
A Newton-like method with mixed factorizations and

cubic regularization for unconstrained minimization∗

E. G. Birgin† J. M. Mart́ınez‡

June 25, 2018§

Abstract

A Newton-like method for unconstrained minimization is introduced in the present work.
While the computer work per iteration of the best-known implementations may need several
factorizations or may use rather expensive matrix decompositions, the proposed method uses
a single cheap factorization per iteration. Convergence and complexity and results, even in
the case in which the subproblems’ Hessians are far from being Hessians of the objective
function, are presented. Moreover, when the Hessian is Lipschitz-continuous, the proposed
method enjoys O(ε−3/2) evaluation complexity for first-order optimality and O(ε−3) for
second-order optimality as other recently introduced Newton method for unconstrained op-
timization based on cubic regularization or special trust-region procedures. Fairly successful
and fully reproducible numerical experiments are presented and the developed corresponding
software is freely available.

Keywords: Smooth unconstrained minimization, Bunch-Parlett-Kaufman factorizations,
regularization, Newton-type methods.

1 Introduction

The unconstrained optimization problem, given by

Minimizef(x) subject to x ∈ Rn, (1)

where f : Rn → R is a continuous function, is a classical problem of numerical mathematics.
In the last few years, following [34], many Newton-like algorithms that apply to problem (1)
and exhibit worst-case evaluation complexity were developed. Newton-like algorithms based on
regularization [7, 8, 9, 10, 11, 19, 26, 32, 34] or non-standard trust regions [15, 30] enjoy worst-
case evaluation complexity O(ε−3/2), which means that the number of functional evaluations that
are necessary to obtain a gradient with norm smaller than ε is bounded above by a constant

∗This work was supported by FAPESP (grants 2013/05475-7, 2013/07375-0, and 2016/01860-1) and CNPq
(grants 309517/2014-1 and 303750/2014-6).
†Dept. of Computer Science, Institute of Mathematics and Statistics, University of São Paulo, Rua do Matão,

1010, Cidade Universitária, 05508-090, São Paulo, SP, Brazil. email: egbirgin@ime.usp.br
‡Dept. of Applied Mathematics, Institute of Mathematics, Statistics, and Scientific Computing, State Univer-

sity of Campinas, 13083-859, Campinas, SP, Brazil. email: martinez@ime.unicamp.br
§Revision made on December 4, 2018.

1

times ε−3/2. Extensions in which Hölder, instead of Lipschitz, conditions are assumed were given
in [25, 12, 31]. In 2017, the papers [32], [3, 4], and [35] introduced methods in which the number
of factorizations is equal to the number of (successful) iterations. The methods introduced in
[3, 4] and [35] rely on line searches, although special iterations need the computation of the
leftmost eigenvalue of the current Hessian. In [32] the spectral QDQT factorization is used to
mimic the Levenberg-Marquardt path and special terms to approximate third-order derivatives
are employed.

Line-search methods are, of course, very attractive. In general, the line search follows the
Newton direction {−t∇2f(x)−1∇f(x), 0 ≤ t ≤ 1}, trying firstly t ≈ 1. When the unitary step
is admissible quadratic convergence is generally obtained [17] and, in practice, convergence is
very fast. Moreover, at each iteration (or “successful iteration” using the trust-region terminol-
ogy [13]) only one Hessian factorization is needed whereas several functional evaluations may be
necessary to obtain sufficient decrease. However, when the steplength t becomes small, the ad-
vantages of the Newton direction tend to disappear because the Newton direction is not optimal
under a small norm constraint. For example, a very ill-conditioned Hessian obviously affects the
accuracy of the unitary Newton step, and, in the line search approach, such inaccuracy remains
active all along the backtracking procedure since, roughly speaking, the whole direction (not
only its size) may be “wrong”.

This fact motivated the introduction of trust-region and regularization methods [13, 20, 29,
36], which preserve Newton steps when they are acceptable in terms of functional reduction,
but rely on (close to) steepest descent steps for obtaining trial points near the current iterate.
Unfortunately, in the classical trust-region approach one may need more than one Cholesky
decomposition for computing each trial point, given by the approximate solution of a trust-region
subproblem [33]. Moreover, an additional trust-region subproblem needs to be approximately
solved whenever the trial point does not satisfy the descent requirement of the main algorithm.
A similar cost is involved in the solution of cubic regularization subproblems employing an
algorithm introduced by Cartis, Gould, and Toint [10, 11, 24].

In this paper, we aim to introduce an efficient method with the trust-region (or regulariza-
tion) flavor in the sense that when the “backtracking” process is activated (that is, when the
regularization parameter is increased), not only the trial point becomes closer to the current
point, but also the direction becomes closer to a conservative gradient-like direction. More pre-
cisely, the goal of the present work is to introduce a method for unconstrained minimization
that (a) employs only cheap (Cholesky-like) factorizations, with no eigenvalue calculation of
the whole Hessian approximation at all; (b) employs only one factorization per iteration; (c)
enjoys O(ε−3/2) evaluation complexity for first-order optimality and O(ε−3) for second-order
optimality when the Hessian is Lipschitz-continuous; and (d) enjoys convergence to first-order
optimality and admits a suitable complexity analysis in the case that neither Lipschitz nor
Hölder conditions hold for gradients or Hessians.

For these purposes, we introduce Mixed Factorizations based on Bunch-Parlett-Kaufman de-
compositions in order to define a new algorithm in which full eigenvalue decompositions are not
used and the number of factorizations, whose difficulty is similar to Cholesky decompositions,
is equal to the number of (successful) iterations. Cubic scaled regularizations allow us to prove
O(ε−3/2) complexity using Lipschitz-continuity of the Hessian, as expected. Moreover, in the
present research we addressed the problem of proving convergence and complexity for the situ-
ation in which the Hessians of the quadratic models are not accurate Hessian approximations,
without Lipschitz (or even Hölder) assumptions on first- or second-order derivatives. For this

2

case, we prove that gradients as small as desired are obtained with complexity bounds that, as
expected, are worse than the ones that may be obtained with Lipschitz or Hölder assumptions
but indicate that efficient practical implementations may be obtained. We have in mind fea-
sibility problems that arise in constrained optimization, in which the Hessian of the objective
function is discontinuous on the boundary of the feasible region.

The rest of this paper is organized as follows. In Section 2, we define Mixed Factorizations,
we describe the Mixed Factorization based on Bunch-Parlett-Kaufman (BPK) decompositions,
and we introduce the unconstrained minimization algorithm which is the main subject of the
paper. The definition of the algorithm refers to an arbitrary Mixed Factorization, although in
practical terms we focus on the one based on BPK. At each iteration, the introduced algorithm
solves a cubic regularized subproblem, the solution of which is described in Section 3. BPK
decompositions were used by Gould and Nocedal, in a different way, to define a method with
a variable trust region norm which employs only one factorization per iteration, as the method
presented in the present paper. See [22] and [13, §7.7]. In Section 4, we begin proving conver-
gence in the sense that lim inf ‖∇f(xk)‖ = 0 for the sequence generated by the minimization
algorithm using only differentiability of the objective function. Existence and uniform continuity
of first-order derivatives is assumed but not Hölder conditions. The convergence proof involves
complexity arguments, in the sense that it is preceded by the proof that given an arbitrary ε > 0,
the number of consecutive iterations at which ‖∇f(xk)‖∞ ≥ ε cannot exceed a quantity Nε that
depends on ε, besides algorithm constants and characteristics of the problem. Obviously, Nε does
not have the form cε−q, as in the case in which Lipschitz or Hölder assumptions are made. We
finish the section proving first-order complexity O(ε−3/2) and second-order complexity O(ε−3)
in the case that Lipschitz-continuity of the Hessian is assumed and, in addition, asymptotically
quadratic and superlinear convergence results. In Section 5, we report experiments involving all
the unconstrained problems of the CUTEst collection [23]. In order to guarantee reproducibility
of the results, the codes that implement the algorithms and these experiments are available in
http://www.ime.usp.br/~egbirgin/. In Section 6 we derive conclusions and we sketch lines
for future research.

Notation. g(x) denotes the gradient of f at x. We say that a matrix Q ∈ Rn×n is orthonormal
if QQT is the Identity. The i-th component of a vector v is denoted vi or [v]i. If v ∈ Rn, we
denote |v| the vector whose components are |v1|, . . . |vn|. sg(a) ∈ {−1, 1} represents the sign of
a ∈ R. ‖ · ‖ denotes the Euclidean norm.

2 Mixed factorizations and minimization algorithm

Let H ∈ Rn×n be a symmetric matrix. If H = MDMT , where M is non-singular and D is
diagonal, we say that MDMT is a Mixed Factorization of H. In practice, we expect that systems
of the form Mv = b or MT v = b should be easy to solve, say, involving at most O(n2) flops. The
case in which MDMT is the spectral decomposition of H, being M orthonormal, was considered
in [7, 32] in the context of cubic regularization methods for unconstrained minimization. In this
paper, we are mainly interested in the Mixed Factorization described below, which is based on
the Bunch-Parlett-Kaufman decomposition.

Given a symmetric matrix H, we denote by PbpkLbpkDbpkL
T
bpkP

T
bpk its Bunch-Parlett-Kauf-

man factorization [21]. Then, Pbpk is a permutation, Lbpk is lower-triangular with unitary diag-

3

http://www.ime.usp.br/~egbirgin/

onal, and Dbpk is a block-diagonal matrix with 1× 1 and 2× 2 blocks called [Dbpk]1, [Dbpk]2, . . .
here. For each 2× 2 block [Dbpk]i, we compute Qi and Di ∈ R2×2, where Qi is orthonormal, Di

is diagonal, and [Dbpk]i = QiDiQ
T
i . Therefore, we may write

H = MDMT ,

where M is the product of PbpkLbpk times a finite number of orthonormal matrices (as many
as 2× 2 blocks in Dbpk) that affect only two rows of D, and D is diagonal. The matrix M does
not need to be explicitly computed, being only necessary to store the permutation Pbpk, the
lower-triangular matrix Lbpk, and the 2 × 2 orthonormal matrices Qi used to diagonalize the
2× 2 blocks [Dbpk]i of Dbpk.

It is worth noting that, since all the 2×2 orthonormal matrices Qi can be stored together in a
single n-dimensional array, if the strict lower-triangle of H is overwritten with Lbpk and the 2×2
orthonormal matrices are saved in the diagonal of H then only two additional n-dimensional
arrays (one for the permutation matrix Pbpk and another for the diagonal matrix D) are needed
to store the whole BPK-based MDMT Mixed Factorization. The computation of this BPK-
based Mixed Factorization of H is much cheaper than the computation of the spectral QDQT

factorization and, in addition, is able to explore efficiently the sparsity of H. See subroutines
dsytrf rk from [1] and MA57 from [37] for the computation of Lbpk and Dbpk.

In the current section as well as in Sections 3 and 4, MDMT denotes an arbitrary Mixed
Factorization of a symmetric matrix H. The BPK-based Mixed Factorization described above
and the spectral QDQT factorization used in [7] and [32] are particular cases that will be con-
sidered in the numerical experiments.

Algorithm 2.1. Let α > 0, x0 ∈ Rn, κ̄ ≥ κ > 1, and σbigini ≥ σmin > 0 be given. Set σ ← 0
and σbig ← σbigini.

Step 1. Compute a symmetric n× n matrix Hk and its Mixed Factorization MkDkM
T
k .

Step 2. Consider the problem

Minimize g(xk)T s+
1

2
sTHks+ σ‖MT

k s‖33. (2)

Step 3. If (2) has no solution (so σ = 0), choose

σnew ∈ [σmin, σbig], (3)

update σ ← σnew, and go to Step 2. Otherwise, let strial ∈ Rn be a solution to (2).

Step 4. Test the sufficient descent condition

f(xk + strial) ≤ f(xk)− α‖MT
k strial‖3∞. (4)

If (4) is fulfilled, define sk = strial, x
k+1 = xk + sk, σk = σ, update k ← k + 1 and

σbig ← max{σbig, σk}, set σ ← 0, and go to Step 1. Otherwise, define

σnew ∈
{

[σmin, σbig], if σ = 0,
[κσ, κ̄σ] , if σ > 0.

(5)

update σ ← σnew, and go to Step 2.

4

Algorithm 2.1 computes a single Mixed Factorization per iteration. When the trial increment
based on the regularization parameter σ = 0 is rejected, the new regularization parameter is
chosen in the interval [σmin, σbig], where σbig is initialized as σbigini and is updated at every
iteration.

In the dense case, classical trust-region methods [13] and the best-known cubic regularization
methods [10, 11] use at least one Cholesky factorization per function evaluation and a variable
number of functional evaluations per iteration. Note that we adopt here the criterion of calling
“iteration” to the whole process that leads from xk to a trial point at which the functional value
decreases satisfying (4), differently from the traditional trust-region terminology for which each
function evaluation counts as an iteration and iterations are classified in successful and unsuc-
cessful [13]. In [22], computing Mk as in the BPK-based Mixed Factorization, the subproblem
solved for obtaining each trial approximation is

Minimize g(xk)T s+
1

2
sTHks subject to sTMk|Dk|MT

k s ≤ ∆, (6)

where |Dk| is the diagonal matrix whose entries are the moduli of the entries of Dk. Therefore,
in the convex case the constraint of (6) reduces to sTHks ≤ ∆. As a consequence, the method
based on (6) is a line-search method when Hk is positive definite. More recently, Bergou, Diouane
and Gratton [3, 4] introduced regularized subproblems with the “energy norm” defined by Hk

in such a way that the associated regularized path is a segment and, after some modifications,
suitable complexity results are obtained. It is worth noting that convergence and complexity
proofs in [3, 4, 22] rely on the equivalence property of norms in finite dimension, as it will be
the case of the algorithm introduced in the present paper.

3 Solving the subproblem

In this section we consider the solution of subproblem (2) at Step 2 of Algorithm 2.1. Writing

y = MT
k s and g = M−1k g(xk), (7)

subproblem (2) is equivalent to

Minimize gT y +
1

2
yTDky + σ

n∑
i=1

|yi|3. (8)

Problem (8) is entirely separable and its solution may be obtained trivially, solving one-dimensional
quadratic equations.

Consider first the case σ = 0. In this case, problem (8) consists of minimizing gT y+ 1
2y

TDky.
If some entry of Dk is negative, this problem has no solutions. If some entry is zero and the
corresponding entry of g is not zero, the problem is unsolvable too. So, the problem is solvable
only when all the entries of Dk are non-negative and, for each null entry (Dk)ii, the corresponding
g
i

is null too. In the latter case, there are infinitely many values of yi that solve the i-th one-
dimensional sub-subproblem and we may choose yi = 0 in the algorithm. When (Dk)ii is positive
the i-th one-dimensional sub-subproblem has only one solution, given by yi = −g

i
/(Dk)ii.

