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Abstract

In this work, we present and analyze a numerical method for recovering a piecewise constant
conductivity with multiple phases in inverse conductivity problems. Specifically, we consider two
types of inverse conductivity problems: problems with boundary measurements or with internal
measurements. The conductivity is assumed to be constant in each phase, and a Voronoi diagram
generated by a set of sites is used to model the phases. An optimization problem with respect to
the position of the sites is described to approximate the solution of the inverse problem. Combining
techniques from non-smooth shape calculus and the sensitivity of Voronoi diagrams, we prove shape
differentiability and compute the gradient of the cost function. Two different formulas for the gra-
dient, a volumetric one and an interface one, are provided. The dependence of the reconstruction
on the problem parameters, such as noise, number of sites, and initialization, is investigated through
several numerical experiments.

Keywords: Inverse conductivity problems, non-smooth shape calculus, Voronoi diagrams, optimiza-
tion.
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1 Introduction

Identifying the scalar conductivity coefficient of a second-order elliptic equation in divergence form posed
on a bounded domain is a well-established problem, with numerous variations and a large body of liter-
ature devoted to it; see [32, 47]. In this paper, we consider two types of inverse conductivity problems:
electrical impedance tomography (EIT), which involves boundary measurements, and an inverse con-
ductivity problem with internal measurements. Firstly, EIT, also known as inverse conductivity or
Calderón’s problem, has been intensively studied and applied since the 1980s; see [17] for a thorough
review of the topic. The purpose of EIT is to reconstruct the electrical conductivity within a medium
using boundary measurements of the electrical potential obtained by applying boundary currents. It is a
low-cost, noninvasive, radiation-free, and portable imaging technique with applications in medical imag-
ing, geophysics, civil engineering, and nondestructive testing. Second, the inverse conductivity problem
with internal measurements has applications in the so-called coupled physics or hybrid imaging modali-
ties, which combine the best imaging properties of different types of waves used in medical imaging. The
stability of the solution of this inverse problem has been studied, and numerical resolution algorithms
have been proposed in [2, 5, 46]. Error estimates for the approximate identification of the conductivity
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using the least-squares fitting of the observed data have been obtained in [20]. The convergence rates
for the Tikhonov regularization of the identification problem have been obtained in [24]. Also, under
appropriate conditions, this problem can be treated as a first-order hyperbolic equation in the unknown
coefficient, see [44].

In the literature on inverse conductivity problems, conductivity is often assumed to be a relatively
smooth, continuous function. However, the case where the conductivity has discontinuities is important
for applications, especially in geophysics and civil engineering, but also in medicine. The problem
of reconstructing conductivities with sharp interfaces in EIT, also known as the inclusion detection
problem, has attracted considerable interest over the last three decades, starting with pioneering work
[21]. A variety of numerical methods for the reconstruction of discontinuous conductivities have been
developed and applied in the context of EIT, such as the factorization method [25], monotonicity-based
shape reconstruction [26], the enclosure method [31], the MUSIC algorithm [4]. Shape optimization
[1, 18, 27, 38] and topological derivative-based methods [3, 16, 28, 29] techniques have also been used to
solve this problem. The identification of polygonal inclusions, which has similarities with the problem
considered in this work, has been studied in [8, 9]. In this work, we follow this path and consider the
particular case where the conductivity is a piecewise constant function [28, 38]. The domain of definition
of the conductivity can then be divided into cells such that the conductivity is constant in each cell.

The present work is also a continuation of [14], where we considered the reconstruction of a potential
coefficient in an elliptic equation. Here we consider a similar framework where the parameter is also
piecewise constant on a Voronoi diagram. However, the problem is even more challenging because of the
presence of the piecewise-constant parameter in the higher-order term of the PDE. In particular, this
leads to stronger singularities in the solution of the PDE, which need to be carefully analyzed, as they
are crucial for the proof of shape differentiability. Since the differential operator is the same for both
conductivity problems, the two types of inverse problem considered in this work share similar features.
In particular, the singularities at the vertices of the diagram are similar. We first present the theoretical
framework and results for the EIT problem, followed by a brief explanation of the similar framework for
the problem with internal measurements.

The remainder of this paper is organized as follows. In Section 2, the mathematical model for the in-
verse conductivity problems is presented. In particular, the PDEs and the cost functional are described.
In Section 3, essential results for the sensitivity analysis of Voronoi diagrams with PDEs are recalled and
adapted to our setting. In Section 4, these results are applied to prove the shape differentiability and
to compute the gradient of the cost function for the EIT problem. Both the interface and distributed
expressions of the gradient are obtained, which requires a detailed analysis of the regularity of the so-
lution to the underlying PDE. A singular case is also discussed. Section 5 describes similar results in
the case of the conductivity problem with internal measurements. In Section 6, the numerical method
is described, and several numerical experiments are performed to investigate its properties. Conclusions
and lines for future research are given in the last section.

Notation. ∥ ·∥ denotes the Euclidean norm. We use y⊥ for the rotation of angle π/2 of a vector y ∈ R2,
with respect to a counterclockwise orientation. The identity matrix in R2×2 is denoted by I2.

2 Mathematical model for inverse conductivity problems

We consider inverse problems where the goal is to recover a scalar-valued conductivity σ⋆ of a body
D ⊂ Rd satisfying the elliptic equations

div(σ⋆∇U⋆α) = f in D, (1)

where U⋆α, α = 1, . . . , ᾱ, are potentials. We study two types of inverse problems. In the first problem,
we take f ≡ 0, the potentials are associated with applied boundary current fluxes gα = σ⋆∇U⋆α · ν|∂D,
where ν denotes a unit normal vector on ∂D, and noisy measurements hα ≈ U⋆α|∂D of boundary voltages
U⋆α|∂D are available on ∂D. Alternatively, measurements could be taken on a subset of ∂D. This problem
is known as the continuum model in EIT, also known as the Calderón problem; we refer to the reviews
[7, 17] and the references therein. In the second problem, called inverse conductivity problem with
internal data [2, 46], we take f ̸≡ 0, ᾱ = 1, homogeneous Dirichlet boundary conditions U⋆1 = 0 on ∂D,
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and interior noisy measurements h ≈ U⋆1 |D in D; one could also consider measurements on a subset of
D.

