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Abstract

Algencan is a freely available piece of software that aims to solve smooth large-scale constrained
optimization problems. When applied to specific problems, obtaining a good performance in terms
of efficacy and efficiency may depend on careful choices of options and parameters. In the present
paper the application of Algencan to four portfolio optimization problems is discussed and numerical
results are presented and evaluated.
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1 Introduction

The Augmented Lagrangian (AL) method is a consolidated technique for solving constrained optimization
problems. At each (outer) iteration this method solves (approximately) a subproblem where the objective
function plus a term that penalizes the constraints is minimized, perhaps subject to simple constraints.
The distinctive characteristic of AL with respect to penalty methods is that in AL the constraints are
penalized with respect to suitable shifted values, that are updated between outer iterations. This pro-
cedure generally avoids the employment of large penalty parameters, preserving well-conditioning of the
subproblems. See [7] and references therein.

In [2] and [7] a particular Augmented Lagrangian algorithm, called Algencan, is described. The basic
convergence theory was given in [2] and, in the last ten years, it has been updated many times. Algencan
is based on the Powell-Hestenes-Rockafellar (PHR) Augmented Lagrangian approach [12, 19, 20], as well
as Lancelot [9] and other AL algorithms. The general problem to which Algencan may be applied is the
following:

Minimize f(x) subject to h(x) = 0, g(x) ≤ 0, and ` ≤ x ≤ u, (1)

where f : Rn → R, h : Rn → Rm, and g : Rn → Rp are smooth and `, u ∈ Rn are lower and upper bounds
on the variables, respectively. At each outer iteration k, Algencan addresses the subproblem

Minimize f(x) +
ρk
2
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]
subject to ` ≤ x ≤ u. (2)
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In (2), ρk > 0 is a penalty parameter, λk ∈ Rm and µk ∈ Rp+ are the vectors of approximate Lagrange
multipliers associated with equality and inequality constraints, respectively, and v+ denotes the vector
whose components are max{0, vj}, where v1, v2, . . . are the components of v. At each iteration, λk, µk,
and ρk are conveniently updated, according to the behavior of the method in the last subproblem.

Essentially, there are no restrictions on the number of variables and constraints of (1). This versatility
has stimulated the application of Algencan to the solution of practical problems in the last 10 years [7].
Algencan is a free software whose potentialities deserve to be known by the community of engineers,
economists, and other users. Its ability to handle very large problems is well known, it is relatively
easy to install and use, and, so, it is interesting to report its performance in practical problems. The
interesting question is whether Algencan can solve these problems in time compatible with the user’s
necessities. Global optimality is not guaranteed but convergence to KKT points under very weak con-
straint qualifications is, a property that is shared by very few nonlinear programming solvers. As far as
we know, no global optimization solver is able to find global solutions of general large-scale nonlinear
programming problems in reasonable computer time. It is worthwhile to mention, however, that a global
version of Algencan has been described in [7], based in a method introduced in [6] and further analyzed
in [8]. Unfortunately, as in every sophisticated optimization software, the performance of Algencan in
practical situations is user-dependent. Although any user can solve successfully many problems using
“default parameters”, in many cases experienced users can obtain results astonishingly more efficiently
than casual ones, both in terms of robustness and speed. Moreover, in real–life applications the formu-
lation of the problems is not separated from the algorithmic decisions, and the applied mathematician
should be involved in both processes. In this paper we will consider some industrial financial problems
to which these paradigms apply.

2 Portfolio optimization problems

Let us consider a portfolio consisting of n assets. A matrix θ ∈ Rm×n, obtained by simulation, reflects
m scenarios for the variations of prices during some period of time. Thus, if xj is the present value of z
units of the asset j, then θijxj is the inflation-discounted prize of z units of the asset j one period later,
under scenario i. The expected return of a portfolio x ∈ Rn is (1/m)

∑m
i=1

∑n
j=1 θijxj =

∑n
j=1 θ̄jxj ,

where θ̄j = (1/m)
∑m
i=1 θij , for all j = 1, . . . , n. Including the budget constraint

∑n
j=1 xj = 1 and

non-negativity constraints x ≥ 0, the objective of an investor could be to maximize the expected return,
i.e.