Now consider the case in which σ > 0. Clearly, problem (8) can be decomposed into n
different one-dimensional problems with unknowns y1, . . . , yn. In order to simplify the notation,

5

let us write y = yi, g = g
i
, and d = (Dk)ii, so that each one-dimensional subproblem has the

form
Minimize gy + dy2/2 + σ|y|3. (9)

If g ≤ 0 and y < 0 we clearly have that the objective function of (9), evaluated at y is not
smaller than the same objective function evaluated at −y. Therefore, when g ≤ 0, (9) admits a
non-negative minimizer. Therefore, if g ≤ 0, problem (9) is equivalent to

Minimize gy + dy2/2 + σy3 subject to y ≥ 0. (10)

A solution to (10) can be obtained annihilating the derivative with respect to y, i.e. solving the
equation

3σy2 + dy + g = 0,

and considering the non-negative root given by

y =

√
d2 − 12σg − d

6σ
=

√
d2/σ − 12g

6
√
σ

− d

6σ
. (11)

Note that, in (11), y decreases as a function of d. Analogously, if g ≥ 0, the minimizer of (9)
must be non-positive, so that the problem becomes

Minimize gy + dy2/2− σy3 subject to y ≤ 0, (12)

whose solution is given by the non-positive root of its objective function derivative, i.e.

y = −

√
d2 + 12σg − d

6σ
= −

√
d2/σ + 12g

6
√
σ

+
d

6σ
. (13)

Analogously to (11), in this case y increases as a function of d. Note that, if g = 0, problem (9)
is symmetric and, therefore, we can choose between the non-negative solution (11) and the
non-positive solution (13), that in this case reduces to y = 0 if d ≥ 0 and to y = ∓d/(3σ) if
d < 0.

Summing up, regarding (9), we have that (i) if σ = d = g = 0 then its objective function is
the null function and any y ∈ R is a solution; (ii) if σ = 0 and d > 0, its solution is given by
y = −g/d; and (iii) if σ > 0 then its solution is given by

y = sg(g)

−
√
d2 + 12σ|g| − d

6σ

 = sg(g)

−
√
d2/σ + 12|g|

6
√
σ

+
d

6σ

 , (14)

where |y| decreases as a function of d. In the remaining cases (iv) σ = 0 and d < 0 and (v)
σ = 0, d = 0, and g 6= 0, the problem has no solution. The relation (14) shows that if σ is big
or d = 0 then y ≈ O(1/

√
σ); while, when σ is small, if d < 0 then y ≈ O(1/σ) and if d > 0 then

y approaches the solution to (9).
Figure 1 represents the solutions to (8) for σ ≥ 0 in a problem where Dk is positive definite

and n = 2. The ellipses are level sets of the quadratic objective function gT y + 1
2y

TDky, with

g = (−12.5,−50)T and Dk = diag(12.5, 50). The minimizer of the quadratic (center of the

6

Figure 1: Solutions to (8) for σ ≥ 0.

ellipses) is (1, 1)T and the convex region centered at the origin represents the ball ‖y‖3 ≤ 0.43.
The curve that joins the origin with the center of the ellipses is the set of solutions to (8)
for σ ≥ 0. According to (14), the points of this curve with abscissas 1, 0.5, 0.25, 0.1, 0.01,
and 0 correspond to σ = 0, 8.33, 50, 375, 41250, and ∞, respectively. The tangent vector to
the curve of solutions to (8) at the origin is proportional to (sg(g

1
)|g

1
|1/2, . . . sg(g

n
)|g

n
|1/2)T ,

being (3.54, 7.07)T in Figure 1. This is the steepest descent direction associated with the norm
‖ · ‖3. Comparing this steepest descent direction with the one corresponding to ‖ · ‖2 we see
that the components smaller than 1 (in modulus) are increased whereas the components bigger
than 1 are decreased. Moreover, the moduli of all the components of the steepest direction with
respect to ‖ · ‖p tend to 1 as p tends to infinity. In some sense this feature reveals a tendency to
independence with respect to scaling of variables.

4 Convergence and complexity

Algorithm 2.1 was conceived regarding economy of calculations in regularized Newton-like meth-
ods that exhibit worst-case complexity O(ε−3/2). In the usual approach, the matrix Hk is the
Hessian of the objective function f or a close approximation in the sense of [10] and [11]. How-
ever, for many reasons, we may wish to employ different quadratic models for which no guarantee
of closeness to the true Hessian is guaranteed. Sometimes, the Hessian of the objective function
does not exist or it is discontinuous on some regions of Rn. This is the case of the objective
functions in the subproblems that arise in some Penalty and Augmented Lagrangian methods
for constrained optimization. See [6]. It is natural, therefore, to ask for the convergence and,
perhaps, complexity properties of the algorithm in those cases. This is the first question ad-
dressed in this section. We are going to prove that the decrease of the objective function at
each iteration at which the gradient norm is greater than ε is bigger than a strictly positive
quantity that only depends on ε, besides characteristics of the problem and parameters of the
algorithm. For proving this result we will not rely on Lipschitz or Hölder conditions, neither
for the Hessian, nor for the gradient. Of course, the complexity result that arises in this case
is not of the type O(ε−q) since the assumptions used here are far weaker than the ones that
are necessary for proving strong complexity theorems. However, they are useful to show that,

7

in spite of big inaccuracies of Hessian computations, or even disregarding such computations
at all, we still maintain the essential theoretical properties that are inherent in unconstrained
minimization algorithms. Last, but not least, we believe that it is always relevant to analyze
the properties of algorithms under several types of inaccuracies. Lack of theoretical robustness
under inaccuracies could be a signal of practical inefficiency since, as a matter of fact, we never
run “exact” algorithms in real-life computations.

Proposition 4.1 is a technical result that relates the size of a computed trial increment sk(σ)
to the gradient at xk and the matrices Mk and Dk.

Proposition 4.1 For all σ > 0, let sk(σ) be a solution to (2). Then sk(σ) is a solution to

Minimize g(xk)T s+
1

2
sTHks subject to ‖MT

k s‖3 ≤ ‖MT
k sk(σ)‖3. (15)

If σ > 0, and MkDkM
T is a Mixed Factorization of Hk,

‖MT
k sk(σ)‖∞ ≤

√
‖Dk‖2/σ + 12‖M−1k ‖‖g(xk)‖

6
√
σ

+
‖Dk‖

6σ
, (16)

‖sk(σ)‖∞ ≤ ‖M−Tk ‖∞

√
‖Dk‖2/σ + 12‖M−1k ‖‖g(xk)‖

6
√
σ

+
‖Dk‖

6σ

 , (17)

and
lim
σ→∞

‖sk(σ)‖ = 0. (18)

Moreover,

‖MT
k sk(σ)‖ ≥ ‖MT

k sk(σ)‖3 ≥ ‖MT
k sk(σ)‖∞ ≥

√
‖Dk‖2+12σ‖g(xk)‖∞/‖Mk‖∞−‖Dk‖

6σ
(19)

and

‖sk(σ)‖ ≥ 1

‖MT
k ‖

√
‖Dk‖2 + 12σ‖g(xk)‖∞/‖Mk‖∞ − ‖Dk‖

6σ
. (20)

Finally, for all i such that (Dk)ii < 0,

‖MT
k sk(σ)‖ ≥ ‖MT

k sk(σ)‖3 ≥ ‖MT
k sk(σ)‖∞ ≥

|(Dk)ii|
3σ

(21)

and

‖sk(σ)‖ ≥ |(Dk)ii|
3‖MT

k ‖σ
. (22)

Proof: Assume that s is a feasible point of (15). By the definition of sk(σ), we have that

g(xk)T sk(σ) +
1

2
sk(σ)THksk(σ) + σ‖MT

k sk(σ)‖33 ≤ g(xk)T s+
1

2
sTHks+ σ‖MT

k s‖33.

Then, (15) follows from ‖MT
k s‖33 ≤ ‖MT

k sk(σ)‖33. The inequality (16) follows from (14) with
y = MT

k sk(σ), (17) follows from (16), and (18) is a consequence of (17).

8

Since σ > 0, from (14), we deduce that (Dk)ii < 0 implies that

|yi| ≥
|(Dk)ii|

3σ
.

This implies (21) and (22). If ‖g(xk)‖ = 0, (19) and (20) follow trivially. In any case, since |y|
decreases as a function of d, by (14), we have that

|[MT
k sk(σ)]i| ≥

√
‖Dk‖2 + 12σ|[M−1k g(xk)]i| − ‖Dk‖

6σ

for all i = 1, . . . , n; and, applying this inequality to the component that maximizes the modulus
of [M−1k g(xk)]i, we get

‖MT
k sk(σ)‖∞ ≥ |[MT

k sk(σ)]i| ≥

√
‖Dk‖2 + 12σ‖[M−1k g(xk)‖∞ − ‖Dk‖

6σ
.

Thus, (19) is obtained and

‖sk(σ)‖ ≥ 1

‖MT
k ‖

√
‖Dk‖2 + 12σ‖[M−1k g(xk)‖∞ − ‖Dk‖

6σ
.

This completes the proof. 2

The bounding results proved in Proposition 4.1 are condensed in the following corollary.

Corollary 4.1 Assume that cbound > 0 is such that

cbound ≥ max
{
‖Dk‖, ‖Mk‖, ‖M−1k ‖, ‖M

−T
k ‖∞, ‖Mk‖∞, ‖g(xk)‖1

}
. (23)

Then,

‖MT
k sk(σ)‖∞ ≤

√
c2bound/σ + 12cbound‖g(xk)‖

6
√
σ

+
cbound

6σ
(24)

and

‖sk(σ)‖∞ ≤ cbound

√
c2bound/σ + 12cbound‖g(xk)‖

6
√
σ

+
cbound

6σ

 . (25)

Moreover, if ε ≥ 0 is such that ‖g(xk)‖∞ ≥ ε,

‖MT
k sk(σ)‖ ≥ ‖MT

k sk(σ)‖3 ≥ ‖MT
k sk(σ)‖∞ ≥

√
c2bound + 12σε/cbound − cbound

6σ
(26)

and

‖sk(σ)‖ ≥ 1

cbound

√
c2bound + 12σε/cbound − cbound

6σ
. (27)

9

Finally, if ε2 > 0 and i ∈ {1, . . . , n} is such that (Dk)ii ≤ −ε2,

‖MT
k sk(σ)‖ ≥ ‖MT

k sk(σ)‖3 ≥ ‖MT
k sk(σ)‖∞ ≥

ε2
3σ

(28)

and
‖sk(σ)‖ ≥ ε2

3cboundσ
. (29)

Proof: The inequalities (24), (25), (26), (27), (28), and (29) follow from (16), (17), (19), (20),
(21), and (22) using elementary algebraic properties. 2

Let us show that the hypothesis (23), which states that several quantities are bounded
independently of k, is plausible. The boundedness of g(xk) takes place, by continuity, whenever
the sequence {xk} is bounded. A sufficient condition for the boundedness of this sequence
is the boundedness of the level set defined by f(x0). If Hk is a Hessian, under the same
assumptions that guarantee the boundedness of g(xk), the boundedness of Hk holds; while
if Hk is an arbitrary matrix, it is reasonable to assume that Hk is bounded. Therefore, the
boundedness of Dk will be guaranteed by the identity Dk = M−1k HkM

−T
k and the boundedness

of M−1k and M−Tk . The existence or boundedness of H−1k or D−1k will never be required. It
remains to analyze the boundedness of Mk and M−1k . It is clear at this point that the bound
cbound in (23) is the maximum of several bounds that are not being named independently with the
only purpose of simplifying the notation. Moreover, it should be stressed that the boundedness
of Mk and M−1k does not depend on assumptions on the problem but on assumptions on the
factorization itself, as we now describe. If we adopt the spectral Hk = MkDkM

T
k decomposition,

where Mk is orthogonal and Dk diagonal then we are done since M−1k = MT
k and ‖Mk‖ = 1. If

we adopt a BPK-based Mixed Factorization, we have that, based on the Bunch-Parlett-Kaufman
factorization [21] Hk = PbpkLbpkDbpkL

T
bpkP

T
bpk, the factorization Hk = MkDkM

T
k is built, where

Dk is a diagonal matrix and Mk is the product of the permutation matrix Pbpk, the unitary-
diagonal lower-triangular factor Lbpk, and as many orthogonal matrices as 2 × 2 blocks Dbpk

has. This means that the boundedness of Mk and M−1k follows from the boundedness of Lbpk

and L−1bpk. The boundedness of Lbpk is guaranteed independently of the size and the entries
of the matrix Hk. (See [28, §11] and the references therein, where different bounds for Lbpk,
that depends on the adopted pivoting strategy, are given). By Neumann series, if we write
Lbpk = I − T , we have that L−1bpk =

∑∞
`=0 T

` =
∑n−1

`=0 T
`, where the last equality follows from

the fact that Tn = 0, a consequence of T being strictly lower triangular and, thus, nilpontent.
This shows that the boundedness of Lbpk implies the boundedness of L−1bpk.

Now we wish to prove that the method is well defined. This means that, given xk such
that g(xk) does not vanish, after a finite number of steps, we find a point that satisfies the
sufficient descent condition (4). In addition, we will compute the minimum reduction that is
obtained at each iteration k where g(xk) is not null. Later, this result will be used to compute
the maximal number of iterations that may occur in which the gradient norm is bigger than a
given quantity and the convergence of the gradient norms to zero. We use the only assumption
that f is differentiable at xk.

Assumption A1 We say that this assumption holds at an iterate xk generated by Algorithm 2.1
if there exists a non-decreasing function ϕ : R+ → R+ such that ϕ is continuous at the origin,
ϕ(0) = 0, and, for all s ∈ Rn,

f(xk + s) ≤ f(xk) + g(xk)T s+ ϕ(‖s‖∞)‖s‖∞. (30)

10

The non-decreasing assumption for ϕ is not restrictive. In fact, if Assumption A1 holds for
a function ϕ that may decrease, it also holds replacing ϕ(t) with sup{ϕ(v), 0 ≤ v ≤ t} which
is obviously non-decreasing. A sufficient condition for the fulfillment of Assumption A1 is the
continuity of the partial first-order derivatives at xk. See [14, Vol.II, p.41]. A sufficient condition
for the fulfillment of Assumption A1 with the same ϕ for all xk is the uniform continuity of the
first-order partial derivatives of f .

For proving Theorem 4.1, we will assume that g(xk) is not null. If ‖g(xk)‖ = 0 and some
entry of Dk is negative the iteration may not be well defined, in the sense that the sufficient
condition (4) may not hold, independently of the size of the regularization parameter. This
would happen, for example, if xk is a minimizer. However, as we will see later, if Hk is the true
Hessian at xk, the iteration is well defined even if g(xk) = 0 and some (Dk)ii is zero.

