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Abstract

A practical algorithm for box-constrained optimization is intro-
duced. The algorithm combines an active-set strategy with spectral
projected gradient iterations. In the interior of each face a strategy
that deals efficiently with negative curvature is employed. Global con-
vergence results are given. Numerical results are presented.
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1 Introduction

The problem considered in this paper is

Minimize f(x) subject to x ∈ Ω, (1)

where
Ω = {x ∈ IRn | ℓ ≤ x ≤ u}, (2)

ℓ, u ∈ IRn, ℓ < u and f : IRn → IR has continuous second partial derivatives.
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In a recent paper [9] a spectral projected gradient method (SPG) was
introduced for solving optimization problems with convex constraints. This
algorithm is easily implementable when the constraints are simple, as it is
the case of the box (2). Numerical tests shown in [9] reveal that SPG can
be quite efficient in very large and practical problems. See, also, [7, 8, 32].

In this research, SPG iterations are combined with an active set strat-
egy that allows one to use negative curvature directions in the active face.
Essentially, what we do here is to use SPG when an adequate test reveals
that the current face must be abandoned and to use the algorithm recently
introduced in [35] when the test recommends to stay in the current face.

The motivation for this research came from the observation of the be-
havior of some numerical algorithms. The algorithm described in [25] is
a box-constrained method for large-scale problems that uses trust regions
and, at each iteration, solves a box-constrained quadratic subproblem us-
ing a specific quadratic solver. The quadratic solver was introduced in
[22] and updated in [6, 14, 24, 25]. A related algorithm was introduced
in [16] where, also, interesting physical interpretations were given. See, also,
[17, 18, 19, 20]. This box-constraint quadratic algorithm uses an active-set
strategy by means of which one stays in a face or abandons it according to
the relation between components of the gradient. The quadratic method
solved successfully many applied problems [17, 18, 19] and was shown to be
more efficient than other large-scale quadratic solvers in numerical studies
[14, 15]. This motivated us to apply the principles of the quadratic solver di-
rectly to the original bound constrained problem (1), instead of using these
principles on a subproblem. In fact, the philosophy of [6, 14, 22, 24, 25]
seems to be independent of the fact of dealing with a quadratic or not.

The present research represents our first attempt of constructing an al-
gorithm that solves (1) using the principles of [22]. For this implementa-
tion we used two recently introduced tools for unconstrained optimization
and convex-constrained optimization. The unconstrained optimization al-
gorithm used inside the faces is the dogleg method defined in [35], which
is able to deal efficiently with negative curvatures. The algorithm used for
leaving the faces is the spectral projected gradient introduced in [9] (see also
[33, 34, 23]) which uses first order information in a very efficient and econom-
ical way. Although our final objective is a method for large-scale problems
(we have in mind its association with augmented Lagrangian algorithms
and other algorithms for general constrained optimization like the ones in
[29, 30, 31, 11, 12]), we found it useful to begin our numerical research with
an implementation that uses full factorization of matrices.

In practical numerical analysis, the efficiency of many algorithms for
a class of problems is strongly linked to the efficiency of algorithms for
solving simpler problems. The reason is that simpler problems play the
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role of subproblems that must be solved (perhaps many times) by the main
algorithm. For example, the efficiency of trust region methods like the one
described in [25] is related to the development of algorithms for minimizing
box-constrained quadratics. On the other hand, the efficiency of active
set methods is related to the development of unconstrained minimization
algorithms. The development of new attractive unconstrained optimization
methods like the one in [35] naturally stimulates its application to active-set
strategies in constrained minimization. This was an independent motivation
for our present research.

The organization of this paper is as follows. The algorithm is described
in Section 2. In Section 3, basic global convergence theorems are proved.
In Section 4 we present numerical experiments. Conclusions are given in
Section 5.

2 The algorithm

As in [22], let us divide the feasible set Ω into disjoint open faces, as follows.
For all I ⊂ {1, 2, . . . , n, n + 1, n + 2, . . . , 2n}, we define

FI = {x ∈ Ω | xi = ℓi if i ∈ I, xi = ui if n + i ∈ I, ℓi < xi < ui otherwise}.

We also define VI the smallest affine subspace that contains FI and SI the
parallel linear subspace to VI .