Maximize

n∑
j=1

θ̄jxj subject to

n∑
j=1

xj = 1 and x ≥ 0. (3)

This problem is trivial. Defining θ̄j = max{θ̄1, . . . , θ̄n}, an obvious solution is xj = 1 and x` = 0 for all
` 6= j. However, this solution is not satisfactory because it does not take into account the risk of large
variations of the prices of the winner asset. By this reason, the classical Markowitz model [16] minimizes
the variance subject to some desired expected return and many variations of this risk-conscious approach
have been presented in the literature.

Given p ∈ {0, 1, . . . ,m − 1} we will consider the basic problem of maximizing the average of the
m − p worst returns subject to constraints. This is a Generalized Order-Value Optimization (GOVO)
problem in the sense of [18] and is equivalent to the problem of minimizing the Conditional Value-at-
Risk (CVaR) measure using scenarios. In other words, assume that we take all the possible combinations
of m−p scenarios and we associate to each of these combinations the corresponding average return. Then
we choose the combination of m − p scenarios associated with the lowest average return. The GOVO
problem that corresponds to Conditional Value-at-Risk (CVaR) consists of finding the decision for which
the above mentioned lowest average return is the largest possible. Clearly, this is a generalization of the
problem of maximizing the lowest return (which corresponds to the case p = m − 1). As a consequence
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[18, 21], adding the budget constraint
∑n
j=1 xj = 1, the solution comes from the Linear Programming

(LP) problem

Minimize
x,z0,z

(m− p)z0 +

m∑
i=1

zi

subject to x ∈ Ω ≡ {x ∈ Rn |
∑n
j=1 xj = 1 and x ≥ 0}, zi ≥ 0 and zi ≥ −

∑n
j=1 θijxj − z0, i = 1, . . . ,m.

The inclusion of a linear constraint of the form
∑n
j=1 θ̄jxj ≥ r on the expected return, where r > 0 is a

given constant, does not alter the nature of the problem, which remains to be an LP. To be more realistic
we need to add other constraints to our problem. On the one hand, it makes no sense investments in
some asset j smaller than a known quantity ξj . This means that, for all j = 1, . . . , n, we must add a
constraint that says that xj does not belong to the open interval (0, ξj). We do this by means of the
constraint

(xj − ξj/2)2 ≥ ξ2j /4,
or, equivalently,

ξjxj − x2j ≤ 0, (4)

for all j = 1, . . . , n. On the other hand, the investor may wish to concentrate the investments in a small
number q of assets. This leads to the constraint

n∑
j=1

H(xj) ≤ q. (5)

In (5), H is the Heaviside step function defined by H(t) = 0 if t ≤ 0 and H(t) = 1 if t > 0. Therefore,
the quantity

∑n
j=1H(xj) in (5) represents the number of assets in which investments are done. Strictly

speaking, this constraint does not correspond to the model (1) because the function H is discontinuous.
For this reason, in practice, we will replace H with a smooth approximation as suggested in [17]. Adding
the constraints (4) and (5) the problem becomes nonlinear and represents an interesting challenge for
Algencan. Note that if in constraint (4) we consider ξj = ξ ≤ 1 for all j then, in addition to the
lower-bound on each xj , it also implicitly imposes an upper bound q = b1/ξc on the number of non-null
assets xj at the solution; while constraint (5) imposes this limit explicitly. In any case, if the number of
non-null assets can be at most q ≥ 1, each asset xj has a lower bound ξ, and the sum of the xj must be
equal to one, then a solution with q̂ ≤ q non-null assets has the theoretical upper bound

ξ̄ = 1− (q̂ − 1)ξ (6)

on each xj implicitly imposed as well. Summing up, the variants of the GOVO problem that we are going
to tackle are:

Problem 1: The simplest problem commented above is the Linear Programming problem that consists
of maximizing GOVO, without additional constraints. For given θ ∈ Rm×n and p ∈ {0, 1, . . . ,m−1},
we wish to solve the following problem:

Minimizex,z0,z
(m−p)
m z0 + 1

m

∑m
i=1 zi

subject to zi ≥ −
∑n
j=1 θijxj − z0, i = 1, . . . ,m,

zi ≥ 0, i = 1, . . . ,m,∑n
j=1 xj = 1,

x ≥ 0.

