
Complexity and performance of an

Augmented Lagrangian algorithm∗

E. G. Birgin† J. M. Mart́ınez‡

July 4, 2019§

Abstract

Algencan is a well established safeguarded Augmented Lagrangian algorithm introduced
in [R. Andreani, E. G. Birgin, J. M. Mart́ınez and M. L. Schuverdt, On Augmented La-
grangian methods with general lower-level constraints, SIAM Journal on Optimization 18,
pp. 1286-1309, 2008]. Complexity results that report its worst-case behavior in terms of
iterations and evaluations of functions and derivatives that are necessary to obtain suitable
stopping criteria are presented in this work. In addition, its computational performance
considering all problems from the CUTEst collection is presented, which shows that it is a
useful tool for solving large-scale constrained optimization problems.

Keywords: Nonlinear programming, Augmented Lagrangian methods, complexity, numer-
ical experiments.

1 Introduction

Augmented Lagrangian methods have a long tradition in numerical optimization. The main
ideas were introduced by Powell [48], Hestenes [43], and Rockafellar [50]. At each (outer) iter-
ation of an Augmented Lagrangian method one minimizes the objective function plus a term
that penalizes the non-fulfillment of the constraints with respect to suitable shifted tolerances.
Whereas the classical external penalty method [37, 38] needs to employ penalty parameters that
tend to infinity, the shifting technique aims to produce convergence by means of displacements
of the constraints that generate approximations to a solution with moderate penalty parame-
ters [20]. As a by-product, one obtains approximations of the Lagrange multipliers associated
with the original optimization problem. The safeguarded version of the method [3] discards
Lagrange multipliers approximations when they become very large. The convergence theory
for safeguarded Augmented Lagrangian methods was given in [3, 20]. Recently, examples that
illustrate the convenience of safeguarded Augmented Lagrangians were given in [46].

∗This work was supported by FAPESP (grants 2013/07375-0, 2016/01860-1, and 2018/24293-0) and CNPq
(grants 302538/2019-4 and 302682/2019-8).
†Dept. of Computer Science, Institute of Mathematics and Statistics, University of São Paulo, Rua do Matão,

1010, Cidade Universitária, 05508-090, São Paulo, SP, Brazil. email: egbirgin@ime.usp.br
‡Dept. of Applied Mathematics, Institute of Mathematics, Statistics, and Scientific Computing, State Univer-

sity of Campinas, 13083-859, Campinas, SP, Brazil. email: martinez@ime.unicamp.br
§Revision made on March 13, 2020.

1

Conn, Gould, and Toint [29] produced the celebrated package Lancelot, that solves con-
strained optimization problems using Augmented Lagrangians in which the constraints are
defined by equalities and bounds. The technique was extended to the case of equality con-
straints plus linear constraints in [27]. Differently from Lancelot, in Algencan [3, 20] (see, also,
[4, 5, 14, 15, 17, 18, 19]), the Augmented Lagrangian is defined not only with respect to equality
constraints but also with respect to inequalities. The theory presented in [3] and [20] admits
the presence of lower-level constraints not restricted to boxes or polytopes. However, in the
practical implementations of Algencan, lower-level constraints are always boxes.

In the last 10 years, the interest in Augmented Lagrangian methods was renewed due to
their ability to solve large-scale problems. Dostál and Beremlijski [33, 34] employed Augmented
Lagrangian methods for solving quadratic programming problems that appear in structural op-
timization. Fletcher [39] applied Augmented Lagrangian ideas to the minimization of quadratics
with box constraints. Armand and Omheni [12] employed an Augmented Lagrangian technique
for solving equality constrained optimization problems and handled inequality constraints by
means of logarithmic barriers [13]. Curtis, Gould, Jiang, and Robinson [30, 31] defined an Aug-
mented Lagrangian algorithm in which decreasing the penalty parameters is possible following
intrinsic algorithmic criteria. Local convergence results without constraint qualifications were
proved in [36]. The case with (possibly complementarity) degenerate constraints was analyzed
in [45]. Chatzipanagiotis and Zavlanos [26] defined and analyzed Augmented Lagrangian meth-
ods in the context of distributed computation. An Exact Penalty algorithm for constrained
optimization with complexity results was introduced in [25]. Grapiglia and Yuan [41] analyzed
the complexity of an Augmented Lagrangian algorithm for inequality constraints based on the
approach of Sun and Yuan [52] and assuming that a feasible initial point is available. For many
structured problems that appear in applications, the well-known ADMM (Alternating Direction
Method of Multipliers), that may be interpreted as an Augmented Lagrangian variation, exhibits
remarkable practical performance. Several complexity and convergence analyses for ADMM are
available in the literature. (See [44] and the references therein.)

In this paper, we report iteration and evaluation complexity results for Algencan, includ-
ing complexity results for the bound-constraint solver that is used to tackle the Augmented
Lagrangian subproblems. In addition, we also report numerical experiments and some imple-
mentation features of the current implementation of Algencan that, as all its predecessors, fits
within the model algorithm described in [3, 20]. The current implementation of Algencan pre-
serves the main characteristics of previous implementations: constraints are considered in the
form of equalities and inequalities, without slack variables, and box-constrained subproblems
are solved using active-set strategies. A new acceleration procedure is introduced by means of
which an approximate KKT point may be obtained. It consists in applying a local Newton
method to a semismooth KKT system [47, 49] starting from every Augmented Lagrangian iter-
ate. Exhaustive numerical experimentation is given and all the software employed is available
on a free basis in http://www.ime.usp.br/~egbirgin/, so that computational results are fully
reproducible.

The paper is organized as follows. In Section 2, we recall the definition of Algencan with box
lower-level constraints and we review global convergence results. In Section 3, we prove complex-
ity properties. In Section 4, we describe the algorithm for solving box-constrained subproblems
and present its complexity results. In Section 5, we describe the computer implementation. In
Section 6, we report numerical experiments. Conclusions are given in Section 7.

2

http://www.ime.usp.br/~egbirgin/

Notation. If C ⊆ Rn is a convex set, PC(v) denotes the Euclidean projection of v onto C. If
`, u ∈ Rn, [`, u] denotes the box defined by {x ∈ Rn | ` ≤ x ≤ u}. If a, b ∈ R, [a, b]n denotes the
box defined by {x ∈ Rn | a ≤ xi ≤ b for i = 1, . . . , n}. (·)+ = max{0, ·}. If v ∈ Rn, v+ denotes
the vector with components (vi)+ for i = 1, . . . , n. If v, w ∈ Rn, min{v, w} denotes the vector
with components min{vi, wi} for i = 1, . . . , n. The symbol ‖ · ‖ denotes the Euclidean norm.
Rn+ = {x ∈ Rn | x ≥ 0}.

2 Augmented Lagrangian

In this section, we consider constrained optimization problems defined by

Minimize
x∈Rn

f(x) subject to h(x) = 0, g(x) ≤ 0, and ` ≤ x ≤ u, (1)

where f : Rn → R, h : Rn → Rm, and g : Rn → Rp are continuously differentiable. We assume
`, u ∈ Rn, i.e. −∞ < `i and ui < +∞ for i = 1, . . . , n. Since we are not dealing with convex
objective functions, the existence of solutions of subproblems (to be defined later) is guaranteed
by this boundedness assumption.

We consider the Augmented Lagrangian method in the way analyzed in [3] and [20]. This
method has interesting global theoretical properties. On the one hand, every limit point is
a stationary point of the problem of minimizing the infeasibility measure ‖h(x)‖2 + ‖g(x)+‖2
subject to the bound constraints ` ≤ x ≤ u. On the other hand, every feasible limit point
satisfies a sequential optimality condition [7, 8, 9]. This implies that every feasible limit point
is KKT-stationary under very mild constraint qualifications [8, 9]. The basic definition of the
method and the main theoretical results are reviewed in this section.

The Augmented Lagrangian function [43, 48, 50] associated with problem (1) is defined by

Lρ(x, λ, µ) = f(x) +
ρ

2

[
m∑
i=1

(
hi(x) +

λi
ρ

)2

+

p∑
i=1

(
gi(x) +

µi
ρ

)2

+

]

for all x ∈ [`, u], ρ > 0, λ ∈ Rm, and µ ∈ Rp+.
Algorithm 2.1 below is a safeguarded Augmented Lagrangian method in the sense that ap-

proximations of the Lagrange multipliers are estimated at every iteration but are ignored for
computing the new iterate if their sizes exceed user-given values represented by λmin, λmax, and
µmax. The adjective “safeguarded” for this type of methods seems to be due to [46].

Algorithm 2.1: Assume that x0 ∈ Rn, λmin < λmax, λ̄1 ∈ [λmin, λmax]m, µmax > 0, µ̄1 ∈
[0, µmax]p, ρ1 > 0, γ > 1, 0 < τ < 1, and {εk}∞k=1 are given. Initialize k ← 1.

Step 1. Find xk ∈ [`, u] as an approximate solution to

Minimize
x∈Rn

Lρk(x, λ̄k, µ̄k) subject to ` ≤ x ≤ u (2)

satisfying ∥∥∥P[`,u]

(
xk −∇Lρk(xk, λ̄k, µ̄k)

)
− xk

∥∥∥ ≤ εk. (3)

3

Step 2. Define

V k = min

{
−g(xk),

µ̄k

ρk

}
.

If k = 1 or
max

{
‖h(xk)‖, ‖V k‖

}
≤ τ max

{
‖h(xk−1)‖, ‖V k−1‖

}
, (4)

choose ρk+1 = ρk. Otherwise, define ρk+1 = γρk.

Step 3. Compute

λk+1 = λ̄k + ρkh(xk) and µk+1 =
(
µ̄k + ρkg(xk)

)
+
. (5)

Compute λ̄k+1 ∈ [λmin, λmax]m and µ̄k+1
i ∈ [0, µmax]p. Set k ← k + 1 and go to Step 1.

Algorithm 2.1 iterates by approximately minimizing the Augmented Lagrangian function
subject to the bound constraints and updating the penalty parameter and the Lagrange mul-
tipliers. Test (4) takes into account improvements of feasibility and complementarity. If both
feasibility and complementarity were improved, it is considered that the penalty parameter is
sufficiently large and, thus, it is not increased. Otherwise, it is multiplied by γ > 1. The La-
grange multipliers λk+1 and µk+1 associated with the current approximation to the solution xk+1

are estimated by (5) at Step 3. In the same step, the safeguarded values λ̄k+1 and µ̄k+1 are
computed. It should be noted that, in theory, these values do not need to be related to the
Lagrange multipliers λk+1 and µk+1 at all. However, in practice, we proceed as follows. If
λk+1 ∈ [λmin, λmax]m and µk+1 ∈ [0, µmax]p, we define λ̄k+1 = λk+1 and µ̄k+1 = µk+1. Other-
wise, λ̄k+1 and µ̄k+1 may be given by any other arbitrary choice. The projection of λk+1 and µk+1

onto the corresponding boxes is a possibility; as well as it is a possibility setting λ̄k+1 = 0 and
µ̄k+1 = 0. The problem of finding an approximate minimizer of Lρk(x, λ̄k, µ̄k) onto [`, u] in the
sense of (3) can always be solved. In fact, due to the compactness of [`, u], a global minimizer,
that obviously satisfies (3), always exists. Moreover, local minimization algorithms are able to
find an approximate stationary point satisfying (3) in a finite number of iterations. Therefore,
given an iterate xk, the iterate xk+1 is well defined. (A way of choosing εk in (3) was introduced
in [35], where, employing the equivalence between the Augmented Lagrangian and the Proximal
Point method applied to the dual problem, the convergence on convex problems was analyzed.
See, also, [51, 53, 54, 55].) So, Algorithm 2.1 generates an infinite sequence {xk} whose prop-
erties are surveyed below. Of course, as it will be seen later, suitable stopping criteria can be
defined by means of which acceptable approximate solutions to (1) are usually obtained.

Algorithm 2.1 has been presented without a “stopping criterion”. This means that, in
principle, the algorithm generates an infinite sequence of primal iterates xk and Lagrange-
multiplier estimators. Complexity results presented in this work report the worst-case effort
that could be necessary to obtain different properties, that may be used as stopping criteria in
practical implementations or not. We believe that the interpretation of these results helps to
decide which stopping criteria should be used in a practical application.