In this section, we describe the mathematical model for the EIT problem. The setting for the inverse
conductivity problem with internal data is similar and will be described in Section 5. Let D ⊂ R2 be
a bounded, Lipschitz, simply connected, and piecewise C1 domain. For a given ground truth electrical
conductivity σ⋆ ∈ L∞(D), σ⋆ ≥ σ > 0, and a given set of applied currents {gα}ᾱα=1, gα ∈ L2(∂D) for
α = 1, . . . , ᾱ, satisfying the compatibility condition∫

∂D
gα = 0, (2)

the potential U⋆α ∈ H1
⋄ (D) is the solution to

−div(σ⋆∇U⋆α) = 0 in D, (3)

σ⋆∂νU
⋆
α = gα on ∂D, (4)

where ∂νU
⋆
α := ∇U⋆α · ν, ν is the outward unit normal vector to D on ∂D and H1

⋄ (D) denotes the space
of H1-functions with vanishing integral mean on D, i.e.,

H1
⋄ (D) :=

{
W ∈ H1(D) :

∫
D
W = 0

}
.

The variational formulation corresponding to the strong formulation (3),(4) reads: Find U⋆α ∈ H1
⋄ (D)

such that ∫
D
σ⋆∇U⋆α · ∇W =

∫
∂D

gαW, ∀ W ∈ H1(D). (5)

The EIT problem consists in reconstructing the ground truth σ⋆ from the knowledge of a data set
{gα, hα}ᾱα=1, where hα := U⋆α|∂D + ηα are noisy boundary measurements of the potentials U⋆α, and
ηα ∈ L2(∂D) is a measurement noise. A possible approach to compute a numerical approximation of the
ground truth is to minimize the least-squares misfit

ᾱ∑
α=1

∫
∂D

(Uα(σ) − hα)2,

where the model Uα(σ) satisfies the same PDE as (3),(4), but with the trial conductivity σ instead
of the ground truth σ⋆. Another popular approach, employed in the present paper, is to consider the
so-called Kohn-Vogelius functional [33]. We actually employ a variation, based on mixed boundary
conditions, of the Kohn-Vogelius approach, following [38]. For α = 1, . . . , ᾱ, introduce Uα ∈ H1

a,hα
(D)

and Vα ∈ H1
b,hα

(D) solutions of∫
D
σ∇Uα · ∇W =

∫
Γb

gαW for all W ∈ H1
a,0(D), (6)∫

D
σ∇Vα · ∇W =

∫
Γa

gαW for all W ∈ H1
b,0(D), (7)

with Γa ∪ Γb = ∂D, Γa ̸= ∅, Γb ̸= ∅, gα ∈ L2(∂D), hα ∈ H1/2(∂D) and

H1
a,hα

(D) := {W ∈ H1(D) | W = hα on Γa},
H1
b,hα

(D) := {W ∈ H1(D) | W = hα on Γb}.

When σ is sufficiently smooth, the strong formulations corresponding to (6) and (7) are

−div(σ∇Uα) = 0 in D, (8)

σ∂νUα = gα on Γb, (9)

Uα = hα on Γa (10)
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and

−div(σ∇Vα) = 0 in D, (11)

σ∂νVα = gα on Γa, (12)

Vα = hα on Γb, (13)

respectively. When σ is piecewise constant, strong formulations can also be written using transmission
conditions.

An approximation of the ground truth σ⋆ is obtained by minimizing the Kohn-Vogelius cost functional

J(σ) :=
1

2

ᾱ∑
α=1

ζα

∫
D

(Uα(σ) − Vα(σ))2 (14)

with respect to σ ∈ L∞(D). The weights ζα are used for numerical purposes to balance the terms in the
sum, so that they have a comparable magnitude; see Section 6 for more details.

We briefly explain in which sense this provides an approximation of the ground truth σ⋆. In the
noiseless case ηα = 0, α = 1, . . . , ᾱ, we have hα := U⋆α|∂D and writing the equation for Uα(σ⋆)−U⋆α using
(5) and (6) we get∫

D
σ⋆∇(Uα(σ⋆) − U⋆α) · ∇W = −

∫
∂D

gαW +

∫
Γb

gαW =

∫
Γa

gαW = 0 for all W ∈ H1
a,0(D),

Uα(σ⋆) − U⋆α = 0 on Γa,

hence Uα(σ⋆) ≡ U⋆α in D, and in a similar way Vα(σ⋆) ≡ U⋆α in D. Thus, we get

0 = J(σ⋆) = min
σ∈L∞(D)

J(σ),

and σ⋆ is indeed a global minimizer of J . Conversely, if σ̂ also satisfies 0 = J(σ̂), we then have
Uα(σ̂) = Vα(σ̂) almost everywhere in D, α = 1, . . . , ᾱ, hence σ̂∂νUα(σ̂) = gα on ∂D, Uα(σ̂) = hα
on ∂D, thus σ̂ is also a solution of the inverse problem. The additional property σ̂ = σ⋆ depends on
the uniqueness of the solution of the inverse problem for the considered class of σ, which is independent
of the optimization approach employed to solve the inverse problem. This shows that minimizing the
Kohn-Vogelius functional is a meaningful approach for approximating the solution of the inverse problem,
also in the presence of noise if the problem is sufficiently stable.

Since EIT is a severely ill-posed inverse problem, it is useful to include prior knowledge on the ground
truth σ⋆ in the mathematical model in order to reduce the ill-posedness. In this work we consider such
a specific configuration where σ⋆ is piecewise constant. To make this statement precise, let us introduce
partitions of D0 ⊂ D, called diagrams, indexed by a set K of indices.

Definition 1 (K-diagrams of D0). Let P denote the set of open subsets of D0, with D0 ⊂ D ⊂ R2. For
a given finite set of indices K ⊂ N∗, PK(D0) denotes the set of so-called K-diagrams Ω := {Ωk}k∈K
with respect to D0, with the phases Ωk ∈ P for all k ∈ K, Ωk ∩ Ωℓ = ∅ for all {k, ℓ} ⊂ K, k ̸= ℓ and⋃
k∈K Ωk = D0.

Let D0 ⊂ D, K ⊂ N∗ be given and Ω := {Ωk}k∈K be a K-diagram with respect to D0. Denoting by
Ω0 := D \ D0, we assume that σ = σΩ is piecewise constant and has the form

σΩ := σ0χΩ0
+
∑
i∈K

σiχΩi
,

where χΩi denotes the characteristic function of Ωi and σi are constants. In this work, we will assume
that K, σi, ∀i ∈ K, Ω0 and σ0 are known for the sake of simplicity. Then the cost function (14) becomes

J(Ω) := J(σΩ) =
1

2

ᾱ∑
α=1

ζα

∫
D

(Uα(σΩ) − Vα(σΩ))2. (15)

The problem of minimizing J(Ω) with respect to Ω is called a multiphase shape optimization problem.
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Note that we have made a distinction between the subset Ω0 and the phases Ωk, k ∈ K of D. Indeed,
in our framework, Ω0 is a known fixed subset of D, whereas the other phases are subject to optimization.
This is useful for certain applications and slightly generalizes the framework considered in [14] since we
can also choose D0 = D. In the EIT problem, Ω0 will be taken as a thin layer along the boundary ∂D,
as in Figure 1. Its purpose is to avoid shape differentiability issues related to the low regularity of the
data on ∂D. In the conductivity problem with internal measurements, we will take D0 = D, i.e., Ω0 = ∅,
see Section 5.