Throughout this paper, ‖ · ‖ will be the Euclidean norm, although many
times it can be replaced by an arbitrary norm on IRn. For all y ∈ IRn, the
orthogonal projection of y onto a convex set S will be denoted PS(y). The
(continuous) projected gradient at x ∈ Ω is defined as

gP (x) = PΩ(x −∇f(x)) − x.

For all x ∈ FI , we define

gI(x) = PSI
[gP (x)].

The main algorithm considered in this paper is described below.

Algorithm 2.1

Assume that x0 ∈ Ω is an arbitrary initial point, η ∈ (0, 1) and 0 < σmin ≤
σmax < ∞. Let FI be the face that contains the current iterate xk. Assume
that gP (xk) 6= 0 (otherwise the algorithm terminates). At the main iteration
of the algorithm we perform the test:

‖gI(x
k)‖/‖gP (xk)‖ ≥ η. (3)
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If (3) takes place, we judge that it is convenient that the new iterate belongs
to F̄I (the closure of FI) and, so, we compute xk+1 using Algorithm 2.2
below. If (3) does not hold, we decide that some constraints should be
abandoned and, so, the new iterate xk+1 is computed using the SPG iteration
described by Algorithm 2.3. In this case, before the computation of xk+1 we
compute the spectral gradient coefficient σk in the following way. If k > 0
then

σ′
k =

(xk − xk−1)T (∇f(xk) −∇f(xk−1))

(xk − xk−1)T (xk − xk−1)
.

Otherwise, define κ = ∇f(xk)T ∇f(xk)
∇f(xk)T H(xk)∇f(xk)

. If κ > 0 set σ′
k = κ, else define

σ′
k = 1/||gP (xk)||. Finally,

σk =

{

σmax, if σ′
k < 0;

min{σmax,max{σmin, σ′
k}}, otherwise.

The algorithm used inside the faces is the following:

Algorithm 2.2

Assume, without loss of generality, that the first m variables are free (ℓj <
xk

j < uj ∀ i = 1, . . . ,m) at face FI and xj = xk
j for all x ∈ FI . Define

ϕ(x1, . . . , xm) = f(x1, . . . , xm, xk
m+1, . . . , x

k
n).

So, ϕ : IRm → IR. Let Γ be the piecewise linear path defined by the
Zhang-Xu algorithm [35] for the minimization of ϕ, using (xk

1 , . . . , x
k
m) as

current point. If Γ ⊂ Ω, compute y ∈ IRm as the “next iterate” given by
the algorithm [35] and define xk+1 = (y1, . . . , ym, xk

m+1, . . . , x
k
n). Otherwise,

proceed in one of the following ways:

(i) Let y be the trial point defined by the algorithm [35]. If

f(PΩ(y1, . . . , ym, xk
m+1, . . . , x

k
n)) < f(xk),

define xk+1 = PΩ(y1, . . . , ym, xk
m+1, . . . , x

k
n). Otherwise, proceed as

in (ii).

(ii) Replace Γ by the connected component of Γ∩Ω that contains xk and
compute y as the next iterate of the dogleg algorithm [35], taking the
point of Γ that belongs to the boundary of FI as first trial point.
Define

xk+1 = (y1, . . . , ym, xk
m+1, . . . , x

k
n).
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Algorithm 2.3 is the algorithm used when it is necessary to leave the
current face, according to the test (3).

Algorithm 2.3

Compute xk+1 as the next iterate of a monotone SPG2 iteration [9] with
the spectral step σk.

Remark. Observe that xk+1 /∈ F̄I if xk ∈ FI and xk+1 is computed by
Algorithm 2.3. In this case, (3) does not hold, so ‖gP (xk)‖ > ‖gI(x

k)‖. Since
the components corresponding to the free variables of gI(x

k) and gP (xk) are
the same, this means that gP (xk) has nonnull components corresponding
fixed variables. Therefore, xk + αgP (xk) /∈ F̄I for all α > 0. So, PΩ(xk +
αgP (xk)) /∈ F̄I for all α > 0. But, according to the SPG2 iteration,

xk+1 = xk + α′[PΩ(xk + αgP (xk)) − xk]

for some α > 0, α′ > 0. This implies that xk+1 /∈ F̄I .