The relevant theoretical properties of this algorithm are the following:

1. Every limit point x∗ = limk∈K x
k of the sequence generated by the algorithm satisfies the

complementarity condition

µk+1
i = 0 whenever gi(x

∗) < 0 (6)

for k ∈ K large enough. (See [20, Thm.4.1].)

4

2. Every limit point x∗ of the sequence generated by the algorithm satisfies the first-order
optimality conditions of the problem of minimizing the infeasibility measure subject to the
box constraints given by

Minimize ‖h(x)‖2 + ‖g(x)+‖2 subject to ` ≤ x ≤ u. (7)

(See [20, Thm.6.5].)

3. If, for all k ∈ {1, 2, . . . }, xk is an approximate global minimizer of Lρk(x, λ̄k, µ̄k) onto [`, u]
with tolerance η > 0, every limit point of {xk} is a global minimizer of the infeasibility
measure ‖h(x)‖2 + ‖g(x)+‖2. Condition (3) does not need to hold in this case. (See [20,
Thm.5.1].)

4. If, for all k ∈ {1, 2, . . . }, xk is an approximate global minimizer of Lρk(x, λ̄k, µ̄k) onto [`, u]
with tolerance ηk ↓ 0, in the sense that it satisfies Lρk(xk, λ̄k, µ̄k) ≤ Lρk(x, λ̄k, µ̄k) + ηk for
all x ∈ [`, u], then every feasible limit point of {xk} is a global minimizer of the general
constrained minimization problem (1). As before, condition (3) is not necessary in this
case. (See [20, Thm.5.2].)

5. If εk ↓ 0, every feasible limit point x∗ = limk∈K x
k of the sequence generated by the

algorithm satisfies the sequential optimality condition AKKT [7] given by

lim
k∈K

∥∥∥P[`,u]

(
xk −

(
∇f(xk) +∇h(xk)λk+1 +∇g(xk)µk+1

))
− xk

∥∥∥ = 0 (8)

and
lim
k∈K

max{‖h(xk)‖∞, ‖min{−g(xk), µk+1}‖∞} = 0. (9)

(See [20, Thm.6.4].)

Under an additional Lojasiewicz-like condition, it is obtained that limk∈K
∑p

i=1 µ
k+1
i gi(x

k) = 0
(see [10]). Moreover, in [6], it was proved that an even stronger sequential optimality condition is
satisfied by the sequence {xk}, which implies that Algencan generates bounded approximations
to Lagrange multipliers under weak constraint qualifications, even in the case that the set of
Lagrange multipliers at the solution is unbounded.

These properties say that, even if εk does not tend to zero, Algorithm 2.1 finds stationary
points of the infeasibility measure ‖h(x)‖2 + ‖g(x)+‖2 subject to ` ≤ x ≤ u and that, when
εk tends to zero, feasible limit points satisfy a sequential optimality condition. Thus, under
very weak constraint qualifications, feasible limit points satisfy Karush-Kuhn-Tucker conditions.
See [8, 9]. Some of these properties, but not all, are shared by other constrained optimization al-
gorithms. For example, the property that feasible limit points satisfy optimality KKT conditions
is proved to be satisfied by other optimization algorithms only under much stronger constraint
qualifications than the ones required by Algorithm 2.1. Moreover, the Newton-Lagrange method
may fail to satisfy approximate KKT conditions even when it converges to the solution of rather
simple constrained optimization problems [1, 2].

Augmented Lagrangian implementations have a modular structure. At each iteration, a
box-constrained optimization problem is approximately solved. The efficiency of the Augmented
Lagrangian algorithm is strongly linked to the efficiency of the box-constraint solver.

Algencan may be considered to be a conservative variant of the Augmented Lagrangian
framework. For example, subproblems are solved with relatively high precision, instead of

5

stopping subproblem solvers prematurely according to information related to the constrained
optimization landscape. It could be argued that solving subproblems with high precision at
points that may be far from the solution represents a waste of time. Nevertheless, our point
of view is that saving subproblem iterations when one is close to a subproblem solution is
not worthwhile because in that region Newton-like solvers tend to be very fast; and accurate
subproblems’ solutions help to produce better approximations of Lagrange multipliers. Algencan
is also conservative when subproblems’ solvers use minimal information about the structure of
the Augmented Lagrangian function they minimize. The reason for this decision is connected
to the modular structure of Algencan. Subproblem solvers are continuously being improved due
to the continuous and fruitful activity in bound-constraint minimization. Therefore, we aim
to take advantage of those improvements with minimal modifications of subproblem algorithms
when applied to minimize Augmented Lagrangians.

3 Complexity

This section is devoted to worst-case complexity results related to Algorithm 2.1. Algorithm 2.1
was not devised with the aim of optimizing complexity. Nevertheless, our point of view is that
the complexity analysis that follows helps to understand the actual behavior of the algorithm,
filling a gap in the convergence theory.

By (5) and straightforward calculations, we have that, for all k = 1, 2, 3, . . . ,

∇f(xk) +∇h(xk)λk+1 +∇g(xk)µk+1 = ∇Lρk(xk, λ̄k, µ̄k).

Therefore, the fulfillment of

‖P[`,u](x
k −∇Lρk(xk, λ̄k, µ̄k))− xk)‖ ≤ ε (10)

implies that the projected gradient of the Lagrangian at xk with multipliers λk+1 and µk+1

approximately vanishes with precision ε. The approximate annihilation of the projected gradient
of the Lagrangian is a necessary optimality condition for minimizers of problem (1). Thus,
numerical algorithms for solving (1) generally stop when xk ∈ [`, u], λk+1 ∈ Rm, and µk+1 ∈ Rp+
are such that

‖P[`,u](x
k − [∇f(xk) +∇h(xk)λk+1 +∇g(xk)µk+1]− xk)‖ ≤ ε

for a small tolerance ε > 0 and, additionally, feasibility and complementarity conditions hold
for a small tolerance δ > 0, i.e.

‖h(xk)‖∞ ≤ δ, ‖g(xk)+‖∞ ≤ δ, and, for all j = 1, . . . , p, µk+1
j = 0 if gj(x

k) < −δ. (11)

The next lemma shows that the fulfillment of

max{‖h(xk)‖∞, ‖Vk‖∞} ≤ δ (12)

implies that (11) holds. For this reason, in the context of Algorithm 2.1, iterates that satisfy (10)
and (12) are considered approximate stationary points of problem (1).

6

Lemma 3.1 For all δ > 0,
max{‖h(xk)‖∞, ‖Vk‖∞} ≤ δ (13)

implies that

‖h(xk)‖∞ ≤ δ, ‖g(xk)+‖∞ ≤ δ, and, for all j = 1, . . . , p, µk+1
j = 0 if gj(x

k) < −δ. (14)

Proof: By (13), ‖h(xk)‖∞ ≤ δ and |min{−gj(xk), µ̄kj /ρk}| ≤ δ for all j = 1, . . . , p. Therefore,

−gj(xk) ≥ −δ, so gj(x
k) ≤ δ for all j = 1 . . . , p. Moreover, by (13), if gj(x

k) < −δ, we neces-
sarily have that µ̄kj /ρk ≤ δ. Adding these two inequalities, we obtain that, if gj(x

k) < −δ then

gj(x
k) + µ̄kj /ρk < 0. Consequently, ρkgj(x

k) + µ̄kj < 0, so µk+1
j = 0. Therefore, (13) implies (14)

as we wanted to prove. �

The lemma below is a technical lemma that will be used in the forthcoming sections. From
now on, cbig will always denote a positive constant satisfying (15), whose existence is guaranteed
by Lemma 3.2.

Lemma 3.2 There exists cbig > 0 such that, for all k ≥ 1,

max{‖h(xk)‖∞, ‖Vk‖∞} ≤ cbig. (15)

Proof: Since, by definition of the algorithm, ρk ≥ ρ1, the bound (15) comes from the continuity
of h and g, the compactness of the domain [`, u], and the boundedness of µ̄k. �

The rest of this section is organized as follows. In Section 3.1, there are given complexity
results under the assumption that the sequence {ρk} of penalty parameters generated by Al-
gorithm 2.1 is bounded by a constant ρbound that only depends on algorithmic parameters and
characteristics of the problem. In Section 3.2, there are given complexity results for the case in
which the boundedness assumption on {ρk} is dropped, but it is assumed that there is a user-
given constant ρbig such that Algorithm 2.1 stops if, at iteration k, ρk ≥ ρbig. In Section 3.3,
complexity results are given for the case in which, without assuming the existence of ρbound and
without the user-given constant ρbig, Algorithm 2.1 may stop at an iterate xk that appears to
be infeasible and, at the same time, a local minimizer of the infeasibility measure subject to the
bound constraints.

3.1 Complexity under boundedness of the sequence of penalty parameters

In this subsection, we assume that the sequence {ρk} of penalty parameters generated by Al-
gorithm 2.1 is bounded by a constant ρbound that only depends on algorithmic parameters and
characteristics of the problem. Sufficient conditions for this requirement were given in [3] and [20,
Ch.7]. The sufficient conditions involve the convergence of the whole sequence to a local solution
of problem (1), the fulfillment of a second-order sufficient condition for local minimization, and
the non-singularity of the Jacobian of the KKT system at the solution.

Note that, in this subsection, ρbound corresponds to an unknown upper bound for the sequence
{ρk} of penalty parameters that is assumed to exist. It is also assumed that there exists N(ε) ∈
{1, 2, 3, . . . } such that εk ≤ ε for all k ≥ N(ε). Clearly, this condition can be enforced by the
criterion used to define {εk}. For example, if ε1 > ε, then εk+1 = 1

2εk obviously implies that

7

εk ≤ ε if k ≥ N(ε) ≡ log2(ε1/ε)+1. Moreover, it must be noticed that N(ε) ≡ 1 is an acceptable
definition for N(ε) which implies that, at every iteration k, the subproblem is solved with the
highest required precision, i.e. εk = ε. The definition of N(ε) suggests that, if one wants to solve
the original problem with optimality precision ε, one would need at least N(ε) iterations.

Theorem 3.1 Let δ > 0 and ε > 0 be given. Assume that, for all k ∈ {1, 2, 3, . . . }, ρk ≤ ρbound.
Moreover, assume that, for all k ≥ N(ε), we have that εk ≤ ε. Then, after at most

max {N(ε), [log(ρbound/ρ1)/ log(γ)]× [log(δ/cbig)/ log(τ)]} (16)

iterations, we obtain xk ∈ [`, u], λk+1 ∈ Rm, and µk+1 ∈ Rp+ such that∥∥∥P[`,u]

(
xk −

(
∇f(xk) +∇h(xk)λk+1 +∇g(xk)µk+1

))
− xk

∥∥∥ ≤ ε, (17)

‖h(xk)‖∞ ≤ δ, ‖g(xk)+‖∞ ≤ δ, (18)

and, for all j = 1, . . . , p,
µk+1
j = 0 whenever gj(x

k) < −δ. (19)

Proof: The number of iterations such that ρk+1 = γρk is bounded above by

log(ρbound/ρ1)/ log(γ). (20)

Therefore, this is also a bound for the number of iterations at which (4) does not hold.
By (15), if (4) holds during

log(δ/cbig)/ log τ (21)

consecutive iterations, we get that

max{‖h(xk)‖∞, ‖Vk‖∞} ≤ δ,

which, by Lemma 3.1, implies (18) and (19).
Now, by hypothesis, after N(ε) iterations, we have that εk ≤ ε. Therefore, by (20) and (21),

after at most
max {N(ε), [log(ρbound/ρ1)/ log(γ)]× [log(δ/cbig)/ log(τ)]} (22)

iterations, we have that (17), (18), and (19) hold. �

Theorem 3.1 shows that, as expected, if ρk is bounded, we obtain approximate feasibility
and optimality. In the following theorem, we assume that subproblems are solved by means
of some method that, for obtaining precision ε > 0, employs at most cinner ε

−q iterations and
evaluations, where cinner only depends on characteristics of the problem, the upper bound for ρk,
and algorithmic parameters of the method, i.e. cinner does not depend on the required precisions
ε and δ.