Ω0

Ω1

Ω2

Ω3

Ω4

Ω5Ω6

Figure 1: Illustration of the geometrical setting for the EIT problem. Here Ω0 := D \D0 is a thin, fixed
boundary layer, whereas the other phases Ωk ⊂ D, k ∈ K, form a Voronoi diagram and are subject to
optimization. For future reference, the interior vertices (with respect to D0) are colored white (or empty)
and the boundary vertices (with respect to D0) are colored black.

We will also consider the particular case where Ω is a Voronoi diagram, as in [14]. Let Kvor =
{1, . . . , κ0} be a set of indices, a = {ak}k∈Kvor be a set of points in the plane, the so-called sites, and
let Ω(a) := {Ωk(a)}k∈Kvor

be the Voronoi diagram associated with a, where the cells of the diagram are
defined by

Ωi(a) := {x ∈ D0 such that ∥x− ai∥ ≤ ∥x− aj∥ for all j ∈ Kvor \ {i}} .

We also assume that the ground truth originates from a Voronoi diagram with the same conductivities σi,
i.e.,

σ⋆ = σ0χΩ0
+
∑
i∈Kvor

σiχΩi(a⋆).

Introducing the reduced cost function

G(a) := J(Ω(a)), (16)

we have reformulated the problem into the finite-dimensional optimization problem

Minimize
a∈R2κ0

G(a). (17)

3 Sensitivity analysis for Voronoi diagrams

We provide general formulas for computing the gradient of cost functions depending on Voronoi diagrams,
combining the theory of multiphase, non-smooth shape calculus [11, 36] and the theory developed in [13]
for the sensitivity analysis with respect to minimization diagrams. The notion of distributed shape
derivative [36, 38] and the regularity of solutions to the PDE play a key role in the existence of the
gradient of the cost function, see Theorem 2. This section is similar to [14, Section 3], except that most
definitions and results need to be adapted to account for the subset D0.

3.1 Multiphase shape optimization

Recall that D0 and D, D0 ⊂ D, are both bounded, Lipschitz, simply connected, and piecewise C1

domains. Denote by S and S0 the sets of singular points of ∂D and ∂D0, respectively, then the outward
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unit normal vector ν to D is well-defined on ∂D \ S. For r ≥ 1 and 0 ≤ β ≤ 1, introduce

Cr,β∂D(D,R2) := {θ ∈ Cr,β(D,R2) : θ · ν = 0 on ∂D \ S and θ = 0 on S}, (18)

Cr,βc (D,R2) := {θ ∈ Cr,β(D,R2) : θ has compact support in D}, (19)

Cr,βc,∂D0
(D,R2) := {θ ∈ Cr,βc (D,R2) : θ · ν = 0 on ∂D0 \ S0 and θ = 0 on S0}. (20)

For the shape sensitivity analysis we will consider the following type of mappings.

Assumption 1. Let T : D × [0, t0] → D be such that T (·, t) : D → D is a bi-Lipschitz mapping for
all t ∈ [0, t0], t 7→ T (·, t) ∈ C1([0, t0], C0,1(D,R2)), T (·, 0) is the identity mapping, T (D, t) = D and
T (D0, t) = D0 for all t ∈ [0, t0].

Let T be a mapping satisfying Assumption 1, then T (·, t) : D → D maps interior points onto interior
points and boundary points onto boundary points; see [19, Chapter 4, Section 5.1 and Remark 5.2].
Introducing θ := ∂tT (·, 0), we get θ ∈ C0,1

∂D(D,R2). Conversely, given θ ∈ C0,1
∂D(D,R2), there exists a

mapping T satisfying Assumption 1 with θ = ∂tT (·, 0). For this purpose one can use for instance the
velocity method [19, 45]. In what follows, if θ is given first, it will be implicit that T is the associated
mapping satisfying Assumption 1.

For Ω ∈ P, introduce the family of perturbed domains

Ωt := T (Ω, t). (21)

For a set of indices K = {1, . . . , κ} and Ω ∈ PK(D0), see Definition 1, we define

Ωt := T (Ω, t) := {T (Ωk, t)}k∈K. (22)

Note that Ωt is also a K-diagram of D0 for all t ∈ [0, t0]. We now provide the definition of shape
derivatives in the context of multiphase problems.

Definition 2 (Shape derivative). Let J : PK(D0) → R be a multiphase shape functional, with r ≥ 1
and 0 ≤ β ≤ 1 or (r, β) = (0, 1).

(i) The Eulerian semiderivative of J at Ω ∈ PK(D0) in direction θ ∈ Cr,β∂D(D,R2) is defined by, when
the limit exists,

dJ (Ω)(θ) := lim
t↘0

J (Ωt) − J (Ω)

t
. (23)

(ii) J is said to be shape differentiable at Ω ∈ PK(D0) if it has an Eulerian semiderivative at Ω for

all θ ∈ Cr,β∂D(D,R2) and the mapping

dJ (Ω)(θ) : Cr,β∂D(D,R2) → R, θ 7→ dJ (Ω)(θ)

is linear and continuous, in which case dJ (Ω)(θ) is called the shape derivative of J at Ω in

direction θ ∈ Cr,β∂D(D,R2).

Shape derivatives dJ (Ω)(θ) can usually be written either as a sum of integrals on the edges of the
diagram, called Hadamard form of the shape derivative or boundary expression, or as integrals on the
phases Ωk, k ∈ Kvor, of the diagram, called distributed shape derivative, see [30, 36, 38, 48]. We recall
the notion of tensor representation [36, 38], adapted to the context of multiphase problems, as in [14].

Definition 3 (Tensor representation of distributed shape derivative). Let Ω ∈ PK(D0) and assume
J : PK(D0) 7→ R has a shape derivative at Ω in direction θ ∈ C0,1

∂D(D,R2). The shape derivative
dJ (Ω)(θ) admits a first-order tensor representation if there exist a first-order tensor S0(Ω) ∈ L1(D,R2)
and a second order tensor S1(Ω) ∈ L1(D,R2×2) such that

dJ (Ω)(θ) =

∫
D
S1(Ω) : Dθ + S0(Ω) · θ. (24)

Remark 1. Definitions 2 and 3 are formulated for θ in Cr,β∂D(D,R2). Depending on the needs, we will

often use θ in the smaller spaces Cr,βc (D,R2) or Cr,βc,∂D0
(D,R2), for which Definitions 2 and 3 also apply

due to Cr,βc,∂D0
(D,R2) ⊂ Cr,βc (D,R2) ⊂ Cr,β∂D(D,R2).
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3.2 Derivative with respect to the Voronoi sites

We compute the gradient with respect to a of a general function

G(a) := J (Ω(a)), (25)

where J : PKvor(D0) → R is a multiphase shape functional and Ω(a) is a Voronoi diagram, in the case
where the shape derivative dJ (Ω(a))(θ) admits the first-order tensor representation (24). As G(a) is the
composition of a 7→ Ω(a) with a shape functional Ω 7→ J (Ω), the derivative of G(a) is obtained via a
sort of chain rule; see [13, 14].