Theorem 4.1 Assume that, at iteration k, Assumption A1 holds, ‖g(xk)‖∞ ≥ ε > 0, MkDkM
T
k

is a Mixed Factorization of Hk, and cbound > 0 satisfies (23). Then, there exists σ̄ ≥ max{σmin, 1},
only dependent on ε, cbound, and algorithmic parameters, such that, if sk(σ) is a solution to (2)
and σ ≥ σ̄, we have that

f(xk + sk(σ)) ≤ f(xk)− 1

4
√

3σc
3/2
bound

ε3/2 (31)

and
f(xk + sk(σ)) ≤ f(xk)− α‖MT

k sk(σ)‖3∞. (32)

Proof: For simplicity let us call x = xk, g = g(xk), H = H(xk), D = Dk, s(σ) = sk(σ), and
M = Mk. Recall that, by definition, M is nonsingular. Subproblem (2) is then given by

Minimize gT s+
1

2
sTHs+ σ‖MT s‖33. (33)

Defining, as in (7),
y = MT s (34)

and
g = M−1g, (35)

we have that (33) is equivalent to

Minimize gT y +
1

2
yTDy + σ‖y‖33. (36)

If σ > 0 and y(σ) is a solution to (36), for i = 1, . . . , n, since |[y(σ)]i| decreases as a function
of Dii, by (14) and (23), we have that

|[y(σ)]i| =

∣∣∣∣∣∣
√
D2
ii + 12σ|g

i
| −Dii

6σ

∣∣∣∣∣∣ =

√
D2
ii + 12σ|g

i
| −Dii

6σ
=

√
D2
ii/σ + 12|g

i
|

6
√
σ

− Dii

6σ

≥

√
c2bound/σ + 12|g

i
|

6
√
σ

− cbound
6σ

≥

√
12|g

i
|

6
√
σ
− cbound

6σ
.

(37)

11

Therefore, since g
i

[y(σ)]i ≤ 0 for all i, by (37), (35), and (23),

gT y(σ) = −
n∑
i=1

|g
i
||[y(σ)]i| ≤ −

n∑
i=1

|g
i
|

√

12|g
i
|

6
√
σ
− cbound

6σ

= − 1√

3σ

(
n∑
i=1

|g
i
|3/2
)

+
cbound

6σ
‖g‖1 ≤ −

1√
3σ
‖g‖3/2∞ +

cbound
6σ
‖g‖1

≤ − 1√
3σ

(
‖g‖∞
cbound

)3/2

+
c3bound

6σ
.

(38)

Thus, by ‖g‖∞ ≥ ε,

gT y(σ) ≤ 1√
σ

(
− 1
√

3c
3/2
bound

ε3/2 +
c3bound
6
√
σ

)
. (39)

Taking

σ̄ ≥
c9bound

3ε3
(40)

and σ ≥ σ̄, we obtain that

c3bound
6
√
σ
≤ 1

2

(
1

√
3c

3/2
bound

ε3/2

)
.

Therefore, by (39) and under the bound (40),

gT y(σ) ≤ − 1

2
√

3σc
3/2
bound

ε3/2 (41)

and, since, by (34) and (35), gT y(σ) = gT s(σ),

gT s(σ) ≤ − 1

2
√

3σc
3/2
bound

ε3/2. (42)

Therefore, by Assumption A1 and (42), for σ ≥ σ̄,

f(x+ s(σ))− f(x) ≤ − 1

2
√

3σc
3/2
bound

ε3/2 + ϕ(‖s(σ)‖∞)‖s(σ)‖∞.

Then, by (25) and assuming
σ ≥ σ̄ ≥ σmin, (43)

we have that

f(x+ s(σ))− f(x) ≤ − 1

2
√

3σc
3/2
bound

ε3/2 + ϕ(ν(σ))ν(σ), (44)

where

ν(σ) = cbound

√
c2bound/σmin + 12cbound‖g‖

6
√
σ

+
cbound

6σ

 .

12

Defining

caux = cbound

√
c2bound/σmin + 12c2bound

6
+
cbound

6

 , (45)

if, in addition to (40),
σ ≥ σ̄ ≥ 1 (46)

we obtain that σ ≥
√
σ and, thus, by (23) and (44), we have that

f(x+ s(σ))− f(x) ≤ 1√
σ

(
− 1

2
√

3c
3/2
bound

ε3/2 + caux ϕ

(
caux√
σ

))
. (47)

Let taux > 0 be such that, for all t ∈ [0, taux],

cauxϕ(t) ≤ 1

2

(
1

2
√

3c
3/2
bound

ε3/2

)
. (48)

Taking

σ̄ ≥
(
caux
taux

)2

=

cbound

√
c2bound/σmin + 12c2bound + cbound

6taux

2

, (49)

we obtain that, for all σ ≥ σ̄,
caux√
σ
≤ taux.

Thus, for all σ ≥ σ̄, (31) follows from (47) and (48).
By (23) and (24), for σ ≥ 1,

‖MT s(σ)‖∞ ≤

√
c2bound/σ + 12cbound‖g‖

6
√
σ

+
cbound
6
√
σ

≤

√
c2bound + 12c2bound

6
√
σ

+
cbound
6
√
σ

=

(√
13 + 1

6

)
cbound√

σ
<
cbound√

σ
.

Therefore,

α‖MT s(σ)‖3∞ < α
c3bound
σ3/2

. (50)

Taking

σ̄ ≥ α
4
√

3c
9/2
bound

ε3/2
, (51)

we have that, for all σ ≥ σ̄,

α
c3bound
σ3/2

≤ 1

4
√

3σc
3/2
bound

ε3/2

and (32) follows for all σ ≥ σ̄ from (31) and (50). This completes the proof. (The σ̄ in the thesis
must satisfy (40,43,46,49,51).) 2

The following corollary states that, whenever the current gradient is non-null, the main
iteration of the algorithm finishes in finite time satisfying the sufficient descent criterion.

13

Corollary 4.2 Assume that, at iteration k, Assumption A1 holds, ‖g(xk)‖∞ > 0, MkDkM
T
k is

a Mixed Factorization of Hk, and cbound > 0 satisfies (23). Then the k-th iteration finishes with
the fulfillment of (4) after a finite number of increases of the regularization parameter σ.

The following theorem assumes that at the first kε iterations the gradient norm is not smaller
than ε and that f(xk) is bigger than a target ftarget. As a consequence of the previous results, it is
proved that kε cannot be bigger than a quantity that depends on the target, ε, and algorithmic
parameters. This property is similar to classical first-order complexity properties, with the
difference that, in the absence of Lipschitz conditions, the form of the dependence with respect
to ε is not known.

Theorem 4.2 Assume that, for all k = 0, 1, . . . , kε, Assumption A1 holds with the same func-
tion ϕ, MkDkM

T
k is a Mixed Factorization of Hk, cbound > 0 satisfies (23), ‖g(xk)‖∞ ≥ ε > 0,

and f(xk) > ftarget. Then, kε is not bigger than (f(x0)− ftarget) times a positive quantity that
only depends on ε, cbound, and algorithmic parameters.

Proof: For all k ∈ {0, 1, . . . , kε} the assumptions of Theorem 4.1 hold. Then, by Corollary 4.2,

f(xk+1) = f(xk + sk) ≤ f(xk)− α‖MT
k s

k‖3∞ (52)

for all k = 0, 1, . . . , kε. Moreover, by (3), (5), the updating rule of σbig in Algorithm 2.1, and
Theorem 4.1,

σk ≤ σbig = max{σbigini, σ0, σ1, . . . , σk−1} ≤ max{σbigini, κ̄σ̄},

where σ̄, that only depends on ε, cbound, and algorithmic parameters, is given in Theorem 4.1.
Therefore, defining σ̂ = max{σbigini, κ̄σ̄}, by (26),

‖MT
k s

k‖∞ ≥

√
c2bound + 12σ̂ε/cbound − cbound

6σ̂
=
cbound

6σ̂

[√
1 + 12σ̂ε/c3bound − 1

]
,

for all k = 0, 1, . . . , kε, and, by (52),

f(xk+1) ≤ f(xk)− α
(
cbound

6σ̂

[√
1 + 12σ̂ε/c3bound − 1

])3

. (53)

This implies that, for all k = 0, 1, . . . , kε, f(xk)− f(xk+1) is bounded below by a positive quan-
tity that only depends on ε, cbound, and algorithmic parameters. This completes the proof. 2

Theorem 4.2 says that, given ε > 0 and ftarget ∈ R, after K(ε) iterations Algorithm 2.1
finds a point xk such that ‖g(xk)‖∞ ≤ ε or f(xk) ≤ ftarget. The cost of that process is, at
most, the computation of K(ε) gradients and functional values at the iterates xk, plus the
computation of K(ε) factorizations, plus the computation of functional values at the rejected
trial points. Now, at each iteration, according to Theorem 4.1, the number of rejected trial
points sk(σ) is, at most, the maximal number of increases of σ that starts not smaller than
σmin and goes up to σ̂ = max{σbigini, κ̄σ̄} at most. Recall that σ̂ only depends on ε, cbound,
and algorithmic parameters. This number cannot exceed logκ(σ̂/σmin). Therefore, for finding a
solution with gradient precision ε, we need at most K(ε) gradient evaluations and factorizations
plus K(ε)(1 + logκ(σ̂/σmin)) functional evaluations.

From Theorem 4.2 the following convergence theorem holds.

14

Theorem 4.3 Assume that the sequence {xk} is generated by Algorithm 2.1 and, for all k =
0, 1, 2, . . . , ‖g(xk)‖ > 0, Assumption A1 holds with the same function ϕ, and cbound satisfies (23).
Then,

lim f(xk) = −∞ or lim inf ‖g(xk)‖ = 0.

Proof: Since the sequence {f(xk)} is strictly decreasing, if this sequence does not go to −∞,
then it is bounded below. Taking ftarget as a lower bound of {f(xk)}, by Theorem 4.2, we have
that for all ε > 0 there exists kε such that, for some k ≥ kε, ‖g(xk)‖∞ ≤ ε. This implies the
thesis. 2

In Theorem 4.3, we proved that, if {f(xk)} is bounded below, lim inf ‖g(xk)‖ = 0. The
reason why we cannot prove that lim ‖g(xk)‖ = 0 is associated with the updating rule for σnew
in (3) and in (5) when σ = 0. Note that, according to (3) and (5), we could choose σnew ← σk
at every iteration, in such a way that the decrease at each iteration could tend to zero at the
iterates at which ‖g(xk)‖∞ ≥ ε. In this way, it remains valid that the maximal number of
consecutive iterations at which ‖g(xk)‖∞ ≥ ε is bounded but this bound is not valid anymore
for non-consecutive iterations. We will see later that, in practice, we try to choose σnew ← σk/2
in (3) and in (5) when σ = 0. In the following theorem we prove that convergence to zero of the
whole sequence {‖g(xk)‖} occurs if we use a slightly more restrictive choice of σ at the beginning
of each iteration.

Theorem 4.4 Assume that the sequence {xk} is generated by Algorithm 2.1 and, for all k =
0, 1, 2, . . . , ‖g(xk)‖ > 0, Assumption A1 holds with the same function ϕ, and cbound satisfies (23).
Moreover, assume that in (3) and in (5) when σ = 0, we impose the condition

σnew ≤ σsafe, (54)

where σsafe ≥ σmin > 0 is a new given parameter of the algorithm. Then,

lim f(xk) = −∞ or lim ‖g(xk)‖ = 0.

Proof: Suppose that lim f(xk) > −∞. By Theorem 4.2, at each iteration k, (53) holds re-
placing σ̂ with max{σsafe, σ̄k}, where σ̄k corresponds to the value of σ̄ given by Theorem 4.1
for iteration k. Let ε > 0 be arbitrary. Then, at each iteration where ‖g(xk)‖ ≥ ε we obtain
a functional decrease bounded away from zero. This implies that the number of iterations at
which ‖g(xk)‖∞ ≥ ε is finite. This implies that lim ‖g(xk)‖∞ = 0. 2

Given the present state of the art of Cubic Regularization methods for unconstrained opti-
mization, the final results of this section are far from being surprising. In particular, they can be
essentially obtained as consequences of results obtained in [32], with additional care in the de-
termination of the complexity constants. We state these results here because the proofs become
more simple thanks to the employment of Proposition 4.1. We will use the following assump-
tion, which holds whenever ∇2f(x) satisfies a Lipschitz condition on a sufficient large open and
convex set that includes all the iterates xk and trial points xk + s generated by Algorithm 2.1.

Assumption A2 We say that this assumption holds at an iterate xk generated by Algorithm 2.1
if there exists γ > 0 such that for all s ∈ Rn such that xk + s lies in an open and convex set that

15

contains xk and the trial points generated by Algorithm 2.1,

f(xk + s) ≤ f(xk) + g(xk)T s+
1

2
sT∇2f(xk)s+ γ‖s‖3∞ (55)

and ∥∥∥g(xk + s)−
(
g(xk) +∇2f(xk)s

)∥∥∥ ≤ γ‖s‖2∞. (56)

Theorem 4.5 Assume that, at every iteration k of Algorithm 2.1, Assumption A2 holds, Hk =
∇2f(xk), MkDkM

T
k is a Mixed Factorization of Hk, and cbound > 0 satisfies (23). Then, there

exists σ̃ ≥ σmin, that only depends on parameters of the algorithm and characteristics of the
problem, such that, if sk(σ) is a solution to (2) and σ ≥ σ̃, we have that

f(xk + sk(σ))− f(xk) ≤ −α‖MT
k sk(σ)‖3∞. (57)

Moreover,
f(xk+1) ≤ f(xk)− αc‖g(xk+1)‖3/2, (58)

where c is a constant that only depends on parameters of the algorithm and characteristics of
the problem.

Proof: On the one hand, by (55), (23), and since sk(σ) is a solution to (2) with Hk = ∇2f(xk),
we have that

f(xk + sk(σ)) ≤ f(xk) + g(xk)T sk(σ) +
1

2
sk(σ)THksk(σ) + γ‖sk(σ)‖3∞

= f(xk) + g(xk)T sk(σ) +
1

2
sk(σ)THksk(σ) + γ‖sk(σ)‖3∞

+σ‖MT
k sk(σ)‖33 − σ‖MT

k sk(σ)‖33

≤ f(xk)− σ‖MT
k sk(σ)‖33 + γ‖sk(σ)‖3∞

≤ f(xk)− σ‖MT
k sk(σ)‖3∞ + γ‖sk(σ)‖3∞

≤ f(xk)− σ‖MT
k sk(σ)‖3∞ + γ‖M−Tk ‖

3
∞‖MT

k sk(σ)‖3∞

= f(xk) +
(
−σ + γ‖M−Tk ‖

3
∞

)
‖MT

k sk(σ)‖3∞

≤ f(xk) +
(
−σ + γc3bound

)
‖MT

k sk(σ)‖3∞.

Therefore, defining
σ̃ = max{σmin, α+ γc3bound},

we have that (57) follows for all σ ≥ σ̃.
On the other hand, for all σ ≥ 0, by (56), and since sk(σ) is a solution to (2) with Hk =

∇2f(xk), we have that

‖g(xk + sk(σ))‖∞ ≤
∥∥∥g(xk) +∇2f(xk)sk(σ)

∥∥∥
∞

+ γ‖sk(σ)‖2∞

≤
∥∥∥g(xk) +∇2f(xk)sk(σ) + σ

(
∇‖MT

k s‖33
)∣∣
sk(σ)

∥∥∥
∞

+σ
∥∥∥(∇‖MT

k s‖33
)∣∣
sk(σ)

∥∥∥
∞

+ γ‖sk(σ)‖2∞

= σ
∥∥∥(∇‖MT

k s‖33
)∣∣
sk(σ)

∥∥∥
∞

+ γ‖sk(σ)‖2∞.