Theorem 3.2 In addition to the hypotheses of Theorem 3.1, assume that there exist cinner > 0
and q > 0, where cinner only depends on ρbound, λmin, λmax, µmax, `, u, and characteristics
of the functions f , h, and g, such that the number of inner iterations, function and derivative
evaluations that are necessary to obtain (3) is bounded above by cinnerε

−q
k . Then, the number of

8

inner iterations, function evaluations, and derivative evaluations that are necessary to obtain k
such that (17), (18), and (19) hold is bounded above by

cinnerε
−q
min max {N(ε), [log(ρbound/ρ1)/ log(γ)]× [log(δ/cbig)/ log(τ)]} ,

where

εmin = min {εk | k ≤ max {N(ε), [log(ρbound/ρ1)/ log(γ)]× [log(δ/cbig)/ log(τ)]}} . (23)

Proof: The desired result follows from Theorem 3.1 and the assumptions of this theorem. �

Note that, in Theorem 3.2, we admit the possibility that εk decreases after completing N(ε)
iterations. This is the reason for the definition of εmin (23). In practical implementations, it
is reasonable to stop decreasing εk when it achieves a user-given stopping tolerance ε. Ac-
cording to Theorem 3.2, the complexity bounds related to approximate optimality, feasibility,
and complementarity depend on the optimality tolerance ε in, essentially, the same way that
the complexity of the subproblem solver depends on its stopping tolerance. In other words,
under the assumption of boundedness of penalty parameters, the worst-case complexity of the
Augmented Lagrangian method is essentially the same as the complexity of the subproblem
solver.

3.2 Complexity using a big-ρ stopping criterion

In this subsection, ρbig ≥ ρ1 is an arbitrary positive given number. In this subsection, it is not
assumed the existence of an upper bound for the sequence {ρk} of penalty parameters generated
by Algorithm 2.1. The presented complexity results correspond to the situation in which it is
assumed that, when ρk exceeds the given value ρbig, the algorithm stops. This is because, in
computer implementations, it is usual to employ, in addition to a (successful) stopping criterion
based on (17), (18), and (19), an (unsuccessful) stopping criterion based on the size of the
penalty parameter. The rationale is that if the penalty parameter grew to be very large, it is
not worthwhile to expect further improvements with respect to feasibility and we are probably
close to an infeasible local minimizer of the infeasibility measure ‖h(x)‖2 + ‖g(x)+‖2 subject
to ` ≤ x ≤ u. By “infeasible”, we mean lack of fulfillment of h(x) = 0 or g(x) ≤ 0, since
bound constraints are fulfilled by every iterate of Algorithm 2.1. The complexity results that
correspond to this decision are given below.

Theorem 3.3 Let δ > 0, ε > 0, and ρbig ≥ ρ1 be given. Assume that, for all k ≥ N(ε), we
have that εk ≤ ε. Then, after at most

max {N(ε), [log(ρbig/ρ1)/ log(γ)]× [log(δ/cbig)/ log(τ)]} (24)

iterations, we obtain xk ∈ [`, u], λk+1 ∈ Rm, and µk+1 ∈ Rp+ such that (17), (18), and (19) hold
or we obtain an iteration such that ρk > ρbig.

Proof: If ρk ≤ ρbig for all k ≤ max {N(ε), [log(ρbig/ρ1)/ log(γ)]× [log(δ/cbig)/ log(τ)]}, by the
same argument used in the proof of Theorem 3.1, with ρbig replacing ρbound, we obtain that
(17), (18), and (19) hold. �

9

Theorem 3.4 In addition to the hypotheses of Theorem 3.3, assume that there exist cinner > 0
and q > 0, where cinner only depends on ρbig, λmin, λmax, µmax, `, u, and characteristics of
the functions f , h, and g, such that the number of inner iterations, function and derivative
evaluations that are necessary to obtain (3) is bounded above by cinnerε

−q
k . Then, the number of

inner iterations, function evaluations, and derivative evaluations that are necessary to obtain k
such that (17), (18), and (19) hold or such that ρk > ρbig is bounded above by

cinnerε
−q
min,2 max {N(ε), [log(ρbig/ρ1)/ log(γ)]× [log(δ/cbig)/ log(τ)]} ,

where

εmin,2 = min {εk | k ≤ max {N(ε), [log(ρbig/ρ1)/ log(γ)]× [log(δ/cbig)/ log(τ)]}} . (25)

Proof: The desired result follows directly from Theorem 3.3. �

Note that in Theorem 3.4, as in the case of Theorem 3.2, cinner does not depend on the
required precisions ε and δ.

3.3 Complexity stopping at probable local minimizers of infeasibility measure

Augmented Lagrangian algorithms stop successfully when an approximate KKT point is found.
A second stopping criterion must always be considered because, normally, we have no guarantees
that the feasible region is non-empty. In the previous subsection, we analyzed the situation in
which the second stopping criterion is represented by a very big penalty parameter. In the present
subsection, boundedness of the sequence {ρk} is not assumed and we consider an alternative
stopping criterion based on the ocurrence of an iterate that appears to be infeasible and, at the
same time, a local minimizer of the infeasibility measure subject to the bound constraints. If
the original problem is infeasible, the algorithm stops with the fulfillment of this criterion.

The complexity results proved up to now indicate that suitable stopping criteria for Al-
gorithm 2.1 could be based on the fulfillment of (17), (18), and (19) or, alternatively, on the
occurrence of an undesirable big penalty parameter. The advantage of these criteria is that,
according to them, provided that N(ε) = O(1), worst-case complexity is of the same order of
the complexity of the subproblems solver. Convergence results establish that solutions obtained
with very large penalty parameters are close to stationary points of the infeasibility measure.
However, stationary points of the infeasibility measure may be feasible points and, again, con-
vergence theory shows that when Algorithm 2.1 converges to a feasible point, this point satisfies
AKKT optimality conditions, independently of constraint qualifications. As a consequence, the
danger exists of interrupting executions prematurely, in situations in which meaningful progress
could be obtained admitting further increases of the penalty parameter. This state of facts leads
one to analyze the complexity of Algorithm 2.1 independently of penalty parameter growth and
introducing a possibly more reliable criterion for detecting infeasible stationary points of the
infeasibility measure. Roughly speaking, we will say that an iterate seems to be an infeasible
stationary point of the infeasibility measure subject to the bound constraints when the projected
gradient of the infeasibility measure is significantly smaller than the infeasibility value. The nat-
ural question that arises is whether the employment of this (more reliable) stopping criterion
has an important effect on the complexity bounds.

10

Lemma 3.3 There exist clips > 0 and cf > 0 such that, for all x ∈ [`, u], λ ∈ [λmin, λmax]m,
and µ ∈ [0, µmax]p, one has

‖∇h(x)‖‖λ‖+ ‖∇g(x)‖‖µ‖ ≤ clips (26)

and
‖∇f(x)‖ ≤ cf . (27)

Proof: The desired result follows from the boundedness of the domain, the continuity of the
functions, and the boundedness of λ and µ. �

The following lemma establishes a bound for the projected gradient of the infeasibility mea-
sure in terms of the value of the displaced infeasibility and the value of the penalty parameter.

Lemma 3.4 For all x ∈ [`, u], λ ∈ [λmin, λmax]m, µ ∈ [0, µmax]p, and ρ > 0, one has that∥∥P[`,u]

(
x−∇

[
‖h(x)‖2 + ‖g(x)+‖2

])
− x
∥∥

≤
∥∥P[`,u]

(
x−∇

[
‖h(x) + λ/ρ‖2 + ‖(g(x) + µ/ρ)+‖2

])
− x
∥∥+ 2clips/ρ,

where clips is defined in Lemma 3.3.

Proof: Note that

1

2
∇
[
‖h(x) + λ/ρ‖2 +

∥∥(g(x) + µ/ρ)+

∥∥2
]

= h′(x)T (h(x) + λ/ρ) + g′(x)T (g(x) + µ/ρ)+

and
1

2
∇
[
‖h(x)‖2 + ‖g(x)+‖2

]
= ∇h(x)h(x) +∇g(x)g(x)+.

Therefore, ∥∥∥∥1

2
∇
[
‖h(x) + λ/ρ‖2 + ‖ (g(x) + µ/ρ)+‖2

]
− 1

2
∇
[
‖h(x)‖2 + ‖g(x)+‖2

]∥∥∥∥
≤ ‖∇h(x)λ/ρ+∇g(x) [(g(x) + µ/ρ)+ − g(x)+]‖ ≤ 1

ρ
[‖∇h(x)‖‖λ‖+ ‖∇g(x)‖‖µ‖] .

Then, by (26), if ρ > 0, x ∈ [`, u], λ ∈ [λmin, λmax]m, and µ ∈ [0, µmax]p,∥∥∇ [‖h(x)‖2 + ‖g(x)+‖2
]
−∇

[
‖h(x) + λ/ρ‖2 + ‖ (g(x) + µ/ρ)+ ‖

2
]∥∥ ≤ 2clips/ρ.

So, by the non-expansivity of projections,∥∥P[`,u]

(
x−∇

[
‖h(x)‖2 + ‖g(x)+‖2

])
− P[`,u]

(
x−∇

[
‖h(x) + λ/ρ‖2 + ‖(g(x) + µ/ρ)+‖2

])∥∥ ≤ 2clips/ρ.

Thus, the thesis is proved. �

The following theorem establishes that, before the number of iterations given by (28), we
necessarily find an approximate KKT point or we find an infeasible point that, very likely, is
close to a stationary point of the infeasibility measure at least when δ � δlow. The latter type

11

of infeasible points is characterized by the fact that the projected gradient of the infeasibility
measure is smaller than δlow whereas the infeasibility value is bigger than δ � δlow.

In the bound (28) the quantity ρmax appears, the definition of which is given in (29). Thus,
ρmax depends of µmax and, through clips, also on λmax. Note that µmax and λmax are not bounds
on the true Lagrange multipliers at the solution, which, in fact could not exist at all, but
user-given parameters that define the safeguardedness of the Augmented Lagrangian algorithm.

Theorem 3.5 Let δ > 0, δlow ∈ (0, δ), and ε > 0 be given. Assume that N(δlow, ε) is such that
εk ≤ min{ε, δlow}/4 for all k ≥ N(δlow, ε). Then, after at most

max

{
N(δlow, ε),

[
log(δ/cbig)

log(τ)

]
×
[

log (ρmax/ρ1)

log(γ)

]}
(28)

iterations, where

ρmax = max

{
1,

4clips

δlow
,
µmax

δ
,

4cf
δlow

}
, (29)

we obtain an iteration k such that one of the following two facts takes place:

1. The iterate xk ∈ [`, u] verifies∥∥P[`,u]

(
xk −∇

[
‖h(xk)‖2 + ‖g(xk)+‖2

])
− xk

∥∥ ≤ δlow and max{‖h(xk)‖∞, ‖g(xk)+‖∞} > δ.

(30)

2. The multipliers λk+1 ∈ Rm and µk+1 ∈ Rp+ are such that∥∥∥P[`,u]

(
xk −

(
∇f(xk) +∇h(xk)λk+1 +∇g(xk)µk+1

))
− xk

∥∥∥ ≤ ε, (31)

‖h(xk)‖∞ ≤ δ, ‖g(xk)+‖∞ ≤ δ, (32)

and, for all j = 1, . . . , p,

µk+1
j = 0 whenever gj(x

k) < −δ. (33)

Proof: Let kend be such that∥∥∥P[`,u]

(
xk −∇

[
‖h(xk)‖2 + ‖g(xk)+‖2

])
− xk

∥∥∥ ≤ δlow ⇒ max{‖h(xk)‖∞, ‖g(xk)+‖∞} ≤ δ
(34)

for all k ≤ kend whereas (34) does not hold if k = kend + 1. (With some abuse of notation, we
say that kend =∞ when (34) holds for all k.) In other words, if k ≤ kend,∥∥∥P[`,u]

(
xk −∇

[
‖h(xk)‖2 + ‖g(xk)+‖2

])
− xk

∥∥∥ > δlow or max{‖h(xk)‖∞, ‖g(xk)+‖∞} ≤ δ,
(35)

whereas (35) does not hold if k = kend + 1. (Note that (34) and (35) are equivalent and that
(30) is the negation of them.)