In this section and in the rest of the paper we assume in addition that D and D0 are defined as

D := {x ∈ R2 : φ(x) < δ}, D0 := {x ∈ R2 : φ(x) < 0} (26)

with δ ≥ 0, φ(x) := minℓ∈KD φℓ(x) and φℓ ∈ C∞(R2,R) for all ℓ ∈ KD := {κ0 + 1, . . . , κ0 + κ1}. Note
that D0 = D if δ = 0. In the EIT case we take δ > 0 and introduce the intermediate set

Dδ̂ := {x ∈ R2 : φ(x) < δ̂}, (27)

where δ̂ satisfies 0 < δ̂ < δ, so that D0 ⊊ Dδ̂ ⊊ D.
For ℓ ∈ KD, introduce ∂ℓD0 := {x ∈ ∂D0 : φℓ(x) = 0}, then ∂D0 = ∪ℓ∈KD∂ℓD0. For {i, j, k} ⊂ Kvor

and ℓ ∈ KD, define Yijk(t) := Ωi(a + tδa) ∩ Ωj(a + tδa) ∩ Ωk(a + tδa) and Xijℓ(t) := Ωi(a + tδa) ∩
Ωj(a + tδa) ∩ ∂ℓD0. The set Yijk(t) is a set of interior vertices (with respect to D0), i.e., points in D0

at the intersection of three cells. The set Xijℓ(t) is a set of boundary vertices (with respect to D0),
i.e., points on ∂D0 at the intersection of two cells; see Figure 1. We will write Yijk := Yijk(0) and
Xijℓ := Xijℓ(0) for simplicity. The set Yijk contains at most one point, whereas Xijℓ may contain several

points. For k ∈ Kvor \ {i} and ℓ ∈ KD, Eik(a + tδa) := Ωi(a + tδa) ∩ Ωk(a + tδa) denotes an interior
edge of the diagram Ω(a+ tδa), while Eiℓ(a+ tδa) := Ωi(a + tδa)∩ ∂ℓD0 denotes a boundary edge of the
diagram (with respect to D0). We denote by E int

i the set of interior edges of the cell Ωi(a) with respect
to D0, i.e., edges that are included in D0.

We now provide a set of geometric assumptions required to avoid degenerate cases and perform the
sensitivity analysis of Voronoi diagrams; see Example 1 and Figure 2 in Section 4.2 for an example of
degenerate case. We refer to [13, Section 4] and [14, Section 3.2] for detailed explanations.

Assumption 2. Suppose that:

• (Non-degeneracy of interfaces) There holds ∥∇xφℓ(x)∥ > 0 for all x ∈ ∂ℓD and for all ℓ ∈ KD, and
∥ai − aj∥ > 0 for all {i, j} ⊂ Kvor.

• (Non-degeneracy of vertices) For all {i, j, k} ⊂ Kvor such that Yijk ̸= ∅ we have (aj−ai)⊥·(ak−ai) ̸=
0 and Yijk /∈ Vm(a), for all m ∈ Kvor \ {i, j, k}. In addition, for all {i, j} ⊂ Kvor and ℓ ∈ KD and

all v ∈ Xijℓ we have (aj − ai)
⊥ · ∇φℓ(v) ̸= 0, v ̸∈ Vm(a), for all m ∈ Kvor \ {i, j}, and v ̸∈ T∂D0

,
where T∂D0

is the finite set of corners of D0.
1

Under Assumption 2, the cell Ωi(a + tδa) can be parameterized by a bi-Lipschitz mapping T (·, t)
satisfying Assumption 1, such that its derivative θ := ∂tT (·, 0) is described explicitly as a function of the
sites a. This parameterization is described in the following theorem, which is a particular case of [13,
Theorem 5], slightly adapted to our situation where Ω0 = D \ D0 is fixed.

Theorem 1. Suppose Assumption 2 holds. Then there exist t0 > 0 and a mapping T : D × [0, t0] → R2

with the following properties. For each i ∈ Kvor we have T (Ωi(a), t) = Ωi(a + tδa), T (Eik(a), t) =
Eik(a+tδa) for all k ∈ Kvor \{i}, T (Eiℓ(a), t) = Eiℓ(a+tδa) for all ℓ ∈ KD, T (∂Ωi(a), t) = ∂Ωi(a+tδa)
and T (·, t) : Ωi(a) → Ωi(a + tδa) is bi-Lipschitz for all t ∈ [0, t0]. Also, for all t ∈ [0, t0] we have

1This corrects [14, Assumption 1], where the conditions “Yijk /∈ Vm(a), for all m ∈ Kvor \ {i, j, k}” and “v ̸∈ Vm(a), for
all m ∈ Kvor \ {i, j}, and v ̸∈ T∂D0

” were missing. These conditions are necessary to avoid degenerate cases such as the
one presented in Figure 2, where four cells have a non-empty intersection.
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T (Ω0, t) = Ω0, T (∂Ω0, t) = ∂Ω0 and T (·, t) : Ω0 → Ω0 is bi-Lipschitz. In addition, t 7→ T (·, t) is
differentiable at t = 0 , θ := ∂tT (·, 0) satisfies θ ∈ C0,1

c,∂D0
(D,R2) and

θ(x) · ν(x) =
∇aϕ(x, ak) · δak −∇aϕ(x, ai) · δai

∥∇xϕ(x, ak) −∇xϕ(x, ai)∥
for all x ∈ Eik(a) and all k ∈ Kvor \ {i}, (28)

θ(x) · ν(x) = 0 for all x ∈ Eiℓ(a) for all ℓ ∈ KD, (29)

θ(x) · ν(x) = 0 for all x ∈ ∂Ω0, (30)

where ν is the outward unit normal vector to Ωi(a) or Ω0, and ϕ(x, a) := ∥x− a∥2.

Remark 2. Note that ∥∇xϕ(x, ak)−∇xϕ(x, ai)∥ = 2∥ak−ai∥ and Assumption 2 implies ∥ak−ai∥ > 0,
so that (28) is well-defined.