(59)

16

By the definition of Algorithm 2.1, we have that xk+1 = xk + sk with sk = sk(σk) and σk
satisfying σk ≤ max{σbigini, κ̄σ̃}. Therefore, by (59) and (23), since

∇‖MT
k s‖33 = 3Mk

(
[MT

k s]
2
1 sg([MT

k s]1), . . . , [M
T
k s]

2
n sg([MT

k s]n)
)T

and, in consequence, ∥∥(∇‖MT
k s‖33

)∥∥
∞ ≤ 3‖Mk‖∞‖MT

k s‖2∞,

we have that

‖g(xk+1)‖∞ ≤ max{σbigini, κ̄σ̃}
∥∥(∇‖MT

k s‖33
)∣∣
sk

∥∥
∞ + γ‖sk‖2∞

≤ max{σbigini, κ̄σ̃}
∥∥(∇‖MT

k s‖33
)∣∣
sk

∥∥
∞ + γ‖sk‖2∞

≤ max{σbigini, κ̄σ̃}3‖Mk‖∞‖MT
k s

k‖2∞ + γ‖M−Tk ‖∞‖M
T
k s

k‖2∞

≤
(
3 max{σbigini, κ̄(α+ γc3bound}cbound + γcbound

)
‖MT

k s
k‖2∞

= c̄‖MT
k s

k‖2∞,

where c̄ = 3 max{σbigini, κ̄(α+ γc3bound}cbound + γcbound is a constant that depends on cbound, γ,
and the algorithmic constants α, κ̄, and σbigini. Therefore,

‖g(xk+1)‖3/2∞ ≤ c̄3/2‖MT
k s

k‖3∞.

Thus, (58) follows from (57). 2

Note that, in Theorem 4.5, the well-definiteness of iteration k holds independently of as-
sumptions on the gradient norms and the matrix Dk. This observation is important for the
following theorem, where a second-order complexity result is proved. In Theorem 4.6, we prove
that, given ε2 > 0, the number of iterations at which there exists an entry of Dk smaller than
−ε2 is bounded by a multiple of ε−32 . It is interesting to observe that this fact is independent
of the factorization used. Using the spectral QDQT factorization, this result is standard be-
cause the entries of Dk are the eigenvalues of Hk. However the result holds in the general case
because the positive-definiteness of Hk is well represented by the positiveness of the entries of
Dk for every Mixed Factorization MkDkM

T
k . The complexity proof in this case is substantially

different, and more simple, than the one given in [32] for a similar case.

Theorem 4.6 Assume that, at every iteration k of Algorithm 2.1, Assumption A2 holds, Hk =
∇2f(xk), MkDkM

T
k is a Mixed Factorization of Hk, and cbound > 0 satisfies (23). Then, given

ε > 0 and ftarget ∈ R, the number of iterations k such that

‖g(xk+1)‖∞ ≥ ε or f(xk+1) > ftarget

is bounded above by (
f(x0)− ftarget

)
ε−3/2

times a constant that only depends on parameters of the algorithm and characteristics of the
problem. Moreover, given ε2 > 0, the number of iterations k such that there exists i ∈ {1, . . . , n}
with (Dk)ii ≤ −ε2 is bounded above by(

f(x0)− ftarget
)
ε−32

17

times a constant that only depends on parameters of the algorithm and characteristics of the
problem.

Proof: The first part of the thesis follows directly from (58). For the second part, observe that,
if (Dk)ii ≤ −ε2, then, by (21),

‖MT
k s

k‖∞ = ‖MT
k sk(σk)‖∞ ≥

|(Dk)ii|
3σk

≥ ε2
3 max{σbigini, κ̄σ̃}

,

where σ̃ is the one defined at Theorem 4.5. Therefore, the second part of the thesis follows
from (57). 2

Theorem 4.6 reports the maximal number of iterations that are necessary to obtain a gra-
dient smaller than ε or a positive semidefinite Hessian up to tolerance ε2, respectively, under
Assumption A2. The complexity analysis is completed computing the total number of functional
evaluations. By Theorem 4.5, the maximal number of rejected trial points at each iteration of
the algorithm does not exceed logκ(κ̄σ̃/σmin), where σ̃ does not depend on ε. Combining this
computation with the theorems above we obtain the expected result that precision ε on the
gradient demands at most O(ε−3/2) iterations and function evaluations whereas precision ε2 on
the positive semidefiniteness of the Hessian demands at most O(ε−32) iterations and function
evaluations.

Theorem 4.7 Assume that, at every iteration k of Algorithm 2.1, Assumption A2 holds, Hk =
∇2f(xk), MkDkM

T
k is a Mixed Factorization of Hk, and cbound > 0 satisfies (23). Then, the

sequence {xk} given by Algorithm 2.1 is well defined,

lim ‖g(xk)‖ = 0 and lim min{0, (Dk)11, . . . , (Dk)nn} = 0. (60)

Proof: By Theorem 4.5, given ε > 0, the number of iterations for which ‖g(xk)‖∞ > ε is finite.
Therefore, lim ‖g(xk)‖ = 0. Analogously, the number of iterations for which min{0,min{(Dk)ii, i =
1, . . . , n}} > ε is finite. Therefore, lim min{0,min{(Dk)ii, i = 1, . . . , n}} = 0. 2

In the following two theorems we prove that, under suitable assumptions, Algorithm 2.1
with Hk = ∇2f(xk) converges quadratically to a solution. Moreover, we show that superlinear
convergence can be obtained for a quasi-Newton version of the algorithm.

Theorem 4.8 Assume that, at every iteration k of Algorithm 2.1, Assumption A2 holds, Hk =
∇2f(xk), MkDkM

T
k is a Mixed Factorization of Hk, and cbound > 0 satisfies (23). Suppose that

x∗ ∈ Rn is a limit point of the sequence {xk} generated by Algorithm 2.1, ∇2f(x∗) is positive
definite, ‖∇2f(x∗)−1‖ ≤ β1, and, whenever ‖x− x∗‖ ≤ δ we have that

‖∇2f(x)−∇2f(x∗)‖ ≤ γ1. (61)

Then, the whole sequence {xk} converges to x∗ and there exists k0 such that, for all k ≥ k0,

‖xk+1 − x∗‖ ≤ β1γ1‖xk − x∗‖2. (62)

18

Proof: Let us first show that limk→∞ x
k = x∗. Since x∗ is a limit point of Algorithm 2.1

and, by Theorem 4.7, limk→∞ ‖g(xk)‖ = 0, we have that g(x∗) = 0. Then, since ∇2f(x∗)
is positive definite, x∗ is a local minimizer and, by the inverse function theorem, there exists
δ1 ∈ (0, δ) such that, whenever 0 < ‖x − x∗‖ ≤ δ1, we have that g(x) 6= 0. Since {f(xk)} is
monotonically decreasing and the sufficient descent condition (4) holds for all xk, we have that
limk→∞ ‖xk+1−xk‖ = 0. Then, there exists k1 such that for all k ≥ k1, ‖xk+1−xk‖ ≤ δ1/2. Let
k2 ≥ k1 be such that ‖xk2−x∗‖ ≤ δ1/2. Then, ‖xk2+1−x∗‖ ≤ δ1. But δ1/2 ≤ ‖xk2+1−x∗‖ ≤ δ1
can only occur for a finite number of indices k2, otherwise there would be a limit point of
{xk} in the region δ1/2 ≤ ‖x − x∗‖ ≤ δ1 implying the existence of a stationary point in that
region. Therefore, there exists k3 ≥ k1 such that for all k ≥ k3, ‖xk − x∗‖ ≤ δ1/2 implies that
‖xk+1−x∗‖ ≤ δ1/2. By induction we see that, for all k ≥ k3, ‖xk −x∗‖ ≤ δ1/2. But, in the ball
with radius δ1/2, we have that g(x) = 0 only if x = x∗. Thus, x∗ is the only possible limit point
in that ball. Therefore, limk→∞ x

k = x∗.
Each iteration k of Algorithm 2.1 begins trying σ = 0. If Hk is positive definite the cor-

responding subproblem (2) has a unique solution strial = −H−1k g(xk). This means that, if the
sufficient descent condition (4) is accepted, we have that xk+1 = xk + strial is obtained from
xk by means of a Newton step strial. It turns out that, for obtaining quadratic convergence, it
is necessary to prove that, in the neighborhood of a solution at which the Hessian is positive
definite, the sufficient condition (4) holds if strial = −H−1k g(xk). In fact, by (55),

f(xk + strial) ≤ f(xk) + g(xk)T strial + 1
2s
T
trialHkstrial +O(‖strial‖3)

= f(xk) + sTtrial[g(xk) +Hkstrial]− 1
2s
T
trialHkstrial +O(‖strial‖3)

= −1
2s
T
trialHkstrial +O(‖strial‖3

≤ −λ1,k
2 ‖strial‖

2 +O(‖strial‖3),

where λ1,k > 0 is the smallest eigenvalue of Hk. Therefore, the sufficient condition (4) holds if

−
λ1,k

2
‖strial‖2 +O(‖strial‖3) ≤ −α‖MT

k strial‖3∞.

This condition holds if ‖strial‖ is small enough, therefore, in such conditions, the first trial point
is accepted. Thus, there exists k0 such that, for k ≥ k0, the method generates the same sequence
as Newton’s method for solving the nonlinear system g(x) = 0. Then, by [17, Thm.5.2.1,p.90],
(62) holds and the convergence is quadratic. 2

Theorem 4.9 Assume that, at every iteration k of Algorithm 2.1, Assumption A2 holds, MkDkM
T
k

is a Mixed Factorization of Hk, and cbound > 0 satisfies (23). Suppose that x∗ ∈ Rn is a limit
point of the sequence {xk} generated by Algorithm 2.1, ∇2f(x∗) is positive definite, and, when-
ever ‖x− x∗‖ ≤ δ and ‖y − x∗‖ ≤ δ, we have that

‖∇2f(x)−∇2f(y)‖ ≤ γ1. (63)

Then, the whole sequence {xk} converges to x∗.
In addition, assume that Hk is nonsingular, ‖H−1k ‖ is bounded independently of k for all k

large enough, and

lim
k→∞

‖(Hk −∇2f(xk))H−1k g(xk)‖
‖H−1k g(xk)‖

= 0. (64)

19

Then, the whole sequence {xk} converges to x∗ and there exists k0 such that, for all k ≥ k0,

‖xk+1 − x∗‖ ≤ rk‖xk − x∗‖, (65)

with limk→∞ rk = 0.

Proof: The proof that shows that the whole sequence {xk} converges to the limit point x∗ is
identical to the one in Theorem 4.8. Then, we need to prove that the first trial increment strial
tested at each iteration is accepted if k is large enough. In fact, if strial = −H−1k g(xk), by (55),
we have that

f(xk+strial) ≤ f(xk)+g(xk)T strial+
1

2
sTtrialHkstrial+O(‖strial‖3)+

1

2

∣∣∣sTtrial(∇2f(xk)−Hk)strial

∣∣∣ .
By the Dennis-Moré condition (64), one has that ‖(∇2f(xk)−Hk)strial‖ = o(‖strial‖). Therefore,
1
2

∣∣sTtrial(∇2f(xk)−Hk)strial
∣∣ = o(‖strial‖2. Thus, as in Theorem 4.8, the descent condition holds

if

−
λ1,k

2
‖strial‖2 + o(‖strial‖2) +O(‖strial‖3) ≤ −α‖MT

k strial‖3∞.

Again, this condition holds if ‖strial‖ is small enough. Since H−1k is bounded and g(xk) tends
to zero, the first trial strial = −H−1k g(xk), is small enough for k sufficiently large. Therefore,
the method behaves as a local quasi-Newton method with fulfillment of the Dennis-Moré condi-
tion (64). By [17, Thm.8.2.4,p.181], this implies superlinear convergence, as desired. 2

5 Numerical experiments

We implemented Algorithm 2.1 in Fortran 90 employing the BPK-based MDMT Mixed Fac-
torization as well as the Mixed Factorization based on the QDQT spectral decomposition. The
Bunch-Parlett-Kaufman factorization was computed with subroutine dsytrf rk from Lapack [1]
for dense matrices. Moreover, we also considered a sparse version using subroutine MA57 from
HSL [37]. For the Mixed Factorization based on the QDQT spectral decomposition we used
subroutine dsyev from Lapack.

At Step 1, we choose Hk = ∇2f(xk) for all k. At Step 3, we choose σnew = max{σmin,
1
2σlnn},

where σlnn is the latest non-null σ`, ` = 0, . . . , k − 1, and σlnn = 0 if σ0 = · · · = σk−1 = 0. At
Step 4, the value of σnew is chosen in the same way if σ = 0; while σnew = κ̄σ, otherwise. However,
there are two situations in which, if the value of σnew was computed using σlnn (at Step 3 or 4), it
may be redefined. In the first place, if σnew > σmin and ‖sk(σnew)‖ < √εmach max{1, ‖xk‖} then
we redefine σnew = σmin. In the second place, if σnew = σmin and ‖sk(σnew)‖ > max{1, ‖xk‖}
then σnew is redefined to the first value in {10σmin, 102σmin, . . . }, limited to σbigini, such that
‖sk(σnew)‖ ≤ max{1, ‖xk‖}. The first possible modification has the purpose of avoiding stag-
nation due to a large value of σ inherited from previous iterations; while the second possible
modification aims to reduce the influence of the arbitrary parameter σmin.

In the numerical experiments, we arbitrarily considered α = 10−8, κ = 2, κ̄ = 10, σmin =
10−8, and σbigini = 108; while εmach is the machine ε, i.e. the smallest ε > 0 such that 1 + ε 6= 1.
As stopping criterion, we considered the condition

‖g(xk)‖∞ ≤ ε (66)

20

with ε = 10−8. As it will be seen in the numerical experiments, in a few cases, the method may
also stop by any of the following alternative stopping criteria:

1. ‖g(xk−`)‖∞ <
√
ε for all 0 ≤ ` < 100;

2. ‖g(xk−`)‖∞ < ε1/4 for all 0 ≤ ` < 1,000;
3. ‖g(xk−`)‖∞ < ε1/8 for all 0 ≤ ` < 5,000;
4. strial is the Newton step, xk + strial does not satisfy the sufficient descent condition (4),

but ‖strial‖ ≤
√
ε and ‖g(xk + strial)‖∞ ≤ ε;

5. strial is the Newton step, xk + strial does not satisfy the sufficient descent condition (4),
and ‖strial‖ ≤

√
ε;

6. f(xk) ≤ ftarget;
7. xk + strial does not satisfy the sufficient descent condition (4) but f(xk + strial) ≤ ftarget;
8. xk = xk+1 and f(xk) ≤ f(xk ± hiei) with hi = εmach max{1, |xki |} for all 1 ≤ i ≤ n;
9. f(xk) = f(xk−`) for all 0 ≤ ` < 10.