Note that we aim to maximize the average of the m− p worst returns. For example, if p = 0.99m
then (m− p)/m = 0.01 and the goal is to maximize the average of the 1% worst returns.
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Problem 2: With the same data as problem 1 and, in addition, given r > 0, we wish to solve the
following problem:

Minimizex,z0,z
(m−p)
m z0 + 1

m

∑m
i=1 zi

subject to zi ≥ −
∑n
j=1 θijxj − z0, i = 1, . . . ,m,

zi ≥ 0, i = 1, . . . ,m,∑n
j=1 xj = 1,∑n
j=1 θ̄jxj ≥ r,

x ≥ 0.

Problem 3: With the same data as problem 2 and, in addition, given ξj > 0 for all j = 1, . . . , n, we
wish to solve the following problem:

Minimizex,z0,z
(m−p)
m z0 + 1

m

∑m
i=1 zi

subject to zi ≥ −
∑n
j=1 θijxj − z0, i = 1, . . . ,m,

zi ≥ 0, i = 1, . . . ,m,

ξjxj − x2j ≤ 0, j = 1, . . . , n,∑n
j=1 xj = 1,∑n
j=1 θ̄jxj ≥ r,

x ≥ 0.

Problem 4: With the same data as problem 3 and, in addition, given an integer positive constant q, we
wish to solve the following problem:

Minimizex,z0,z
(m−p)
m z0 + 1

m

∑m
i=1 zi

subject to zi ≥ −
∑n
j=1 θijxj − z0, i = 1, . . . ,m,

zi ≥ 0, i = 1, . . . ,m,

ξjxj − x2j ≤ 0, j = 1, . . . , n,∑n
j=1 xj = 1,∑n
j=1 θ̄jxj ≥ r,∑n
j=1H(xj) ≤ q,

x ≥ 0.

The two linear programming (LP) problems 1 and 2 are being included in this study in order to put
the nonlinear ones (problems 3 and 4) in perspective with respect to the better known (linear) case. We
are aware that it is possible to solve million-variables LPs, of course, depending of the structure. In the
nonlinear case the situation is much more erratic. Even some two-variables nonlinear problems could
be unsolvable. As far as we know problems of the form 3 and 4 have not been solved, or, at least, its
solution has not been commented in the Optimization literature. In any case, Algencan has two nice
characteristics that make it suitable for large problems: it is matrix-free, so that no matrix (even sparse)
factorizations are used at all and it handles inequality constraints without using slack variables. The use
of slack variables obviously increase the dimension of the problems and it may be prohibitive in critical
cases.
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3 Numerical experiments and discussion

We will report the results on a case consisting of n = 1 000 assets and m = 10 000 scenarios. This
means, that, roughly speaking, problems 1 and 2 are LP problems with ≈ 11 000 variables and ≈ 10 000
inequality constraints (excluding lower bounds). Problems 3 and 4 are Nonlinear Programming problems
with the same number of variables, ≈ 10 000 linear inequality constraints (excluding bounds), and ≈ 1 000
nonlinear inequality constraints.

Since we don’t want to bore the reader with meaningless and endless tables and graphics, we will
concentrate our report on this case. The matrix θ ∈ Rm×n will be generated using standard simulation
and expert intervention to add catastrophic events. The objective function value at the solution of
problem (3) is bounded above by Θ̄ = max{θ̄1, . . . , θ̄n}, where θ̄j = (

∑m
i=1 θij)/m for all j, and bounded

below by 1. The first value corresponds to the decision of investing all the budget in the asset with
highest expected return and 1 is the result of investing all the budget in an asset that corresponds to
inflation-corrected currency. In general, the first decision violates the risk constraints, but reporting this
value gives us some feeling about the possible success of the investment.

