family for testing optimization techniques.

ALGENFLOW has been written in such a way that its application to real-life situations is quite
accessible. Therefore, we expect a strong interaction with users who can provide us with useful
feedback on the effectiveness of ALGENFLOW in real cases. Nevertheless, according to our own
experience, many improvements of ALGENFLOW are expected in the near future. Let us mention a
few of them.

1. Different alternatives with respect to the definition of P need to be defined and tested. The
impact of the new definitions on the difficulty of the resulting nonlinear programming problems,
and on Algencan’s ability to solve them, needs to be analyzed.

2. The assumption regarding rectangular cross-areas may be excessively strict in some cases. The
software should be adapted to consider more arbitrary shape areas.
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Figure 5: Observations and predictions of the water level z(x, t) for x = 751 m (in blue), x = 3256 m
(in red) and tfuture ∈ {11, 12, . . . , 33}. The predictions used available data until ttoday = 10 days. The
observations available for t > 10 were not used in the prediction process and are just being used in
the plot so that they can be compared with the predictions.

3. The variability of Manning’s coefficients requires accounting for causality with respect to the
physical parameters.

4. Erosion and deposition of sediments in channels should be reflected in the main analytic as-
sumptions concerning the definition of P.

5. Tests are needed to evaluate the reliability of the new schemes in the presence of extreme climate
events.

6. Bi-dimensional Saint-Venant models should be addressed under the optimization proposal pre-
sented in the present paper.
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