We consider two possibilities:

kend < max

{
N(δlow, ε),

[
log(δ/cbig)

log(τ)

]
×
[

log (ρmax/ρ1)

log(γ)

]}
<∞ (36)

12

and

kend ≥ max

{
N(δlow, ε),

[
log(δ/cbig)

log(τ)

]
×
[

log (ρmax/ρ1)

log(γ)

]}
. (37)

In the first case, since (34) and, so, (35), does not hold for k = kend + 1, it turns out that (30),
the negation of (35), occurs at iteration kend + 1. Therefore, the thesis is proved in this case. It
remains to analyze the case in which (37) takes place.

Consider now the case in which (37) holds. Suppose that there exists k such that

k ≤ max

{
N(δlow, ε),

[
log(δ/cbig)

log(τ)

]
×
[

log (ρmax/ρ1)

log(γ)

]}
, (38)

εk ≤ δlow/4, (39)

ρk ≥ 1, (40)

ρk ≥ 4cf/δlow, (41)

ρk ≥ 4clips/δlow, (42)

ρk ≥ µmax/δ, (43)

k ≥ N(δlow, ε). (44)

We are going to prove that, under these assumptions, it holds∥∥∥P[`,u]

(
xk −∇

(
‖h(xk)‖2 + ‖g(xk)+‖2

))
− xk

∥∥∥ ≤ δlow.

By (3), for all k ≥ 1, we have that∥∥∥∥∥P[`,u]

(
xk −∇f(xk)− ρk

2
∇

{
m∑
i=1

[
hi(x

k) +
λ̄ki
ρk

]2

+

p∑
i=1

[(
gi(x

k) +
µ̄ki
ρk

)
+

]2
})
− xk

∥∥∥∥∥ ≤ εk.
Therefore, by (40),∥∥∥∥P[`,u]

(
xk − 1

ρk
∇f(xk)− 1

2
∇
(
‖h(xk) + λ̄k/ρk‖2 + ‖(g(xk) + µ̄k/ρk)+‖2

))
− xk

∥∥∥∥ ≤ εk.
Therefore, by the non-expansivity of projections and (27), we have that∥∥∥∥P[`,u]

(
xk − 1

2
∇
(
‖h(xk) + λ̄k/ρk‖2 + ‖(g(xk) + µ̄k/ρk)+‖2

))
− xk

∥∥∥∥ ≤ εk +
cf
ρk
. (45)

By (39), we have that εk ≤ δlow/4 and, by (41), we have that cf/ρk ≤ δlow/4. Then, εk+cf/ρk ≤
δlow/2 and, by (45),∥∥∥P[`,u]

(
xk −∇

(
‖h(xk) + λ̄k/ρk‖2 + ‖(g(xk) + µ̄k/ρk)+‖2

))
− xk

∥∥∥ ≤ δlow/2. (46)

Therefore, by Lemma 3.4 and (42),∥∥∥P[`,u]

(
xk −∇

(
‖h(xk)‖2 + ‖g(xk)+‖2

))
− xk

∥∥∥ ≤ δlow. (47)

13

By (37) and (38), we have that k ≤ kend, so, by (47) and (35),

‖h(xk)‖∞ ≤ δ and ‖g(xk)+‖∞ ≤ δ. (48)

By (48), gj(x
k) ≤ δ for all j = 1, . . . , p. Now, if gj(x

k) < −δ, we have that µ̄kj + ρkgj(x
k) <

µ̄kj − δρk, which is smaller than zero because of (43), so µk+1
j = 0. Therefore, the approximate

feasibility and complementarity conditions

‖h(xk)‖∞ ≤ δ, ‖g(xk)+‖ ≤ δ, and µkj = 0 if gj(x
k) < −δ (49)

hold at xk. Moreover, by (44) and Lemma 3.1, we have that (31) also holds. Therefore, we
proved that (37), (38), (39), (40), (41), (42), (43), and (44) imply (31), (32), and (33). So, we
only need to show that there exists k that satisfies (38)–(44) or satisfies (38), (31), (32), and
(33). In other words, we must prove that, before completing

max

{
N(δlow, ε),

[
log(δ/cbig)

log(τ)
)

]
×
[

log (ρmax/ρ1)

log(γ)

]}
,

iterations, we get (31), (32), and (33) or we get (38)–(44).
To prove this statement, suppose that, for all k satisfying (38), at least one among the

conditions (31), (32), and (33) does not hold. Since (31) necessarily holds if k ≥ N(δlow, ε), this
implies that for all k satisfying (38) and (44) at least one among the conditions (32) and (33)
does not hold. By Lemma 3.1, this implies that for all k satisfying (38) and (44),

max{‖h(xk)‖∞, ‖Vk‖∞} > δ.

Then, by (15), for k ≥ N(δlow, ε), the existence of more than log(δ/cbig)/ log(τ) consecutive
iterations k, k + 1, k + 2, . . . satisfying (4) and (38) is impossible.

Therefore, after the first N(δlow, ε) iterations, if ρk is increased at iterations k1 < k2, but not
at any iteration k ∈ (k1, k2), we have that k2 − k1 ≤ log(δ/cbig)/ log(τ). This means that, after
the first N(δlow, ε) iterations, the number of iterations at which ρk is not increased is bounded
above by log(δ/cbig)/ log(τ) times the number of iterations at which ρk is increased. Now, for
obtaining (40)–(43), log(ρmax/ρ1)/ log(γ) iterations in which ρk is increased are obviously suffi-
cient. This completes the proof of the desired result. �

Theorem 3.6 In addition to the hypotheses of Theorem 3.5, assume that there exist c̄inner > 0,
v > 0, and q > 0, where c̄inner only depends on λmin, λmax, µmax, `, u, and characteristics
of the functions f , h, and g, such that the number of inner iterations, function and derivative
evaluations that are necessary to obtain (3) is bounded above by c̄inner ρ

v
kε
−q
k . Then, the number of

inner iterations, function evaluations, and derivative evaluations that are necessary to obtain k
such that (30) holds or (31), (32) and (33) hold is bounded above by

c̄inner ρ
v
maxε

−q
min,3 max

{
N(δlow, ε),

[
log(δ/cbig)

log(τ)
)

]
×
[

log (ρmax/ρ1)

log(γ)

]}
,

where ρmax is given by (29) and

εmin,3 = min

{
εk | k ≤ max

{
N(δlow, ε),

[
log(δ/cbig)

log(τ)
)

]
×
[

log (ρmax/ρ1)

log(γ)

]}}
. (50)

14

Proof: The desired result follows from Theorem 3.5 and the assumptions of this theorem. �

Note that, in Theorem 3.6, it is assumed that the number of inner iterations, function and
derivative evaluations that are necessary to obtain (3) is bounded above by c̄inner ρ

v
kε
−q
k or,

equivalently, cinner ε
−q
k , if we define cinner = c̄inner ρ

v
k. Therefore, unlike the case of Theorems 3.2

and 3.4, due to (29), the factor cinner depends on the tolerances δ and δlow.
The comparison between Theorems 3.4 and 3.6 is interesting. This comparison seems to

indicate that, if we want to be confident that the diagnostic “xk is an infeasible stationary point
of the infeasibility measure” is correct, we must be prepared to pay for that increased level of
confidence. In fact, the bound ρmax on the penalty parameter for the algorithm is defined by (29),
which not only grows with 1/δlow, but also depends on the global bounds of the problem clips

and cf . Moreover, εk also needs to decrease below δlow/4 because the decrease of the projected
gradient of the infeasibility measure is only guaranteed by a stronger decrease of the projected
gradient of the Augmented Lagrangian.

4 Complexity of the box-constraint solver

The problem considered in this section is

Minimize Φ(x) subject to x ∈ Ω, (51)

where Ω = {x ∈ Rn | ` ≤ x ≤ u}. The function Φ is assumed to possess a Lipschitz-continuous
gradient with constant L, so, for all x, z ∈ Ω,

Φ(z)− Φ(x) ≤ ∇Φ(x)T (z − x) +
L

2
‖z − x‖2. (52)

Second derivatives are not assumed to exist. Note that Φ is, in general, non-quadratic and non-
convex. Problem (51) is of the same type of the one that is approximately solved at Step 1 of
Algorithm 2.1 and, thus, we have in mind the case Φ(x) ≡ Lρk(x, λ̄k, µ̄k). Many algorithms have
been proposed for solving (51). See, for example, [16, 28, 42]. In [21], a method that possesses
worst-case iteration and evaluation complexity O(ε−3/2), when the Hessian of the objective
function is Lipschitz continuous, was introduced. However, the subproblem that has to be
approximately solved at Step 1 of Algorithm 2.1 does not satisfy these hypothesis. The bound-
constraint minimization method described in this section, that will be shown to exhibit worst-
case iteration and evaluation complexity O(ε−2), is closely related to the method introduced
in [16]. See also [20, Ch.9].

In Theorem 3.6, we proved that the iteration and evaluation complexities of Algorithm 2.1
are given by expressions that involve the complexity of the box-constraint solver used to ap-
proximately solve suproblem (2) at Step 1. We assumed that there exist cinner > 0, v > 0, and
q > 0, where cinner only depends on algorithmic parameters, bounds ` and u, and characteristics
of the functions f , h, and g, such that the number of inner iterations, function and derivative
evaluations that are necessary to obtain (3) is bounded above by cinnerρ

v
kε
−q
k . In this section

we show that this assumption actually holds for the box-constraint solver that is used in the
current implementation of Algencan.

For all I ⊆ {1, . . . , 2n}, we define the open face

FI = {x ∈ Ω | xi = `i if i ∈ I, xi = ui if n+ i ∈ I, `i < xi < ui otherwise}.

15

By definition, Ω is the union of its open faces and the open faces are disjoint. Thus, every x ∈ Ω
belongs to exactly one face FI . The variables xi such that `i < xi < ui are called free variables.
For every x ∈ Ω, we define the continuous projected gradient of Φ by

ΥΩ,Φ(x) = PΩ(x−∇Φ(x))− x. (53)

It will be useful to compare ΥΩ,Φ(x) with PΩ(x − t∇Φ(x)) − x for different values of t > 0.
By (53), if t ≥ 1, we have that

‖PΩ(x− t∇Φ(x))− x‖ ≥ ‖PΩ(x−∇Φ(x))− x‖ = ‖ΥΩ,Φ(x)‖. (54)

If t < 1, it is easy to see that, for each component i, we have that

|[PΩ(x− t∇Φ(x))− x]i| ≥ t|[PΩ(x−∇Φ(x))− x]i|.
Therefore, if t < 1,

‖PΩ(x− t∇Φ(x))− x‖ ≥ t‖PΩ(x−∇Φ(x))− x‖ = t‖ΥΩ,Φ(x)‖. (55)

If FI is the open face to which x belongs, the continuous projected internal gradient ΥI
Ω,Φ(x) is

given by

[ΥI
Ω,Φ(x)]i =

{
[ΥΩ,Φ(x)]i, if xi is a free variable,
0, otherwise.

Note that, if FI is a vertex of the box, FI is a singleton {x}, there are no free variables, and, in
consequence, ΥI

Ω,Φ(x) = 0.
The bound-constraint minimization method described in this section is based on the ac-

tive set strategy. The iterates visit the different faces of the box Ω staying in the current face
while the quotient ‖ΥI

Ω,Φ(x)‖/‖ΥΩ,Φ(x)‖ is big enough and the new iterate does not hit the
face boundary. When the quotient reveals that few progress can be expected from staying in
the current face, the face is abandoned by means of a spectral projected gradient [22, 23, 24]
iteration. Within each face, iterations obey a safeguarded sparse quasi-Newton scheme with line
searches, whereas a Truncated-Newton procedure was considered in [16]. The employment of
this method for solving subproblems is coherent with the conservative point of view of Algencan.
For example, we do not aim to predict the active constraints at the solution and the inactive
bounds have no influence in the iterations, independently of the distance of the current iterate
to a bound. Moreover, we do not try to use second-order information for leaving the faces. The
description of the algorithm follows.

Algorithm 4.1: Assume that x0 ∈ Ω, r ∈ (0, 1], α ∈ (0, 1
2), 0 < λB

min ≤ λB
max, and 0 < λspg

min ≤
λspg

max are given. Initialize k ← 0.

Step 1. If ‖ΥΩ,Φ(xk)‖ = 0, stop.

Step 2. Let I be such that xk ∈ FI . If ‖ΥI
Ω,Φ(xk)‖ ≥ r‖ΥΩ,Φ(xk)‖, find xk+1 by means of

Algorithm 4.2. Otherwise, find xk+1 by means of Algorithm 4.3.

