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Abstract

In this paper we propose and analyze a numerical method for the recovery of a piecewise constant
parameter with multiple phases in the inverse potential problem. The potential is assumed to be
constant in each phase, and the phases are modeled by a Voronoi diagram generated by a set of sites,
which are used as control parameters. We first reformulate the inverse problem as an optimization
problem with respect to the position of the sites. Combining techniques of non-smooth shape cal-
culus and sensitivity of Voronoi diagrams, we are able to compute the gradient of the cost function,
under standard non-degeneracy conditions of the diagram. We provide two different formulas for
the gradient, a volumetric and an interface one, which are compared in numerical experiments. We
provide several numerical experiments to investigate the dependence of the reconstruction on the
problem parameters, such as noise, number of sites and initialization.
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1 Introduction

In this paper we study the inverse problem of recovering a potential q ∈ L∞(D), q > 0, D ∈ R2, from
observations hα in D that are noisy perturbations of the exact data u⋆α, solution of

−∆u⋆α + q u⋆α = fα in D, (1)

u⋆α = 0 on ∂D, (2)

and fα are known sources. We are interested in the case where q is piecewise constant with complex,
non-smooth interfaces between the different regions and we model the phases using a Voronoi diagram,
which provides a natural and simple way to obtain a finite-dimensional parameterization of non-smooth
shapes.

The inverse potential problem arises in several applications such as quantitative dynamic elastog-
raphy [21] or the reconstruction of the heat radiative coefficient [20, 50]. The convergence rates for
Tikhonov regularization of the problem of identifying q were investigated in [27], and also in [23] in the
one-dimensional elliptic case. Conditional stability estimates and an error analysis of a reconstruction
scheme based on the output least-squares formulation with Tikhonov regularization have been obtained
in [33]. Lipschitz stability estimates have also been obtained for a similar problem with piecewise con-
stant potential on an unknown tetrahedral partition in [8], for recovering the wavespeed in the Helmholtz
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equation. The inverse problem of recovering q in the parabolic case has also been investigated in the
literature, see for instance [7, 20, 34, 50]. The inverse problem of gravimetry, which corresponds roughly
speaking to the recovering of fα in (1), is also sometimes called inverse potential problem, see [18, 19, 30]
for the piecewise constant case.

A large part of the literature on numerical methods for inverse problems focuses on the reconstructions
of relatively smooth functions, or at least continuous functions. Nonetheless, it is equally crucial to
address the recovery of discontinuous functions and sharp interfaces, especially given their significance in
various applications such as geophysics, civil engineering, and medicine. Several types of methods have
been developed to tackle such cases, such as total variation schemes [5], the enclosure method [29], the
MUSIC algorithm for small inclusions [3], monotonicity-based shape reconstructions [28] and topological
derivative-based methods [2, 19, 31]. Shape optimization methods have been employed, using level set
methods [1, 39], and the non-smooth case has also been considered in electrical impedance tomography
for the reconstruction of polygons [9].

In this work we focus on the case where the potential q to be recovered is a piecewise constant
function. In this way the problem is then to reconstruct the interfaces delineating the regions where
the potential remains constant. Consequently, the problem can be reformulated as a shape optimization
problem [22, 39, 46]. In this framework, one often considers a piecewise constant parameter with bi-
nary values, and the goal is then to reconstruct the interface, usually smooth, between these two values
[3, 39]. The recovery of more than two regions, also referred to as phases, has been considered in inverse
problems [42] employing frameworks such as the multiphase level set method introduced in [49] or the
more recent moving morphable components method [41]. In our study, we also address a multiphase
problem, but we are interested in the specific case where the phases can be parameterized by a finite
number of scalar parameters. Consequently, the domain of the potential q can be partitioned into cells
such that the potential is constant in each cell. Furthermore, we suppose that the set of cells is given
by a Voronoi diagram, a natural and practical setting for a multiphase problem. Previous research has
explored inverse problems for oriented Voronoi diagrams, notably in [17], where the Voronoi diagrams
model the microstructure of polycrystalline metals. Additionally, the inverse problem of obtaining the
Voronoi diagram which approximates a given tessellation of the plane, sometimes called Inverse Voronoi
Problem, has also been considered in the literature, see [4, 48]. Compared to other approaches such as
the multiphase level set framework, our approach presents several interesting features. Firstly, the opti-
mization problem is finite-dimensional, enabling a reduction in the search space. Secondly, it naturally
models complex nonsmooth geometric features such as triple points between phases. Thirdly, it permits
the inclusion of geometric constraints in the model when relevant, such as enforcing straight interfaces.

The multiphase modeling using Voronoi diagrams poses several significant challenges. In order to
compute the gradient of the cost functional, we combine techniques from non-smooth shape calculus
[22, 39, 46] and from the sensitivity analysis for Voronoi diagrams [14]. Indeed, the cost functional is
a composition of a non-smooth shape function, as it depends on the cells shapes, with the function
parameterizing the cells. For the non-smooth shape calculus, we rely in particular on the notion of
distributed shape derivative and its tensor representation, see [38, 39]. Indeed, this allows us to work
with low-regularity shapes, which is appropriate in the context of Voronoi diagrams, where the cells
are polygons. Compared to previous work on non-smooth, parameterized shape optimization, where
only the interface representation of the gradient was obtained [11, 13], an important novelty of the
present study is to provide two different ways to express the gradient of the cost function, a distributed
(volumetric) representation and an interface representation of the gradient. Note that even though the
use and usefulness of distributed expressions is now well-established in shape optimization [32, 37, 39], it
is a challenging task in non-smooth, parameterized shape optimization which has not been explored yet.
For the sensitivity analysis of Voronoi diagrams, we employ a particular case of the theory developed
in [14] for minimization diagrams. Compared to [14], a novel aspect and an additional difficulty here is
that the problem depends on the solution of a PDE, which requires the use of shape calculus and the
study of the regularity of the PDE as well as the tensors involved in the shape gradient.

The paper is organized as follows. We start by describing the mathematical model of the elliptic
inverse potential problem in Section 2, as well as the piecewise constant, multiphase hypothesis considered
for the potential q in this paper. In Section 3, we describe how to compute derivatives with respect to
the sites of cost functionals depending on Voronoi diagrams. We use some elements of the general
theory of [14] and apply the tools of shape calculus in the context of multiphase, non-smooth shape
optimization. In Section 4, we apply the general results of Section 3 to the particular case of the inverse
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potential problem, formulated as an optimization problem, and obtain two different expressions of the
gradient of the cost function. In Section 5 we perform several experiments to investigate the dependence
of the reconstruction algorithm on the various parameters of the problem. We analyze the influence
of several factors on the optimization process, including the number of sites in the Voronoi diagram
describing the potential, the distribution of the potential values across the diagram’s cells, the initial
starting point in the optimization process, the presence of noise in observation data, and the utilization
of the two distinct expressions of the gradient. The final section presents conclusions and directions for
future work.

2 Mathematical model

We start with a description of the mathematical model. Let D ⊂ R2 be a bounded, Lipschitz, simply
connected, and piecewise C1 domain. For a given ground truth potential q⋆ ∈ L∞(D) and a given set of
sources {fα}ᾱα=1, fα ∈ L2(D), the potential u⋆α ∈ H1

0 (D) is the solution to

−∆u⋆α + q⋆u⋆α = fα in D, (3)

u⋆α = 0 on ∂D, (4)

where H1
0 (D) :=

{
v ∈ H1(D) : v = 0 on ∂D

}
. The variational formulation of (3)-(4) reads: Find u⋆α ∈

H1
0 (D) such that ∫

D
∇u⋆α · ∇v + q⋆u⋆αv =

∫
D
fαv, ∀v ∈ H1

0 (D). (5)

The inverse potential problem consists in reconstructing the ground truth q⋆ from the knowledge of
a data set {fα, hα}ᾱα=1, where hα := u⋆α + ηα is a noisy measurement of the potential u⋆α in D, and
ηα : D → R is a measurement noise. A standard approach to compute a numerical approximation of the
ground truth is to minimize the least-squares cost function

J(q) =
1

2

ᾱ∑
α=1

ζα

∫
D

(uα(q)− hα)2,

where the model uα = uα(q) satisfies a PDE as (3)-(4), but with the trial potential q ∈ L∞(D) instead
of the ground truth q⋆, i.e.,

−∆uα + q uα = fα in D, (6)

uα = 0 on ∂D. (7)

In numerical experiments, the weights ζα ∈ R, ζ > 0, are chosen so that the terms in the sum over α have
a similar magnitude, in order to obtain a more balanced contribution of each uα to the cost functional.
Since the hα are noisy measurements, one cannot achieve uα(q) = hα exactly, but the distance between
uα(q) and hα can be minimized by minimizing J(q).

Since the inverse potential problem is ill-posed [33], prior knowledge on the ground truth q⋆ can be
included in the mathematical model which helps reducing the ill-posedness. In this work we assume
that q⋆ is piecewise constant, i.e., q⋆(x) ∈ {q1, q2, . . . , qκ0

} for all x ∈ D, where q1, q2, . . . , qκ0
are

constants. This is a common hypothesis for the modeling of discontinuous functions. In the case where
the values {q1, q2, . . . , qκ0} are known a priori, the problem then amounts to determining the phases
Ωi := {x ∈ D : q⋆(x) = qi}, which can be formulated as a multiphase shape optimization problem. For
this purpose, let us introduce partitions of D, called diagrams, indexed by a set of indices K.

Definition 1 (K-diagrams of D). Let P denote the set of open subsets of D ⊂ R2. For a given finite
set of indices K ⊂ N, PK(D) denotes the set of K-diagrams Ω := {Ωk}k∈K with Ωk ∈ P for all k ∈ K,
Ωk ∩ Ωℓ = ∅ for all {k, ℓ} ⊂ K, k ̸= ℓ and

⋃
k∈K Ωk = D.

We also use a piecewise constant trial potential of the form qΩ :=
∑

i∈K qiχΩi , where χΩi denotes
the characteristic function of Ωi. Depending on the application, one can assume K and qi are either
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known or unknown, for all i ∈ K. Assuming they are known, the cost function becomes the following
multiphase function:

J(Ω) := J(qΩ) =
1

2

ᾱ∑
α=1

ζα

∫
D

(uα(qΩ)− hα)2. (8)

We also need to consider a parameterization of the diagram Ω that is tractable both for the analysis
and for the numerics. In this work we consider the case where Ω forms a Voronoi diagram; this allows
to model a complex non-smooth geometry using only a few parameters. More complex geometries could
also be considered in a similar way, for instance using minimization diagrams and the formulas presented
in [14]. Let Kvor = {1, . . . , κ0} be a set of indices, a = {ak}k∈Kvor be a set of points in the plane, named
sites, and denote by Ω(a) := {Ωk(a)}k∈Kvor

the Voronoi diagram associated with a set of sites a, where
the cells of the diagram are defined by

Ωi(a) := {x ∈ D such that ∥x− ai∥ ≤ ∥x− aj∥ for all j ∈ Kvor \ {i}} .