3.1 Generation of scenarios

We considered the date range from January 14, 2013, to January 12, 2015, that, for the NYSE exchange,
implies in 503 observable days. Companies were taken from the listing of the NYSE exchange available
at http://www.nasdaq.com/screening/company-list.aspx that contains 3 300 companies (accessed
on January 13, 2015). We considered the first 100 listed companies excluding those with less than 503
observations and those that contain the character ˆ in its symbol. We took historical data (adjusted close
value) from Yahoo! Finance using the web tool available at http://finance.jasonstrimpel.com, that
is able to download multiple stock data series on one spreadsheet. We named this real data D̂ ∈ R503×100.
To obtain a matrix D ∈ R503×n with n = 1 000, we first computed 999−100 additional columns as convex
combinations of the 100 columns of D̂. Then, we added a last column given by (1, 1, . . . , 1)T ∈ R503

corresponding to a risk-free asset. Using matrix D as a source, we computed the matrix of growing
factors G ∈ R502×n whose elements gij are given by gij = di+1,j/dij for i = 1, . . . , 502 and j = 1, . . . , n.
Each row i of our scenarios matrix θ ∈ Rm×n with m = 10 000 will represent a single scenario i that
corresponds to applying 250 random growing factors to the unitary vector e = (1, . . . , 1) ∈ Rn (note
that 250 observable days corresponds to a calendar year). Finally, with probability of 0.1%, a random
scenario was multiplied by a random number between 0.1 and 0.4 to simulate catastrophic events. For
comparison purposes, it is worth noting that the asset with largest expected profit is asset j = 21 with
Θ̄ = θ̄21 = 1.8601. In this way we defined a problem with a considerable large number of assets most of
them highly correlated, which could be hard for optimization purposes.

3.2 Parameters and subroutines for running Algencan

To solve problems with Algencan, we need to code subroutines to compute the objective function, the
constraints, and their derivatives. Algencan deals explicitly with inequality constraints and, therefore,
slack variables are not added to the model. When computing the gradient of the Lagrangian, only
gradients of violated or nearly-active constraints are needed. For that reason, it is preferable, at least for
the case of problems 1–4, which have a relatively large number of constraints, to provide the constraints
(and their derivatives) individually. In Algencan, choices are: (a) to provide a subroutine that computes,
at the same time, the objective function and all the constraints; or (b) to provide a subroutine that
computes the objective function and other subroutine that, given j, computes the j-th constraint. By
the reasons mentioned above, we chose (b) in this case. The Jacobian of the constraints of problem 1 has
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the form

J = J(x, z0, z) =

(
−θ −em −I
eTn 0 0

)
∈ R(m+1)×(n+1+m), (7)

where em = (1, . . . , 1)T ∈ Rm, en = (1, . . . , 1)T ∈ Rn, and I ∈ Rm×m is the identity matrix. The
matrix (7) has almost 90% of null elements. In the case of problems 1 and 2, the Hessian matrix of the
Augmented Lagrangian function in (2) at iteration k is ρk(JTJ). (In the case of the nonlinear problems 3
and 4 the Hessian matrix depends on the current point (x, z0, z).) On the one hand, computing the
product of this matrix times an arbitrary given vector is relatively cheap, due to the sparsity of J . On
the other hand, computing and factorizing ρk(JTJ) may be very time consuming (even storing it may be
prohibited for large values of m). For that reason, it is preferable to use a truncated Newton approach
instead of a Newtonian approach to solve the Augmented Lagrangian subproblems (2). By the same reason
(avoiding matrix factorizations), the Algencan acceleration scheme, that tries to solve the KKT system
by Newton’s method, should not be activated. These requirements may be given to Algencan using the
keywords truncated-newton-line-search-inner-solver and skip-acceleration-process. See [7]
for details.

Algencan stopping criterion associated with success employs a tolerance εfeas for the sup-norm of the
constraints and a tolerance εopt for the sup-norm of the projected gradient of the Lagrangian. Bound
constraints are satisfied with zero-tolerance. We arbitrarily set εfeas = εopt = 10−8.