Step 3. Set k ← k + 1 and go to Step 1.

Sections 4.1 and 4.2 below describe Algorithms 4.2 and 4.3, respectively. Parameters α, λB
min,

and λB
max of Algorithm 4.1 are parameters of Algorithm 4.2; while parameters α, λspg

min, and λspg
max

of Algorithm 4.1 are parameters of Algorithm 4.3. They appear as parameters of Algorithm 4.1
because it is assumed that every time Algorithm 4.1 calls Algorithms 4.2 and 4.3, it calls them
with the same parameters.

16

4.1 Decrease within the faces

Algorithm 4.2, presented in this section, describes the way in which, starting from an iterate xk in
the open face FI , an iterate xk+1 is obtained in FI or on its boundary. Without loss of generality,
in order to avoid cumbersome notation, let us assume that the first nI ≥ 1 variables are the
free ones at the face FI . Accordingly, ∇̃Φ(x) ∈ RnI will denote the vector formed by the nI
first components of ∇Φ(x). Clearly, for all x ∈ FI and i = 1, . . . , n, |[ΥI

Ω,Φ(x)]i| ≤ |[∇̃Φ(x)]i|,
therefore

‖ΥI
Ω,Φ(x)‖ ≤ ‖∇̃Φ(x)‖. (56)

Algorithm 4.2: Assume that xk ∈ FI , α ∈ (0, 1
2), and Bk, an nI × nI symmetric positive

definite matrix with eigenvalues between λB
min and λB

max, are given.

Step 1. Compute d̃k = −B−1
k ∇̃Φ(xk).

Define dk ∈ Rn by [dk]i =

{
[d̃k]i, if i ≤ nI ,
0, if i > nI .

Step 2.

Step 2.1. If xk + dk ∈ FI set tmax = 1 and go to Step 3.

Step 2.2. Compute tmax = max{t ∈ (0, 1] | xk + tdk ∈ Ω}.
Step 2.3. If Φ(xk + tmaxd

k) ≤ Φ(xk) then define tk = tmax and go to Step 4.

Step 3. Compute tk as the first element t of the sequence {tmax/2
0, tmax/2

1, tmax/2
2, . . . } that

satisfies
Φ(xk + tdk) ≤ Φ(xk) + αt∇Φ(xk)Tdk. (57)

Step 4. Define xk+1 = xk + tkd
k and return.

Theorem 4.1 Whenever Step 3 of Algorithm 4.2 is executed, tk is well defined and satisfies

tk ≥ min

{
1,

(1− 2α)λB
min

2L

}
. (58)

Moreover,

Φ(xk + tkd
k) ≤ Φ(xk)−

(
α(1− 2α)λB

minr
2

2LλB
max

)
‖ΥΩ,Φ(xk)‖2 (59)

and the number of evaluations of Φ that are necessary to guarantee the fulfillment of (57) is
bounded above by ∣∣∣∣log2

(
min

{
1,

(1− 2α)λB
min

2L

})∣∣∣∣+ 1. (60)

Proof: Suppose that t ∈ R is such that

0 < t ≤ (1− 2α)λB
min

L
. (61)

17

By Step 2 of Algorithm refcombox.1, we have that ‖ΥI
Ω,Φ(x)‖ > 0. Then, by (56), ‖∇̃Φ(x)‖ > 0

and, consequently, dk 6= 0. Define

σ = −∇Φ(xk)Tdk

t‖dk‖2
. (62)

Since Bk is positive definite and ∇̃Φ(xk) 6= 0, we have that σ > 0. (Note that σ = − ∇̃Φ(xk)T d̃k

t‖d̃k‖2 .)

By (52),

Φ(xk + tdk)− Φ(xk) ≤ ∇Φ(xk)T (tdk) +
L

2
t2‖dk‖2

= ∇Φ(xk)T (tdk) +
σ

2
t2‖dk‖2 +

L− σ
2

t2‖dk‖2.
(63)

By (62),

t = −∇Φ(xk)Tdk

σ‖dk‖2
.

Therefore, t is the minimizer of the parabola defined by ϕ(s) = ∇Φ(xk)Tdks+ σ
2 s

2‖dk‖2. Since
ϕ(0) = 0, it turns out that

∇Φ(xk)T (tdk) +
σ

2
t2‖dk‖2 ≤ 0.

Therefore, by (63),

Φ(xk + tdk)− Φ(xk) ≤ L− σ
2

t2‖dk‖2. (64)

Now, by (61), since α < 1
2 ,

Lt

1− 2α
≤ λB

min.

So, by the definition of λB
min,

Lt

1− 2α
≤ (d̃k)TBkd̃

k

‖dk‖2
.

Thus, by the definition of dk,

−∇Φ(xk)Tdk

‖dk‖2
≥ Lt

1− 2α

or, equivalently,

−∇Φ(xk)Tdk

t‖dk‖2
≥ L

1− 2α
.

Then, by (62),

σ ≥ L

1− 2α

or, equivalently,
σ ≥ L+ 2ασ.

Therefore, by (62),

σ ≥ L− 2α∇Φ(xk)Tdk

t‖dk‖2

18

or, equivalently,
L− σ

2
≤ α∇Φ(xk)T tdk

t2‖dk‖2

Therefore,
L− σ

2
t2‖dk‖2 ≤ α∇Φ(xk)T tdk.

Then, by (64),
Φ(xk + tdk) ≤ Φ(xk) + αt∇Φ(xk)Tdk. (65)

So far, we proved that (61) implies (65).
If the first trial t is such that t = tmax = 1, and (65) holds for this t, then (58) holds trivially.

If tmax < 1 and Step 3 is executed, we have that Φ(xk + tmaxd
k) > Φ(xk) and, so, t = tmax

does not satisfy (65). Therefore, we only need to analyze the case in which t = tmax does not
satisfy (65). Therefore, tmax > (1−2α)λB

min/L. However, after a finite number of backtrackings,
we necessarily find taccepted ≤ (1 − 2α)λB

min/L that, as a consequence, satisfies (65). Then, the
last rejected t is such that trejected > (1− 2α)λB

min/L, which means that the accepted t satisfies
taccepted > (1 − 2α)λB

min/(2L). Thus, tk fulfills (58) as we wanted to prove. The bound (60) is
an obvious corollary of this fact.

Now, due to (57), the definitions of dk and λB
max, (58), and (56), the amount of decrease per

iteration Φ(xk)− Φ(xk + tkd
k) is bounded below in the following way:

Φ(xk)− Φ(xk + tkd
k) ≥ −αtk∇Φ(xk)Tdk

= αtk∇̃Φ(xk)TB−1
k ∇̃Φ(xk)

≥ αtk
‖∇̃Φ(xk)‖2

λB
max

≥ α(1− 2α)λB
min

2LλB
max

‖∇̃Φ(xk)‖2

≥ α(1− 2α)λB
min

2LλB
max

‖ΥI
Ω,Φ(xk)‖2

≥ α(1− 2α)λB
minr

2

2LλB
max

‖ΥΩ,Φ(xk)‖2,

where the last inequality follows from the fact that ‖ΥI
Ω,Φ(xk)‖ ≥ r‖ΥΩ,Φ(xk)‖. Therefore, the

theorem is proved. �

4.2 Decrease when leaving a face

In this section we describe Algorithm 4.3, which is used by Algorithm 4.1 for leaving faces. The
algorithm corresponds to a monotone iteration of the Spectral Projected Gradient [22, 23, 24]
(SPG) method.

Algorithm 4.3: Assume that xk ∈ Ω, α ∈ (0, 1
2), and λspg

min > 0, λspg
max > λspg

min are given.

19

Step 1. Choose λspg
k ∈ [λspg

min, λ
spg
max] and compute dk as the solution to

Minimize
d∈Rn

∇Φ(xk)Td+
λspg
k

2
‖d‖2 subject to xk + d ∈ Ω. (66)

(Therefore, dk = PΩ

(
xk − 1

λspgk
∇Φ(xk)

)
− xk.)

Step 2. Compute tk as the first element of the sequence {1/20, 1/21, 1/22, . . . } that satisfies

Φ(xk + tdk) ≤ Φ(xk) + αt∇Φ(xk)Tdk. (67)

Step 3. Define xk+1 = xk + tkd
k, set k ← k + 1, and go to Step 1.

Theorem 4.2 At Step 2 of Algorithm 4.3, tk is well defined and satisfies

tk ≥ min

{
1,

(1− 2α)λspg
min

4L

}
. (68)

Moreover,

Φ(xk + tkd
k) ≤ Φ(xk)− α(1− 2α)

8L
min

{
λspg

min,
λspg

min

λspg
max

}2

‖ΥΩ,Φ(xk)‖2 (69)

and the number of evaluations of Φ that are necessary to guarantee the fulfillment of (67) is
bounded above by ∣∣∣∣log2

(
min

{
1,

(1− 2α)λspg
min

4L

})∣∣∣∣+ 1. (70)

Proof: Algorithm 4.3 is called by Algorithm 4.1 when ‖ΥΩ,Φ(xk)‖ 6= 0. Then, by (55),

dk = PΩ

(
xk − 1

λspg
k

∇Φ(xk)

)
− xk 6= 0.

By (66), we have that

∇Φ(xk)dk +
λspg
k

2
‖dk‖2 ≤ 0.

So,

− ∇Φ(xk)Tdk

‖dk‖2
≥
λspg
k

2
≥
λspg

min

2
> 0. (71)

Assume that

0 < t ≤
(1− 2α)λspg

min

2L
(72)

and define

σ = −∇Φ(xk)Tdk

t‖dk‖2
. (73)

By (71) and (72), we have that σ > 0; so, by (73),

t = −∇Φ(xk)Tdk

σ‖dk‖2
.

20

Therefore, t is the minimizer of the parabola defined by ϕ(s) = ∇Φ(xk)Tdks+ σ
2 s

2‖dk‖2. Since
ϕ(0) = 0, it turns out that

∇Φ(xk)T (tdk) +
σ

2
t2‖dk‖2 ≤ 0. (74)

Thus, by (52) and (74),

Φ(xk + tdk)− Φ(xk) ≤ ∇Φ(xk)T (tdk) + L
2 t

2‖dk‖2

= ∇Φ(xk)T (tdk) + σ
2 t

2‖dk‖2 + L−σ
2 t2‖dk‖2

= L−σ
2 t2‖dk‖2.

(75)

By (72), we have that

t ≤
(1− 2α)λspg

min

2L

and, since α ∈ (0, 1
2),

Lt

1− 2α
≤
λspg

min

2
.

Thus, by (71),
Lt

1− 2α
≤ −∇Φ(xk)Tdk

‖dk‖2
.

Then

−∇Φ(xk)Tdk

t‖dk‖2
≥ L

1− 2α

or, equivalently, (
−∇Φ(xk)Tdk

t‖dk‖2

)
≥ L− 2α

(
∇Φ(xk)Tdk

t‖dk‖2

)
.

Therefore, by (73),

σ ≥ L− 2α∇Φ(xk)T tdk

t‖dk‖2

or, equivalently,
L− σ

2
t2‖dk‖2 ≤ α∇Φ(xk)T tdk.

Then, by (75),
Φ(xk + tdk) ≤ Φ(xk) + α∇Φ(xk)T tdk. (76)

So far, we proved that (72) implies (76). If (76) holds for t=1 then (68) holds trivially.
Otherwise, we have that 1 > (1−2α)λspg

min/(2L). However, after a finite number of backtrackings,
we necessarily find t ≤ (1 − 2α)λspg

min/(2L) that, as a consequence, satisfies (76). Then, last
rejected t is such that t > (1 − 2α)λspg

min/(2L), which means that the accepted t satisfies t >
(1− 2α)λspg

min/(4L), as we wanted to prove. The bound (70) is an obvious corollary of this fact.
Now, by (67), (68), and (71), we have that

Φ(xk)− Φ(xk + tkd
k) ≥ −αtk∇Φ(xk)Tdk ≥

αλspg
min

2
tk‖dk‖2 ≥

α(1− 2α)(λspg
min)2

8L
‖dk‖2. (77)

21

On the other hand, since

dk = PΩ

(
xk − 1

λspg
k

∇Φ(xk)

)
− xk

and
ΥΩ,Φ(xk) = PΩ(xk −∇Φ(xk))− xk,

we have that
‖dk‖ ≥ ‖ΥΩ,Φ(xk)‖ if 1/λspg

k ≥ 1

and
‖dk‖ ≥ (1/λspg

k)‖ΥΩ,Φ(xk)‖ ≥ (1/λspg
max)‖ΥΩ,Φ(xk)‖ if 1/λspg

k ≤ 1.