We assume that the ground truth potential q⋆ is piecewise constant and the regions where q⋆ is constant
are cells of a Voronoi diagram associated with the set of sites a⋆, i.e.,

q⋆ =
∑

i∈Kvor

qiχΩi(a⋆).

Introducing the reduced cost function

G(a) := J(Ω(a)), (9)

we have reformulated the inverse problem into the following finite-dimensional unconstrained optimiza-
tion problem:

Minimize
a∈R2κ0

G(a). (10)

Notation. We use y⊥ := Ry, for a vector y ∈ R2, where R is a rotation matrix of angle π/2 with
respect to a counterclockwise orientation. The identity matrix in R2×2 is denoted by Id. We denote by
E inti and V int

i the sets of interior edges and interior vertices of the cell Ωi(a), respectively, i.e., edges and
vertices that are included in D. The set Vbd

i denotes the set of boundary vertices of the cell Ωi(a), i.e.,
vertices of Ωi(a) that belong to ∂D and to another cell Ωj(a), j ̸= i.

3 Sensitivity analysis for Voronoi diagrams involving PDEs

In this section we provide general formulas for computing the gradient of cost functions depending on
Voronoi diagrams. For this purpose we combine the theory of multiphase, non-smooth shape calculus
[12, 38] and the general theory developed in [14] for the sensitivity analysis with respect to minimization
diagrams. Here, we face an additional layer of difficulty compared to [14], as the cost functional also
depends on a PDE. The notion of distributed shape derivative [38, 39] and the regularity of solutions to
the PDE plays an important role in the existence of the gradient of the cost function, see Theorem 2.

3.1 Multiphase shape optimization

Recall that D is a bounded, Lipschitz, simply connected, and piecewise C1 domain. Denote by S the
set of singular points of ∂D, then the outward unit normal vector ν to D is well-defined on ∂D \ S. For
r ≥ 1 we define

Cr∂D(D,R2) := {θ ∈ Cr(D,R2) : θ · ν = 0 on ∂D \ S and θ = 0 on S}. (11)

Let T ∈ W 1,∞(D × [0, t0],D) so that T (·, t) : D → D is a bi-Lipschitz mapping for all t ∈ [0, t0] and
T (D, t) = D for all t ∈ [0, t0], hence T (·, t) : D → D maps interior points onto interior points and
boundary points onto boundary points; see [22, Chapter 4, Section 5.1 and Remark 5.2]. For Ω ∈ P,
introduce the family of perturbed domains

Ωt := T (Ω, t). (12)
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For a set of indices K = {1, . . . , κ} and Ω ∈ PK(D), see Definition 1, we define

Ωt := T (Ω, t) := {T (Ωk, t)}k∈K. (13)

Note that Ωt is also a K-diagram of D for all t ∈ [0, t0]. Introduce θ := ∂tT (·, 0) and assume θ ∈
C1∂D(D,R2).

Definition 2 (Shape derivative). Let J : P→ R be a shape functional.

(i) The Eulerian semiderivative of J at Ω in direction θ ∈ C1∂D(D,R2) is defined by, when the limit
exists,

dJ(Ω)(θ) := lim
t↘0

J(Ωt)− J(Ω)

t
. (14)

(ii) J is said to be shape differentiable at Ω if it has a Eulerian semiderivative at Ω for all θ ∈
C1∂D(D,R2) and the mapping

dJ(Ω) : C1∂D(D,R2)→ R, θ 7→ dJ(Ω)(θ)

is linear and continuous, in which case dJ(Ω)(θ) is called the shape derivative of J at Ω in direction
θ ∈ C1∂D(D,R2).

For a multiphase functional J : PK(D)→ R, we define the Eulerian shape derivative dJ (Ω)(θ) in a
similar way as

dJ (Ω)(θ) := lim
t↘0

J (Ωt)− J (Ω)

t
. (15)

Shape derivatives dJ(Ω)(θ) can usually be written either as a boundary integral on ∂Ω, called
Hadamard formula or boundary expression, or as an integral on Ω called distributed shape derivative,
domain expression or volumetric form of the shape derivative, see [32, 38, 39, 51]. A convenient way
to work with distributed shape derivatives is to use a so-called tensor representation [38, 39], which we
adapt here in the context of multiphase problems.

Definition 3 (Tensor representation of distributed shape derivative). Let Ω ∈ PK(D) and assume
J : PK(D) 7→ R has a shape derivative at Ω in direction θ ∈ C1∂D(D,R2). The shape derivative of J
admits a first-order tensor representation if there exist a first-order tensor S0(Ω) ∈ L1(D,R2) and a
second order tensor S1(Ω) ∈ L1(D,R2×2) such that for all θ ∈ C1∂D(D,R2),

dJ (Ω)(θ) =

∫
D
S1(Ω) : Dθ + S0(Ω) · θ. (16)

3.2 Derivative with respect to the Voronoi sites

In this section we compute the gradient with respect to a of a general function

G(a) := J (Ω(a)), (17)

where J : PK(D)→ R is a multiphase shape functional and Ω(a) is a Voronoi diagram, in the case where
the shape derivative dJ (Ω(a))(θ) admits the first-order tensor representation (16). Formally, G(a) can be
seen as the composition of a function a 7→ Ω(a) with a shape functional Ω 7→ J (Ω), hence the derivative
of G(a) is obtained via a sort of chain rule. Here the derivative of Ω 7→ J (Ω) is obtained via the non-
smooth shape calculus and the first-order tensor representation (16), while the derivative of a 7→ Ω(a)
follows from the theory developed in [14], developed in the more general case of minimization diagrams,
which requires several non-degeneracy assumptions on the position of the sites ai, i ∈ Kvor. These
non-degeneracy assumptions are restated below in Assumption 1. Note that the derivative of a 7→ Ω(a)
has to be understood as the time-derivative of a mapping T such that T (Ω(a), t) = Ω(a + tδa), see
Theorem 1.

In this section and in the rest of the paper we assume in addition that D is defined as the sublevel
set

D := {x ∈ R2 : φ(x) < 0}
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with φ(x) := minℓ∈KD φℓ(x) and φℓ ∈ C∞(R2,R) for all ℓ ∈ KD := {κ0 + 1, . . . , κ0 + κ1}. For ℓ ∈ KD,
introduce the set ∂ℓD := {x ∈ ∂D : φℓ(x) = 0}. Then we have ∂D = ∪ℓ∈KD∂ℓD. For {i, j, k} ⊂ Kvor

and ℓ ∈ KD let us define Yijk(t) := Ωi(a + tδa)∩Ωj(a + tδa)∩Ωk(a + tδa) and Xijℓ(t) := Ωi(a + tδa)∩
Ωj(a + tδa)∩∂ℓD. The set Yijk(t) is a set of interior vertices, i.e., points in D at the intersection of three
cells. The set Xijℓ(t) is a set of boundary vertices, i.e., points on ∂D at the intersection of two cells. We
will write Yijk := Yijk(0) and Xijℓ := Xijℓ(0) for simplicity. The set Yijk contains at most one point, but

Xijℓ may contain several points. For k ∈ Kvor\{i} and ℓ ∈ KD, Eik(a+tδa) := Ωi(a + tδa)∩Ωk(a + tδa)

denotes an interior edge of the diagram Ω(a + tδa), while Eik(a + tδa) := Ωi(a + tδa) ∩ ∂ℓD denotes a
boundary edge of the diagram.

We now provide Assumption 1, a set of geometric assumptions that are required to avoid degenerate
cases and perform the sensitivity analysis of Voronoi diagrams. These assumptions are particular cases
of [14, Assumptions 4 and 5], which were provided in the more general context of minimization diagrams.
In [14, Section 4], the implications of these assumptions in the case of Voronoi diagrams are discussed
in details. In particular, they guarantee that the interior vertices Yijk of the Voronoi diagram belong to
no more than three cells. They also eliminate the trivial situations where two cells with different indices
are identical.

Assumption 1. Suppose that:

• (Non-degeneracy of interfaces) There holds ∥∇xφℓ(x)∥ > 0 for all x ∈ ∂ℓD and for all ℓ ∈ KD, and
∥ai − aj∥ > 0 for all {i, j} ⊂ Kvor.

• (Non-degeneracy of vertices) For all {i, j, k} ⊂ Kvor such that Yijk ̸= ∅ we have

(aj − ai)⊥ · (ak − ai) ̸= 0.

In addition, for all {i, j} ⊂ Kvor and ℓ ∈ KD and all v ∈ Xijℓ we have

(aj − ai)⊥ · ∇φℓ(v) ̸= 0.

Under Assumption 1, the motion of the Voronoi cell Ωi(a+tδa) can be parameterized by a bi-Lipschitz
mapping T (·, t), such that its derivative θ := ∂tT (·, 0) can be described explicitly as a function of the
sites a. This parameterization is described in the following theorem, which is a particular case of [14,
Theorem 5].

Theorem 1. Let i ∈ Kvor and suppose Assumption 1 holds. Then there exist t0 > 0 and a mapping T :
Ωi(a)×[0, t0]→ R2 satisfying T (Ωi(a), t) = Ωi(a+tδa), T (Eik(a), t) = Eik(a+tδa) for all k ∈ Kvor\{i},
T (Eiℓ(a), t) = Eiℓ(a+ tδa) for all ℓ ∈ KD, T (∂Ωi(a), t) = ∂Ωi(a+ tδa) and T (·, t) : Ωi(a)→ Ωi(a + tδa)
is bi-Lipschitz for all t ∈ [0, t0]. In addition we have

θ(x) · ν(x) =
∇aϕk(x, ak) · δak −∇aϕi(x, ai) · δai
∥∇xϕk(x, ak)−∇xϕi(x, ai)∥

for all x ∈ Eik(a) and all k ∈ Kvor \ {i}, (18)

θ(x) · ν(x) = 0 for all x ∈ Eiℓ(a) for all ℓ ∈ KD, (19)

where θ := ∂tT (·, 0), ν is the outward unit normal vector to Ωi(a), and ϕi(x, a) := ∥x− a∥2.

Introduce Ω(a + tδa) := {Ωk(a + tδa)}k∈Kvor
and G(a + tδa) := J (Ω(a + tδa)). By definition of

the Voronoi diagram, we have Ω(a + tδa) ∈ PKvor
(D) for all t ∈ [0, t0]. In view of Theorem 1 we have

Ω(a + tδa) = T (Ω(a), t) = {T (Ωk(a), t)}k∈Kvor . Recall that E inti denotes the set of interior edges of the
cell Ωi(a), i.e., edges that are included in D. We have the following result for the gradient of G.