3.3 Results

All tests were conducted on a 3.4GHz Intel Core i5 with 8GB 1600 MHz DDR3 RAM memory and running
OS X Yosemite operating system version 10.10.2 (14C109), Kernel Version: Darwin 14.1.0. Codes were
compiled by the GFortran Fortran compiler of GCC (version 4.9.0) with the -O3 optimization directive
enabled.

In a first experiment, we aim to solve problem 1. The problem has n = 1 000 assets and m = 10 000
scenarios. Therefore, it has 11 001 variables and 10 001 constraints (excluding non-negativity constraints).
The values of p employed in the experiments were 9 995, 9 990, 9 950, 9 900, and 0. We considered different
possibilities for choosing the initial point x for the optimization process. Alternatives for the initial
portfolio are: (a) to invest all the budget on the risk-free asset or (b) to invest all the budget on the
asset with the largest expected return. Since the latter is a solution to the case p = 0, that was our
choice. So, for the problem at hand, the initial approximation corresponds to x21 = 1 and xj = 0 for
all j 6= 21. Setting the values of z0 and z to obtain a feasible initial guess (x, z0, z) is very simple (for
any given portfolio). Let si =

∑n
j=1 θijxj be the expected return under scenario i for i = 1, . . . ,m.

We set z0 = si(m−p)
, where si(m−p)

is the (m − p)-th smallest value between s1, s2, . . . , sm, and then set
zi = max{0,−si − z0} for i = 1, . . . ,m.

Table 1 shows the results. In the table, “Time” is the CPU time in seconds and GOVO is the
expected return of the worst m−p scenarios at the solution obtained. (Recall that this objective function
corresponds to the simulation-based CVaR after a trivial transformation.) The return of the worst
(m − p + 1)–th scenario (which corresponds to the Value-at-Risk (VaR)) [13] is denoted by OVO(VaR)
and the expected return considering all scenarios is denoted by E(R). These quantities are also reported
for completeness. Recall that the quantity being maximized is the average of the w% worst possible
returns, where w = 100(m− p)/m. In the extreme case, when p = 0, we have that w = 100 and, hence,
GOVO coincides with the expected return. In this case, the expected return that is maximized and, as
it should be, the obtained solution says that all the capital should be invested on the asset with the
largest expected return, i.e. j = 21 that has θ̄21 = 1.8601. Note that, for the instance with p = 0,
even starting from the solution, Algencan required a little less than 3 minutes to find the solution. This
is due to the fact that Algencan did not receive the optimal Lagrange multipliers (dual solution) that
would allow the method to verify that the initial point was a solution. Moreover, penalty-like methods
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usually lose the possible feasibility of a given initial guess. Setting by hand a relatively large value of the
penalty parameter ρ1 associated with the first Augmented Lagrangian subproblem may be a remedy for
this inconvenient. This strategy, known as short-cut or hot-start, may be useful in some situations but
harmful in other cases. Since the instance with p = 0 was included for consistency checking only and
starting from the solution is not the usual case, we decided to preserve the default setting of Algencan
for the initial penalty parameter.

p Time OVO(VaR) GOVO E(R)

9999 4.17 0.2559 0.2559 1.3670
9995 16.26 0.4475 0.3438 1.8010
9990 57.06 0.6793 0.4851 1.8297
9950 136.38 1.0644 0.8626 1.7109
9900 43.68 1.1204 0.9823 1.7028

0 165.63 5.8097 1.8601 1.8601

Table 1: Description of the solutions to problem 1 for different settings of parameter p.