Equation (30) expresses the fact that the boundary of Ω0 is not moving. In the case D0 ⊊ D,
property (29) is contained in (30), but if D0 = D then (30) is void and (29) is the relevant property.
Now introduce Ω(a + tδa) := {Ωk(a + tδa)}k∈Kvor

and G(a + tδa) := J (Ω(a + tδa)). By definition of
the Voronoi diagram, we have Ω(a + tδa) ∈ PKvor

(D0) for all t ∈ [0, t0]. In view of Theorem 1 we have
Ω(a + tδa) = T (Ω(a), t) = {T (Ωk(a), t)}k∈Kvor

. Recall that E int
i is the set of interior edges of the cell

Ωi(a), i.e., edges that are included in D0. We have the following result in the case δ > 0.

Theorem 2. Suppose Assumption 2 holds, that J : PKvor
(D0) → R is shape differentiable at Ω(a)

and that the shape derivative dJ (Ω(a))(θ) admits the first-order tensor representation (24) for all
θ ∈ C0,1

c,∂D0
(D,R2). Assume further that S1(Ω(a))|Ωi(a) ∈ W 1,1(Ωi(a),R2×2) for all i ∈ Kvor and that

S1(Ω(a))|Ω0∩Dδ̂
∈ W 1,1(Ω0 ∩ Dδ̂,R

2) for all 0 < δ̂ < δ, where Dδ̂ is defined in (27). Then the gradient
of G(a), defined in (25), is given by

∇G(a) · δa =
∑
i∈Kvor

∑
E∈Eint

i

∫
E

(S1(Ω(a))ν · ν)|∂Ωi(a)

(x− ai) · δai − (x− ak(i,E)) · δak(i,E)

∥ak(i,E) − ai∥
dx, (31)

where k(i, E) is the index such that E = Ωi(a) ∩ Ωk(i,E)(a).

Proof. In this proof, we write Ω instead of Ω(a) for simplicity. Since dJ (Ω)(θ) admits the first-order
tensor representation (24) for all θ ∈ C0,1

c,∂D0
(D,R2), Ωi(a) is Lipschitz, and using the regularity assump-

tions on S1(Ω), one can prove that div(S1(Ω)) = S0(Ω) in Ω0 ∩ supp(θ), by taking δ̂ sufficiently close
to δ, and also in Ωi(a) for all i ∈ Kvor, using [36, Proposition 1]. Then we can apply the divergence
theorem in each Ωi(a) and in Ω0, which yields, using div(S1(Ω)) = S0(Ω),

dJ (Ω)(θ) =

∫
D
S1(Ω) : Dθ + S0(Ω) · θ dx

=

∫
Ω0

S1(Ω) : Dθ + S0(Ω) · θ dx+
∑
i∈Kvor

∫
Ωi(a)

S1(Ω) : Dθ + S0(Ω) · θ dx

=

∫
Ω0

div(S1(Ω)Tθ) dx+
∑
i∈Kvor

∫
Ωi(a)

div(S1(Ω)Tθ) dx

=

∫
∂Ω0

S1(Ω)ν · θ dx+
∑
i∈Kvor

∫
∂Ωi(a)

S1(Ω)ν · θ dx

and then

dJ (Ω)(θ) =

∫
∂Ω0

(S1(Ω)ν · ν)θ · ν dx+
∑
i∈Kvor

∫
∂Ωi(a)

(S1(Ω)ν · ν)θ · ν dx

+

∫
∂Ω0

(S1(Ω)ν · τ)θ · τ dx+
∑
i∈Kvor

∫
∂Ωi(a)

(S1(Ω)ν · τ)θ · τ dx,
(32)

where τ denotes a unit tangent vector on ∂Ωi(a) or ∂Ω0.
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Now, let E be an edge of the diagram Ω; E can be an interior or boundary edge with respect to
D0. Let θ̂ ∈ C0,1

c,∂D0
(D,R2) be a vector field such that θ̂ · ν = 0 on E, θ̂(v) = 0 for all vertices v of E

and the intersection of supp(θ̂) with any other edge of the diagram Ω is empty. Then the mapping T̂

such that T̂ (·, t) = I2 + tθ̂ for all t ∈ [0, t0] satisfies Assumption 1 for sufficiently small t0 and we have

Ωt = T̂ (Ω, t) = Ω for all t ∈ [0, t0] in view of the properties of θ̂, hence dJ (Ω)(θ̂) = 0. The edge E
is either at the interface of exactly two cells, or at the interface of a cell and Ω0. In any case, we can
denote by k1(E) and k2(E) the indices of the neighboring sets of E. Thus, using (32) we have

0 = dJ (Ω)(θ̂) =

∫
∂Ω0

(S1(Ω)ν · τ)θ̂ · τ dx+
∑
i∈Kvor

∫
∂Ωi(a)

(S1(Ω)ν · τ)θ̂ · τ dx

=

∫
E

JS1(Ω)ν · τKE θ̂ · τ,
(33)

where the jump is defined as

JS1(Ω)ν · τKE := (S1(Ω)ν · τ)|∂Ωk1(E)(a) − (S1(Ω)ν · τ)|∂Ωk2(E)(a).

Since (33) holds for any θ̂ with such properties, this shows that JS1(Ω)ν · τKE = 0, for all edges E of the
diagram Ω. Thus, the tangential terms in (32) vanish and we obtain, for all θ ∈ C0,1

c,∂D0
(D,R2),

dJ (Ω)(θ) =

∫
∂Ω0

(S1(Ω)ν · ν)θ · ν dx+
∑
i∈Kvor

∫
∂Ωi(a)

(S1(Ω)ν · ν)θ · ν dx. (34)

Now, let T be the mapping given in Theorem 1. Using Theorem 1 we have G(a + tδa) = J (Ω(a +
tδa)) = J (T (Ω, t)). Setting θ := ∂tT (·, 0), we have θ ∈ C0,1

c,∂D0
(D,R2) according to Theorem 1, hence we

obtain

∇G(a) · δa =
d

dt
(J (Ω(a + tδa)))|t=0 = dJ (Ω)(θ).

Using the fact that ϕ(x, a) = ∥x− a∥2 we get ∇aϕ(x, ai) = −2(x− ai) and, using (28),

θ(x) · ν(x) =
(x− ai) · δai − (x− ak(i,E)) · δak(i,E)

∥ak(i,E) − ai∥
for all x ∈ Eik(a).

Finally, using also (30) and (34) we obtain (31).