Thus,
‖dk‖ ≥ min{1, 1/λspg

max}‖ΥΩ,Φ(xk)‖. (78)

Therefore, (69) follows from (77) and (78). This completes the proof. �

4.3 Complexity of Algorithm 4.1

Theorem 4.3 Assume that ε > 0 and Φtarget ≤ Φ(x0). Then, there exists a constant c > 0
that only depends on parameters of Algorithm 41 and characteristics of Φ such that the num-
ber of iterations employed by Algorithm 4.1 that are necessary to obtain Φ(xk) ≤ Φtarget or
‖ΥΩ,Φ(xk)‖ ≤ ε is bounded above by

c(n+ 1)Lε−2(Φ(x0)− Φtarget). (79)

Moreover, the corresponding number of function evaluations is bounded above by

c(n+ 1)Lε−2(Φ(x0)− Φtarget)×
(∣∣∣∣log2

(
min

{
1,

(1− 2α) max{λB
min, λ

spg
min

2L

})∣∣∣∣+ 1

)
. (80)

Proof: By Theorems 4.1 and 4.2, there exists c1 > 0, that only depends on parameters of
Algorithm 41 and characteristics of Φ, such that, whenever xk+1 is computed by Algorithm 4.3
or by Step 3 of Algorithm 4.2, we have that

Φ(xk+1) ≤ Φ(xk)− c1

L
‖ΥΩ,Φ(xk)‖2.

Thus, if ‖ΥΩ,Φ(xk)‖ ≥ ε,
Φ(xk+1) ≤ Φ(xk)− c1

L
ε2.

This implies that the number of iterations computed by Algorithm 4.3 or by Step 3 of Algo-
rithm 4.2 is bounded above by

cLε−2(Φ(x0)− Φtarget), (81)

with c = 1/c1.
The bound (81) excludes the iterations computed at Step 2 of Algorithm 4.2. At these it-

erations, Φ(xk+1) ≤ Φ(xk) and the number of free variables at xk+1 is strictly smaller than the
number of free variables at xk. This means that each iteration computed by Algorithm 4.3 or
by Step 3 of Algorithm 4.2 may be followed by, at most, n consecutive iterations computed at

22

Step 2 of Algorithm 4.2. This explains the factor n + 1 in the bound (79). So, the complexity
bound (79) is proved. The bound (80) on the number of function evaluations follows from (79),
(60), and (70). �

Remark. By (79) and (80), we have that the complexity exhibited by the box-constraint solver
corresponds to the assumption of Theorem 3.6 for proving the complexity of Algorithm 2.1 with
q = 2 and ν = 2. In fact, by the definition of Φ in the Augmented Lagrangian framework, we
have that the Lipschitz constant of its gradient is bounded above by a multiple of ρ and the
same happens with Φ(x0)− Φtarget.

5 Implementation

We implemented Algorithms 2.1 and 4.1–4.3 in Fortran 90. Implementation is freely available
at http://www.ime.usp.br/~egbirgin/. Interfaces for solving user-defined problems coded in
Fortran 90 as well as problems from the CUTEst [40] collection are available. All tests reported
below were conducted on a computer with 3.5 GHz Intel Core i7 processor and 16GB 1600 MHz
DDR3 RAM memory, running OS X High Sierra (version 10.13.6). Codes were compiled by the
GFortran compiler of GCC (version 8.2.0) with the -O3 optimization directive enabled.

5.1 Implementation of the Augmented Lagrangian framework

Algorithm 2.1 was devised to be applied to a scaled version of problem (51). Following the Ipopt
strategy described in [56, p.46], in the scaled problem, the objective function f is multiplied by

sf = max

{
10−8,

100

max{1, ‖∇f(x0)‖∞}

}
,

each constraint hj (j = 1, . . . ,m) is multiplied by

shj = max

{
10−8,

100

max{1, ‖∇hj(x0)‖∞}

}
,

and each constraint gj (j = 1, . . . , p) is multiplied by

sgj = max

{
10−8,

100

max{1, ‖∇gj(x0)‖∞}

}
,

where x0 ∈ Rn is the given initial guess. The scaling is optional and it is used when the input
parameter “scale” is set to “true”. If the parameter is set to “false”, the original problem, that
corresponds to considering all scaling factors equal to one, is solved.

As stopping criterion, we say that an iterate xk ∈ [`, u] with its associated Lagrange multi-

23

http://www.ime.usp.br/~egbirgin/

pliers λk+1 and µk+1 satisfies the main stopping criterion when

max
{
‖h(xk)|‖∞, ‖g(xk)+‖∞

}
≤ εfeas,

(82)∥∥∥∥∥∥P[`,u]

xk −
sf∇f(xk) +

m∑
j=1

λk+1
j shj∇hj(x

k) +

p∑
j=1

µk+1
j sgj∇gj(xk)

− xk
∥∥∥∥∥∥
∞

≤ εopt, (83)

max
j=1,...,p

{
min{−sgjgj(xk), µk+1

j }
}
≤ εcompl,

(84)

where εfeas > 0, εopt > 0, and εcompl > 0 are given constants. This means that the stopping cri-
terion requires unscaled feasibility with tolerance εfeas plus scaled optimality with tolerance εopt

and scaled complementarity (measured with the min function) with tolerance εcompl. Note that
xk ∈ [`, u], i.e. it satisfies the bound-constraints with zero tolerance. In addition to this stop-
ping criterion, Algorithm 2.1 also stops if the penalty parameter ρk reaches the value ρbig or if,
in three consecutive iterations, the inner solver that is used at Step 1 fails at finding a point
xk ∈ [`, u] that satisfies (3).

In (3) and (4), we consider ‖ · ‖ = ‖ · ‖∞. At Step 2, we consider ε1 =
√
εopt and εk =

max{εopt, 0.1εk−1} for k > 1; and, at Step 3, if λk+1 ∈ [λmin, λmax]m and µk+1
i ∈ [0, µmax]p

then we set λ̄k+1 = λk+1 and µ̄k+1 = µk+1. Otherwise, we set λ̄k+1 = 0 and µ̄k+1 = 0. In
the numerical experiments, we set εfeas = εopt = εcompl = 10−8, ρbig = 1020, λmin = −1016,
λmax = 1016, µmax = 1016, γ = 10, τ = 0.5, λ̄1 = 0, µ̄1 = 0, and

ρ1 = 10 max

{
1,

|f(x0)|
max{‖h(x0)‖22 + ‖g(x0)+‖22}

}
.

Two additional strategies complete the implementation of Algorithm 2.1. On the one hand,
if Algorithm 2.1 fails at finding a point that satisfies (82), the feasibility problem (7) is tackled
with Algorithm 4.1 with the purpose of, at least, finding a feasible point to the original NLP
problem (1). On the other hand, at every iteration k, prior to the subproblem minimization
at Step 1, (xk−1, λk, µk) is used as initial guess to perform ten iterations of the “pure” Newton
method (no line search, no inertia correction) applied to the semismooth KKT system [47, 49]
associated with problem (51), with dimension 3n+m+ p, given by

∇f(x) +
∑m

j=1 λj∇hj(x) +
∑p

j=1 µj∇gj(x)− ν` + νu

h(x)
min{−g(x), µ}
min{x− `, ν`}
min{u− x, νu}

 =

0
0
0
0
0

 ,

where ν`, νu ∈ Rn are the Lagrange multipliers associated with the bound constraints ` ≤ x and
x ≤ u, respectively. This process is related to the so-called acceleration process described in [18]
in which a different KKT system was considered. (See [18] for details.) The stopping criteria
for the acceleration process are (i) “the Jacobian of the KKT system has the ’wrong’ inertia”,

24

(ii) “a maximum of 10 iterations was reached”, and (iii)

max {‖h(x)|‖∞, ‖g(x)+‖∞, ‖(`− x)+‖∞, ‖(x− u)+‖∞} ≤ εfeas,

(85)∥∥∥∥∥∥∇f(x) +
m∑
j=1

λj∇hj(x) +

p∑
j=1

µj∇gj(x)− ν` + νu

∥∥∥∥∥∥
∞

≤ εopt,

(86)

max

{
max
j=1,...,p

{[min{−g(x), µ}]j} , max
i=1,...,n

{
[min{x− `, ν`}]i

}
, max
i=1,...,n

{[min{u− x, νu}]i}
}
≤ εcompl.

(87)

Note that criterion (iii) corresponds to satisfying approximate KKT conditions for the unscaled
original problem (1). On the other hand, differently from an iterate xk ∈ [`, u] of Algorithm 2.1
that satisfies (82,83,84), a point that satisfies criterion (iii) may violate the bound constraints
with tolerance εfeas.

If the acceleration process stops satisfying criterion (i) or (ii), everything it was done in the
acceleration is discarded and the iterations of Algorithm 2.1 continue. On the other hand, assume
that a point satisfying criterion (iii) was found by the acceleration process. If (xk−1, λk, µk)

satisfies (82,83,84) with half the precision, i.e. with εfeas, εopt, and εcompl substituted by ε
1/2
feas,

ε
1/2
opt , and ε

1/2
compl, respectively, then we say the acceleration was successful, the point found by

the acceleration process is returned, and the optimization process stops. On the other hand,
if (xk−1, λk, µk) is far from satisfying (82,83,84), we believe the approximate KKT point the
acceleration found may be an undesirable point. The point is saved for further references, but
the optimization process continues; and the next Augmented Lagrangian subproblem is tackled
by Algorithm 4.1 starting from xk−1 and ignoring the point found by the acceleration process.

5.2 Implementation of the box-constraint solver

The box-constraint solver was implemented according to the description of Algorithms 4.1, 4.2
and 4.3, with the following specifications.

1. Matrices Bk were chosen as modifications of the Hessian of Φ, corrected in order to preserve
safeguarded positive-definitess. In the cases that the Hessian does not exist because it is
possible to choose between ∇2gj(x) or the null matrix we used ∇2gj(x).

2. In Algorithms 4.2 and 4.3, we described the line search as being straight bisection, for the
sake of simplicity in the statement of complexity bounds. In the implementation, we used
safeguarded quadratic interpolation, which exhibits the same complexity properties.

3. The line search used in the implementation includes occasional extrapolations that are not
mentioned in the formal description of Section 4 as they do not interfere in the complexity
analysis.

As main stopping criterion of Algorithm 4.1–4.3, we considered the condition

‖ΥΩ,Φ(xk)‖∞ ≤ ε (88)

25

When an unconstrained or bound-constrained problem is being solved, in (88) and in the alterna-
tive stopping criteria described below, we use ε = εopt = 10−8. When the problem being tackled
by Algorithm 4.1–4.3 is a subproblem of Algorithm 2.1, the value of ε in (88) and in the alterna-
tive stopping criteria described below is the one described in Section 5.1 (that we cannot mention
here since we are using k to denote iterations of both Algorithms 2.1 and 4.1). In addition, Al-
gorithm 4.1–4.3 may also stop at iteration k by any of the following alternative stopping criteria:
(a) ‖ΥΩ,Φ(xk−`)‖∞ <

√
ε for all 0 ≤ ` < 100; (b) ‖ΥΩ,Φ(xk−`)‖∞ < ε1/4 for all 0 ≤ ` < 5,000;

(c) ‖ΥΩ,Φ(xk−`)‖∞ < ε1/8 for all 0 ≤ ` < 10,000; (d) Φ(xk) ≤ Φtarget; (e) k ≥ kmax = 50,000;
and (f) kbest is the smallest index such that Φ(xkbest) = min{Φ(x0),Φ(x1), . . . ,Φ(xk)} and
k − kbest > 3, i.e. the best functional value so far obtained is not updated in three consec-
utive iterations. In the experiments, we set Φtarget = −1012, as well as, r = 0.1, α = 10−4,
λspg

min = 10−16, and λspg
max = 1016.