Problem 2 is similar to problem 1 but includes a (linear) constraint that adds a minimum requirement
in the expected return of the portfolio. We already know that the asset with the largest expected return
is asset j = 21 with θ̄ = 1.8601. Requiring a fraction of this return appears to be a reasonable choice. We
consider two possibilities: requiring an expected return of at least 90% of the maximum expected return
and the same with 95%. Table 2 shows the results. As expected, in the cases in which the solution to
problem 1 satisfies the additional constraint, this constraint has no effect and the solutions to problem 1
and 2 are the same. With the 90%-requirement, only the solution to problem 1 with p = 9999 does not
satisfies the requirement. In this case, satisfying the new constraint implies in a reduction of GOVO
from 0.2559 to 0.2412. In the same instance, with the 95%-requirement, GOVO goes down to 0.23. In
all other instances (with p ∈ {9 995, 9 9990, 9 9950, 9 900, 0}) solutions to problem 1 and to problem 2
with the 90%-requirement in the expected return are the same. With the more restrictive constraints
(expected return of at least 95% of the maximum expected return), solutions to problem 2 with p = 9950
and 9900 do not satisfy the requirement. In both cases the new constraint produces e reduction in the
GOVO from 0.8626 to 0.8606 and from 0.9823 to 0.9771, respectively. Reductions in GOVO appear to
be modest considering the increase between 5 and 6 percentage points in the expected return, completely
justifying the introduction of the new constraint.

E(R) ≥ r ≡ 0.9 Θ̄ = 1.6741

p Time OVO(VaR) GOVO E(R)

9999 2.23 0.2412 0.2412 1.6741
9995 16.60 0.4475 0.3438 1.8010
9990 57.95 0.6793 0.4851 1.8297
9950 130.76 1.0644 0.8626 1.7109
9900 43.84 1.1204 0.9823 1.7028

0 166.89 5.8097 1.8601 1.8601

E(R) ≥ r ≡ 0.95 Θ̄ = 1.7671

p Time OVO(VaR) GOVO E(R)

9999 3.36 0.2300 0.2300 1.7671
9995 15.80 0.4475 0.3438 1.8010
9990 59.85 0.6793 0.4851 1.8297
9950 137.62 1.0551 0.8606 1.7671
9900 68.10 1.1212 0.9771 1.7671

0 165.81 5.8097 1.8601 1.8601

Table 2: Description of the solutions to problem 2 for different settings of parameter p. A less restrictive
and a more restrictive constraint in the expected return are being considered.

Problems 1 and 2 are linear programming (LP) problems. As a basis for comparison, we run the
eighteen LP problems in Tables 1 and 2 using GLPK [27], the GNU Linear Programming Kit (v4.55).
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Problems were coded in the GNU MathProg language (that, at the present time, is a subset of the
well-known AMPL modelling language [11]). In all cases, as expected, the same solutions were found. A
few words regarding the used CPU time are in order. For solving the LP problems from Table 1 with
p > 0, GLPK reported a CPU time of approximately 19 seconds. If the time to read the input file, to
generate the model, to scale it, and to solve the problem are considered as a whole, the method takes
approximately 45 seconds. For the case with p = 0, those times are 120 and 145 seconds approximately,
respectively. For the problems in Table 2 with p > 0, the GLPK solving time is approximately 18 seconds,
while the overall time (reading, generating, scaling, and solving) is approximately 75 seconds. For the
problem in Table 2 with p = 0, those times are approximately 2 and 3 minutes, respectively. Summing up,
considering that Algencan and the method used by GLPK (Simplex method in this case) are completely
different methods in nature, that the construction of the initial point is completely different, and the
many tolerances involved, it is a remarkable result that both methods perform very similar with respect
to effectivity and efficiency.