In the stopping criteria 6 and 7, we arbitrarily set1 ftarget = −1010. In the numerical experiments,
the fulfillment of (66) will be reported as “STOP=0”; while the other cases will be reported
making reference to the number in the enumeration above. In cases 4 and 7, the method returns
xk + strial as an approximation to a solution. In all the other cases, it returns xk. It should be
noted that the stopping criteria above were chosen in such a way that the method never stops by
another stopping criterion such as maximum of iterations, maximum of functional evaluations,
or a limit in the CPU time.

The Fortran 90 implementation of Algorithm 2.1 is freely available at http://www.ime.

usp.br/~egbirgin/. Interfaces for solving user-defined problems coded in Fortran 90 as well as
problems from the CUTEst [23] collection are available. All tests reported below were conducted
on a computer with 3.5 GHz Intel Core i7 processor and 16GB 1600 MHz DDR3 RAM memory,
running OS X Yosemite (version 10.10.5). Codes were compiled by the GFortran compiler of
GCC (version 7.2.0) with the -O3 optimization directive enabled.

5.1 Bunch-Parlett-Kaufman-based versus spectral-based mixed factorization

In this section, we analyze the behavior of Algorithm 2.1 in connection with the BPK-based and
the spectral-based mixed factorizations. We considered all the 87 unconstrained minimization
problems from the CUTEst collection [23] for which first- and second-order derivatives exist and
are continuous everywhere. The same dimensions chosen in [29, 7] were preserved (most of the
problems have n = 1,000 variables), since, in this section, we are using dense linear algebra
subroutines for computing both MDMT Mixed Factorizations.

For a given problem, let f1 and f2 be the values of the objective function at the final iterate
delivered by Algorithm 2.1 with the BPK-based and the spectral-based MDMT Mixed Factor-
izations, respectively. Following [5], we say that the two methods found equivalent solutions
if

fi − fbest
max{1, |fbest|}

≤ 10−8 for i = 1, 2, (67)

where fbest = min{f1, f2}. The 87 problems will be separated into two sets. Set 1 will be given
by 59 problems in which the two methods found equivalent solutions and stopped both satisfying
the same stopping criterion (SC) with SC ∈ {0, 4, 6, 7}. Set 2 will contain the remaining 28
problems. Problems in Set 1 will be used to analyze the efficiency of the methods; while problems

1with the exception of problem ARGLINC for which we set ftarget as its known optimal value times 1 + 10−15.

21

http://www.ime.usp.br/~egbirgin/
http://www.ime.usp.br/~egbirgin/

in Set 2 will be observed with an eye on robustness. Tables 1 and 2 display detailed information
regarding the performance of Algorithm 2.1 in problems on sets 1 and 2, respectively. Note
that the number of iterations reported in our tables corresponds to the number of successful
iterations in the classical trust-region terminology. Accordingly, our “number of evaluations”
corresponds to TR-iterations.

For analyzing the efficiency of the methods on the 59 problems on Set 1, we used performance
profiles [18]. See Figure 2. By definition of the performance profiles and the way in which the
problems were selected, all curves reach the value 1 at the right-hand-side of the graphic. Thus,
these pictures evaluate efficiency only. As expected, the picture in the top of Figure 2 shows
that the variant of Algorithm 2.1 that uses the spectral-based MDMT Mixed Factorization uses
less functional evaluations; while the picture in the bottom of Figure 2 shows that the variant
of Algorithm 2.1 that uses the BPK-based MDMT Mixed Factorization is much faster.

Table 2 shows the details of the final iterates found by the two versions of Algorithm 2.1
on problems in Set 2. As a whole, the BPK-based version obtained smaller functional values
than the spectral-based version in 11 problems whereas the spectral-based method got better
funcional values in 7 problems. CPU time was smaller in the BPK-based version in 26 out of
the 28 problems. Therefore, these experiments confirm that using non-expensive BPK-based
Mixed Factorizations has practical advantages over the employment of QDQT factorizations in
the context of Algorithm 2.1.

5.2 Comparison against CurviH [16]

In this section, we perform a comparison between Algorithm 2.1 with the dense BPK-based
mixed factorization and the method introduced in [16], named CurviH in the present work.
At each iteration, CurviH performs a curvilinear search along the path defined by xk − (Hk +
σI)−1g(xk), σ ≥ 0, stopping the search when an approximate minimizer of f along this path
is reached. The matrix Hk is the true Hessian of f when k is a multiple of q and a quasi-
Newton approximation otherwise. For computing the search path, the method employs the
factorization Hk = QkTkQ

T
k , where Qk is orthonormal and Tk is tridiagonal. Therefore, the

successive trial points are computed solving tridiagonal systems. When k is not a multiple
of q, only the tridiagonal matrix is updated using a PSB (Powell-Symmetric-Broyden) formula
whereas the orthonormal factor remains unmodified. We used the default value q = 3, as
recommended in the documentation of CurviH, as well as the default values for all the other
parameters of the method. Details of the performance of the method on the 87 problems
of the CUTEst collection being considered can be found in Table 3. The method has three
stopping criteria given by SC=0 meaning “convergence has been achieved”; SC=1 meaning
“maximum number of function evaluations exceeded”; and SC=2 meaning “failure to converge”.
In the numerical experiments reported in Table 3, the criterion related to convergence was
replaced by (66). The results obtained preserving the original stopping criterion related to
convergence, given by maxi=1,...,n

{
[g(xk)]i max{1, |xki |}

}
≤ εmax{1, |f(xk)|}, can be found in

http://www.ime.usp.br/~egbirgin/.
Once again, the 87 problems will be divided into two sets to perform the comparison. In

Set 1 we include the 57 problem in which both methods found equivalent solutions and stopped
with a small sup-norm of the gradient (i.e. the final iterates satisfy (67) and (66)). Set 1 will be
used to compare the efficiency of the methods. Set 2, composed by the remaining 30 problems
will be used to evaluate their robustness. Efficiency will be evaluated with the help of perfor-

22

http://www.ime.usp.br/~egbirgin/

0

0.2

0.4

0.6

0.8

1

1 10

Γ
(τ

)

log10(τ)

Functional evaluations

Spectral-based MDMT (Γ(1) = 0.86)

BPK-based MDMT (Γ(1) = 0.59)

0

0.2

0.4

0.6

0.8

1

1 10

Γ
(τ

)

log10(τ)

CPU time

BPK-based MDMT (Γ(1) = 0.97)

Spectral-based MDMT (Γ(1) = 0.03)

Figure 2: Performance profiles considering 59 problems in which the two versions of Algo-
rithm 2.1 found equivalent solutions and stopped satisfying the same stopping criteria related
to a small gradient (criteria 0 or 4) or related to achieving a target functional value (criteria 6
and 7).

mance profiles. See Figure 3. The figure shows that Algorithm 2.1 with the BPK-based mixed
factorization is much more efficient than CurviH when the number of functional evaluations or
the CPU time are used as a performance measurement. Analyzing the remaining 30 problems
in Set 2, we can say that: (a) Algorithm 2.1 found a small gradient in 14 cases; while CurviH
found a small gradient in 8 problems; (b) they both found equivalent functional values in 10

23

problems; (c) in 9 out of the 10 problems in which both methods found equivalent solutions,
Algorithm 2.1 was faster; (d) Algorithm 2.1 found smaller values in 8 problems and CurviH
found smaller values in another 8 problems; (e) in one case both methods identified that f is
unbounded from below; and (f) in the remaining 3 cases CurviH reached the CPU time limit
of one hour. Summing up, there is no meaningful differences in the robustness of the methods;
while Algorithm 2.1 is much more efficient.

0

0.2

0.4

0.6

0.8

1

1 10

Γ
(τ

)

log10(τ)

Functional evaluations

BPK-based MDMT (Γ(1) = 0.74)

CurviH (Γ(1) = 0.40)

0

0.2

0.4

0.6

0.8

1

1 10

Γ
(τ

)

log10(τ)

CPU time

BPK-based MDMT (Γ(1) = 0.82)

CurviH (Γ(1) = 0.18)

Figure 3: Performance profiles considering 57 problems in which Algorithm 2.1 with the BPK-
based mixed factorization and CurviH found equivalent solutions and stopped satisfying the
same stopping criteria related to a small gradient.

24

5.3 Advantages of exploiting sparsity

In this section, we present numerical experiments that aim to compare the performance of Algo-
rithm 2.1 with the dense and the sparse implementations of the BPK-based Mixed Factorization.
On the one hand, we expect to illustrate the magnitude of the reduction of CPU time. On the
other hand, we would like to check the influence of the MA57 pivoting strategy, that takes
into account sparsity issues, on the overall stability of the method. It is worth noting that the
numerical experiments that will be shown here were obtained using MA57 with the relative
pivoting tolerance parameter u = 0.5 (its default value is 0.01), recommended for “problems
requiring greater than average numerical care”. (Preliminary numerical experiments with the
default value for parameter u showed a big increase in the number of iterations and functional
evaluations with respect to the results obtained with the dense BPK-based Mixed Factorization.)

Details of the performance of the method on the 87 problems of the CUTEst collection being
considered can be found in Table 4; while a comparison between Algorithm 2.1 with the dense and
the sparse implementations of the BPK-based Mixed Factorization can be seen in Figure 4. The
graphics in Figure 4 take into account the 61 problems in which the dense and the sparse version
found equivalent solutions and stopped satisfying the same stopping criterion related to a small
gradient or a target functional value. The graphic in the top shows that the number of iterations
and functional evaluations is mostly the same in both versions, with a slight advantage of the
dense version; while the graphic in the bottom shows that, in the considered set of problems, the
sparse version is at least two orders of magnitude faster in most cases. Analyzing the remaining
26 problems, we can see that (a) they both found equivalent solutions in 6 problems; (b) they
both reach the target functional value −1010 in a single problem (INDEF) that appears to be
unbounded from below; (c) the dense version found a smaller functional value in 14 problems;
and (d) the sparse version found a smaller functional value in 5 problems. Since the set of
problems in which the dense version found a better functional value includes 6 problems of the
same family (CURLY10, CURLY20, CURLY30, SCURLY10, SCURLY20, and SCURLY30) in
which the difference appears in the fifth decimal place, we conclude that there is no meaningful
difference in the robustness of the methods.

A note on the capacity of finding a small gradient of Algorithm 2.1 with the sparse imple-
mentations of the BPK-based Mixed Factorization is in order. Table 4 shows that criterion (66)
with ε = 10−8 was attained at the final iterate in 69 problems (68 with the stopping criterion 0
and 1 problem with stopping criterion 4). In other 11 problems, the sup-norm of the gradient
at the final iterate is strictly smaller than 10−4 but the method stopped satisfying a different
stopping criterion like, for example, lack of progress in the functional value. If a sup-norm
of the gradient smaller than 10−4 is considered a success, we can say the success rate of the
method is 100%× 80/87 ≈ 92%. Moreover, (a) in problem ARGLINC, the known optimal value
was reached; (b) in problems FLECTHBV and INDEF, the target value −1010 was reached,
suggesting the problems may be unbounded from below; and (c) in problem MANCINO, the
method stopped by lack of progress with f(xk) ≈ 10−15 and a sup-norm of the gradient of the
order of 10−4. It is known that, in problem MANCINO, the optimal value is bounded below by
zero. If these 4 problems are also considered a success of the method then the success rate goes
to 100%× 84/87 ≈ 97%; the 3 unsuccessful cases being problems FLETCBV3 (also unbounded
from below?), PENALTY2, and SCOSINE. In any case, problem (1) under consideration con-
sists in obtaining a feasible point with the smallest possible functional value. Thus, from the
authors’ point of view, a small gradient in this scenario is simply a stopping criterion and not a

25

goal by itself. This is why the authors believe that, in practice, the alternative stopping criteria
are as valid as a small gradient and they should be used to stop a method if no further progress
in the objective function can be obtained. In real life, stopping the method by an alternative
stopping criteria may allow the user to try a different initial guess, to change some parameters
of the method, to test a different method, or to realize that the required norm of the gradient
is not reachable due to the combination of a badly scaled problem and the usage of a computer
with floating-point arithmetic.

5.4 Additional comparison

In this section, we compare Algorithm 2.1 with the sparse implementation of the BPK-based
mixed factorization against the ARC method introduced in [10]. In the comparison, we consider
the same 131 problems2 from the CUTEst collection that were considered in [10]. It should
be noted that, as pointed out in [10], the considered set of problems corresponds to “all of
the unconstrained problems from the CUTEr collection” and that “for those whose dimensions
may be adjusted, we chose small variants simply so as not to overload our (Matlab) computing
environment, most particularly the CUTEr interface to Matlab”. In [10], three variants of the
ARC method are compared against a TR approach and, as it can be seen in [10, Fig.4, p.290],
the most efficient method in terms of number of functional evaluations (or TR iterations) is
the one named “ARC with g-rule”. In order to perform a fair comparison, Algorithm 2.1 was
re-run with the same stopping criteria adopted in [10], given by ‖g(xk)‖∞ ≤ 10−5 or a maximum
of 10,000 functional evaluations (or TR iterations). Since the objective function obtained by
ARC with the g-rule is reported in [10, Tab.1, pp.291-294] with three significant digits only, we
consider that the two methods found equivalent solutions if max{|f1|, |f2|} < 10−5 or if

fi − fbest
max{1, |fbest|}

≤ 10−2 for i = 1, 2, (68)

where fbest = min{f1, f2} and f1 and f2 correspond to the value of the objective function found
by Algorithm 2.1 with the sparse implementation of the BPK-based mixed factorization and ARC
with the g-rule, respectively. In this context, both methods found equivalent solutions in 113
out of the 130 problems being considered. Figure 5 shows the performance profile comparing the
efficiency of the two methods in this set of problems. The analysis of the methods in the remain-
ing 17 problems follows. On the one hand, Algorithm 2.1 failed in satisfying ‖g(xk)‖∞ ≤ 10−5

in problems FLETCBV3, HYDC20LS, and OSCIPATH; while ARC with the g-rule failed in
problems FLETCBV3, HYDC20LS, and SBRYBND. (This means that both methods exhibit
the same success rate of 100%× 127/130 ≈ 98% for finding xk such that ‖g(xk)‖∞ ≤ 10−5.) In
the remaining 13 problems (BIGGS6, BROYDN7D, CHAINWOO, ERRINROS, FLETCHBV,
NONCVXUN, OSBORNEA, PARKCH, PENALTY3, S308, SENSORS, TOINTGSS, and VI-
BRBEAM), ARC with the g-rule found a smaller functional value in 7 problems; while the
opposite situation occurred in 6 problems. Details of the performance of Algorithm 2.1 with the
sparse implementations of the BPK-based mixed factorization in the set of problems considered
in this section can be found in http://www.ime.usp.br/~egbirgin/.

2with the exception of problem STREC that we were unable to find in the current distribution of CUTEst.