Remark 3. In the statement of Theorem 2, the assumption S1(Ω(a))|Dδ̂
∈W 1,1(Dδ̂,R

2) for all 0 < δ̂ <
δ describes the fact that one only needs to prove higher regularity of S1(Ω(a)) away from the boundary
of D, as Dδ̂ ⊊ D. The assumption needs to be formulated that way as S1(Ω(a)) has a low regularity on
∂D in the EIT problem.

The following result is an immediate consequence of Theorem 2; it is useful for the numerical imple-
mentation.

Corollary 1. Under the assumptions of Theorem 2, we have

∇G(a) · δa =
∑
i∈Kvor

∑
E∈Eint

i

δak(i,E) · λk,E + δai · λi,E , (35)

with

λk,E = −
∫
E

(S1(Ω(a))ν · ν)
(x− ak(i,E))

∥ak(i,E) − ai∥
dx, λi,E =

∫
E

(S1(Ω(a))ν · ν)
(x− ai)

∥ak(i,E) − ai∥
dx.

4 Gradient of cost function for EIT

In this section, we consider the EIT problem. We take ᾱ = 1, ζ1 = 1, and we write U, V, g, h instead
of U1, V1, g1, h1, to simplify the notation. The expression of the shape derivative in the case ᾱ > 1
and ζ1 ̸= 1 can be obtained straightforwardly by summing over α = 1, . . . , ᾱ. We require the following
assumption to prove shape differentiability.
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Assumption 3. Let K ⊂ N∗ and suppose Ω ∈ PK(D0), h ∈ H1/2(∂D), g ∈ L2(∂D).

We now provide the shape derivative of the cost function J(Ω) for EIT, see definition (15). In this
section we prove the shape differentiability in the general case of a K-diagram Ω. The particular case
of Voronoi diagrams is treated in the next sections. The Kohn-Vogelius approach with mixed boundary
conditions, described in Section 2, is similar to the problems considered in [38], but we take a different
approach to deal with the non-homogeneous Dirichlet conditions. Suppose Assumption 3 holds, then we
introduce the function H ∈ H1(D) solution to

−∆H = 0 in D,
H = h on ∂D,

and Ū ∈ H1
a,0(D), V̄ ∈ H1

b,0(D) solutions to∫
D
σΩ∇Ū · ∇W = −

∫
D
σΩ∇H · ∇W +

∫
Γb

gW for all W ∈ H1
a,0(D), (36)∫

D
σΩ∇V̄ · ∇W = −

∫
D
σΩ∇H · ∇W +

∫
Γa

gW for all W ∈ H1
b,0(D). (37)

Thus we have U = Ū + H and V = V̄ + H. It is easier to work with Ū , V̄ instead of U, V , as they both
satisfy homogeneous Dirichlet conditions on Γa and Γb, respectively.

Theorem 3 (distributed shape derivative). Suppose Assumption 3 holds, the mapping T satisfies As-
sumption 1 and θ := ∂tT (·, 0) ∈ C0,1

c,∂D0
(D,R2). Then, the shape derivative of J at Ω in direction θ is

given by

dJ (Ω)(θ) =

∫
D
S1(Ω) : Dθ + S0(Ω) · θ dx, (38)

where S1(Ω) ∈ L1(D,R2×2) and S0(Ω) ∈ L1(D ∩ supp(θ),R2), where supp(θ) denotes the support of θ,
are defined by

S1(Ω) =

[
1

2
(U − V )2 + σΩ∇U · ∇p+ σΩ∇V · ∇q

]
I2 (39)

− σΩ∇p⊗∇U − σΩ∇(U −H) ⊗∇p− σΩ∇q ⊗∇V − σΩ∇(V −H) ⊗∇q,
S0(Ω) = σΩD

2H(∇p+ ∇q). (40)

The adjoints p ∈ H1
a,0(D) and q ∈ H1

b,0(D) are solutions of∫
D
σΩ∇p · ∇W = −

∫
D

(U − V )W for all W ∈ H1
a,0(D), (41)∫

D
σΩ∇q · ∇W =

∫
D

(U − V )W for all W ∈ H1
b,0(D). (42)

Proof. To prove the shape differentiability, we apply [37, Theorem 2.8], which is based on the implicit
function theorem; [37, Theorem 2.8] is provided as Theorem 8 in the Appendix for convenience. Introduce
E = F := H1

a,0(D) ×H1
b,0(D), the dual spaces E∗ = F ∗ = (H1

a,0(D))∗ × (H1
b,0(D))∗ and the Lagrangian

L : PK(D0) × E × F as

L(Ω, (ξ, ζ), (µ, η)) :=
1

2

∫
D

(ξ − ζ)2 +

∫
D
σΩ∇ξ · ∇µ−

∫
Γb

gµ+

∫
D
σΩ∇H · ∇µ

+

∫
D
σΩ∇ζ · ∇η −

∫
Γa

gη +

∫
D
σΩ∇H · ∇η.

In what follows we will write Tt instead of T (·, t) for simplicity. Following the standard procedure in shape
optimization, see for instance [37], we introduce the shape-Lagrangian L using a reparameterization of L:

L(t, (ξ, ζ), (µ, η)) := L(Ωt, (ξ, ζ) ◦ T−1
t , (µ, η) ◦ T−1

t ) = ⟨A(t, φ), ψ⟩F∗,F + B(t, φ),
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where the functions A and B of (72), see the Appendix, are defined as

⟨A(t, (ξ, ζ)), (µ, η)⟩F∗,F :=

∫
D
σΩtDT

−T
t ◦ T−1

t (∇ξ) ◦ T−1
t ·DT−T

t ◦ T−1
t (∇µ) ◦ T−1

t

−
∫
Γb

gµt +

∫
D
σΩt

∇H ·DT−T
t ◦ T−1

t (∇µ) ◦ T−1
t

+

∫
D
σΩt

DT−T
t ◦ T−1

t (∇ζ) ◦ T−1
t ·DT−T

t ◦ T−1
t (∇η) ◦ T−1

t

−
∫
Γa

gηt +

∫
D
σΩt∇H ·DT−T

t ◦ T−1
t (∇η) ◦ T−1

t ,

B(t, (ξ, ζ)) :=
1

2

∫
D

(ξt − ζt)2,

with the notation ξt := ξ ◦ T−1
t and a similar notation for the other functions involved.