3 Convergence

Theorem 3.1. Algorithm 2.1 is well defined.

Proof. This is a trivial consequence of the fact that the algorithms defined
in [35] and [9] are well defined. 2

Theorem 3.2. Suppose that there exists k̄ ∈ {0, 1, 2, . . .} such that xk ∈ FI

for all k ≥ k̄. Then, every limit point of {xk} is first-order stationary and,
moreover, the Hessian submatrix corresponding to the free variables is posi-
tive semidefinite at each limit point.

Proof. In this case, xk+1 is computed by Algorithm 2.2 for all k ≥ k̄. This
corresponds, essentially, to use the algorithm [35] for the unconstrained min-
imization of ϕ. Therefore, with slight modifications, the convergence the-
orems of [35] can be applied. Thus, the gradient ∇ϕ(xk) tends to zero
and the Hessian of ϕ is positive semidefinite at the limit point. But, by a
straightforward projection argument, it follows that ‖gI(x

k)‖ ≤ ‖∇ϕ(xk)‖,
therefore ‖gI(x

k)‖ → 0. Since (3) holds, this implies that ‖gP (xk)‖ → 0.
So, every limit point is first-order stationary. 2

Theorem 3.3. Suppose that for all k ∈ {0, 1, 2, . . .}, xk ∈ FI , there exists
k′ > k such that xk′

/∈ FI . Then, there exists a limit point of {xk} that is
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first-order stationary.

Proof. If xk+1 /∈ FI , then
xk+1 ∈ F̄I − FI (4)

or
xk+1 /∈ F̄I . (5)

But, since the number of constraints is finite, (4) cannot take place infinitely
many times unless (5) also holds infinitely many times. Therefore, the hy-
pothesis of the theorem implies that (5) holds for infinitely many iterations.
This implies that there exists a subsequence {xk, k ∈ K} such that xk+1 is
computed by Algorithm 2.3 for all k ∈ K. Therefore, the whole sequence
can be considered as monotone decreasing f -sequence (f(xk+1) ≤ f(xk) ∀ k)
with infinitely many spectral gradient iterations. Therefore, updating the
proof of convergence of SPG2 given in [9], we conclude that all the limit
points of {xk, k ∈ K} are stationary. This completes the proof. 2

Theorem 3.4. Suppose that all the stationary points of (1) are nondegen-
erate. ( ∂f

∂xi
(x) = 0 only if ℓi < xi < ui.) Then, the hypothesis of Theorem

3.2 (and, hence, its thesis) must hold.

Proof. Suppose that the thesis is not true. Therefore, the hypothesis of
Theorem 3.3 holds. Since the number of faces is finite, there exists a face
FI and an infinite set K such that xk ∈ FI and xk+1 /∈ F̄I for all k ∈ K.
Let x∗ be a limit point of {xk, k ∈ K}. By Theorem 3.3, this point is first-
order stationary. Without loss of generality, assume that in FI the first m
variables are free and the remaining n−m are on its lower bound. Therefore,

∂f

∂xj

(x∗) > 0 ∀ j = m + 1, . . . , n.

By continuity this implies that, for k large enough, k ∈ K,

∂f

∂xj
(xk) > 0 ∀ j = m + 1, . . . , n.

Therefore, for all k ∈ K, k large enough, the nonnull components of gP (xk)
are the nonnull components of gI(x

k). So, gP (xk) = gI(x
k) and, hence, the

test (3) is satisfied. So, xk+1 ∈ F̄I , which is a contradiction. 2
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4 Numerical experiments

In order to assess the reliability of the new algorithm, we tested it against
the well known package LANCELOT [11] using a set of bound constrained
problems with more than 10 variables and less than 500 variables from the
CUTE [10] collection (version of May 28th, 1998). We present the results in
two tables. The first corresponds to non-quadratic problems with less than
100 variables and the second to problems with more than 100 variables. As
a whole, we have 60 problems. In both cases, our method used η = 0.1. In
the small-dimensional set Algorithm 2.1 used the strategy (ii). The strategy
(i) was used in the large-dimensional tests.