Theorem 2. Suppose Assumption 1 holds, that J is shape differentiable at Ω(a) in direction θ :=
∂tT (·, 0), and that the shape derivative dJ (Ω(a))(θ) admits the first-order tensor representation (16).
Assume further that S1(Ω(a)) ∈ W 1,1(Ωi(a),R2×2) for all i ∈ Kvor. Then the gradient of G(a), defined
in (17), is given by

∇G(a) · δa =
∑

i∈Kvor

∑
E∈Eint

i

∫
E

(S1(Ω(a))ν · ν)|∂Ωi(a)

(x− ai) · δai − (x− ak(i,E)) · δak(i,E)

∥ak(i,E) − ai∥
dx, (20)

where k(i, E) is the index such that E = Ωi(a) ∩ Ωk(i,E)(a).
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Proof. In this proof we write Ω instead of Ω(a) for simplicity. Using Theorem 1 we have G(a + tδa) =
J (Ω(a + tδa)) = J (T (Ω, t)) and in view of θ = ∂tT (·, 0) we obtain

∇G(a) · δa =
d

dt
(J (Ω(a + tδa)))|t=0 = dJ (Ω)(θ).

Since Ωi(a) is Lipschitz, and using the assumption S1(Ω) ∈ W 1,1(Ωi(a),R2×2) for all i ∈ Kvor, we
can apply the divergence theorem in each Ωi(a), which yields

dJ (Ω)(θ) =

∫
D
S1(Ω) : Dθ + S0(Ω) · θ dx =

∫
D

div(S1(Ω)Tθ) dx

=
∑

i∈Kvor

∫
Ωi(a)

div(S1(Ω)Tθ) dx =
∑

i∈Kvor

∫
∂Ωi(a)

(S1(Ω)ν · ν)θ · ν dx.

Using the fact that ϕi(x, a) = ∥x− a∥2 we get ∇aϕi(x, ai) = −2(x− ai) and, using (18),

θ(x) · ν(x) =
(x− ai) · δai − (x− ak(i,E)) · δak(i,E)

∥ak(i,E) − ai∥
for all x ∈ Eik(a),

which proves the result.

Remark 1. Note that Assumption 1 implies ∥ak(i,E) − ai∥ > 0 in (20).

The following corollary, which is an immediate consequence of Theorem 2, is useful for the numerical
implementation.

Corollary 1. Under the assumptions of Theorem 2, we have

∇G(a) · δa =
∑

i∈Kvor

∑
E∈Eint

i

δak(i,E) · gk,E + δai · gi,E , (21)

with

gk,E = −
∫
E

(S1(Ω(a))ν · ν)
(x− ak(i,E))

∥ak(i,E) − ai∥
dx, gi,E =

∫
E

(S1(Ω(a))ν · ν)
(x− ai)

∥ak(i,E) − ai∥
dx.

4 Derivative of cost function for the inverse potential problem

In this section, in order to simplify the notation, we take ᾱ = 1, ζ1 = 1 and we write u, f, h instead
of u1, f1, h1. The expression of the shape derivative in the case ᾱ > 1 and ζα ̸= 1 can be obtained
straightforwardly by multiplying by ζα and summing over α = 1, . . . , ᾱ. We require the following
assumptions to prove shape differentiability.

Assumption 2. Suppose:

• Ω ∈ PKvor
(D),

• q = qΩ :=
∑

i∈Kvor
qiχΩi ,

• fα ∈ H1(D), hα ∈ H1(D) for all α = 1, . . . , ᾱ.

We now provide the shape derivative of the cost function J(Ω) for the inverse potential problem. We
first provide the shape derivative in the general case of a K-diagram Ω. The particular case of Voronoi
diagrams is treated in the next sections.

Theorem 3 (distributed shape derivative). Suppose Assumption 2 holds. Let T ∈W 1,∞(D × [0, t0],D)
so that T (·, t) : D → D is a bi-Lipschitz mapping for all t ∈ [0, t0] and T (t,D) = D for all t ∈ [0, t0]. Let
θ := ∂tT (·, 0) and assume θ ∈ C1∂D(D,R2). Then, the shape derivative of J, given by (8), at Ω ∈ PK(D)
in direction θ ∈ C1∂D(D,R2) is

dJ(Ω)(θ) =

∫
D
S1(Ω) : Dθ + S0(Ω) · θ dx, (22)
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where S1(Ω) ∈ L1(D,R2×2) and S0(Ω) ∈ L1(D,R2) are defined by

S1(Ω) =

[
1

2
(u− h)2 − fp+∇u · ∇p+ qup

]
Id −∇p⊗∇u−∇u⊗∇p, (23)

S0(Ω) = (h− u)∇h−∇f. (24)

The adjoint p ∈ H1
0 (D) is solution of∫

D
∇p · ∇w + qpw =

∫
D

(h− u)w for all w ∈ H1
0 (D). (25)

Proof. Here we will use the notation Tt(x) instead of T (x, t) for simplicity. Introduce the Lagrangian
L : PK(D)×H1

0 (D)×H1
0 (D) as

L(Ω, ξ, µ) :=
1

2

∫
D

(ξ − h)2 +

∫
D
∇ξ · ∇µ+

∫
D
qΩξµ+ fµ.

Following the averaged adjoint method [39, 47], we introduce the shape-Lagrangian Λ using a reparam-
eterization of L:

Λ(t, ξ, µ)) := L(Ωt, ξ
t, µt)

=
1

2

∫
D

(ξt − h)2 +

∫
D
DT−T

t ◦ T−1
t (∇ξ) ◦ T−1

t ·DT−T
t ◦ T−1

t (∇µ) ◦ T−1
t +

∫
D
qΩt

ξtµt − fµt

with the notation ξt := ξ ◦ T−1
t and µt := µ ◦ T−1

t .
Proceeding with the change of variables x 7→ Tt(x) inside the integrals, we get

Λ(t, ξ, µ) =
1

2

∫
D

(ξ − h̃(t))2 det(DTt) +

∫
D
M(t)∇ξ · ∇µ+

∫
D

(qΩξµ− f̃(t)µ) det(DTt),

where M(t) := det(DTt)DT
−1
t DT−T

t , h̃(t) = h ◦ Tt, f̃(t) = f ◦ Tt. The derivative of M(t) at t = 0 is
given by, see [22, 46],

M′(0) = div(θ)Id −Dθ −DθT.

This yields, using Assumption 2,

dJ(Ω)(θ) = ∂tΛ(0, u, p)

=
1

2

∫
D

(u− h)2 div(θ) + (∇h · θ)(h− u) +

∫
D
M′(0)∇u · ∇p+ qΩupdiv(θ)

−
∫
D
fpdiv(θ) + p∇f · θ.

Using tensor calculus, see for instance [38], we compute

M′(0)∇u · ∇p = Dθ : [(∇u · ∇p)Id −∇p⊗∇u−∇u⊗∇p]

The other terms of dJ(Ω)(θ) can be rearranged in a similar way to obtain (22).

4.1 Interface representation of the gradient

In the case of Voronoi diagrams, the state u and adjoint state p have higher regularity, which is a crucial
property to compute the gradient of G.

Proposition 1. Suppose Assumption 1 and 2 hold. Then u, p in H2(D), S1(Ω(a)) ∈W 1,1(Ωi(a),R2×2)
for all i ∈ Kvor and S0(Ω(a)) ∈W 1,1(D,R2).

Proof. We have −∆u = −qu+f and −qu+f ∈ L2(D) as well as −∆p = −qp+(h−u) and −qp+(h−u) ∈
L2(D). This implies u, p in H2(D) since D is convex, applying for instance [26, Theorem 3.2.1.2]. The
regularity S1(Ω(a)) ∈ W 1,1(Ωi(a),R2×2) and S0(Ω(a)) ∈ W 1,1(D,R2) follows immediately from the
expressions (23), (24) and the regularity of f, h, u, p.
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Applying Theorem 2, Theorem 3 and Proposition 1 we obtain the following result.

Theorem 4. Suppose Assumptions 2 and 1 hold, then the gradient of G(a), defined in (9), is given by

∇G(a) · δa =
∑

i∈Kvor

∑
E∈Eint

i

∫
E

(S1(Ω(a))ν · ν)|∂Ωi(a)

(x− ai) · δai − (x− ak(i,E)) · δak(i,E)

∥ak(i,E) − ai∥
dx, (26)

where k(i, E) is the index such that E = Ωi(a) ∩ Ωk(i,E)(a) and S1(Ω(a)) is given by (23).

Alternatively, ∇G(a) may be written in the following form, which is more amenable for numerical
implementation.

Corollary 2. Suppose Assumptions 1 and 2 hold, then

∇G(a) · δa =
∑

i∈Kvor

∑
E∈Eint

i

δak(i,E) · gk,E + δai · gi,E , (27)

with

gk,E = −
∫
E

qiup
(x− ak(i,E))

∥ak(i,E) − ai∥
dx, gi,E =

∫
E

qiup
(x− ai)

∥ak(i,E) − ai∥
dx.

Proof. Let E := ∪i∈Kvor
E inti denote the set of interior edges of the Voronoi diagram (i.e., edges that are

included in D), which is the union of all interior edges of cells Ωi(a), i ∈ Kvor. Firstly, we can write
∇G(a) as in (21). Then, as each interior edge E ∈ E is at the interface of exactly two cells, whose indices
we denote by k1(E) and k2(E), we can reorganize the terms in (21) by summing over all E ∈ E , which
yields:

∇G(a) · δa =
∑
E∈E

δak1(E) · gk1,E + δak2(E) · gk2,E , (28)

where

gk1,E :=

∫
E

JS1(Ω(a))ν · νKE
(x− ak1(E))

∥ak1(E) − ak2(E)∥
dx,

gk2,E := −
∫
E

JS1(Ω(a))ν · νKE
(x− ak2(E))

∥ak1(E) − ak2(E)∥
dx,

and JS1(Ω(a))ν · νKE := (S1(Ω(a))ν · ν)|∂Ωk1(E)(a) − (S1(Ω(a))ν · ν)|∂Ωk2(E)(a).

In view of (23) we compute

S1(Ω(a))ν · ν =
1

2
(u− h)2 − fp+∇u · ∇p+ qup− 2∂νu∂νp. (29)

Since u, p in H2(D), f, h ∈ H1(D), we can show that

JS1(Ω(a))ν · νKE = J
1

2
(u− h)2 − fp+∇u · ∇p+ qup− 2∂νu∂νpKE = JqupKE

= (qup)|∂Ωk1(E)(a) − (qup)|∂Ωk2(E)(a) = (qk1(E) − qk2(E))up.