Since we have assumed that θ = ∂tT (·, 0) ∈ C0,1
c,∂D0

(D,R2), Tt|∂D is the identity mapping for all
t ∈ [0, t0]. Proceeding with the change of variables x 7→ Tt(x) inside the integrals, we get

⟨A(t, (ξ, ζ)), (µ, η)⟩F∗,F =

∫
D
σΩM(t)∇ξ · ∇µ−

∫
Γb

gµ+

∫
D
σΩ∇H ◦ Tt ·DT−T

t ∇µdet(DTt)

+

∫
D
σΩM(t)∇ζ · ∇η −

∫
Γa

gη +

∫
D
σΩ∇H ◦ Tt ·DT−T

t ∇η det(DTt),

B(t, (ξ, ζ)) =
1

2

∫
D

(ξ − ζ)2 det(DTt),

where M(t) := det(DTt)DT
−1
t DT−T

t . Using θ ∈ C0,1
c,∂D0

(D,R2) and Assumption 1, we have t 7→ Tt ∈
C1([0, t0], C0,1(D,R2)) and the following standard results, see for instance [37, Lemma 2.7],

t 7→ DTt ∈ C1([0, t0], L∞(D,R2×2)) with DT0 = I2 and ∂tDTt|t=0 = Dθ,

t 7→ DT−1
t ∈ C1([0, t0], L∞(D,R2×2)) with ∂tDT

−1
t |t=0 = −Dθ,

t 7→ det(DTt) ∈ C1([0, t0], L∞(D)),det(DTt)|t=0 = 1 and ∂t det(DTt)|t=0 = div(θ).

Thus t 7→M(t) ∈ C1([0, t0], L∞(D,R2×2)) and we obtain

M′(0) = div(θ)I2 −Dθ −DθT. (43)

By standard elliptic regularity, H ∈ H2(O), where O is any open set such that O ⊂ D. Since θ ∈
C0,1
c,∂D0

(D,R2), i.e., θ has compact support in D, we get that ∇H ◦ Tt is differentiable with respect to t,
and

d

dt
∇H ◦ Tt

∣∣∣∣
t=0

= (D2H)θ.

Gathering these results, we conclude that A ∈ C1([0, t0]×E,F ∗) and B ∈ C1([0, t0]×E,R). This allows
us to apply Theorem 8, see the Appendix. We identify A := ∂(ξ,ζ)A(0, (Ū , V̄ )) ∈ L(E,F ∗) as

⟨A(ξ̂, ζ̂), (µ, η)⟩F∗,F =

∫
D
σΩ∇ξ̂ · ∇µ+

∫
D
σΩ∇ζ̂ · ∇η,

then L((Ū , V̄ )) := ∂tA(0, (Ū , V̄ )) ∈ F ∗ as

⟨L((Ū , V̄ )), (µ, η)⟩F∗,F =

∫
D
σΩM

′(0)∇Ū · ∇p+

∫
D
σΩM

′(0)∇V̄ · ∇q

+

∫
D
σΩ(D2H)θ · ∇p− σΩ∇H ·DθT∇p+ σΩ∇H · ∇p div(θ)

+

∫
D
σΩ(D2H)θ · ∇q − σΩ∇H ·DθT∇q + σΩ∇H · ∇q div(θ)
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and

⟨B((Ū , V̄ )), (ξ̂, ζ̂)⟩E∗,E := ⟨∂(ξ,ζ)B(0, (Ū , V̄ )), (ξ̂, ζ̂)⟩E∗,E =

∫
D

(Ū − V̄ )(ξ̂ − ζ̂).

Gathering these results and using (75) yields

dJ (Ω)(θ) = ∂tL(0, (Ū , V̄ ), (p, q)) = ⟨L((Ū , V̄ )), (p, q)⟩F∗,F + ∂tB(0, (Ū , V̄ ))

=
1

2

∫
D

(Ū − V̄ )2 div(θ) +

∫
D
σΩM

′(0)∇Ū · ∇p+

∫
D
σΩM

′(0)∇V̄ · ∇q

+

∫
D
σΩ(D2H)θ · ∇p− σΩ∇H ·DθT∇p+ σΩ∇H · ∇p div(θ)

+

∫
D
σΩ(D2H)θ · ∇q − σΩ∇H ·DθT∇q + σΩ∇H · ∇q div(θ).

Using (43) and standard tensor calculus, see for instance [37, Section 2.1], we compute

M′(0)∇Ū · ∇p = Dθ : [(∇Ū · ∇p)I2 −∇p⊗∇Ū −∇Ū ⊗∇p].

The other terms of dJ (Ω)(θ) can be rearranged in a similar way. Using also the relations U = Ū + H
and V = V̄ + H, we obtain (38).

Finally, the regularity S1(Ω) ∈ L1(D,R2×2) follows immediately in view of the regularity of U, V, p, q.
To obtain S0(Ω) ∈ L1(D ∩ supp(θ),R2) we use the regularity of U, V, p, q, but we also need H ∈ H2(O),
where O is any open set such that O ⊂ D and the fact that θ ∈ C0,1

c,∂D0
(D,R2) has compact support

in D.

4.1 Interface representation of the gradient

We now investigate the case where Ω is a Voronoi diagram, considering the framework of Section 3.2.
We assume Ω(a) ∈ PKvor(D0) is a Voronoi diagram associated with a. The key ingredient to ob-
tain an interface representation of the gradient in Theorem 2 is the higher regularity S1(Ω(a))|Ωi(a) ∈
W 1,1(Ωi(a),R2×2) for all i ∈ Kvor = {1, . . . , κ0}. The main reason is that it allows us to apply the diver-
gence theorem and thus transform the distributed expression (38) into a sum of integrals over the edges
of the diagram. However, proving such higher regularity is not immediate due to the nonsmoothness of
the cells Ωi(a). In a smooth set, the regularity of U, V only depends on the regularity of the data f, g, h,
but for a transmission problem with polygonal cells, it is known [42, 43] that weak singularities appear
at the corners of each cell Ωi(a), which imposes a limit on the regularity of U, V, p, q. In [14, Section 4.1]
we also obtained an interface representation of the gradient by establishing higher regularity for the state
and adjoint. Compared to [14, Section 4.1], proving higher regularity for conductivity problems is more
challenging as the singularities appearing at the corners are stronger.

We first provide some explanations about these weak singularities. The following result is a straight-
forward adaptation to our setting of [41, Lemma 1], see [43] for a proof. Let V be the set of vertices of the
Voronoi diagram Ω(a); note that ∂D∩V = ∅ since the cells of Ω(a) are included in D0. Let ηv : D → R

be a cut-off function equal to 1 near v ∈ V whose support does not contain the other vertices. Recall
that Dδ̂ is defined in (27), for 0 < δ̂ < δ. We consider the following model problem: let u ∈ H1

a,h(D) be
the solution of ∫

D
σΩ(a)∇u · ∇W =

∫
D
fW +

∫
Γb

gW for all W ∈ H1
a,0(D), (44)

with Γa ∪ Γb = ∂D, Γa ̸= ∅, f ∈ L2(D), g ∈ L2(∂D), h ∈ H1/2(∂D) and

H1
a,h(D) := {W ∈ H1(D) | W = h on Γa}.