26

http://www.ime.usp.br/~egbirgin/

0

0.2

0.4

0.6

0.8

1

1 2 3

Γ
(τ

)

log10(τ)

Functional evaluations

Dense BPK-based MDMT (Γ(1) = 0.84)

Sparse BPK-based MDMT (Γ(1) = 0.67)

0

0.2

0.4

0.6

0.8

1

1 10 100

Γ
(τ

)

log10(τ)

CPU time

Sparse BPK-based MDMT (Γ(1) = 0.90)

Dense BPK-based MDMT (Γ(1) = 0.11)

Figure 4: Performance profiles considering the 61 problems in which Algorithm 2.1 with the
dense and the sparse implementations of the BPK-based mixed factorization found equivalent
solutions and stopped satisfying the same stopping criteria related to a small gradient (stopping
criteria 0 or 4) or related to achieving a target functional value (stopping criteria 6 and 7).

6 Conclusions

We introduced a new method for Unconstrained Optimization that, at each iteration, per-
forms only one cheap factorization, preserving O(ε−3/2) complexity for first-order optimality
and O(ε−3) complexity for second-order optimality if the Hessian is Lipschitz continuous. More-

27

0

0.2

0.4

0.6

0.8

1

1 10 100

Γ
(τ

)

log10(τ)

Functional evaluations

Sparse BPK-based MDMT (Γ(1) = 0.68)

ARC with g-rule (Γ(1) = 0.41)

Figure 5: Performance profiles considering the 113 problems in which Algorithm 2.1 with the
sparse implementations of the BPK-based mixed factorization and ARC with the g-rule found
equivalent solutions.

over, the introduced method convergences to first-order critical points under the only assumption
of uniform continuity of first-order derivatives. The computation of trial points at each itera-
tion does not need additional factorizations. The convergence and complexity theories cover
a number of alternative algorithms. In particular the non-Lipschitzian results allows one to
consider arbitrary Hessian approximations without connection with true Hessians at all. The
Linear Algebra work per iteration is similar to the Linear Algebra work involved in a Newtonian
line-search method, although the search direction changes each time a trial point is rejected, as
in Trust-Region and Regularization algorithms.

We performed experiments in which, besides Mixed Factorizations based on the Bunch-
Parlett-Kaufman decomposition, we used the analogous iteration scheme with Spectral Fac-
torizations, which are significantly more expensive than BPK-based factorizations and can not
exploit sparsity. The objective of these experiments was to test whether the stability differences
between those factorizations could cause significative differences in the performance of the algo-
rithm. The results of these experiments have been conclusive: In terms of functional evaluations
the algorithm with the Spectral Factorization is slightly better than the one with BPK-based
Mixed Factorizations, but the second is much better than the first in terms of computer time.
In terms of robustness, there are no meaningful differences between those algorithms.

Among other improvement paths for the new algorithm we may mention: (i) employment of
non-monotone strategies along the lines of [27] and many other authors; (ii) using, at adequate
iterations, the same factorization as in the previous one, instead of a new factorization; (iii)
updating the Hessian approximation using quasi-Newton corrections; and (iv) for huge and very
huge problems, use Hessian approximations with very simple structures (diagonal, tridiagonal,

28

band). Moreover, considering the potential good behavior of the new method in cases where
the Hessian does not exist, we have in mind the application to subproblems of Penalty and
Augmented Lagrangian algorithms.

Acknowledgment: The authors would like to thank H. D. Scolnik for providing an updated
version of the method introduced in [16]. We also would like to thank N. I. M. Gould for
pointing out the work [22] and also for pointing out the usage of subroutine MA57 get factors in
the sparse implementation of the BPK-based Mixed Factorization. Finally, the authors would
like to thank the reviewers for their helpful comments.

References

[1] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra,
J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen,
LAPACK Users’ Guide, Society for Industrial and Applied Mathematics, Philadelphia, PA,
third ed., 1999, doi:10.1137/1.9780898719604.

[2] C. Ashcraft, R. Grimes, and J. Lewis, Accurate symmetric indefinite linear equation
solvers, SIAM J. Matrix Anal. Appl., 20 (1998), pp. 513–561.

[3] E. Bergou, Y. Diouane, and S. Gratton, On the use of the energy norm in trust-
region and adaptive cubic regularization subproblems , Computational Optimization and
Applications, 68 (2017), pp. 533–554, doi:10.1007/s10589-017-9929-2.

[4] E. Bergou, Y. Diouane, and S. Gratton, A line-search algorithm inspired by the
adaptive cubic regularization framework, with a worst-case complexity O(ε−3/2), tech.
report, 2017. Available at http://www.optimization-online.org/DB-HTML/2017/06/

6083.html.

[5] E. G. Birgin and J. M. Gentil, Evaluating bound-constrained minimization software,
Computational Optimization and Applications, 53 (2012), pp. 347–373, doi:10.1007/s10589-
012-9466-y.

[6] E. G. Birgin and J. M. Mart́ınez, Practical Augmented Lagrangian Methods for Con-
strained Optimization, vol. 10 of Fundamentals of Algorithms, Society for Industrial and
Applied Mathematics, Philadelphia, PA, 2014, doi:10.1137/1.9781611973365.

[7] E. G. Birgin and J. M. Mart́ınez, The use of quadratic regularization with a cubic de-
scent condition for unconstrained optimization, SIAM Journal on Optimization, 27 (2017),
pp. 1049–1074, doi:10.1137/16M110280X.

[8] E. G. Birgin and J. M. Mart́ınez, On regularization and active-set methods with com-
plexity for constrained optimization, SIAM Journal on Optimization, 28 (2018), pp. 1367–
1395.

[9] C. Cartis, N. I. M. Gould, and P. L. Toint, On the complexity of steepest de-
scent, Newton’s and regularized Newton’s methods for nonconvex unconstrained optimiza-
tion, SIAM Journal on Optimization, 20 (2010), pp. 2833–2852, doi:10.1137/090774100.

29

http://dx.doi.org/10.1137/1.9780898719604
http://dx.doi.org/10.1007/s10589-017-9929-2
http://www.optimization-online.org/DB-HTML/2017/06/6083.html
http://www.optimization-online.org/DB-HTML/2017/06/6083.html
http://dx.doi.org/10.1007/s10589-012-9466-y
http://dx.doi.org/10.1007/s10589-012-9466-y
http://dx.doi.org/10.1137/1.9781611973365
http://dx.doi.org/10.1137/16M110280X
http://dx.doi.org/10.1137/090774100

[10] C. Cartis, N. I. M. Gould, and P. L. Toint, Adaptive cubic regularization meth-
ods for unconstrained optimization. Part I: motivation, convergence and numerical results,
Mathematical Programming, 127 (2011), pp. 245–295, doi:10.1007/s10107-009-0286-5.

[11] C. Cartis, N. I. M. Gould, and P. L. Toint, Adaptive cubic regularization meth-
ods for unconstrained optimization. Part II: worst-case function and derivative complexity,
Mathematical Programming, 130 (2011), pp. 295–319, doi:10.1007/s10107-009-0337-y.

[12] C. Cartis, N. I. M. Gould, and P. L. Toint, Universal regularization methods –
varying the power, the smoothness and the accuracy, Optimization Methods and Software,
(2017). To appear.

[13] A. R. Conn, N. I. M. Gould, and P. L. Toint, Trust Region Methods, Society for
Industral and Applied Mathematics, Philadelphia, PA, 2000, doi:10.1137/1.9780898719857.

[14] R. Courant and F. John, Introduction to Calculus and Analysis, Wiley, New York, 1974.

[15] F. E. Curtis, D. P. Robinson, and M. Samadi, A trust-region algorithm with a worst-
case iteration complexity of O(ε−3/2), Mathematical Programming, 162 (2017), pp. 1–32,
doi:10.1007/s10107-016-1026-2.

[16] J. E. Dennis Jr., N. Echebest, M. T. Guardarucci, J. M. Mart́ınez, H. D.
Scolnik, and C. Vacchino, A curvilinear search using tridiagonal secant updates
for unconstrained optimization, SIAM Journal on Optimization, 1 (1991), pp. 333–357,
doi:10.1137/0801022.

[17] J. E. Dennis Jr. and R. B. Schnabel, Numerical Methods for Unconstrained Optimiza-
tion and Nonlinear Equations, Society for Industral and Applied Mathematics, Philadel-
phia, PA, 1996, doi:10.1137/1.9781611971200.

[18] E. D. Dolan and J. J. Moré, Benchmarking optimization software with performance
profiles, Mathematical Programming, 91 (2002), pp. 201–213, doi:10.1007/s101070100263.

[19] J. P. Dussault, ARCq: a new adaptive regularization by cubics, Optimization Methods
and Software, (2017), doi:10.1080/10556788.2017.1322080. To appear.

[20] D. M. Gay, Computing optimal locally constrained steps, SIAM Journal on Scientific and
Statistical Computing, 2 (1981), pp. 186–197, doi:10.1137/0902016.

[21] G. H. Golub and C. F. Van Loan, Matrix Computations, The Johns Hopkins University
Press, Baltimore and London, 3rd. ed., 1996.

[22] N. I. M. Gould and J. Nocedal, The modified absolute-value factorization norm for
trust-region minimization, in High Performance Algorithms and Software in Nonlinear Op-
timization, R. De Leone, A. Murli, P. M. Pardalos, and G. Toraldo, eds., Kluwer Academic
Publishers, 1998, pp. 225–241, doi:10.1007/978-1-4613-3279-4 15.

[23] N. I. M. Gould, D. Orban, and P. L. Toint, CUTEst: a constrained and unconstrained
testing environment with safe threads for mathematical optimization, Computational Opti-
mization and Applications, 60 (2014), pp. 545–557, doi:10.1007/s10589-014-9687-3.

30

http://dx.doi.org/10.1007/s10107-009-0286-5
http://dx.doi.org/10.1007/s10107-009-0337-y
http://dx.doi.org/10.1137/1.9780898719857
http://dx.doi.org/10.1007/s10107-016-1026-2
http://dx.doi.org/10.1137/0801022
http://dx.doi.org/10.1137/1.9781611971200
http://dx.doi.org/10.1007/s101070100263
http://dx.doi.org/10.1080/10556788.2017.1322080
http://dx.doi.org/10.1137/0902016
http://dx.doi.org/10.1007/978-1-4613-3279-4_15
http://dx.doi.org/10.1007/s10589-014-9687-3

[24] N. I. M. Gould, M. Porcelli, and P. L. Toint, Updating the regularization parameter
in the adaptive cubic regularization algorithm, Computational Optimization and Applica-
tions, 53 (2012), pp. 1–22, doi:10.1007/s10589-011-9446-7.

[25] G. N. Grapiglia and Y. Nesterov, Regularized Newton methods for minimizing func-
tions with Hölder continuous hessians, SIAM Journal on Optimization, 27 (2017), pp. 478–
506, doi:10.1137/16M1087801.

[26] A. Griewank, The modification of Newton’s method for unconstrained optimization by
bounding cubic terms, Tech. Report NA/12, Department of Applied Mathematics and The-
oretical Physics, University of Cambridge, Cambridge, England, 1981.

[27] L. Grippo, F. Lampariello, and S. Lucidi, A nonmonotone line search technique
for Newton’s method, SIAM Journal on Numerical Analysis, 23 (1986), pp. 707–716,
doi:10.1137/0723046.

[28] N. J. Higham, Accuracy and Stability of Numerical Algorithms, second edition, Society for
Industrial and Applied Mathematics, Philadelphia, PA, 2002.

[29] E. W. Karas, S. A. Santos, and B. F. Svaiter, Algebraic rules for quadratic regu-
larization of Newton’s method, Computational Optimization and Applications, 60 (2015),
pp. 343–376, doi:10.1007/s10589-014-9671-y.

[30] S. Lu, Z. Wei, and L. Li, A trust region algorithm with adaptive cubic regularization
methods for nonsmooth convex minimization, Computational Optimization and Applica-
tions, 51 (2012), pp. 551–573, doi:10.1007/s10589-010-9363-1.

[31] J. M. Mart́ınez, On high-order model regularization for constrained optimization, SIAM
Journal on Optimization, 27 (2017), pp. 2447–2458, doi:10.1137/17M1115472.

[32] J. M. Mart́ınez and M. Raydan, Cubic-regularization counterpart of a variable-norm
trust-region method for unconstrained minimization, Journal of Global Optimization, 68
(2017), pp. 367–385, doi:10.1007/s10898-016-0475-8.

[33] J. J. Moré and D. C. Sorensen, Computing a trust region step, SIAM Journal on
Scientific and Statistical Computing, 4 (1983), pp. 553–572, doi:10.1137/0904038.

[34] Y. Nesterov and B. T. Polyak, Cubic regularization of Newton’s method and its global
performance, Mathematical Programming, 108 (2006), pp. 177–205, doi:10.1007/s10107-
006-0706-8.

[35] C. W. Royer and S. J. Wright, Complexity analysis of second-order line-search al-
gorithms for smooth nonconvex optimization, tech. report, 2017. arXiv:1706.03131v2
[math.OC].

[36] Z.-H. Wang and Y.-X. Yuan, A subspace implementation of quasi-Newton trust region
methods for unconstrained optimization, Numerische Mathematik, 104 (2006), pp. 241–269,
doi:10.1007/s00211-006-0021-6.

[37] HSL. A collection of fortran codes for large scale scientific computation, http://www.hsl.
rl.ac.uk/.