Indeed, let us show for instance that J∇u ·∇pKE = 0; the other terms can be treated in a similar way. We
have ∇u ·∇p ∈W 1,1(D), hence ∇u ·∇p|Ωi(a) ∈W 1,1(Ωi(a)) for all i ∈ Kvor. Since Ωi(a) is Lipschitz, the
trace Tr : W 1,1(Ωi(a))→ L1(∂Ωi(a)) is linear and continuous, see [35], thus ∇u ·∇p|∂Ωi(a) ∈ L1(∂Ωi(a)).
In addition, since ∇u · ∇p ∈W 1,1(D) and using the continuity of the trace Tr, we have ∇u · ∇p|∂Ωi(a) =
∇u · ∇p|∂Ωj(a) on the interface E = ∂Ωi(a) ∩ ∂Ωj(a), for all i, j ∈ Kvor. Therefore J∇u · ∇pKE = 0.
Finally, rewriting the sum as in (21), we obtain (27).
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4.2 Distributed expression of the gradient

In Corollary 2 we have obtained the gradient of G with the coefficients expressed as integrals on the
edges E. Note however that in Theorem 3, the shape derivative is expressed as a volumetric integral.
In smooth shape optimization, it is now well-known that distributed (volumetric) expressions of shape
derivatives present several benefits such as higher accuracy in the context of finite elements [32] and
ease of implementation [37, 39]. In the context of nonsmooth shape optimization with PDE constraints,
where the solution of the PDE often has low regularity due to the presence of corners for instance, using
distributed expressions of shape derivatives is particularly interesting as it demands less regularity on
the data, as shown in [38]. However, in non-smooth, parameterized shape optimization, as treated here,
employing the boundary expression of the shape derivative is quite natural as the restriction of θ on
an edge E of the diagram is an explicit function of the parameters (here the sites a), as in (18), which
combines well with the fact that the boundary expression of the shape derivative only depends on θ and
not on its derivatives [11, 13].

The dependence of the distributed expression of the shape derivative (22) on Dθ complicates the
writing of the gradient of G using this expression. Indeed, the expression of θ is only known explic-
itly on the edges E, while computing Dθ necessitates describing an explicit extension of θ inside the
cells. This task would pose a significant challenge in the context of a general non-smooth, parameterized
shape optimization problem. However, for Voronoi diagrams, thanks to the simple geometry, a relatively
straightforward procedure exists to obtain an explicit extension of θ inside the cells, which we outline
here. Note that this procedure relies solely on the existence of a tensor expression (16) for the shape
derivative. This property is highly general, underlining the broad applicability of the approach. The
case of distributed shape derivative with boundary terms, as in [39], can also be considered via a similar
procedure. To the best of our knowledge, this is the first time that a distributed expression of the shape
derivative is used in the context of a non-smooth, parameterized shape optimization problem. This
results in two distinct formulas (27) and (31) for ∇G. Although these formulations are mathematically
equal, they lead to different discretizations and numerical implementations. In Section 5.2, we numeri-
cally compare these two formulas, thereby extending the existing literature on the comparison of shape
gradients, as exemplified in [32, 51], to encompass the non-smooth case.

We start with some preliminary definitions. Since Ωi(a) is convex, we can partition Ωi(a) into a set of
non-overlapping triangles, where the vertices of each triangle are the site ai and two consecutive vertices
of the cell, using a counterclockwise orientation. Introduce the functions ψv ∈ C0(Ωi(a),R) such that
ψv(ai) = 0, ψv(v) = 1, ψv(w) = 0 for all other vertices w of the cell Ωi(a), and ψv is linear on each
of the triangle partitioning Ωi(a). Due to the continuity of ψv, this determines ψv uniquely. Also, ψv

is piecewise linear, and there are only two triangles on which ψv is not identically zero; we denote by
T (ai, v, wℓ) these two triangles, where wℓ are the two neighbouring vertices of v, for ℓ = 1, 2.

We can compute ψv explicitly on each triangle T (ai, v, wℓ). Since ψv is linear on T (ai, v, wℓ), it takes
the form

ψv(z) = z · β + γ

where z = (z1, z2) are Cartesian coordinates. We get the three equations

ψv(ai) = ai · β + γ = 0, ψv(v) = v · β + γ = 1, ψv(w) = w · β + γ = 0.

This yields (ai − w) · β = 0, (ai − v) · β = −1 and β = λ(ai − w)⊥ with λ ∈ R and (ai − w)⊥ is a
rotation of angle π/2 of (ai − w) in counterclockwise orientation. Then, using (ai − v) · β = 1 we get
λ(ai−v) · (ai−w)⊥ = 1 and λ = 1/(ai−v) · (ai−w)⊥. Using the last equation yields γ = −w ·β. Finally

ψv(z) = (z − w) · β = − (z − w) · (ai − w)⊥

(ai − v) · (ai − w)⊥

and

∇ψv(z) = β = − (ai − w)⊥

(ai − v) · (ai − w)⊥
. (30)

Theorem 5. Suppose Assumptions 1 and 2 hold, then the gradient of G(a), defined in (9), is given by

∇G(a) · δa =
∑

i∈Kvor

∑
v∈Vint

i

δai · gvi + δaj · gvj + δak · gvk +
∑

v∈Vbd
i

δai · gvi + δaj · gvj , (31)
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where Vint
i is the set of interior vertices of the cell Ωi(a) and Vbd

i the set of boundary vertices, (i, j, k)

are the indices of the three cells that share the common vertex v, i.e., v = Ωi(a) ∩ Ωj(a) ∩ Ωk(a), and

gvi := Mv(j, k, i)⊤I(i, v), gvj := Mv(k, i, j)⊤I(i, v), gvk := Mv(i, j, k)⊤I(i, v),

gvi := M ℓ
v (j, i)⊤I(i, v), gvj := M ℓ

v (i, j)⊤I(i, v).

Here

Mv(i, j, k) :=
(ai − aj)⊥ ⊗ (v − ak)⊤

Q(i, j, k)
, Q(i, j, k) := det

(
(aj − ai)⊤
(ak − ai)⊤

)
. (32)

and

M ℓ
v (j, i) :=

−∇xφℓ(v)⊥ ⊗ (v − ai)⊤

det

(
(aj − ai)⊤
∇xφℓ(v)⊤

) . (33)

Also,

I(i, v) :=

∫
T (ai,v,w1)

S1(Ω(a))∇ψv(x) + S0(Ω(a))ψv(x) dx

+

∫
T (ai,v,w2)

S1(Ω(a))∇ψv(x) + S0(Ω(a))ψv(x) dx

(34)

and wℓ, ℓ = 1, 2, are the two neighbouring vertices of v, relatively to cell Ωi(a).

Proof. In this proof we write Ω instead of Ω(a) for simplicity. Let Vi be the set of vertices of the cell
Ωi(a), then we either have v = Yijk(0) if v ∈ Vi is an interior vertex, or v = Xijℓ(0) if v ∈ Vi is a
boundary vertex, see Section 3.2. Define θv := d

dtYijk(0) if v ∈ Vi is an interior vertex or θv := d
dtXijℓ(0)

if v ∈ Vi is a boundary vertex. Using [14, Theorem 7] we know that

θv = Mv(j, k, i)δai +Mv(k, i, j)δaj +Mv(i, j, k)δak (35)

if v ∈ Vi is an interior vertex. Here, (i, j, k) denote the indices of the three cells of the vertex v.
If v is a boundary vertex which is not a singular point of ∂D, then θv is tangential to ∂D, and we

have

θv = M ℓ
v (j, i)δai + M ℓ

v (i, j)δaj , (36)

see [14, Theorem 8]. Here (i, j) are the two indices of the cells of the vertex v and φℓ are the level set
functions representing the edges of ∂D, see Section 3.2. If v is a boundary vertex which is also a singular
point of ∂D, then θv = 0.

Next, introduce

θi(x) :=
∑
v∈Vi

θvψv(x), (37)

and define θ : D → R2 as θ|Ωi(a) := θi. By definition of ψv, one has θ ∈W 1,∞(D,R2).
Let us introduce the mapping T (x, t) = x+ tθ(x), x ∈ D. Then we claim that the restriction T |Ωi(a)

of T to the cell Ωi(a) has the same properties as the mapping T of Theorem 1, in particular we have
T (Ωi(a), t) = Ωi(a + tδa), T (∂Ωi(a), t) = ∂Ωi(a + tδa) and T |Ωi(a) is bi-Lipschitz for all t ∈ [0, t0]. We
verify this claim by checking the construction of T in [14, Theorem 5], as Theorem 1 is a particular case
of [14, Theorem 5]. In [14, Theorem 5], in the particular case of Voronoi diagrams, T is first defined at
the vertices of the cell Ωi(a) by T (v, t) = v + tθv, where θv is given by (35) when v is an interior vertex,
and by (36) when v is a boundary vertex. Next, T (·, t) is defined on each edge E of a cell Ωi(a) by a
linear interpolation of T (v, t) and T (w, t), where v, w are the extremities of E. Then, in [14, Theorem 5],
T (·, t) is extended inside the cell Ωi(a). The extension to the cell is arbitrary, as long as the bi-Lipschitz
property of T (·, t) is preserved. In our case, the extension is explicit in view of the definition (37), and
it can be check that T (·, t) is indeed bi-Lipschitz. Thus, the mapping T (x, t) = x+ tθ(x), x ∈ D, where
θ is defined by (37), is valid in Theorem 1.
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Thus, using Theorem 1 we have G(a + tδa) = J(Ω(a + tδa)) = J(T (Ω, t)), hence

∇G(a) · δa =
d

dt
(J(Ω(a + tδa)))|t=0 = dJ(Ω)(θ),

where θ = ∂tT (·, 0). Then by Theorem 3 and (37) we have

dJ(Ω)(θ) =

∫
D
S1(Ω) : Dθ + S0(Ω) · θ dx =

∑
i∈Kvor

∫
Ωi(a)

S1(Ω) : Dθi + S0(Ω) · θi dx.

Next, we compute

Dθi =
∑
v∈Vi

θv ⊗∇ψv

and
S1(Ω) : Dθi =

∑
v∈Vi

S1(Ω) : (θv ⊗∇ψv) =
∑
v∈Vi

S1(Ω)∇ψv · θv.

This yields

dJ(Ω)(θ) =
∑

i∈Kvor

∑
v∈Vi

θv ·
∫
Ωi(a)

S1(Ω)∇ψv(x) + S0(Ω)ψv(x) dx. (38)

Since ψv ≡ 0 on Ωi(a) \ ∪2ℓ=1T (ai, v, wℓ), we have, in view of (34),∫
Ωi(a)

S1(Ω)∇ψv(x) + S0(Ω)ψv(x) dx = I(i, v).

Thus we have obtained

∇G(a) · δa = dJ(Ω)(θ) =
∑

i∈Kvor

∑
v∈Vi

θv · I(i, v) =
∑

i∈Kvor

 ∑
v∈Vint

i

θv · I(i, v) +
∑

v∈Vbd
i

θv · I(i, v).