In our numerical experiments we used all except one of the defalut op-
tions for LANCELOT, we chose a full-matrix preconditioner (bandsolver
with band = n). This is the adequate option that must be tested against an
algorithm that uses full factorization of matrices, as the one presented in this
paper. Therefore, at a LANCELOT iteration, the sequence of procedures
to obtain the trial point are:

(i) Obtaining the “Cauchy point” [11]. If the Cauchy point is a reasonable
approximate solution of the quadratic model, then it is chosen as the
trial point. Otherwise, the step (ii) is executed.

(ii) Perform preconditioned conjugate gradient iterations in the face deter-
mined by the Cauchy point. If a face of lower dimension is encountered,
preconditioned conjugate gradient iterations continue in the smaller
face. This finishes when the norm of the internal gradient to the face
is small enough. No constraints are abandoned in this process.

If the Cauchy point is interior, the Hessian is positive definite, and the
first conjugate gradient iteration is interior too, then the trial point is a
full Newton step and coincides with the first conjugate gradient iteration.
More conjugate gradient iterations can be necessary if the conjugate-gradient
iterate falls outside the trust region or if the Hessian is not positive definite.

For deciding when to stop the execution of the algorithms declaring
convergence we used the criterion ‖gP (xk)‖∞ ≤ 10−5. We also stopped the
execution when 1000 function evaluations were completed without achieving
convergence.

All the experiments were run in a SPARCstation Sun Ultra 1, with an
UltraSPARC 64 bits processor, 167-MHz clock and 128-MBytes of RAM
memory. All codes are in Fortran and were compiled with f77 compiler
(SC 4.0 Fortran 77 4.0) using the -O optimization compiler option.

In the tables, GE means “gradient evaluations”, FE means “function
evaluations” and TIME is CPU time in seconds. For the new method, we re-
port HE (Hessian evaluations) and in LANCELOT we report CG (conjugate
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New method LANCELOT
Problem (n) GE FE HE TIME f GE FE CG TIME f

CHEBYQAD (50) 138 186 137 26.24 5.386D−03 70 88 176 6.85 5.386D−03
DECONVB (61) 51 60 46 1.08 8.638D−03 16 20 108 0.31 5.720D−03
EXPLIN (12) 22 22 19 0.01 −6.850D+03 11 13 11 0.03 −6.850D+03
EXPLIN2 (12) 22 22 19 0.01 −7.092D+03 12 13 15 0.03 −7.092D+03
EXPQUAD (12) 18 18 16 0.01 −4.201D+03 12 14 20 0.04 −4.201D+03
HADAMALS (36) 40 41 38 0.19 1.303D+01 17 18 129 0.15 1.308D+01
HATFLDC (25) 5 5 4 0.01 8.264D−14 5 5 3 0.03 7.770D−19
HS110 (50) 3 3 2 0.02 −9.990D+09 2 2 0 0.01 −9.990D+09
LINVERSE (19) 7 7 6 0.01 7.000D+00 15 18 29 0.06 6.000D+00
MCCORMCK (50) 6 6 5 0.02 −4.613D+01 6 7 5 0.05 −4.613D+01
NONSCOMP (50) 10 10 9 0.02 1.180D−18 9 9 8 0.06 8.207D−17
PROBPENL (50) 174 211 172 0.99 −2.331D+05 2 3 0 0.03 3.918D−06
QR3DLS (40) 31 39 30 0.12 6.707D−13 28 33 32 0.17 8.376D−13
QRTQUAD (12) 20 31 17 0.01 −3.608D+03 36 44 42 0.08 −3.608D+03
S368 (50) 20 20 19 0.92 −3.063D+01 7 8 9 0.46 −3.400D+01
SCON1LS (52) 629 882 628 2.17 1.086D−16 339 397 1011 1.95 2.169D−10
SINEALI (20) 9 9 8 0.01 −1.896D+03 872 1000 1211 1.81 −1.901D+03

Table 1: Non-quadratic problems with dimension between 10 and 99.

gradient iterations). The number of Hessian evaluations in LANCELOT is
GE−1.

Looking at Tables 1 and 2 we observe that:

1. In 9 problems the algorithms clearly arrived to different solutions. In 6
cases (SINEALI(20), S368(50), LINVERSE(19), S368(100), HADAMALS(400)
and NCVXBQP3(100)) the solution obtained by LANCELOT was bet-
ter than the one obtained by the new method.