The linear systems adressed at the inner-to-face iterations are solved with subroutine MA57
from HSL [57] (using all its default parameters). When Algorithm 4.1–4.3 is used to solve a
subproblem of Algorithm 2.1, we have that ∇2Φ(x) = ∇2Lρk(x, λ̄k, µ̄k), i.e. ∇2Φ(x) is the
Hessian of the augmented Lagrangian associated with the scaled version of problem (51) given
by

sf∇2f(x) +
∑m

j=1

{
λ̄kj shj∇2hj(x) + ρks

2
hj
∇hj(x)∇hj(x)T

}
+
∑

j∈Ik

{
µ̄kj sgj∇2gj(x) + ρks

2
gj∇gj(x)∇gj(x)T

}
,

(89)
where Ik = Iρk(xk, µ̄k) = {j = 1, . . . , p | µ̄k + ρksgjgj(x

k) > 0}. A relevant issue from the
practical point of view is that, despite the sparsity of the Hessian of the Lagrangian and the
sparsity of the Jacobian of the constraints, this matrix may be dense. Thus, factorizing, or
even building it, may be prohibitive. As an alternative, instead of building and factorizing the
Hessian above, it can be solved an augmented linear system with the coefficients’ matrix given
by sf∇2f(x) +

∑m
j=1

{
λ̄kj shj∇2hj(x)

}
+
∑

j∈Ik

{
µ̄kj sgj∇2gj(x)

}
J(x)T

J(x) − 1
ρk
I

 , (90)

where J(x) is a matrix whose columns are ∇h1(x), . . . ,∇hm(x) plus the gradients ∇gj(x) such
that j ∈ Ik. This matrix preserves the sparsity of the Hessian of the Lagrangian and of the
Jacobian of the constraints. The implementation of Algorithms 4.1–4.3 dynamically selects one
of the two aproaches.

Another relevant fact from the practical point of view, related to matrices (89) and (90),
is that the current tools available in CUTEst compute the full Jacobian of the constraints and∑p

j=1 µ̄
k
j sgj∇2gj(x) with µ̄kj = 0 if j 6∈ Ik instead of J(x) and

∑
j∈Ik µ̄

k
j sgj∇2gj(x), respectively.

On the one hand, this feature preserves the Jacobian’s and the Hessian-of-the-Lagrangian’s spar-
sity structures independently of µ̄k and x, as required by some solvers. On the other hand, it
impairs Algorithm 2.1, when applied to problems from the CUTEst collection, of fully exploiting
the potential advantage of dealing with inequality constraints without adding slack variables.
In summary, the combination of Algorithm 2.1 plus Algorithm 4.1–4.3 is prepared to deal with
matrices with different sparsity structures at every iteration and, for that reason, it performs
the analysis step of the factorization at every iteration. This is the price to pay for exploiting
inequality constraints without adding slack variables. However, the CUTEst subroutines are not
prepared to exploit this feature and the combination of Algorithm 2.1 plus Algorithm 4.1–4.3,
when solving problems from the CUTEst collection, pays the price without enjoying the advan-

26

tages. Of course, this CUTEst inconvenient influences negatively the comparison of Algencan
with other solvers if the CPU time is used as a performance measure.

6 Numerical experiments

In this section, we aim to evaluate the performance of Algorithm 2.1–4.1 (referred as Algencan
from now on) for solving unconstrained, bound-constrained, feasibility, and nonlinear program-
ming problems. The performance of Ipopt [56] (version 3.12.12) is also exhibited. Both methods
were run in the same computational environment, compiled with the same BLAS routines, and
also using the same subroutine MA57 from HSL for solving the linear systems. All Ipopt default
parameters were used1. A CPU time limit of 10 minutes per problem was imposed. In the
numerical experiments, we considered all 1,258 problems from the CUTEst collection [40] with
their default dimensions. In the collection, there are 217 unconstrained problems, 144 bound-
constrained problems, 157 feasibility problems, and 740 nonlinear programming problems. A
hint on the number of variables in each family is given in Table 1.

Problem type # of problems nmax
of problems with n ≥ ωnmax

ω = 0.1 ω = 0.01 ω = 0.001

unconstrained 217 100,000 15 87 97
bound-constrained 144 149,624 5 60 72

feasibility 157 123,200 5 40 55
NLP 740 250,997 67 263 379

Table 1: Distribution of the number of variables n in the CUTEst collection test problems.

Large tables with a detailed description of the output of each method in the 1,258 problems
can be found in http://www.ime.usp.br/~egbirgin/. A brief overview follows. Note that,
since the methods differ in the stopping criteria, arbitrary decisions will be made. A point in
common is that both methods seek satisfying the (sup-norm of the) violation of the unscaled
equality and inequality constraints with precision εfeas = 10−8. However, as described in [56,
§3.5], Ipopt considers a relative initial relaxation of the bound constraints (whose default value
is 10−8); and it may apply repeated additional relaxations during the optimization process.
Table 2 shows the number of problems in which each method found a point satisfying

max{‖h(x)‖∞, ‖[g(x)]+‖∞} ≤ εfeas (91)

plus
max{‖(`− x)+‖∞, ‖(x− u)+‖∞} ≤ ε̄feas (92)

with εfeas = 10−8 and ε̄feas ∈ {0.1, 10−2, . . . , 10−16, 0}. Figures in the table show that, in most
cases, Algencan satisfies the bound constraints with zero tolerance and that the violation of
the bound constraints rarely exceeds the tolerance 10−8. This is an expected result, since the
method satisfies these requirements by definition. Regarding Ipopt, the table shows in which
way the amount of problems in which (92) holds varies as a function of the tolerance ε̄feas.

1Option ’honor original bounds no’, that does not affect Ipopt’s optimization process, was used. Ipopt might
relax the bounds during the optimization beyond its initial relative relaxation factor whose default value is 10−8.

27

http://www.ime.usp.br/~egbirgin/

ε̄feas

0.1 10−2 10−3 10−4 10−5 10−6 10−7 10−8 10−9 10−10 10−11 10−12 10−13 10−14 10−15 10−16 0

Algencan 1,132 1,132 1,131 1,131 1,131 1,130 1,130 1,130 1,121 1,115 1,112 1,105 1,092 1,081 1,077 1,069 1,058
Ipopt 1,073 1,072 1,070 1,068 1,056 1,044 1,016 970 794 793 793 793 793 792 792 792 791

Table 2: Number of problems in which a point satisfying (91,92) was found by Algencan and
Ipopt with εfeas = 10−8 and ε̄feas ∈ {0.1, 10−2, . . . , 10−16, 0}.

If the violation of the bound constraints is disregarded, Table 2 shows that Algencan found
points satisfying (91,92) with εfeas = 10−8 and ε̄feas = 0.1 in 1,132 problems; while Ipopt found
the same in 1,073. There are in the CUTEst collection 85 problems (62 feasibility problems
and 23 nonlinear programming problems) in which the number of equality constraints is larger
than the number of variables. Ipopt does not apply to these problems and, thus, of course, it
does not find a point satisfying (91,92). Algencan did find a point satisfying (91,92) in 28 out of
the 85 problems to which Ipopt does not apply; and this explains half of the difference between
the methods. In any case, it can be said that, over a universe of 1,258 problems, both methods
found “feasible points” in a large fraction of the problems; recalling that the collection contains
infeasible problems.

We now consider the set of 757 problems in which both methods found a point satisfying (91)
with εfeas = 10−8 and (92) with ε̄feas = 0. For a given problem, let f1 be the value of the objective
function at the point found by Algencan; let f2 be the value of the objective function at the
point found by Ipopt; and let fmin = min{f1, f2}. Table 3 shows in how many problems it holds

fi ≤ fmin + ftol max{1, |fmin|} for i = 1, 2 (93)

and ftol ∈ {0.1, 10−2, . . . , 10−8, 0}.

ftol

0.1 10−2 10−3 10−4 10−5 10−6 10−7 10−8 0

Algencan 722 715 706 694 691 678 675 663 498
Ipopt 723 708 699 694 683 653 623 592 383

Table 3: Number of problems in which a point satisfying (91) with εfeas = 10−8, (92) with
ε̄feas = 0, and (93) with ftol ∈ {0.1, 10−2, . . . , 10−8, 0} was found by Algencan and Ipopt.

Finally, we consider the set of 688 problems in which both, Algencan and Ipopt, found a
point that satisfies (91) with εfeas = 10−8, (92) with ε̄feas = 0, and (93) with ftol = 0.1. For
this set of problems, Figure 1 shows the performance profile [32] that considers, as performance
measure, the number of functional evaluations and the CPU time spent by each method. In the
figure, for i ∈M ≡ {Algencan, Ipopt},

Γi(κ) =
{j ∈ {1, . . . , q} | tij ≤ κmins∈M{tsj}}

q
,

where #S denotes the cardinality of set S, q = 688 is the number of considered problems, and
tij is the performance measure (number of functional evaluations or CPU time) of method i

Option ’honor original bounds no’ simply avoids the final iterate to be projected back onto the box defined by the
bound constraints. So, the actual absolute violation of the bound constraints at the final iterate can be measured.

28

applied to problem j. Thus, in the top of Figure 1, ΓAlgencan(1) = 0.41 and ΓIpopt(1) = 0.66
say that Algencan used no more functional evaluations than Ipopt in 41% of the problems;
while Ipopt used no more functional evaluations than Algencan in 66% of the problems. In
the bottom of Figure 1, ΓAlgencan(1) = 0.48 and ΓIpopt(1) = 0.53 say that Algencan was faster
than Ipopt in 48% of the problems and Ipopt was faster then Algencan in 53% of the problems.
Complementing the performance profile, we can report that there are 9 problems in which both
methods spent at least a second of CPU time and one of the methods is at least ten times faster
than the other. Among these 9 problems, Ipopt is faster in 5 and Algencan is faster in the
other 4.

7 Conclusions

In this work, a version of the (safeguarded) Augmented Lagrangian algorithm Algencan [3, 20]
that possesses iteration and evaluation complexity was described, implemented, and evaluated.
Moreover, the convergence theory of Algencan was complemented with new complexity results.
The way in which an Augmented Lagrangian method was able to inherit the complexity prop-
erties from a method for bound-constrained minimization is a nice example of the advantages
of the modularity feature that Augmented Lagrangian methods usually possess.

As a byproduct of this development, a new version of Algencan that uses a Newtonian method
with line search to solve the subproblems was developed from scratch. Moreover, the acceleration
process described in [18] was revisited. In particular, the KKT system with complementarity
modelled with the product between constraints and multipliers was replaced with the KKT
system that models the complementarity constraints with the semismooth min function.

We provided a fully reproducible comparison with Ipopt, which is, probably, the most effec-
tive and best known free software for constrained optimization. The main feature we want to
stress is that there exist a significative number of problems that Algencan solves satisfactorily
whereas Ipopt does not, and vice versa. This is not surprising because the way in which Aug-
mented Lagrangians and Interior Point Newtonian methods handle problems are qualitatively
different. Constrained Optimization is an extremely heterogeneous family. Therefore, we be-
lieve that what justifies the existence of new algorithms or the survival of traditional ones is
not their capacity of solving a large number of problems using slightly smaller computer time
than “competitors”, but the potentiality of solving some problems that other algorithms fail to
solve. Engineers and practitioners should not care about the choice between algorithm A or B
according to subtle efficiency criteria. The best strategy is to contemplate both, using one or the
other according to their behavior on the family of problems that they need to solve in practice.
As in many aspects of life, competition should give place to cooperation.

Acknowledgements. The authors are indebted to Iain Duff, Nick Gould, Dominique Orban,
and Tyrone Rees for their help in issues related to the usage of MA57 from HSL and the CUTEst
collection.

References

[1] R. Andreani, J. M. Mart́ınez, and L. T. Santos, Newton’s method may fail to recognize
proximity to optimal points in constrained optimization, Mathematical Programming 160,

29

0

0.2

0.4

0.6

0.8

1

1 10 100 1000

Γ
(κ

)

κ (log scale)

Number of functional evaluations

Algencan (Γ(1) = 0.41)

Ipopt (Γ(1) = 0.66)

0

0.2

0.4

0.6

0.8

1

1 10 100 1000

Γ
(κ

)

κ (log scale)

CPU time

Algencan (Γ(1) = 0.48)

Ipopt (Γ(1) = 0.53)

Figure 1: Performance profiles comparing the number of functional evaluations and the CPU
time spent by Algencan and Ipopt in the 688 problems in which both methods found a point
that satisfies (91) with εfeas = 10−8, (92) with ε̄feas = 0, and (93) with ftol = 0.1.

pp. 547–555, 2016.