31

http://dx.doi.org/10.1007/s10589-011-9446-7
http://dx.doi.org/10.1137/16M1087801
http://dx.doi.org/10.1137/0723046
http://dx.doi.org/10.1007/s10589-014-9671-y
http://dx.doi.org/10.1007/s10589-010-9363-1
http://dx.doi.org/10.1137/17M1115472
http://dx.doi.org/10.1007/s10898-016-0475-8
http://dx.doi.org/10.1137/0904038
http://dx.doi.org/10.1007/s10107-006-0706-8
http://dx.doi.org/10.1007/s10107-006-0706-8
http://dx.doi.org/10.1007/s00211-006-0021-6
http://www.hsl.rl.ac.uk/
http://www.hsl.rl.ac.uk/

Problem n
BPK-based MDMT Spectral-based MDMT

f(x∗) ‖g(x∗)‖∞ #it #f Time SC f(x∗) ‖g(x∗)‖∞ #it #f Time SC

ARGLINA 500 5.00000e+02 1.6e−13 1 2 3.63 0 5.00000e+02 1.5e−12 1 2 2.90 0
ARWHEAD 1000 0.00000e+00 1.2e−12 6 7 0.62 0 0.00000e+00 1.2e−12 6 7 5.41 0
BDQRTIC 1000 3.98382e+03 2.2e−13 10 11 1.11 0 3.98382e+03 2.2e−13 10 11 18.28 0
BRYBND 1000 2.22994e−18 8.8e−09 10 12 1.07 0 5.05988e−27 1.8e−11 12 16 21.64 0
CRAGGLVY 1000 3.36423e+02 5.3e−15 15 16 1.58 4 3.36423e+02 5.1e−15 15 16 25.15 4
CURLY10 1000 -1.00316e+05 9.5e−13 12 13 1.26 0 -1.00316e+05 7.4e−13 20 23 32.73 0
CURLY20 1000 -1.00316e+05 1.8e−12 9 10 1.01 0 -1.00316e+05 1.8e−12 20 24 32.15 0
CURLY30 1000 -1.00316e+05 3.5e−12 9 10 1.07 0 -1.00316e+05 4.0e−11 23 27 36.77 0
DIXMAANA 900 1.00000e+00 0.0e+00 6 9 0.48 0 1.00000e+00 1.1e−20 6 7 7.10 0
DIXMAANB 900 1.00000e+00 1.7e−10 40 50 3.57 0 1.00000e+00 9.5e−19 10 13 13.34 0
DIXMAANC 900 1.00000e+00 1.3e−23 23 27 2.32 0 1.00000e+00 7.3e−17 9 11 11.76 0
DIXMAAND 900 1.00000e+00 9.9e−10 28 34 2.93 0 1.00000e+00 4.4e−14 17 21 21.27 0
DIXMAANE 900 1.00000e+00 7.2e−23 9 10 0.73 0 1.00000e+00 1.0e−10 7 8 9.08 0
DIXMAANF 900 1.00000e+00 9.4e−15 23 26 2.11 0 1.00000e+00 1.3e−10 11 13 15.74 0
DIXMAANG 900 1.00000e+00 5.4e−11 26 29 2.45 0 1.00000e+00 6.2e−16 17 21 24.13 0
DIXMAANH 900 1.00000e+00 8.6e−12 34 39 2.97 0 1.00000e+00 1.0e−08 15 18 21.07 0
DIXMAANI 900 1.00000e+00 2.9e−12 17 18 1.37 0 1.00000e+00 1.4e−15 9 10 11.72 0
DIXMAANJ 900 1.00000e+00 2.0e−14 31 35 2.81 0 1.00000e+00 1.0e−10 14 16 20.59 0
DIXMAANK 900 1.00000e+00 1.9e−15 29 33 2.54 0 1.00000e+00 4.5e−09 16 20 23.09 0
DIXMAANL 900 1.00000e+00 2.7e−09 29 33 2.49 0 1.00000e+00 1.2e−10 16 19 23.41 0
DIXON3DQ 1000 0.00000e+00 0.0e+00 1 2 0.12 0 1.19650e−21 1.6e−13 1 2 1.93 0
DQDRTIC 1000 0.00000e+00 0.0e+00 1 2 0.11 0 0.00000e+00 0.0e+00 1 2 0.67 0
DQRTIC 1000 2.23542e−10 4.3e−09 34 35 3.56 0 2.23542e−10 4.3e−09 34 35 22.23 0
EDENSCH 1000 6.00328e+03 1.5e−10 12 13 1.25 0 6.00328e+03 1.5e−10 12 13 22.79 0
EIGENALS 420 1.40870e−24 6.2e−11 414 568 8.81 0 1.98607e−21 7.4e−10 133 219 16.98 0
EIGENBLS 420 1.07055e−16 4.4e−09 204 283 3.94 0 4.82353e−23 6.2e−12 120 174 16.54 0
EIGENCLS 462 1.47145e−27 3.8e−14 283 369 6.99 0 2.31494e−20 2.2e−10 84 115 15.61 0
ENGVAL1 1000 1.10819e+03 1.3e−12 8 9 0.86 0 1.10819e+03 1.3e−12 8 9 15.22 0
FLETCBV2 1000 -5.01429e−01 8.4e−09 1 2 0.11 0 -5.01429e−01 8.4e−09 1 2 1.98 0
FLETCHCR 1000 1.29422e−30 4.4e−14 1442 1882 167.11 0 1.71563e−23 5.8e−12 1438 1942 2491.96 0
FMINSRF2 961 1.00000e+00 1.9e−15 58 107 6.13 0 1.00000e+00 3.3e−12 74 138 120.93 0
FMINSURF 961 1.00000e+00 2.9e−09 110 195 14.66 0 1.00000e+00 1.5e−12 74 131 123.33 0
GENHUMPS 1000 6.21560e−26 1.3e−13 3022 3938 340.37 0 1.65481e−24 8.0e−13 1544 2015 1619.88 0
GENROSE 1000 1.00000e+00 5.4e−13 707 1037 75.25 0 1.00000e+00 1.1e−09 624 1053 1066.10 0
HILBERTB 500 5.38430e−26 1.3e−13 1 2 0.05 0 2.32994e−25 7.4e−13 1 2 0.24 0
LIARWHD 1000 9.44338e−26 2.3e−11 12 13 1.25 0 9.44338e−26 2.3e−11 12 13 10.00 0
MODBEALE 1000 6.44647e−28 5.4e−13 24 26 2.38 0 5.94274e−16 3.4e−09 8 10 14.06 0
MOREBV 1000 7.32887e−13 4.7e−11 1 2 0.12 0 7.33318e−13 4.7e−11 1 2 1.74 0
MSQRTALS 1024 1.48095e−25 7.8e−14 308 450 48.27 0 1.76366e−18 6.7e−10 32 39 67.16 0
MSQRTBLS 1024 5.11171e−18 4.6e−09 336 475 52.17 0 2.04811e−22 1.9e−11 26 30 54.93 0
NCB20B 1000 1.67601e+03 2.3e−11 42 77 4.29 0 1.67601e+03 3.9e−09 15 16 27.68 0
NONDIA 1000 1.78727e−26 4.2e−11 6 7 0.56 0 1.78727e−26 4.2e−11 6 7 4.90 0
NONDQUAR 1000 3.18493e−13 9.5e−09 22 23 2.06 0 3.18493e−13 9.5e−09 22 23 41.43 0
OSCIPATH 500 9.99967e−01 1.3e−12 2 3 0.03 0 9.99967e−01 1.3e−12 2 3 0.47 0
PENALTY1 1000 9.68618e−03 2.4e−13 41 51 4.91 0 9.68618e−03 3.0e−09 40 50 35.65 0
POWELLSG 1000 3.29204e−10 8.7e−09 20 21 1.93 0 3.29204e−10 8.7e−09 20 21 11.80 0
POWER 1000 1.42811e−12 7.4e−09 33 34 3.81 0 1.42811e−12 7.4e−09 33 34 65.76 0
QUARTC 1000 2.23542e−10 4.3e−09 34 35 3.28 0 2.23542e−10 4.3e−09 34 35 20.67 0
SCHMVETT 1000 -2.99400e+03 1.9e−13 3 4 0.28 0 -2.99400e+03 1.9e−13 3 4 5.72 0
SPARSINE 1000 3.44543e−18 1.1e−09 1244 1613 123.38 0 9.86306e−16 6.2e−09 19 20 33.14 0
SPARSQUR 1000 4.49227e−11 7.6e−09 22 23 2.28 0 4.49227e−11 7.6e−09 22 23 40.36 0
SROSENBR 1000 3.34168e−18 1.9e−09 8 18 0.75 0 3.89179e−18 1.4e−09 8 18 4.81 0
TESTQUAD 1000 0.00000e+00 0.0e+00 1 2 0.10 0 0.00000e+00 0.0e+00 1 2 0.58 0
TOINTGSS 1000 1.00000e+01 1.9e−15 1 2 0.10 0 1.00000e+01 2.5e−13 1 2 1.82 0
TQUARTIC 1000 1.35757e−24 1.1e−10 1 2 0.10 0 3.34915e−23 5.0e−10 1 2 0.78 0
TRIDIA 1000 2.37990e−26 2.3e−12 1 2 0.10 0 9.77167e−23 8.3e−11 1 2 2.13 0
VARDIM 1000 1.96586e−23 8.9e−09 80 81 11.32 0 1.96586e−23 8.9e−09 82 83 110.58 0
VAREIGVL 1000 2.55125e−26 8.9e−13 17 23 1.98 0 1.87621e−26 6.9e−14 8 9 14.07 0
WOODS 1000 1.00361e−26 1.6e−13 39 52 3.95 0 4.50820e−20 1.6e−10 38 52 22.77 0

Table 1: Two versions of Algorithm 2.1 applied to 59 unconstrained problems in the CUTEst
collection in which both variants found equivalent solutions and stopped satisfying the same
stopping criteria related to a small gradient (stopping criteria 0 or 4) or related to achieving a
target functional value (stopping criteria 6 and 7).

32

Problem n
BPK-based MDMT Spectral-based MDMT

f(x∗) ‖g(x∗)‖∞ #it #f Time SC f(x∗) ‖g(x∗)‖∞ #it #f Time SC

ARGLINC 500 2.51125e+02 1.3e+01 4 5 9.17 7 2.51125e+02 1.4e−01 3 4 7.39 6
BOX 1000 -1.77371e+02 1.0e−13 14 26 1.49 4 -1.77371e+02 1.8e−13 11 18 9.45 0
BROWNAL 1000 1.00000e+00 1.9e−10 6 7 173.98 0 4.60178e−22 4.7e−10 5 6 138.34 0
BROYDN7D 1000 4.42450e+02 2.6e−11 42 52 4.46 0 3.61880e+02 4.6e−13 17 22 30.44 0
CHAINWOO 1000 7.42428e+01 2.8e−11 215 279 23.71 0 1.00000e+00 2.4e−12 52 80 123.05 0
COSINE 1000 -9.99000e+02 3.0e−10 5 6 0.52 0 -7.95559e+02 1.5e−02 6178 11770 4260.02 3
EG2 1000 -9.98947e+02 2.6e−07 16 353 1.84 9 -9.98947e+02 4.0e−09 5 7 3.88 0
EXTROSNB 1000 2.00727e−08 8.4e−05 1126 1698 119.81 2 2.07573e−08 8.2e−06 1120 1703 707.22 2
FLETCBV3 1000 -2.86635e+07 3.1e−02 4999 6501 533.40 3 -2.85189e+07 3.1e−02 4999 6501 3601.99 3
FLETCHBV 1000 -1.42629e+10 3.0e+06 4 5 0.46 6 -1.42612e+10 3.0e+06 4 5 6.24 6
FREUROTH 1000 1.21470e+05 1.3e−11 23 25 2.70 0 1.21470e+05 1.3e−06 28 553 53.76 9
INDEF 1000 -1.04532e+10 1.5e+01 35 37 3.78 7 -2.39122e+17 1.9e+02 4 5 7.02 7
MANCINO 1000 6.73178e−15 4.5e−04 31 36 848.99 5 6.75368e−15 4.5e−04 32 38 899.14 5
NCB20 1010 9.21210e+02 2.5e−14 92 119 9.67 0 9.27932e+02 3.8e−10 24 30 38.89 0
NONCVXU2 1000 2.31710e+03 2.8e−09 2020 2626 199.39 0 2.31894e+03 1.2e−13 180 240 327.17 0
NONCVXUN 1000 2.34905e+03 6.0e−11 2445 3171 242.67 0 2.32032e+03 2.7e−06 266 310 471.17 1
NONMSQRT 1024 8.99049e+01 3.5e−04 1897 410715 271.38 8 8.99049e+01 5.3e−03 2876 393328 2161.30 8
OSCIGRAD 1000 6.60719e−24 2.0e−08 11 15 1.03 5 1.34111e−23 2.9e−08 15 4051 32.70 5
PENALTY2 1000 3.95036e+82 1.3e+67 155 3423 19.19 8 1.01277e+83 4.7e+67 21 2253 37.45 8
PENALTY3 200 3.98575e+04 1.5e−07 647 1459 14.57 9 9.95470e−04 1.3e−07 26 286 1.16 9
SBRYBND 1000 3.66569e−27 1.4e−06 23 35 2.17 5 4.48886e−27 1.8e−06 28 115 59.16 5
SCOSINE 1000 -9.92319e+02 2.0e+13 87 32910 9.78 8 -9.96057e+02 1.1e+13 174 1321 184.22 9
SCURLY10 1000 -1.00316e+05 2.9e−08 64 73 6.39 9 -1.00316e+05 5.7e−08 147 182 227.01 9
SCURLY20 1000 -1.00316e+05 2.8e−08 64 73 6.20 9 -1.00316e+05 1.1e−07 69 82 102.79 9
SCURLY30 1000 -1.00316e+05 4.4e−08 64 73 6.44 9 -1.00316e+05 1.0e−07 71 84 106.64 9
SENSORS 1000 -2.10896e+05 2.6e−12 88 112 61.13 0 -2.09377e+05 4.9e−12 13 16 29.69 0
SINQUAD 1000 -2.94250e+05 1.0e−09 15 19 1.44 0 -2.94250e+05 4.4e−10 12 15 10.25 4
SPMSRTLS 1000 5.60850e−02 8.9e−11 47 61 4.51 0 4.34751e−16 2.0e−15 13 15 24.57 0

Table 2: Two versions of Algorithm 2.1 applied to 28 unconstrained problems in the CUTEst
collection in which at least one of the following situations ocurred: (a) Non-equivalent solutions
were found, (b) Stopping ocurred satisfying different stopping criteria, or (c) At least one of the
versions finished satisfying a criterion different from 0, 4, 6, or 7.