2. In 8 problems, it is not clear whether different functional values at
the final point correspond to different solutions or to different final
precisions. The new method was better than LANCELOT in 5 of
these cases.

3. Concerning the 43 problems where both methods arrived to the same
solution, we observed that our method used less computer time than
LANCELOT in 35 problems. However, it must be warned that in 19 of
these problems the CPU time used by LANCELOT cannot be justified
in terms of GE, FE or CG. Considering that the same compilation
options have been used for both methods, these time differences must
be due to implementation details. It is worth noting that, to compute
the objective function as well as its gradient and Hessian, LANCELOT
exploits structure in a more efficient way than the one provided by the
interface tools of the CUTE collection [10].
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New method LANCELOT
Problem (n) GE FE HE TIME f GE FE CG TIME f

BDEXP (100) 13 13 12 0.09 3.471D−05 11 11 10 0.22 3.918D−05
BIGGSB1 (100) 103 287 52 0.31 1.500D−02 52 51 50 0.35 1.500D−02
CHENHARK (100) 6 6 5 0.04 −2.000D+00 25 24 61 0.25 −2.000D+00
CVXBQP1 (100) 6 6 5 0.04 2.273D+02 2 1 0 0.07 2.273D+02
EXPLIN (120) 40 40 37 0.07 −7.238D+05 14 13 50 0.11 −7.238D+05
EXPLIN2 (120) 41 42 38 0.07 −7.245D+05 12 11 24 0.10 −7.245D+05
EXPQUAD (120) 24 28 21 0.58 −3.626D+06 16 18 46 0.53 −3.626D+06
GRIDGENA (170) 4 4 3 0.08 4.800D+02 4 3 3 0.14 4.800D+02
HADAMALS (400) 93 114 84 101.71 2.098D+02 29 28 1989 35.79 1.121D+02
HARKERP2 (100) 37 37 36 14.74 −5.000D−01 2 1 2 0.14 −5.000D−01
JNLBRNG1 (100) 5 6 3 0.03 −1.790D−01 2 1 1 0.06 −1.790D−01
JNLBRNG2 (100) 5 5 3 0.03 −3.953D+00 3 2 2 0.07 −3.953D+00
JNLBRNGA (100) 6 6 2 0.02 −3.612D−01 3 2 2 0.07 −3.612D−01
JNLBRNGB (100) 6 6 3 0.02 −7.255D+00 4 3 3 0.07 −7.255D+00
LINVERSE (199) 12 16 11 0.28 6.800D+01 25 30 473 5.49 6.800D+01
MCCORMCK (100) 6 6 5 0.05 −9.179D+01 6 7 5 0.13 −9.179D+01
NCVXBQP1 (100) 52 52 51 0.34 −1.996D+06 2 1 0 0.07 −1.996D+06
NCVXBQP2 (100) 72 72 70 0.49 −1.333D+06 3 2 4 0.07 −1.333D+06
NCVXBQP3 (100) 56 56 52 0.40 −6.601D+05 4 3 4 0.08 −6.708D+05
NOBNDTOR (484) 14 26 7 1.14 −4.980D−01 7 6 6 2.58 −4.980D−01
NONSCOMP (100) 10 10 9 0.06 3.652D−18 9 9 8 0.18 2.387D−16
OBSTCLAE (100) 6 6 4 0.04 1.398D+00 3 2 29 0.12 1.398D+00
OBSTCLAL (100) 8 9 3 0.02 1.398D+00 4 3 3 0.07 1.398D+00
OBSTCLBL (100) 7 7 3 0.02 2.875D+00 3 2 6 0.07 2.875D+00
OBSTCLBM (100) 3 3 2 0.02 2.875D+00 2 1 3 0.07 2.875D+00
OBSTCLBU (100) 4 4 1 0.01 2.875D+00 2 1 1 0.06 2.875D+00
PROBPENL (500) 701 1000 700 2438.96 −9.215D+04 2 1 0 4.44 3.992D−07
QR3DLS (155) 163 215 162 17.44 7.084D−12 112 142 286 10.36 2.719D−11
QRTQUAD (120) 21 31 18 0.49 −3.625D+06 100 126 160 2.26 −3.625D+06
S368 (100) 19 20 18 4.39 −1.260D+02 7 7 8 2.21 −1.337D+02
SCON1LS (102) 568 772 567 7.26 6.906D−16 684 820 755 12.40 1.945D−16
TORSION1 (484) 16 28 7 0.76 −4.561D−01 8 7 7 1.09 −4.561D−01
TORSION2 (484) 10 13 6 1.02 −4.561D−01 5 4 112 8.58 −4.561D−01
TORSION3 (484) 8 9 3 0.28 −1.242D+00 4 3 3 0.33 −1.242D+00
TORSION4 (484) 11 11 7 0.75 −1.242D+00 5 4 115 2.49 −1.242D+00
TORSION5 (484) 4 7 1 0.09 −2.885D+00 2 1 1 0.28 −2.885D+00
TORSION6 (484) 7 7 5 0.61 −2.885D+00 4 3 24 0.52 −2.885D+00
TORSIONA (484) 14 23 6 0.68 −4.161D−01 7 6 6 1.03 −4.161D−01
TORSIONB (484) 10 15 6 1.08 −4.161D−01 5 4 114 10.39 −4.161D−01
TORSIONC (484) 8 10 3 0.24 −1.199D+00 4 3 3 0.34 −1.199D+00
TORSIOND (484) 11 11 7 0.78 −1.199D+00 6 5 166 6.97 −1.199D+00
TORSIONE (484) 4 7 1 0.09 −2.841D+00 2 1 1 0.28 −2.841D+00
TORSIONF (484) 7 7 5 0.63 −2.841D+00 4 3 34 0.62 −2.841D+00