30

[2] R. Andreani, J. M. Mart́ınez, L. T. Santos, and B. F. Svaiter, On the behavior of constrained
optimization methods when Lagrange multipliers do not exist, Optimization Methods and
Software 29, pp. 646–657, 2014.

[3] R. Andreani, E. G. Birgin, J. M. Mart́ınez, and M. L. Schuverdt, On augmented Lagrangian
methods with general lower-level constraints, SIAM Journal on Optimization 18, pp. 1286–
1309, 2008.

[4] R. Andreani, E. G. Birgin, J. M. Mart́ınez and M. L. Schuverdt, Augmented Lagrangian
methods under the Constant Positive Linear Dependence constraint qualification, Mathe-
matical Programming 111, pp. 5–32, 2008.

[5] R. Andreani, E. G. Birgin, J. M. Mart́ınez, and M. L. Schuverdt, Second-order negative-
curvature methods for box-constrained and general constrained optimization, Computa-
tional Optimization and Applications 45, pp. 209–236, 2010.

[6] R. Andreani, N. S. Fazzio, M. L. Schuverdt, and L. D. Secchin, A Sequential Optimality
Condition Related to the Quasi-normality Constraint Qualification and its Algorithmic
Consequences, SIAM Journal on Optimization 29, pp. 743–766, 2019.

[7] R. Andreani, G. Haeser, and J. M. Mart́ınez, On sequential optimality conditions for smooth
constrained optimization, Optimization 60, pp. 627–641, 2011.

[8] R. Andreani, J. M. Mart́ınez, A. Ramos, and P. J. S. Silva, A Cone-Continuity Constraint
Qualification and algorithmic consequences, SIAM Journal on Optimization 26, pp. 96–110,
2016.

[9] R. Andreani, J. M. Mart́ınez, A. Ramos, and P. J. S. Silva, Strict constraint qualifica-
tions and sequential optimality conditions for constrained optimization, Mathematics of
Operations Research, to appear. doi:10.1287/moor.2017.0879

[10] R. Andreani, J. M. Mart́ınez, and B. F. Svaiter, A new sequential optimality condition for
constrained optimization and algorithmic consequences, SIAM Journal on Optimization 20,
pp. 3533–3554, 2010.

[11] M. Andretta, E. G. Birgin and J. M. Mart́ınez, Practical active-set Euclidian trust-region
method with spectral projected gradients for bound-constrained minimization, Optimization
54, pp. 305–325, 2005.

[12] P. Armand and R. Omheni, A globally and quadratically convergent primal-dual aug-
mented Lagrangian algorithm for equality constrained optimization, Optimization Methods
and Software 32, pp. 1–21, 2017.

[13] P. Armand and R. Omheni, A mixed logarithmic barrier-augmented Lagrangian method for
nonlinear optimization, Journal of Optimization Theory and Applications 173, pp. 523–547,
2017.

[14] E. G. Birgin, D. Fernández, and J. M. Mart́ınez, On the boundedness of penalty parameters
in an Augmented Lagrangian method with lower level constraints, Optimization Methods
and Software 27, pp. 1001–1024, 2012.

31

https://doi.org/10.1287/moor.2017.0879

[15] E. G. Birgin, C. A. Floudas, and J. M. Mart́ınez, Global minimization using an Augmented
Lagrangian method with variable lower-level constraints, Mathematical Programming 125,
pp. 139–162, 2010.

[16] E. G. Birgin and J. M. Mart́ınez, Large-scale active-set box-constrained optimization
method with spectral projected gradients, Computational Optimization and Applications
23, pp. 101–125, 2002.

[17] E. G. Birgin and J. M. Mart́ınez, Structured minimal-memory inexact quasi-Newton method
and secant preconditioners for Augmented Lagrangian Optimization, Computational Opti-
mization and Applications 39, pp. 1–16, 2008.

[18] E. G. Birgin and J. M. Mart́ınez, Improving ultimate convergence of an Augmented La-
grangian method, Optimization Methods and Software 23, pp. 177–195, 2008.

[19] E. G. Birgin and J. M. Mart́ınez, Augmented Lagrangian method with nonmonotone penalty
parameters for constrained optimization, Computational Optimization and Applications 51,
pp. 941–965, 2012.

[20] E. G. Birgin and J. M. Mart́ınez, Practical Augmented Lagrangian Methods for Constrained
Optimization, vol. 10 of Fundamentals of Algorithms, Society for Industrial and Applied
Mathematics, Philadelphia, PA, 2014. doi:10.1137/1.9781611973365.

[21] E. G. Birgin and J. M. Mart́ınez, On regularization and active-set methods for constrained
optimization, SIAM Journal on Optimization 28, pp. 1367–1395, 2018.

[22] E. G. Birgin, J. M. Mart́ınez and M. Raydan, Nonmonotone spectral projected gradient
methods on convex sets, SIAM Journal on Optimization 10, pp. 1196–1211, 2000.

[23] E. G. Birgin, J. M. Mart́ınez and M. Raydan, Algorithm 813: SPG - software for convex-
constrained optimization, ACM Transactions on Mathematical Software 27, pp. 340–349,
2001.

[24] E. G. Birgin, J. M. Mart́ınez and M. Raydan, Spectral Projected Gradient methods: Review
and Perspectives, Journal of Statistical Software 60, issue 3, 2014. doi:10.18637/jss.v060.i03.

[25] C. Cartis, N. I. M. Gould, and Ph. L. Toint, On the evaluation complexity of compos-
ite function minimization with applications to nonconvex nonlinear programming, SIAM
Journal on Optimization 21, pp. 1721–1739, 2011.

[26] N. Chatzipanagiotis and M. M. Zavlanos, On the convergence of a distributed Augmented
Lagrangian method for nonconvex optimization, IEEE Transactions on Automatic Control
62, pp. 4405–4420, 2017.

[27] A. R. Conn, N. I. M. Gould, A. Sartenaer and Ph. L. Toint, Convergence properties of an
Augmented Lagrangian algorithm for optimization with a combination of general equality
and linear constraints, SIAM Journal on Optimization 6, pp. 674–703, 1996.

[28] A. R. Conn, N. I. M. Gould, and Ph. L. Toint, Trust Region Methods, Society for Industral
and Applied Mathematics, Philadelphia, PA, 2000.

32

http://dx.doi.org/10.1137/1.9781611973365
http://dx.doi.org/10.18637/jss.v060.i03

[29] A. R. Conn, N. I. M. Gould and Ph. L. Toint, Lancelot: A Fortran package for large scale
nonlinear optimization, Springer-Verlag, Berlin, 1992.

[30] F. E. Curtis, H. Jiang, and D. P. Robinson, An adaptive Augmented Lagrangian method for
large-scale constrained optimization, Mathematical Programming 152, pp. 201–245, 2015.

[31] F. E. Curtis, N. I. M. Gould, H. Jiang, and D. P. Robinson, Adaptive Augmented La-
grangian methods: Algorithms and practical numerical experience, Optimization Methods
& Software 31, pp. 157–186, 2016.

[32] E. D. Dolan and J. J. Moré, Benchmarking optimization software with performance profiles,
Mathematical Programming 91, pp. 201–213, 2002.

[33] Z. Dostál, Optimal Quadratic Programming Algorithms, volume 23 of Optimizaton and its
Applications, Springer, New York, 2009.

[34] Z. Dostál and P. Beremlijski, On convergence of inexact Augmented Lagrangians for sep-
arable and equality convex QCQP problems without constraint qualification, Advances in
Electrical and Electronic Engineering 15, pp. 215–222, 2017.

[35] J. Eckstein and P. J. S. Silva, A practical relative error criterion for augmented Lagrangians,
Mathematical Programming 141, pp. 319–348, 2013.

[36] D. Fernández and M. V. Solodov, Local convergence of exact and inexact augmented La-
grangian methods under the second-order sufficient optimality condition, SIAM Journal on
Optimization 22, pp. 384–407, 2012.

[37] A. V. Fiacco and G.P. McCormick, Nonlinear Programming: Sequential Unconstrained
Minimization Techniques, John Wiley & Sons, New York, 1968.

[38] R. Fletcher, Practical Methods of Optimization, Academic Press, London, 1987.

[39] R. Fletcher, Augmented Lagrangians, box constrained QP and extensions, IMA Journal of
Numerical Analysis 37, pp. 1635–1656, 2017.

[40] N. I. M. Gould, D. Orban, and Ph. L. Toint, CUTEst: a constrained and unconstrained
testing environment with safe threads for mathematical optimization, Computational Op-
timization and Applications 60, pp. 545–557, 2014.

[41] G. N. Grapiglia and Y. Yuan, On the complexity of an Augmented Lagrangian method for
nonconvex optimization, arXiv:1906.05622v1.

[42] W. W. Hager and H. Zhang, A new active set algorithm for box constrained optimization,
SIAM Journal on Optimization 17, pp. 526–557, 2006.

[43] M. R. Hestenes, Multiplier and gradient methods, Journal of Optimization Theory and
Applications 4, pp. 303–320, 1969.

[44] M. Hong, Z. Q. Luo, and M. Razaviyayn, Convergence analysis of alternating direction
method of multipliers for a family of nonconvex problems, SIAM Journal on Optimization
26, pp. 337–364, 2016.

33

https://arxiv.org/pdf/1906.05622v1.pdf

[45] A. F. Izmailov, M. V. Solodov, and E. I. Uskov, Global convergence of augmented La-
grangian methods applied to optimization problems with degenerate constraints, including
problems with complementarity constraints, SIAM Journal on Optimization 22, pp. 1579–
1606, 2012.

[46] C. Kanzow and D. Steck, An example comparing the standard and safeguarded augmented
Lagrangian methods, Operations Research Letters 45, pp. 598–603, 2017.

[47] J. M. Mart́ınez and L. Qi, Inexact Newton methods for solving nonsmooth equation, Journal
of Computational and Applied Mathematics 60, pp. 127–145, 1995.

[48] M. J. D. Powell, A method for nonlinear constraints in minimization problems, in Opti-
mization, R. Fletcher (ed.), Academic Press, New York, NY, pp. 283–298, 1969.

[49] L. Qi and J. Sun, A nonsmooth version of a Newton’s method, Mathematical Programming
58, pp. 353–367, 1993.

[50] R. T. Rockafellar, Augmented Lagrange multiplier functions and duality in nonconvex pro-
gramming, SIAM Journal on Control and Optimization 12, pp. 268–285, 1974.

[51] R. T. Rockafellar, Augmented Lagrangians and applications of the proximal point algorithm
in convex programming, Mathematics of Operations Research 1, pp. 97–116, 1976.

[52] W. Sun and Y. Yuan, Optimization Theory and Methods: Nonlinear Programming, Springer,
Berlin, 2006.

[53] M. V. Solodov and B. F. Svaiter, A hybrid approximate extragradient-proximal point algo-
rithm using the enlargement of a maximal monotone operator, Set-Valued Analysis 7, pp.
323–345, 1999.

[54] M. V. Solodov and B. F. Svaiter, A hybrid projection proximal point algorith, Journal of
Convex Analysis 6, pp. 323–345, 1999.

[55] M. V. Solodov and B. F. Svaiter, An inexact hybrid generalized extragradient-proximal
point algorithm and some new results on the theory of Bregman functions, Mathematics of
Operations Research 25, pp. 214–230, 2000.

[56] A. Wächter and L. T. Biegler, On the implementation of an interior-point filter line-search
algorithm for large-scale nonlinear programming, Mathematical Programming 106, pp. 25–
57, 2006.

[57] HSL. A collection of fortran codes for large scale scientific computation, http://www.hsl.
rl.ac.uk/.

34

http://www.hsl.rl.ac.uk/
http://www.hsl.rl.ac.uk/

	Introduction
	Augmented Lagrangian
	Complexity
	Complexity under boundedness of the sequence of penalty parameters
	Complexity using a big- stopping criterion
	Complexity stopping at probable local minimizers of infeasibility measure

	Complexity of the box-constraint solver
	Decrease within the faces
	Decrease when leaving a face
	Complexity of Algorithm 4.1

	Implementation
	Implementation of the Augmented Lagrangian framework
	Implementation of the box-constraint solver

	Numerical experiments
	Conclusions