Finally, using (35) and (36) we obtain (31).

Remark 2. An alternative approach to compute ∇G using the distributed expression of the shape deriva-
tive is to proceed without decomposing the integral over D into the Voronoi cells Ωi(a) in the proof of
Theorem 5. In this way, one obtains

∇G(a) · δa = dJ(Ω)(θ) =
∑
v∈V

θv ·
∫
D
S1(Ω)∇ψv(x) + S0(Ω)ψv(x) dx,

where V is the set of vertices of the Voronoi diagrams. This leads to a formula similar to (31), but with
a summation on V instead. Even though the integrals here are on D, they are in fact calculated only on
the support of ψv, which is small.

5 Numerical experiments

In this section we present numerical experiments to evaluate the type of optimization (inverse) prob-
lem (10) that can be solved in relation to the amount of noise in the measurements hα, the number κ0
of cells in the Voronoi diagram defining the ground truth q⋆ and the distribution (binary or not) of the
values of q⋆ in the different cells of the diagram. We also analyze the influence of the number ᾱ of avail-
able sources and the influence of the initial estimate a0 in the optimization process. We also evaluate
whether there is any practical difference in using the distributed (31) or the interface (27) expression of
the gradient when solving the optimization problem.

In all the experiments we considered D = (0, 1) × (0, 1) ⊂ R2 and generated problems with known
solution such that ai ∈ D for all i ∈ Kvor = {1, . . . , κ0}. We decided to include this information
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in the optimization problem and so we reformulated (10) as the finite-dimensional bound-constrained
optimization problem given by

Minimize
a∈R2κ0

G(a) subject to ai ∈ D for all i ∈ Kvor. (39)

The most natural way to solve problem (39) having ∇G available is to use the projected gradient
method [10, 24, 40], described for completeness in Algorithm 1. In the algorithm, PD represents the
projection operator on D. In the backtracking procedure (line 7), we choose λnew = λ/2 for simplicity.
As usual in the literature, in the numerical experiments we considered γ = 10−4 for the Armijo line search
constant. As a stopping criterion we considered ∥aℓ − aℓ−1∥∞ ≤ ϵ, with ϵ = 10−6, which corresponds to
lack of progress. We would like to have used a stopping criterion asking for a small ∥∇G(aℓ)∥, but as
its calculation depends on the numerical resolution of two PDEs, it is difficult to obtain small values in
practice. Precisely, the lack of progress is a consequence of the error in the calculations of G and ∇G.

Algorithm 1: Projected gradient method.

Input: a0 ∈ D, γ ∈ (0, 1), 0 < σ1 ≤ σ2 < 1
Output: â ∈ D

1 function ProjectedGradient(a0, γ, σ1, σ2, â)
2 Set ℓ← 0
3 while stop criteria not satisfied do
4 Compute dℓ := PD(aℓ −∇G(aℓ))− aℓ

5 Set λ← 1

6 while G(aℓ + λdℓ) ̸≤ G(aℓ) + λγ⟨∇G(aℓ), dℓ⟩ do
7 Choose λnew ∈ [σ1λ, σ2λ] and set λ← λnew

8 Define aℓ+1 := aℓ + λdℓ and set ℓ← ℓ+ 1

9 Define â := aℓ

We implemented Algorithm 1 within the computing platform FEniCS [36, 43], an open-source software
for solving PDEs with the finite element method. We discretize D using a regular grid with 128 cells in
each direction and crossed diagonals. Voronoi diagrams are computed with the implementation provided
in [11, 13, 14].

In the experiments, we constructed problems with known solution q⋆, for different values of κ0. The
construction starts by choosing κ0 and drawing a⋆i ∈ D for all i ∈ Kvor. Then we set q⋆i for all i ∈ Kvor

(as it will be shown below). Then we choose ᾱ, fα for α = 1, . . . , ᾱ and solve (3,4) to obtain u⋆α for
α = 1, . . . , ᾱ. The values of ζα for α = 1, . . . , ᾱ in the definition (8) of G(a) are computed in practice as

ζα =
1∫

D
(uα(qΩ(a0))− hα)2

.

In this way, the terms corresponding to each measurement hα start with the same magnitude in the
calculation of G. (As a consequence, G(a0) = ᾱ/2.) Synthetic measurements hα are obtained via the
formula hα := u⋆α + ηα, where ηα is a normal Gaussian noise with mean zero and standard deviation
c∥u⋆α∥∞ and c is a parameter that takes different values depending on the experiment. The noise level
is then computed as

Noise = 100%×

(∑ᾱ
α=1 ζα∥hα − u⋆α∥2L2(D)∑ᾱ

α=1 ζα∥u⋆α∥2L2(D)

)1/2

. (40)

Note that the hypothesis hα ∈ H1(D) is required for the computation of the shape derivative in
Theorem 3 and consequently also in Theorems 4 and 5, but is stronger than the regularity hα ∈ L2(D)
expected in practice, as hα = u⋆α + ηα and the measurement noise ηα is expected to be only in L2(D).
Nevertheless, the formulas (27) and (31) for ∇G(a) prove to be efficient in numerical experiments.
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In order to measure the quality of a reconstruction â, we define a relative error metric as follows:

E(â) = 100%×

∫
D
|q⋆ − q(â)|∫

D
q⋆

. (41)

We consider that the lower the E(â), the better the reconstruction â is.

5.1 Dependence on the number of sites

In this section, we present three types of experiments. In the first type, we reconstruct a ground truth
q⋆ with equidistant values q⋆i = 10 i, i = 1, . . . κ0. In the second experiment, we reconstruct a ground
truth q⋆ with approximately binary values q⋆i = 9 + i for i = 1, . . . , ⌊κ0/2⌋ and q⋆i = 108 − (κ0 − i) for
i = ⌊κ0/2⌋ + 1, . . . , κ0. In the third experiment, we reconstruct a ternary ground truth q⋆ with values
q⋆i ∈ {5, 10, 15}. In all cases we considered ᾱ = 1 and f1 ≡ 1. Standard deviation parameters c = 0 and
c = 0.02 were considered for the noise in (40). The initial approximation a0 is given by a perturbation
of the known solution a⋆ being computed as [a0i ]k := PD([a⋆i ]k + r) for k = 1, 2 and all i ∈ Kvor, where
r ∈ (−r̄, r̄) is a random number with uniform distribution and, in this experiment, r̄ = 0.1. In these
experiments, we considered the boundary expressions of the shape derivative to compute ∇G.

Reconstructions for κ0 ∈ {5, 6, 7, 8}, κ0 ∈ {9, 10, 11, 12}, and κ0 ∈ {13, 14} and equidistant ground
truth values are shown in Figures 1, 2, and 3, respectively. Table 1 shows some details of the optimization
process. In the table, we show κ0, the level of Noise (40) in the measurements (in %), the values of
the error (41) (in %), the objective function and its gradient norm at the initial guess a0 and at the
reconstruction â, the total number of iterations, the total number of evaluations of G, and the total CPU
time (in seconds) used by Algorithm 1 to obtain â. Figures 1, 2, and 3 show that reconstructions that
are visually similar to the ground truth were obtained for all cases unless κ0 = 9, κ0 = 10, and κ0 = 13,
which are the only cases with errors greater than 3%. In the case κ0 = 9, the most significant difference
appears in cells 1 and 2 of the solution, with q⋆1 = 10 and q⋆2 = 20, which are different from the ground
truth cells. The same happens with cells 3 and 7, with q⋆3 = 30 and q⋆7 = 70, in the solution to the case
κ0 = 13. In the case κ0 = 10, the final solution, with a large error, is different from the ground truth
and can be considered the only failure of this experiment. It is worth noting that we are analyzing the
solution of an optimization problem with many local non-global minimizers starting from a single initial
point.

Figures 4 and 5 show reconstructions for a nearly binary ground truth with κ0 ∈ {9, 10, 11, 12} and
κ0 ∈ {13, 14}, respectively. Table 2 shows the details of the optimization process. In most cases, we
observe a significant reduction of the error E(a), and the reconstructions visually resemble the ground
truth, the main features of the geometry are usually recovered. As κ0 increases, we notice that there are
more opportunities for combinations of cells to approximate other combinations of cells of the ground
truth. For instance in Figure 4, for κ0 = 9, one observes that the group of cells 10, 11, 12, 14 in the
reconstruction approximates the same group of cells of the ground truth, but the cells are recombined
in a different way. On one hand, this provides a degree of flexibility to the reconstruction process. On
the other hand, it may impair the reconstruction of small geometric features of the ground truth. By
chance, in this experiment, the case κ0 = 10 can also be considered as the only failure.

The case of a ternary ground truth, with κ0 ∈ {6, 8, 10, 12}, is shown in Table 3 and Figure 6.
Compared to the case of equidistant values, better reconstructions and smaller errors E(â) are obtained.
We observe in addition that significant topological changes occur during the optimization. For instance
in the case κ0 = 10, the 5-valued centered cell in the initialization merges with the block of 5-valued cells
on the right. As a result, the topological structure of the reconstruction’s Voronoi diagram is similar or
almost equal to the ground truth’s Voronoi diagram in all cases. The phenomenon that a group of cells
is combined in a different way to reconstruct the same group of cells in the ground truth is also observed
in this case, as it was observed in the approximately binary case.

5.2 Boundary versus distributed expression of the shape derivative

In this section, we compare the boundary (27) and distributed (31) expressions of the shape derivative
when applied to solve problem (39). For this purpose we considered the problems with κ0 ∈ {5, 6, 7, 8}
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κ0 Noise E(a0) E(â) G(a0) G(â) ∥∇G(a0)∥2 ∥∇G(â)∥2 #iter #feval Time

5
0.00 13.84 0.43 0.50 0.00003 1.81954 0.00454 273 1598 1763.31
2.19 13.84 2.01 0.50 0.03093 1.81304 0.02838 107 600 662.20

6
0.00 9.23 0.93 0.50 0.00074 0.95344 0.10760 71 515 605.92
2.56 9.23 0.83 0.50 0.12368 0.93441 0.05933 63 425 498.60

7
0.00 14.67 0.91 0.50 0.00015 1.86209 0.00976 134 708 911.10
2.38 14.67 1.53 0.50 0.02572 1.85186 0.01773 67 342 439.27

8
0.00 9.71 1.55 0.50 0.00077 1.61569 0.04925 142 928 1258.40
2.71 9.71 1.92 0.50 0.09390 1.61569 0.04154 89 560 768.75

9
0.00 20.69 4.34 0.50 0.00126 2.26427 0.02300 164 836 1236.18
2.79 20.69 7.66 0.50 0.02168 2.25165 0.04449 73 385 566.25

10
0.00 30.06 31.39 0.50 0.03640 1.74973 0.02898 66 246 390.16
2.51 30.06 30.99 0.50 0.04050 1.74847 0.03268 133 551 865.60

11
0.00 20.61 2.19 0.50 0.00043 1.80983 0.02105 137 750 1258.29
2.72 20.61 1.81 0.50 0.02903 1.79456 0.01728 184 1001 1687.14

12
0.00 18.49 2.47 0.50 0.00046 2.23125 0.01904 190 1040 1874.53
2.62 18.49 2.71 0.50 0.02636 2.20879 0.01431 142 748 1368.99

13
0.00 20.55 4.54 0.50 0.00285 2.38876 0.02985 148 910 1737.56
2.54 20.55 4.98 0.50 0.02791 2.38467 0.04890 73 423 816.54

14
0.00 10.44 2.04 0.50 0.00075 2.24406 0.02997 167 1071 2117.13
2.74 10.44 2.23 0.50 0.03674 2.22907 0.03511 165 1055 2084.45

Table 1: Details of the reconstruction optimization process for κ0 ∈ {5, 6, . . . , 14} in the case of a ground
truth with equidistant values.