Table 2: Bound constrained problems with dimension between 100 and 500.
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4. The number of SPG iterations is, in our method, equal to the difference
between GE−1 and HE. It is perhaps surprising that, in most cases,
this number is very small. This means that, in many cases, the new
method works on faces of decreasing dimensions. This may be due to
a characteristic of the initial points of the test set [10]. Therefore, the
internal algorithm [35] have more influence in the overall behavior of
the method than the strategy for leaving the faces.

5 Conclusions

We have introduced a reliable algorithm for solving small to medium di-
mensional box constrained problems. The algorithm is of active-set type
and inside the faces it uses the method introduced in [35]. Since the al-
gorithm [35] is able to deal with negative curvature regions and, in fact,
cannot converge to a stationary point where the Hessian is indefinite, we
expected that its combination with SPG could have the property of finding
better minimizers than alternative first-order methods. Numerical experi-
ments did not confirm this conjecture. Whereas in some cases we obtained
lower functional values than LANCELOT, the opposite situation occurred in
at least as many cases. In the cases in which our method and LANCELOT
found the same solution, the computer time of the new method tends to be
smaller, but in many cases this seems to be due to implementation features
of LANCELOT that are not easy to detect.

In these set of problems it has been quite remarkable the monotone
decrease property of the dimension of the current face. We do not think
that such a property will be maintained in large-scale problems (the kind
of situation where the quadratic algorithm [22] and its updatings showed to
be effective). Therefore, the objective of finding an efficient algorithm for
general box constraints that uses the philosophy of [22] remains valid. The
present research shows that, perhaps, adapting the algorithm [35] to large-
scale optimization by means of sparse Cholesky and Bunch-Parlett factor-
izations is not as promising as we expected. However, much research should
be expected along these lines. In any case, we think that the work in [35]
opened the possibility of dealing very cheaply with trust-region paths. Re-
finements of the main ideas of [35] will possibly give rise of even more efficient
implementations of the unconstrained algorithm and can motivate further
adaptations to active-set strategies in constrained optimization. The dialog
between unconstrained methods and active-set strategies will continue, as
far as interesting unconstrained research continues to be done.

With respect to small and medium-scale problems, it is probably inter-
esting to test the algorithm introduced in [13] as internal-face solver. Its
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comparison with [35] in the unconstrained case is, of course, of independent
interest. However, the large-scale situation is the most challenging one to be
addressed in the near future. Large-scale bound constrained (or even uncon-
strained) problems lie in the nucleus of many efficient algorithms for comple-
mentarity problems and variational inequalities (see [1]–[5],[21, 26, 27, 28]
and many others) which are largely used in modern Engineering.

Acknowledgement. We are indebted to an anonymous referee whose
comments helped us to improve the paper.
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