In problem 3, a set of nonlinear constraints is added to problem 2. On the one hand, the new
constraints inhibit to invest small percentages of the capital to any given asset. On the other hand,
constraints can also be used to impose actual lower bounds on the minimum amount of assets that can be
bought of a given company. In our experiments, we considered ξj = ξ for all j. We focused on a particular
instance with p = 9 900 and r = 0.95 Θ̄ = 1.7671, and different settings for ξ ∈ {0.01, 0.02, . . . , 0.10}.
Table 3 shows the results. Two different initial points were considered: (a) starting from the portfolio in
which the whole capital is invested on the asset with largest expected return and (b) the LP problem 2
is solved first and its solution is used as initial point. From Table 2, it can be seen that the CPU time
for solving the LP problem is 68.10 seconds. This is the time that should be added to the CPU times at
the right-hand-side of Table 3 in order to make them comparable with the ones in the left-hand-side of
Table 3. In the table, column “# assets” reports the number of non-null xj ’s at the obtained solution.
The first observation is that, when starting from the LP solution, Algencan converges faster to a solution.
For small values of ξ, i.e. ξ ∈ {0.01, 0.02, 0.03, 0.04}, Algencan found the same solution when starting
from both initial points. For larger values of ξ, in all cases except ξ = 0.08, starting from the initial
point (a) led to non-global minimizers. The optimal value of the solution found for the instance with
ξ = 0.01 coincides with the one obtained for (the Linear Programming) problem 2 with the same values
of p and r. This allows us to conclude that the global minimizers of the NLP problem 3 was found in
this case. When the value of ξ increases, the feasible region is reduced and, therefore, a decrease on
the optimal value of GOVO is expected. This behavior can be observed in the GOVO column in the
right-hand-side of Table 3. The “slow and smooth” decrease of GOVO (and in the number of non-null xj
at the solution) when ξ increases leads us to believe that a global minimizer may be found for all the
instances. The value of the largest xj at the solutions found may be an interesting information. In the
ten solutions (for varying ξ) reported on the right-hand side of Table 3 this value was always near 0.44
(ranging between 0.43 and 0.45). Although it may be seen as a relatively preference for a particular
asset, this value never attained the theoretical upper bound ξ̄ described in (6), that depends on ξ and the
number of non-null assets q̂ at the solution found (reported as “# assets” in the table) and was always
larger than 0.60.

Problem 4 presents an additional constraint on the number of non-null assets. Note that the constraint
added in problem 3 also imposes an upper bound on the number of non-null assets, but in a different
way. The combination of both constraints roughly corresponds to a requirement like this: “I would like
to invest my capital in no more than 5 assets with at least 10% of my capital in each of them”. The new
constraint presented in problem 4 is discontinuous and, for this reason, we replace it with the smooth
approximation given by

Hκ(t) =
κt2

1 + κt2
, (8)

where κ is a positive given constant. We perform numerical experiments for a set of instances with p =
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9 900, r = 0.95 Θ̄ = 1.7671, ξ = 0.05, and varying q ∈ {7, 6, 5, 4, 3}. For each instance, the initial point
is the solution of the corresponding LP problem 2 (i.e. problem 2 with the same values for p and r).
For each instance, a sequence of problems with increasing values of κ are solved. We start trying κ = 1.
At the solution, the number of non-null assets is computed. If this number is larger that q then κ is
increased by multiplying it by 2 and a new problem is solved. The initial point for the problem with
this new κ is given by the solution to the problem with the previous value of κ. Table 4 shows the
results. In many cases, the solution to a problem with a certain value of κ is also a solution to the same
problem with κ replaced with 2κ. In these cases, Algencan verifies that the initial solution satisfies the
stopping criterion, no iterations are done, the value of κ is doubled again and a new problem is solved.
In the table, only the “subproblems” for which the initial point was not a solution are reported. A few
comments are in order. The instance with q = 7 is reported by completeness since, as it can be seen in
Table 3, the solution to the corresponding problem 3 already satisfies the new constraint on the maximum
number of non-null xj ’s. For the instances with q = 6 and q = 5, the same solutions that were found
with ξ = 0.06 and ξ = 0.07, respectively, were recovered (note that we are considering ξ = 0.05). For the
cases q = 4 and q = 3, different solutions were found. Note that the maximum value of κ, i.e. the number
of subproblems that need to be solved, for each value of q is different. We also considered the short-cut
strategy of starting from a large value of κ, like, for example, 2 048, but local non-global solutions were
found for some instances with this strategy. Nevertheless, once again, the “slow and smooth” decrease of
GOVO when q decreases leaves us to believe that global solutions were found in the five instances.