33

Problem n f(x∗) ‖g(x∗)‖∞ #it #f #g #H Time SC

ARGLINA 500 5.0000000000e+02 8.6e−14 1 2 2 1 2.97 0
ARGLINC 500 2.5112518728e+02 1.9e−02 29 192 204 11 26.47 2
ARWHEAD 1000 0.0000000000e+00 1.2e−13 13 14 14 5 5.11 0
BDQRTIC 1000 3.9838179506e+03 3.9e−09 19 22 22 7 6.98 0
BOX 1000 -1.7737059413e+02 1.8e−11 8 15 15 3 3.19 0
BROWNAL 1000 8.2679716579e−22 1.8e−09 7 8 8 3 88.29 0
BROYDN7D 1000 3.4952238029e+02 5.9e−10 67 81 81 23 25.26 0
BRYBND 1000 1.3870201692e−26 5.7e−12 20 24 24 7 8.22 0
CHAINWOO 1000 1.7790185089e+02 3.5e−13 1078 1326 1326 360 495.97 0
COSINE 1000 -9.9900000000e+02 2.8e−10 10 16 16 4 4.41 0
CRAGGLVY 1000 3.3845287719e+02 8.2e−08 38 114 114 14 15.19 2
CURLY10 1000 -1.0031629024e+05 2.4e−11 20 37 37 7 8.08 0
CURLY20 1000 -1.0031629024e+05 5.8e−10 21 38 38 7 8.12 0
CURLY30 1000 -1.0031629024e+05 1.4e−10 23 40 40 8 9.18 0
DIXMAANA 900 1.0000000000e+00 3.0e−12 9 10 10 3 2.49 0
DIXMAANB 900 1.0000000000e+00 1.5e−15 10 12 12 4 3.27 0
DIXMAANC 900 1.0000000000e+00 2.0e−10 11 12 12 4 3.22 0
DIXMAAND 900 1.0000000000e+00 2.6e−11 12 13 13 4 3.12 0
DIXMAANE 900 1.0000000000e+00 1.3e−12 14 18 18 5 3.99 0
DIXMAANF 900 1.0000000000e+00 1.6e−09 26 38 40 9 7.38 0
DIXMAANG 900 1.0000000000e+00 1.2e−11 31 36 39 11 9.28 0
DIXMAANH 900 1.0000000000e+00 1.6e−12 28 32 33 10 7.91 0
DIXMAANI 900 1.0000000000e+00 5.5e−12 33 65 72 11 8.62 0
DIXMAANJ 900 1.0000000000e+00 4.9e−10 55 107 117 19 16.01 0
DIXMAANK 900 1.0000000000e+00 2.0e−10 58 112 125 20 17.12 0
DIXMAANL 900 1.0000000000e+00 7.4e−12 73 135 158 25 21.76 0
DIXON3DQ 1000 1.8436964407e−10 1.9e−09 10 22 23 4 4.34 0
DQDRTIC 1000 0.0000000000e+00 0.0e+00 1 2 2 1 0.02 0
DQRTIC 1000 2.6040660838e−09 8.2e−09 62 122 122 21 0.93 0
EDENSCH 1000 6.0032845920e+03 9.2e−10 14 16 16 5 5.52 0
EG2 1000 -9.9894739330e+02 2.4e−08 87 581 632 31 31.54 2
EIGENALS 420 4.0220012518e−19 1.6e−09 110 150 151 37 3.67 0
EIGENBLS 420 6.2639758091e−19 1.5e−09 533 786 786 178 16.85 0
EIGENCLS 462 4.4624982881e−18 2.8e−10 317 408 408 106 12.56 0
ENGVAL1 1000 1.1081947188e+03 1.5e−11 10 11 11 4 4.25 0
EXTROSNB 1000 1.3693496282e−09 9.7e−09 7994 12030 17351 2665 152.61 0
FLETCBV2 1000 -5.0142903408e−01 8.4e−09 1 2 2 1 0.98 0
FLETCHCR 1000 1.2221291387e−20 3.8e−09 2489 5851 7500 831 853.32 0
FMINSRF2 961 1.0000000016e+00 6.9e−09 79 141 141 27 25.00 0
FMINSURF 961 9.9999999900e−01 9.3e−10 61 95 95 21 19.70 0
FREUROTH 1000 1.2146971011e+05 1.3e−08 12 30 30 5 5.06 2
GENROSE 1000 1.0000000000e+00 1.7e−09 949 2211 2833 317 316.95 0
HILBERTB 500 1.4038161241e−25 8.0e−13 1 2 2 1 0.19 0
INDEF 1000 -1.4864895857e+16 5.9e+01 152 830 859 55 57.65 2
LIARWHD 1000 5.6881470181e−19 6.2e−09 28 29 30 10 10.02 0
MANCINO 1000 6.2579858179e−15 3.9e−04 76 366 366 26 794.77 2
MODBEALE 1000 4.4132104884e−20 3.8e−10 14 16 16 5 5.19 0
MOREBV 1000 1.0844344982e−09 2.5e−09 3 4 4 1 1.07 0
MSQRTALS 1024 3.6170305416e−14 4.6e−09 57 68 68 19 21.96 0
MSQRTBLS 1024 1.8703730634e−18 2.7e−09 52 61 61 18 20.84 0
NCB20 1010 9.1986070003e+02 4.0e−09 165 224 224 56 66.74 0
NCB20B 1000 1.6760112121e+03 8.9e−09 38 53 53 13 13.38 0
NONCVXU2 1000 2.3180574688e+03 8.9e−09 603 880 880 201 199.04 0
NONCVXUN 1000 2.3266274704e+03 6.7e−09 1730 8636 8636 578 619.65 0
NONDIA 1000 3.5722395251e−22 1.9e−11 13 15 17 5 5.16 0
NONDQUAR 1000 2.6147062947e−08 9.6e−09 198 272 272 66 76.76 0
NONMSQRT 1024 8.9906813008e+01 4.5e−07 1465 7023 7033 493 748.04 2
OSCIGRAD 1000 7.7276112636e+04 1.6e−08 21 50 63 8 9.05 2
OSCIPATH 500 9.9996666552e−01 2.1e−08 4 46 48 2 0.28 2
PENALTY1 1000 9.6861754324e−03 2.3e−11 73 97 97 25 33.56 0
PENALTY2 1000 1.4463988820e+83 2.1e+38 1 5 5 1 1.01 2
PENALTY3 200 9.9713897705e−04 3.5e−06 25 160 160 9 0.62 2
POWELLSG 1000 1.0972521352e−10 6.1e−09 35 36 36 12 10.53 0
POWER 1000 4.7635080787e−14 5.5e−09 85 87 92 29 29.08 0
QUARTC 1000 2.6040660838e−09 8.2e−09 62 122 122 21 0.81 0
SBRYBND 1000 6.6415972259e−27 1.9e−06 96 300 317 34 57.97 2
SCHMVETT 1000 -2.9940000000e+03 4.4e−15 4 5 5 2 2.06 0
SCOSINE 1000 -9.9900000000e+02 1.1e−07 172 204 240 59 62.86 2
SCURLY10 1000 -1.0031629024e+05 4.3e−08 174 262 262 59 88.80 2
SCURLY20 1000 -1.0031629024e+05 1.2e−07 126 200 200 43 54.29 2
SCURLY30 1000 -1.0031629024e+05 1.8e−07 105 171 171 36 43.63 2
SENSORS 1000 -2.0054165625e+05 1.7e−08 60 70 70 21 42.35 2
SINQUAD 1000 -2.9425049403e+05 2.1e−05 19 176 176 7 7.48 2
SPARSINE 1000 7.3116629848e−16 5.7e−10 47 59 59 16 16.16 0
SPARSQUR 1000 5.4540486806e−11 8.8e−09 28 29 29 10 10.04 0
SPMSRTLS 1000 4.3475087793e−16 4.6e−13 28 35 35 10 10.03 0
SROSENBR 1000 8.1086291267e−21 7.4e−10 11 13 13 4 2.64 0
TESTQUAD 1000 0.0000000000e+00 0.0e+00 1 2 2 1 0.01 0
TOINTGSS 1000 1.0000000020e+01 2.8e−15 1 2 2 1 0.96 0
TQUARTIC 1000 9.3332139869e−24 1.7e−10 1 2 2 1 1.00 0
TRIDIA 1000 2.0172800372e−26 2.2e−12 1 2 2 1 0.97 0
VARDIM 1000 2.3897900421e−23 9.8e−09 52 62 62 18 27.78 0
VAREIGVL 1000 1.7085711434e−20 4.6e−11 10 11 11 4 4.15 0
WOODS 1000 2.4085500931e−22 4.2e−10 169 237 267 57 46.36 0

Table 3: Details of the application of CurviH to the 87 unconstrained problems in the CUTEst
collection. Only problems fletcbv3, fletchbv, and genhumps were excluded from the table
since the method exceeded a CPU time limit of one hour without satisfying any of the stopping
criteria.

34

Problem n f(x∗) ‖g(x∗)‖∞ #it #f Time SC

ARGLINA 500 5.0000000000e+02 1.6e−13 1 2 2.80 0
ARGLINC 500 2.5112518716e+02 6.8e+00 4 5 9.09 7
ARWHEAD 1000 0.0000000000e+00 1.2e−12 6 7 0.00 0
BDQRTIC 1000 3.9838179506e+03 2.2e−13 10 11 0.01 0
BOX 1000 -1.7737059413e+02 9.2e−10 12 21 0.01 0
BROWNAL 1000 4.3243991418e−19 4.2e−08 14 15 373.97 5
BROYDN7D 1000 4.2360571241e+02 5.2e−09 46 56 0.05 0
BRYBND 1000 3.1652479269e−23 2.3e−11 11 14 0.02 0
CHAINWOO 1000 7.5046422953e+01 3.0e−13 217 286 0.15 0
COSINE 1000 -9.9900000000e+02 3.1e−12 6 7 0.00 0
CRAGGLVY 1000 3.3642314787e+02 5.4e−15 15 16 0.01 4
CURLY10 1000 -1.0031376042e+05 1.5e−12 422 548 0.56 0
CURLY20 1000 -1.0030047885e+05 6.9e−12 490 637 1.56 0
CURLY30 1000 -1.0028340256e+05 1.3e−11 330 429 1.93 0
DIXMAANA 900 1.0000000000e+00 0.0e+00 6 8 0.01 0
DIXMAANB 900 1.0000000000e+00 1.5e−10 28 34 0.02 0
DIXMAANC 900 1.0000000000e+00 1.3e−23 37 44 0.03 0
DIXMAAND 900 1.0000000000e+00 2.9e−15 30 34 0.02 0
DIXMAANE 900 1.0000000000e+00 4.4e−12 9 10 0.01 0
DIXMAANF 900 1.0000000000e+00 7.7e−21 27 30 0.02 0
DIXMAANG 900 1.0000000000e+00 5.7e−10 39 46 0.03 0
DIXMAANH 900 1.0000000000e+00 3.0e−19 35 40 0.02 0
DIXMAANI 900 1.0000000000e+00 4.8e−17 11 12 0.01 0
DIXMAANJ 900 1.0000000000e+00 6.0e−11 38 43 0.03 0
DIXMAANK 900 1.0000000000e+00 3.1e−09 34 38 0.02 0
DIXMAANL 900 1.0000000000e+00 8.6e−09 33 37 0.02 0
DIXON3DQ 1000 0.0000000000e+00 0.0e+00 1 2 0.00 0
DQDRTIC 1000 0.0000000000e+00 0.0e+00 1 2 0.00 0
DQRTIC 1000 2.2354180180e−10 4.3e−09 34 35 0.01 0
EDENSCH 1000 6.0032845920e+03 1.5e−10 12 13 0.01 0
EG2 1000 -9.9894739330e+02 2.7e−07 16 317 0.23 9
EIGENALS 420 3.6996340677e−18 7.7e−09 466 643 9.21 0
EIGENBLS 420 9.3259138939e−16 7.6e−09 223 327 4.00 0
EIGENCLS 462 3.8834451010e−22 2.1e−10 241 330 5.23 0
ENGVAL1 1000 1.1081947188e+03 1.3e−12 8 9 0.01 0
EXTROSNB 1000 2.0419363501e−08 4.1e−05 1125 1659 0.55 2
FLETCBV2 1000 -5.0142903408e−01 8.4e−09 1 2 0.00 0
FLETCBV3 1000 -2.8519222615e+07 3.1e−02 4999 6501 3.27 3
FLETCHBV 1000 -1.4262893412e+10 3.0e+06 4 5 0.00 6
FLETCHCR 1000 1.6636144649e−25 8.9e−13 1470 2021 0.84 0
FMINSRF2 961 9.9999999900e−01 5.4e−15 51 98 0.10 0
FMINSURF 961 9.9999999900e−01 7.8e−12 98 167 10.68 0
FREUROTH 1000 1.2146971011e+05 7.1e−05 35 391 0.05 9
GENHUMPS 1000 1.6915335609e−18 5.0e−10 3080 4016 2.31 0
GENROSE 1000 1.0000000000e+00 6.7e−13 706 966 0.39 0
HILBERTB 500 3.8827140132e−26 1.0e−13 1 2 0.05 0
INDEF 1000 -5.3093486065e+18 2.6e+02 11 12 0.01 7
LIARWHD 1000 9.4433750103e−26 2.3e−11 12 13 0.01 0
MANCINO 1000 6.7326101684e−15 4.4e−04 23 27 620.35 5
MODBEALE 1000 1.1308969338e−21 2.7e−11 19 20 0.02 0
MOREBV 1000 7.3289563806e−13 4.7e−11 1 2 0.00 0
MSQRTALS 1024 1.5355565738e−24 2.4e−12 420 593 62.35 0
MSQRTBLS 1024 3.6774154581e−23 5.7e−12 519 711 75.01 0
NCB20 1010 9.2526099787e+02 2.8e−09 116 151 0.48 0
NCB20B 1000 1.6760112150e+03 7.6e−09 22 36 0.10 0
NONCVXU2 1000 2.3175732714e+03 1.8e−11 3088 4016 40.62 0
NONCVXUN 1000 2.3277730975e+03 4.9e−11 3709 4823 8.35 0
NONDIA 1000 1.7872679188e−26 4.2e−11 6 7 0.00 0
NONDQUAR 1000 3.1849289202e−13 9.5e−09 22 23 0.01 0
NONMSQRT 1024 8.9904972164e+01 3.6e−05 1216 2274 9.02 9
OSCIGRAD 1000 1.4643716141e−23 2.8e−08 13 23 0.01 5
OSCIPATH 500 9.9996666552e−01 1.3e−12 2 3 0.00 0
PENALTY1 1000 9.6861754324e−03 6.2e−11 41 51 4.64 0
PENALTY2 1000 1.0127718562e+83 8.6e+66 26 163 2.97 9
PENALTY3 200 9.9427795410e−04 1.3e−07 69 680 1.82 9
POWELLSG 1000 3.2920404304e−10 8.7e−09 20 21 0.01 0
POWER 1000 1.4281110130e−12 7.4e−09 33 34 3.69 0
QUARTC 1000 2.2354180180e−10 4.3e−09 34 35 0.01 0
SBRYBND 1000 4.6535729448e−27 1.4e−06 15 43 0.02 5
SCHMVETT 1000 -2.9940000000e+03 1.9e−13 3 4 0.00 0
SCOSINE 1000 -9.9187975204e+02 6.5e+13 225 1084 0.20 9
SCURLY10 1000 -1.0002915545e+05 1.2e−07 451 577 0.57 9
SCURLY20 1000 -1.0001207915e+05 3.0e−07 341 433 1.04 9
SCURLY30 1000 -1.0002346335e+05 5.3e−07 295 374 1.63 9
SENSORS 1000 -2.1093750000e+05 6.2e−12 51 67 34.28 0
SINQUAD 1000 -2.9425049403e+05 7.3e−10 15 34 0.01 0
SPARSINE 1000 8.0457143349e−20 8.0e−10 1664 2158 53.43 0
SPARSQUR 1000 4.4922696396e−11 7.6e−09 22 23 0.65 0
SPMSRTLS 1000 2.8806449220e−01 1.5e−15 77 99 0.07 0
SROSENBR 1000 3.8917905294e−18 1.4e−09 8 18 0.00 0
TESTQUAD 1000 8.6876741402e−27 8.9e−11 1 2 0.00 0
TOINTGSS 1000 1.0000000020e+01 2.8e−15 1 2 0.00 0
TQUARTIC 1000 9.0443341587e−25 1.9e−12 1 2 0.00 0
TRIDIA 1000 6.2328146641e−27 2.1e−12 1 2 0.00 0
VARDIM 1000 1.9658584423e−23 8.9e−09 83 84 11.56 0
VAREIGVL 1000 2.2059909687e−23 3.4e−11 48 66 5.56 0
WOODS 1000 3.0845693989e−28 4.4e−14 41 61 0.02 0

Table 4: Details of the application of Algorithm 2.1 with the sparse implementation of the BPK-
based Mixed Factorization applied to the 87 unconstrained problems in the CUTEst collection
under consideration. 35

	Introduction
	Mixed factorizations and minimization algorithm
	Solving the subproblem
	Convergence and complexity
	Numerical experiments
	Bunch-Parlett-Kaufman-based versus spectral-based mixed factorization
	Comparison against CurviH dennis
	Advantages of exploiting sparsity
	Additional comparison

	Conclusions