κ0 Noise E(a0) E(â) G(a0) G(â) ∥∇G(a0)∥2 ∥∇G(â)∥2 #iter #feval Time

9
0.00 30.52 6.19 0.50 0.00051 2.31403 0.00783 222 881 1345.63
3.04 30.52 6.78 0.50 0.00525 2.31193 0.01080 167 651 1017.56

10
0.00 46.92 49.10 0.50 0.05583 1.67434 0.04445 76 313 521.15
2.83 46.92 38.62 0.50 0.01430 1.67035 0.04835 123 541 890.57

11
0.00 31.66 3.46 0.50 0.00068 2.15023 0.01538 91 514 875.21
2.71 31.66 3.70 0.50 0.01968 2.13605 0.02308 74 415 705.93

12
0.00 22.32 6.83 0.50 0.00420 2.41077 0.04584 26 159 286.28
2.68 22.32 6.59 0.50 0.02054 2.36726 0.03856 39 238 427.28

13
0.00 30.03 4.17 0.50 0.00143 2.59855 0.02736 65 343 643.85
2.87 30.03 4.29 0.50 0.01778 2.59062 0.03106 31 169 317.53

14
0.00 12.57 3.40 0.50 0.00094 2.10953 0.04130 95 560 1083.03
2.67 12.57 3.19 0.50 0.01913 2.08894 0.02402 92 540 1048.97

Table 2: Details of the reconstruction optimization process for κ0 ∈ {9, 10, 11, 12, 13, 14} in the case of a
ground truth with approximately binary values.

κ0 Noise E(a0) E(â) G(a0) G(â) ∥∇G(a0)∥2 ∥∇G(â)∥2 #iter #feval Time

6 2.46 9.14 0.77 0.50 0.17666 1.64958 0.00572 139 630 812.24
8 2.47 8.05 1.35 0.50 0.30222 1.22234 0.02171 175 1055 1522.91
10 2.47 20.27 8.83 0.50 0.07326 1.98013 0.01053 276 1090 1842.28
12 2.41 14.42 2.92 0.50 0.23374 2.17395 0.01457 108 608 1107.49

Table 3: Details of the reconstruction optimization process for κ0 ∈ {6, 8, 10, 12} in the case of a ground
truth with ternary values.
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Figure 1: Graphical representation of solutions found for κ0 ∈ {5, 6, 7, 8} in the case of a ground truth
with equidistant values.
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10
20

30

40

50
60 70

80

90

10

20
30

40

50

60
70

80

90

10
20

30

40

50

60 70

80

90

10

2030

40

50

60 70

80

90

κ
0

=
10 Noise = 0.00% Noise = 2.51%

E(a0) = 30.06% E(â) = 31.39% E(â) = 30.99%

10

20

30

40

50

60

70

80

90

100 10

20

30

40

50

60

70

80

90

100

10

20
30

40

50

60

70

80

90 100

10

20
30

40

50

60

70

80

90
100

κ
0

=
11 Noise = 0.00% Noise = 2.72%
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Figure 2: Graphical representation of solutions found for κ0 ∈ {9, 10, 11, 12} in the case of a ground
truth with equidistant values.
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10
20

30

40

50

60

70

80

90

100

110

120 130

140

10
20

30

40

50

60

70

80

90

100

110

120 130

140

10
20

30

40

50

60

70

80

90

100

110

120 130

140

10
20

30

40

50

60

70

80

90

100

110

120 130

140

Figure 3: Graphical representation of solutions found for κ0 ∈ {13, 14} in the case of a ground truth
with equidistant values.

and a ground truth with equidistant values, whose reconstructions using the boundary expressions of the
shape derivative were shown in Figure 1. These problems were solved then again using the distributed
expressions of the shape derivative. Figure 7 shows the reconstructions and Table 4 shows details of the
optimization process. In the figure, the reconstructions of Figure 1 are repeated for ease of comparison.

From the implementation point of view, one advantage of (31) is that one needs to compute integrals in
triangles. This can be implemented in a relatively simple way using FEniCS, which provides integration in
subdomains. Integration on the interfaces E in (27) is comparatively more complicated and less accurate,
as the edges E do not coincide with the fixed finite element mesh. Several tools for numerical integration
in lower dimensional sets are available in FEniCS and were used here to implement (27). One possible
issue with (31), which is specific to the context of non-smooth, parameterized shape optimization and
the procedure described in Section 4.2, is the fact that when |v −w1| → 0 or |v −w2| → 0, the triangles
T (ai, v, w1), T (ai, v, w2) in (34) converge to a segment, while ∇ψv →∞ in (34). From a numerical point
of view, this may result in a large approximation error of ∇G if |v − w1| or |v − w2| gets too small.

The numerical experiments show similar reconstructions for all the cases κ0 ∈ {5, 6, 7, 8} considered.
On one hand, the expected issue with (31) was not detrimental. On the other hand, the expected
higher accuracy of (31) compared to (27) did not lead to significantly better reconstructions here. From
the point of view of efficiency, for the four problems considered, the optimization process using the
distributed gradient performed, on average, 93.62 iterations per problem, 5.81 function evaluations per
iteration and took about 2.72 seconds for each functional evaluation. For the optimization process using
the boundary expression for the gradient, these figures are 118.25, 6.08 and 0.92. This shows that by
calculating the gradient in both ways, the optimization method uses approximately the same number of
iterations and the same number of function evaluations per iteration. On the other hand, the calculation
of the boundary gradient is three times faster than the calculation of the distributed gradient, which is
why we continue to use it in all the experiments that follow.

5.3 Influence of noise on the reconstruction

In this experiment we investigate the influence of the measurements’ noise on the quality of the recon-
struction. For this purpose we considered problems with κ0 ∈ {5, 6, 7, 8} and the same characteristics as
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Figure 4: Graphical representation of solutions found for κ0 ∈ {9, 10, 11, 12} in the case of a ground
truth with approximately binary values.
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Figure 5: Graphical representation of solutions found for κ0 ∈ {13, 14} in the case of a ground truth
with approximately binary values.

κ0 Noise E(a0) E(â) G(a0) G(â) ∥∇G(a0)∥2 ∥∇G(â)∥2 #iter #feval Time

5
0.00 13.84 1.33 0.50 0.00041 1.78646 0.02060 126 668 2004.47
2.19 13.84 1.02 0.50 0.03035 1.78275 0.00965 155 819 2524.73

6
0.00 9.23 0.97 0.50 0.00079 0.91288 0.07141 55 376 1164.90
2.56 9.23 0.74 0.50 0.12359 0.91114 0.02048 95 632 2016.80

7
0.00 14.67 1.51 0.50 0.00057 1.83739 0.01317 39 202 876.04
2.38 14.67 1.29 0.50 0.02537 1.83023 0.00933 82 396 1746.91

8
0.00 9.71 1.52 0.50 0.00072 1.61575 0.03743 103 644 2669.31
2.71 9.71 1.71 0.50 0.09374 1.61575 0.02631 94 577 2404.23

Table 4: Details of the reconstruction optimization process for κ0 ∈ {5, 6, 7, 8} in the case of a ground
truth with equidistant values, using the distributed expression (31) of the shape derivative.
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Figure 6: Graphical representation of solutions found for κ0 ∈ {6, 8, 10, 12} in the case of a ground truth
with ternary values.
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Figure 7: Graphical representation of solutions found for κ0 ∈ {5, 6, 7, 8} in the case of a ground truth
with equidistant values, using boundary and distributed expressions of the shape derivative.
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the experiments of Section 5.1 using an equidistant q⋆. For each problem, we generated measurements
with c ∈ {0.02, 0.04, 0.06, 0.08} as the standard deviation parameter of the normal Gaussian noise. Fig-
ure 8 shows the reconstructions and Table 5 shows the details of the optimization process. We observe
that the reconstruction seems robust with respect to noise, with an error which stays below 3%, regard-
less of the amount of measurement noise. The only detail that reflects the increase in noise is the final
value of the objective function G. The more noise, the larger the value in the solution found. There is no
observable difference in the final value of the gradient norm and in the performance of the optimization
method. There are no visible changes in the number of iterations, or function evaluations or CPU time
spent.

κ0 Noise E(a0) E(â) G(a0) G(â) ∥∇G(a0)∥2 ∥∇G(â)∥2 #iter #feval Time

5

2.19 13.84 2.01 0.5 0.03093 1.81304 0.02838 107 600 743.75
4.38 13.84 1.50 0.5 0.10236 1.79497 0.01934 200 1089 1221.48
6.56 13.84 2.15 0.5 0.18319 1.77692 0.02092 108 552 612.08
8.75 13.84 2.28 0.5 0.25305 1.65214 0.01776 45 226 253.42

6

2.56 9.23 0.83 0.5 0.12368 0.93441 0.05933 63 425 504.25
5.13 9.23 1.21 0.5 0.28469 0.91478 0.03519 65 399 479.47
7.69 9.23 1.27 0.5 0.37462 0.90778 0.01974 74 416 498.05
10.26 9.23 1.59 0.5 0.42110 0.90519 0.00545 111 556 667.13

7

2.38 14.67 1.53 0.5 0.02572 1.85186 0.01773 67 342 449.23
4.76 14.67 1.06 0.5 0.08749 1.83275 0.00716 144 704 916.24
7.14 14.67 1.86 0.5 0.16196 1.77916 0.01821 46 224 296.63
9.52 14.67 1.72 0.5 0.22969 1.64012 0.01108 78 363 474.73

8

2.71 9.71 1.92 0.5 0.09390 1.61569 0.04154 89 560 762.38
5.42 9.71 2.65 0.5 0.23972 1.53948 0.04857 100 572 791.70
8.12 9.71 1.88 0.5 0.33614 1.31973 0.01556 110 574 791.26
10.83 9.71 1.95 0.5 0.39209 1.15650 0.01232 113 545 758.87

Table 5: Details of the reconstruction optimization process for κ0 ∈ {5, 6, 7, 8} in the case of a ground
truth q⋆ with equidistant values, considering different levels of noise in the measurements.