Same initial guess used for the LPs
ξ Time OVO(VaR) GOVO # assets

0.01 89.06 1.1212 0.9771 8
0.02 43.06 1.1203 0.9770 8
0.03 51.18 1.1188 0.9768 8
0.04 49.18 1.1254 0.9765 7
0.05 287.54 1.1080 0.9691 4
0.06 64.25 1.1121 0.9731 6
0.07 604.67 1.1080 0.9691 4
0.08 59.12 1.1166 0.9735 5
0.09 130.62 1.0735 0.9414 3
0.10 522.74 1.1080 0.9691 4

LP’s solution as initial guess
ξ Time OVO(VaR) GOVO # assets

0.01 0.12 1.1212 0.9771 8
0.02 1.91 1.1203 0.9770 8
0.03 18.62 1.1188 0.9768 8
0.04 10.51 1.1254 0.9765 7
0.05 11.62 1.1228 0.9757 7
0.06 14.65 1.1237 0.9752 6
0.07 52.14 1.1162 0.9735 5
0.08 18.33 1.1166 0.9735 5
0.09 16.49 1.1158 0.9733 5
0.10 22.75 1.1153 0.9730 5

Table 3: Description of the solutions to problem 3 with p = 9900, r = 0.95 Θ̄ = 1.7671, and different
settings for parameter ξ. Two different initial guesses are considered: (a) the same initial guess used to
solve problems 1 and 2 (i.e. invested the whole budget on the asset with largest expected return) and
(b) LP problem 2 is solved first and its solution is used as initial guess for solving problem 3.

4 Final Remarks

Nonlinear constraints allow one to tackle many financial and economic models for which linear approaches
are not practical [3]. Several free packages for nonlinear programming are publicly available and those
based on the Augmented Lagrangian paradigm are generally able to attack problems with a large (and
sometimes huge) number of variables and constraints. In particular, some options of Algencan handle
inequality constraints without slack variables, which seems to be an advantage when many of these
constraints are present in the model. Users should make a careful use of Algencan options in these cases,
avoiding the employment of large-scale direct linear solvers and consequently appealing to truncated-

9



q k Time # assets OVO(VaR) GOVO E(R)

7 1 12.12 7 1.1228 0.9757 1.7671

6
1 11.82 7 1.1228 0.9757 1.7671

2048 56.09 6 1.1239 0.9753 1.7671

5
1 11.66 7 1.1228 0.9757 1.7671

512 112.91 6 1.1238 0.9753 1.7671
1024 80.12 5 1.1162 0.9735 1.7671

4
1 12.12 7 1.1228 0.9757 1.7671

256 82.89 6 1.1120 0.9720 1.7671
512 232.13 4 1.1080 0.9691 1.7671

3

1 11.76 7 1.1228 0.9757 1.7671
128 188.03 5 1.1022 0.9628 1.7956
256 91.16 4 1.0845 0.9526 1.8139
512 75.49 3 1.0825 0.9529 1.7671

Table 4: Description of the solutions to problem 4 with p = 9900, r = 0.95 Θ̄ = 1.7671, ξ = 0.05, and
different settings for parameter q.

Newton approaches. In this paper we explained how to proceed in those situations.
The Generalized Order-Value Optimization approach is useful to model situations that involve func-

tions whose evaluation depends on order relations on some representation functional set. Sometimes
GOVO problems may be solved by means of standard optimization solvers whereas, occasionally, GOVO
needs ad hoc formulations [18]. In the cases considered in this paper GOVO is equivalent to approach-
ing CVaR by means of scenarios generated by simulations. We decided to formulate our problems in
terms of maximizing return instead of minimizing loss (as is standard in CVaR) because we believe
that, in this way, the objective is more palpable for casual readers. Current literature includes sev-
eral applications of CVaR for optimizing portfolios and other practical problems under different condi-
tions [1, 4, 10, 14, 15, 22, 23, 24, 26]. In several of these cases it should be interesting to test the GOVO
approach (see [5]).

The main drawback of nonlinear-programming formulations is that, in general, we cannot guaran-
tee global optimality of the solution found. Algencan converges to global minimizers of the problem
only under the assumption of global optimality at each subproblem. Therefore, global optimality can
be established only by means of ad hoc analysis involving the comparison with similar problems and
approximations, as we did in the problems considered in this paper.

Acknowledgements. The authors are thankful to the anonymous referees whose comments helped to
improve the quality of this work.
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