5.4 Influence of initialization

In this section we analyze the influence of the initial approximations a0 of the solution on the optimization
process. Varying the way of calculating the initial approximation, we will consider the problems with
ground truth with equidistant values and κ0 ∈ {9, 10}, with approximately binary values and κ0 ∈
{9, 10, 12} and with ternary values and κ0 = 10. Those are all the problems for which, in Section 5.1,
we found solutions with errors greater than 5%. All problems’ details are as described in Section 5.1.

In a first experiment, we consider 100 points that are perturbations of the ground truth, evaluate G
(considering ζ1 = 1) at each one and choose as the starting point of a single optimization process the
point with the smallest value of G. Figures 9, 10, and 11 and Table 6 show the details. In the case of
equidistant ground truth, with κ0 = 9 the error went from 7.66% to 28.90% while, with κ0 = 10, it went
from 30.99% to 2.81% (for both cases compare Figures 2 and 9 or Tables 1 and 6). That is, one was
better and the other worse suggesting that the choice of the initial point as a function of the value of G
corresponds to a random choice among the alternatives considered. In the case of the approximately
binary ground truth, the instance with κ0 = 9 was worse, the instance with κ0 = 10 improved and
the instance with κ0 = 12 remained almost the same (for the three cases, compare Figures 4 and 10 or
Tables 2 and 6), while in the case of a ternary ground truth with κ0 = 10, it improved (compare Figures 6
and 11 or Tables 3 and 6). The point is that, as the figures show, choosing the initial configuration taking
into account the value of G does not correspond to choosing an initial point whose Voronoi diagram has
a similar structure to the Voronoi diagram of the ground truth. Since the optimization method has
difficulties in making structural changes, this makes the reconstruction difficult. In any case, in 4 out of
the 6 problems considered, solutions with acceptable errors were found.

In a second experiment, we considered ten points that are perturbations of the ground truth. But
instead of choosing just one as the starting point of the optimization process, we optimized ten times,
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Figure 8: Graphical representation of solutions found for κ0 ∈ {5, 6, 7, 8} in the case of a ground truth
q⋆ with equidistant values, considering different levels of noise in the measurements.
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Figure 9: Graphical representation of solutions found for κ0 ∈ {9, 10} in the case of a ground truth with
equidistant values. One-hundred perturbations of the ground truth were considered and the one with
smallest value of G was used as a starting point for a single optimization process.

starting from each of them. Table 7 shows the details of the ten optimization processes and Figures 12,
13, and 14 show, among the ten, the one with the smallest error. The table and the figures show that
in all cases at least one solution with a small error was found. Moreover, for all instances at least half
of the 10 initial configurations led to solutions with error less than 5% and solutions with errors greater
than 10% are rare. It is worth noting that this experiment is the first to find solutions with error less
than 5% for all instances of Section 5.1 for which this had not yet been achieved. It should be noted that
in most cases the structure of the Voronoi diagram of the initial point is very similar but not identical
to that of the ground truth. The table shows two additional columns on the right side with the values
of G (considering ζ1 = 1) evaluated at each initial and final point of the optimization process. The
information at the final point shows that there is a good correlation between the lowest values of G and
the lowest errors and that the few solutions with large errors also have a value of G that is about one
order of magnitude larger than the others. This means that, in the real situation where the ground truth
is not known, choosing the solution with the smallest value of G is a reasonable choice. The exception
to this rule is the case with ternary ground truth. In this case, regardless of the error, all solutions have
very close G values. The value of G (considering ζ1 = 1) at the starting point of the optimization process
serves to show that, in this experiment, if we had chosen as the only starting point the point with the
lowest value of G, we would have found solutions with reasonable errors. This contrasts the result of
the previous experiment, showing that the choice of the initial point based on the value of G is quite
random.

5.5 Several sources

In this section we analyze the influence of considering an increasing number of sources ᾱ ∈ {1, 2, 3, 4} with
f1(x, y) = 1, f2(x, y) = cos(πx) cos(πy), f3(x, y) = sin(πx) sin(πy) and f4(x, y) = cos(2πx) cos(2πy). We
consider the problems with ground truth with equidistant values and κ0 ∈ {9, 10}, with approximately
binary values and κ0 ∈ {9, 10, 12} and with ternary values and κ0 = 10. Those are all the same problems
considered in the previous section for which, in Section 5.1, we found solutions with errors greater than
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10

11

12

13

14

104

105

106

107

108

10

11

12

13

14

104

105

106

107

108

10

11

12

13

14

104

105

106

107

108

κ
0

=
12 Noise = 2.68%

E(a0) = 19.89% E(â) = 6.67%
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Figure 10: Graphical representation of solutions found for κ0 ∈ {9, 10, 12} in the case of a ground truth
with approximately binary values. One-hundred perturbations of the ground truth were considered and
the one with smallest value of G was used as a starting point for a single optimization process.
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Figure 11: Graphical representation of solutions found for κ0 = 10 in the case of a ground truth with
approximately ternary values. One-hundred perturbations of the ground truth were considered and the
one with smallest value of G was used as a starting point for a single optimization process.
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Figure 12: Graphical representation of solutions found for κ0 ∈ {9, 10} in the case of a ground truth
with equidistant values. As a starting point, ten different ground truth perturbations were considered.
The ten initial points were used to run the optimization process and the solution with the lowest error
among the ten solutions is reported in this figure.
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Figure 13: Graphical representation of solutions found for κ0 ∈ {9, 10, 12} in the case of a ground truth
with approximately binary values. As a starting point, ten different ground truth perturbations were
considered. The ten initial points were used to run the optimization process and the solution with the
lowest error among the ten solutions is reported in this figure.
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q⋆-type κ0 Noise E(a0) E(â) G(a0) G(â) ∥∇G(a0)∥2 ∥∇G(â)∥2 #iter #feval Time

equidistant
9 2.79 28.87 28.90 0.50 0.01355 2.35283 0.02953 68 256 545.80
10 2.51 24.97 2.81 0.50 0.01732 2.05052 0.02153 137 853 1524.46

approximately
binary

9 3.04 54.72 19.80 0.50 0.00295 2.12215 0.00390 97 310 629.72
10 2.83 44.56 4.10 0.50 0.00901 1.98682 0.01970 175 1110 1978.35
12 2.68 19.89 6.67 0.50 0.00938 2.23653 0.03176 118 665 1390.28

ternary 10 2.47 12.44 2.70 0.50 0.35750 1.99988 0.02127 80 469 922.58

Table 6: Details of the reconstruction optimization process for problems with a ground truth with
equidistant values and κ0 ∈ {9, 10}, with approximately binary values and κ0 ∈ {9, 10, 12} and with
ternary values and κ0 = 10. One-hundred perturbations of the ground truth were considered and the
one with smallest value of G was used as a starting point for a single optimization process.
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Figure 14: Graphical representation of solutions found for κ0 = 10 in the case of a ground truth with
ternary values. As a starting point, ten different ground truth perturbations were considered. The ten
initial points were used to run the optimization process and the solution with the lowest error among
the ten solutions is reported in this figure.

5%. In these experiments we resume the use of a single ground truth perturbation as the starting point,
exactly as we did in Section 5.1. Table 8 and Figures 15 and 16 show the results. The results show
that in almost all cases the increase in the number of sources helps to reduce the reconstruction error.
Specifically, in 4 out of the 6 instances, errors smaller than 5% were found, in another case the error was
reduced from 38.62% to 7.30% and in the other, whose error with a single source was 7.66%, a solution
with error 5.52% was found. That is, acceptable solutions were found for all problematic instances of
Section 5.1 by increasing the number of sources and using a single starting point. This indicates that
the optimization process is able to perform major topological changes in the diagram if enough data is
provided. For small ᾱ, the cost functional is much more “flat”, and topological changes are less likely to
occur.

6 Concluding remarks

In this work we have presented a general technique to compute the gradient of a cost function with respect
to the sites of a Voronoi diagram, involving a PDE constraint. We have considered the specific PDE
(1),(2), but we emphasize that the general procedure described here applies to a variety of PDEs, following
the procedure of Section 3, as long as the shape derivative admits a first-order tensor representation (16).
It can also be extended to more general scenarios, such as the case where the tensor representation of the
shape derivative contains boundary terms. An important part of the study is related to the conditions
required to prove the differentiability of the cost function. There are essentially two types of conditions.
On one hand one needs geometric assumptions on the Voronoi diagrams as in [14], to avoid degenerate
case. These conditions are independent of the considered PDE. On the other hand, the non-smoothness of
the shape may also results in the low regularity of the solution to the PDE, which needs to be investigated
using the theory of regularity of PDEs in nonsmooth domains, see for instance [26].
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ᾱ
=

3
ᾱ
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(â

)
=

7.
91

%
E

(â
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Figure 15: Graphical representation of solutions found for different number of sources ᾱ ∈ {1, 2, 3, 4},
and for κ0 ∈ {9, 10} in the case of a ground truth with equidistant values, and for κ0 = 10 with ternary
values. As initial guess of the optimization process, a single random perturbation of the known solution
was considered.
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ᾱ
=

3
ᾱ
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ᾱ
=

3
ᾱ
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(â
)

=
7.

37
%

E
(â
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Figure 16: Graphical representation of solutions found for κ0 ∈ {9, 10, 12} and different number of sources
ᾱ ∈ {1, 2, 3, 4} in the case of a ground truth with approximately binary values. As initial guess of the
optimization process, a single random perturbation of the known solution was considered.
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q⋆-type κ0 Noise E(a0) E(â) G(a0) G(â) ∥∇G(a0)∥2 ∥∇G(â)∥2 #iter #feval Time Gζ1=1(a0) Gζ1=1(â)

eq
u

id
is

ta
n
t

9 2.79

20.69 7.66 0.50 0.02168 2.25165 0.04449 73 385 594.66 2.247e-06 9.744e-08
14.11 1.22 0.50 0.04524 2.17540 0.02380 198 1449 2164.65 7.018e-07 6.350e-08
18.53 2.77 0.50 0.03035 2.16966 0.01722 139 896 1352.06 1.059e-06 6.428e-08
17.75 2.58 0.50 0.07972 1.96174 0.05386 152 1114 1640.26 4.020e-07 6.410e-08
12.38 0.70 0.50 0.06251 2.36750 0.01724 253 1960 2871.50 5.060e-07 6.326e-08
12.37 2.62 0.50 0.06537 2.39397 0.06061 98 688 1005.50 4.929e-07 6.445e-08
13.85 2.73 0.50 0.04199 2.31933 0.01809 241 1598 2302.33 7.622e-07 6.401e-08
17.78 22.74 0.50 0.01523 2.09750 0.02241 210 845 1263.22 5.251e-06 1.599e-07
17.84 7.04 0.50 0.00931 2.26242 0.01205 347 1334 2022.85 4.072e-06 7.584e-08
13.98 2.11 0.50 0.12367 1.83097 0.10668 141 1134 1650.42 2.597e-07 6.424e-08

10 2.51

30.06 30.99 0.50 0.04050 1.74847 0.03268 133 551 875.12 3.969e-06 3.215e-07
17.52 6.63 0.50 0.04649 1.99953 0.08009 96 672 1023.79 6.035e-07 5.612e-08
18.28 12.02 0.50 0.06740 2.06981 0.15213 65 421 649.67 7.342e-07 9.897e-08
33.52 35.69 0.50 0.03316 1.63470 0.01601 247 950 1525.50 4.022e-06 2.667e-07
19.27 2.47 0.50 0.01673 1.99936 0.02725 159 907 1426.29 1.374e-06 4.596e-08
27.11 4.53 0.50 0.01058 1.70627 0.02408 52 231 368.18 2.454e-06 5.194e-08
20.97 1.62 0.50 0.02275 2.14858 0.02457 92 561 867.60 9.955e-07 4.530e-08
20.79 4.18 0.50 0.02060 1.78776 0.03910 88 503 779.48 1.170e-06 4.820e-08
14.50 3.39 0.50 0.04103 2.16126 0.20650 45 302 463.04 5.845e-07 4.797e-08
11.65 3.38 0.50 0.07718 2.20282 0.19012 385 3590 5466.33 3.179e-07 4.907e-08

a
p

p
ro

x
im

a
te

ly
b

in
ar

y

9 3.04

30.52 6.78 0.50 0.00525 2.31193 0.01080 167 651 1028.78 7.961e-06 8.359e-08
20.85 5.08 0.50 0.01407 2.31795 0.04048 61 355 552.87 2.928e-06 8.241e-08
28.63 3.50 0.50 0.01736 2.25607 0.01753 213 1351 2150.59 2.253e-06 7.822e-08
25.66 7.49 0.50 0.02262 2.06925 0.09054 75 563 855.18 2.011e-06 9.099e-08
18.49 2.21 0.50 0.01484 2.48066 0.03832 91 641 992.81 2.559e-06 7.593e-08
20.10 2.29 0.50 0.02963 2.39882 0.03723 79 557 849.32 1.287e-06 7.627e-08
18.08 5.06 0.50 0.04064 2.29829 0.10399 73 506 778.28 9.972e-07 8.105e-08
27.57 14.03 0.50 0.00625 2.50771 0.00745 98 383 602.39 1.028e-05 1.285e-07
30.47 1.42 0.50 0.00778 2.21906 0.01127 59 309 476.44 4.839e-06 7.526e-08
30.27 3.46 0.50 0.02452 1.31121 0.02487 113 742 1093.87 1.578e-06 7.738e-08

10 2.83

46.92 38.62 0.50 0.01430 1.67035 0.04835 123 541 869.54 1.324e-05 3.785e-07
24.24 3.99 0.50 0.02147 2.10296 0.05204 100 706 1103.12 1.759e-06 7.552e-08
25.48 4.53 0.50 0.04665 2.42858 0.11593 131 1015 1591.40 8.275e-07 7.721e-08
48.97 22.50 0.50 0.00766 1.56896 0.05317 115 641 1026.31 1.465e-05 2.244e-07
29.85 4.21 0.50 0.00675 1.72378 0.01787 206 1042 1686.94 5.446e-06 7.357e-08
41.93 34.23 0.50 0.02509 1.74048 0.11557 89 441 706.18 1.084e-05 5.439e-07
27.04 8.10 0.50 0.01277 2.07238 0.02697 145 874 1389.48 3.260e-06 8.325e-08
30.67 4.50 0.50 0.01316 1.82515 0.02631 123 752 1194.71 2.801e-06 7.370e-08
20.61 4.19 0.50 0.02690 2.27662 0.08991 123 883 1393.14 1.383e-06 7.442e-08
20.98 4.08 0.50 0.03998 2.36341 0.15123 136 1058 1659.59 9.602e-07 7.678e-08

12 2.68

22.32 6.59 0.50 0.02054 2.36726 0.03856 39 238 417.90 2.555e-06 1.050e-07
18.81 7.24 0.50 0.02341 2.18230 0.10002 128 973 1697.41 2.474e-06 1.159e-07
22.72 4.70 0.50 0.01014 2.66081 0.00990 172 910 1612.45 4.497e-06 9.122e-08
15.07 5.50 0.50 0.02854 2.32395 0.07616 99 667 1171.49 1.635e-06 9.332e-08
23.58 4.85 0.50 0.01614 2.31006 0.11270 89 598 1041.11 2.965e-06 9.571e-08
23.24 6.48 0.50 0.02605 1.66134 0.04762 127 835 1429.81 1.782e-06 9.283e-08
22.44 6.92 0.50 0.01098 2.17625 0.01611 101 510 893.57 4.235e-06 9.297e-08
20.70 4.48 0.50 0.01955 1.93144 0.03594 72 418 717.09 2.316e-06 9.059e-08
24.50 6.01 0.50 0.02233 2.38237 0.10374 33 213 370.18 2.266e-06 1.012e-07
25.07 5.12 0.50 0.01059 2.42781 0.01522 87 426 744.71 4.238e-06 8.978e-08

te
rn

ar
y

10 2.47

20.27 8.83 0.50 0.07326 1.98013 0.01053 276 1090 1765.31 1.808e-06 2.649e-07
23.58 3.36 0.50 0.12253 2.18414 0.00671 99 414 675.85 1.060e-06 2.598e-07
15.30 3.81 0.50 0.25652 1.76845 0.01097 66 359 573.34 5.066e-07 2.599e-07
43.52 15.01 0.50 0.02879 1.87430 0.01723 140 755 1197.14 4.903e-06 2.823e-07
7.64 5.31 0.50 0.45975 1.60664 0.42615 95 916 1420.59 2.888e-07 2.655e-07
26.32 10.51 0.50 0.06937 1.85737 0.02567 69 355 565.96 1.915e-06 2.657e-07
17.47 4.16 0.50 0.21353 2.00257 0.00642 132 593 965.55 6.083e-07 2.598e-07
6.09 2.61 0.50 0.38199 1.55587 0.03179 64 398 630.69 3.398e-07 2.596e-07
12.78 3.36 0.50 0.26112 1.78592 0.01921 78 454 714.41 4.974e-07 2.598e-07
10.75 6.48 0.50 0.42308 1.39645 0.14314 226 2013 3114.90 3.119e-07 2.639e-07

Table 7: Details of the reconstruction optimization process for problems with a ground truth with
equidistant values and κ0 ∈ {9, 10}, approximately binary values and κ0 ∈ {9, 10, 12}, and ternary
values and κ0 = 10. As a starting point, ten different ground truth perturbations were considered.
Details for each run are shown in the table.

The optimization method considered in the present work generates a sequence of approximations
a0,a1, . . . with monotonically decreasing values G(a0), G(a1), . . . . This allows the method to make only
a limited number of structural changes in the underlying Voronoi diagram, that impairs the reconstruction
when the structure of the initial approximation is very different from the structure of the solution. One
possibility would be to consider a method that generates a non-monotone sequence, such as the Spectral
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q⋆-type κ0 Noise ᾱ E(a0) E(â) G(a0) G(â) ∥∇G(a0)∥2 ∥∇G(â)∥2 #iter #feval Time

eq
u

id
is

ta
n
t 9

2.79 1 20.69 7.66 0.50 0.02168 2.25165 0.04449 73 385 594.62
2.79 2 20.69 7.91 1.00 0.10157 2.46801 0.35205 53 343 582.44
2.87 3 20.69 5.52 1.50 0.11999 2.55183 0.21924 54 402 744.15
2.88 4 20.69 9.66 2.00 0.18163 2.54418 1.10158 34 216 440.13

10

2.51 1 30.06 30.99 0.50 0.04050 1.74847 0.03268 133 551 912.64
2.51 2 30.06 10.40 1.00 0.03758 2.11336 0.06287 188 1337 2370.04
2.58 3 30.06 3.36 1.50 0.03992 2.24366 0.05044 191 1434 2735.07
2.58 4 30.06 2.63 2.00 0.06799 2.33959 0.05628 175 1170 2499.17

b
in

a
ry

9

3.04 1 30.52 6.78 0.50 0.00525 2.31193 0.01080 167 651 1015.95
3.04 2 30.52 3.70 1.00 0.04779 2.40173 0.05853 75 439 756.74
3.11 3 30.52 2.31 1.50 0.05246 2.37294 0.02904 117 730 1354.31
3.12 4 30.52 2.99 2.00 0.06569 2.43374 0.07138 123 794 1602.16

10

2.83 1 46.92 38.62 0.50 0.01430 1.67035 0.04835 123 541 888.71
2.83 2 46.92 9.22 1.00 0.02008 2.37240 0.06856 178 1290 2248.01
2.91 3 46.92 7.37 1.50 0.02237 2.41675 0.17131 61 387 766.46
2.91 4 46.92 7.30 2.00 0.03246 2.45351 0.07032 90 606 1315.48

12

2.68 1 22.32 6.59 0.50 0.02054 2.36726 0.03856 39 238 430.57
2.68 2 22.32 4.68 1.00 0.07542 2.75518 0.12123 71 480 948.40
2.76 3 22.32 4.97 1.50 0.10256 2.98346 0.24436 72 521 1103.33
2.76 4 22.32 5.50 2.00 0.14879 2.98346 0.22073 45 341 781.84

te
rn

a
ry

10

2.47 1 20.27 8.83 0.50 0.07326 1.98013 0.01053 276 1090 1801.61
2.47 2 20.27 3.22 1.00 0.44693 2.19639 0.00620 190 847 1587.51
2.53 3 20.27 3.61 1.50 0.52475 2.25095 0.01518 132 632 1319.58
2.53 4 20.27 4.20 2.00 0.65070 2.24876 0.02063 95 495 1116.13

Table 8: Details of the reconstruction optimization process for problems with a ground truth with
equidistant values and κ0 ∈ {9, 10}, approximately binary values and κ0 ∈ {9, 10, 12}, and ternary
values and κ0 = 10. As initial guess of the optimization process, a single random perturbation of the
known solution was considered.

Projected Gradient (SPG) [15, 16]. SPG uses a specific initial step, named Raydan-Barzilai-Borwein
step [6, 44, 45], for the first attempt in the direction of the projected gradient. This specific step carries
some kind of second-order information. Therefore, to increase the chances of this step being accepted,
SPG uses a non-monotone Armijo criterion [25]. We will study the possibility of using SPG as the
optimization method in a future work.
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