Choosing the appropriate data, the functions U, V, p, q can be modeled by (44). Note that in [41],
homogeneous Dirichlet conditions for u are considered on ∂D, but this is not relevant here as we are only
interested in singularities occurring at a positive distance from the boundary ∂D, for which the results
of [41] also hold. In the case of conductivity problem with internal measurements, we will consider
homogeneous Dirichlet conditions for u, see Section 5.
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Lemma 1 ([41]). Let f ∈ L2(D), for any δ̂ such that 0 < δ̂ < δ, the restriction to Dδ̂ of the solution u
to (44) admits the following decomposition

u|Dδ̂
= ur + us with us :=

∑
v∈V

ηv
∑
α∈Λv

cvαS
v
α, (45)

where ur|Ωi(a) ∈ H2(Ωi(a)), i ∈ Kvor, ur|Ω0∩Dδ̂
∈ H2(Ω0∩Dδ̂), Λv is a finite set of positive real numbers,

cvα are constants and Svα are vertex singular functions independent of f . These functions, expressed in
polar coordinates (rv, ϑv) centered at v, are of the form

Svα = rαvΦvα(ϑv). (46)

Let Cvi , i ∈ Kvor ∪ {0}, be the cone coinciding with Ωi(a) or Ω0 in a neighborhood of v. The restrictions
Svα|Cv

i
are smooth with respect to the second variable ϑv.

The purpose of Dδ̂ in Lemma 1 is to avoid the singularities occurring at the vertices of ∂D. Note
that a description of such singularities can also be obtained if needed, using for instance the results of
[41]. Then we have the following result, see [41, Corollary 2].

Corollary 2. Suppose that the assumptions of Lemma 1 hold, then for all s < αv := minα∈Λv
α, one

has
ηvu|Ωi(a) ∈ H1+s(Ωi(a)), ∀i ∈ Kvor

and ηvu|Ω0∩Dδ̂
∈ H1+s(Ω0 ∩ Dδ̂), for any δ̂ such that 0 < δ̂ < δ.

In view of (26) and Assumption 2, for δ sufficiently small, the cells Ωi(a) are at a positive distance
to ∂D, for all i ∈ Kvor, hence Ω0 plays the role of an insulating layer, separating ∂D from the cells of
the Voronoi diagram; see Figure 1. As mentioned above, the motivation for this assumption in EIT is
to avoid regularity issues that would occur with the solutions U, V, p, q in the case where the boundary
of some cell Ωi(a), i ∈ Kvor, would touch the boundary of D. In view of this observation, Lemma 1 and
Corollary 2, we obtain the following result.

Proposition 1. Suppose Assumptions 2 and 3 hold and σi, i ∈ Kvor, are constant. Then S1(Ω(a))|Ωi(a) ∈
W 1,1(Ωi(a),R2×2) for all i ∈ Kvor, S1(Ω(a))|Ω0∩Dδ̂

∈ W 1,1(Ω0 ∩ Dδ̂,R
2×2) for all 0 < δ̂ < δ, where

S1(Ω(a)) is given in (39).

Proof. For simplicity, we will omit the restriction to Ωi(a) in the notation, for instance we write S1(Ω(a))
instead of S1(Ω(a))|Ωi(a). Using Assumption 2, the interior vertex v ∈ V belongs to the boundary of
at most three phases. We start with the case where v ∈ V belongs to exactly two phases. In view
of [41, Theorem 16(ii)], we have αv > 1/2 in this case, where αv is defined in Corollary 2. To prove
S1(Ω(a)) ∈W 1,1(Ωi(a),R2×2), for some given i ∈ Kvor, it is sufficient to prove that

DS1(Ω(a)) ∈ L1(Ωi(a),R2×2×2),

as S1(Ω(a)) ∈ L1(Ωi(a),R2×2) is proved in a similar way. In view of (39), the most singular terms in
DS1(Ω(a)) are D2U∇p, D2V∇q, D2p∇U , D2q∇V , D2H∇p, D2H∇q, D2p∇H, D2q∇H. Thus, it is
sufficient to prove that D2U∇p,D2H∇p,D2p∇H ∈ L1(Ωi(a),R2) for instance, as the other terms can
be treated in a similar way. We start with D2U∇p. Applying Lemma 1 to U, p and in view of (45), we
have

D2U∇p = D2Ur∇p+D2Us∇pr +D2Us∇ps.

Since Ur ∈ H2(Ωi(a)) and p ∈ H1(Ωi(a)) we get D2Ur∇p ∈ L1(Ωi(a),R2). Since Us is a sum of
functions of the type (46), with α ≥ αv, to show D2Us∇pr ∈ L1(Ωi(a),R2) it is sufficient to prove
D2(rαv

v )∇pr ∈ L1(Ωi(a),R2), which is also equivalent to proving rαv−2
v ∇pr ∈ L1(Ωi(a),R2). Using the

Cauchy-Schwarz inequality we have(∫
Ωi(a)

rαv−2
v ∇pr

)2

≤
∫
Ωi(a)

|rαv−1
v |2

∫
Ωi(a)

|r−1
v ∇pr|2 <∞.
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Indeed,
∫
Ωi(a)

|rαv−1
v |2 <∞ due to αv > 1/2. For the other integral, we have r−1

v ∇pr ∈ L2(Ωi(a),R2) due

to ∇pr ∈ H1(Ωi(a),R2) and Hardy’s inequality, see [23, Theorem 1.4.4.4]. This shows that rαv−2
v ∇pr ∈

L1(Ωi(a),R2), hence also D2Us∇pr ∈ L1(Ωi(a),R2).
To prove D2Us∇ps ∈ L1(Ωi(a),R2), using again the fact that Us and ps are both sums of functions of

the type (46), with α ≥ αv, it is sufficient to prove that D2(rαv
v )∇(rαv

v ) ∈ L1(Ωi(a),R2), or equivalently
that rαv−2

v rαv−1
v = r2αv−3

v ∈ L1(Ωi(a),R2). Since αv > 1/2 we have indeed r2αv−3
v ∈ L1(Ωi(a),R2).

Gathering these results we have shown that D2u∇p ∈ L1(Ωi(a),R2×2), then proceeding similarly
for the other term we obtain S1(Ω(a)) ∈ W 1,1(Ωi(a),R2×2). For the terms depending on H such as
D2H∇p, we use the fact that H ∈ H2(O), where O is any open set such that O ⊂ D.

We now treat the case where v ∈ V belongs to exactly three phases Ωi(a),Ωj(a),Ωk(a). If the
coefficients σi, σj , σk are not pairwise distinct then we can merge the cells with the same coefficients and
conclude using the results for the case treated above, where v ∈ V belongs to exactly two phases.

Next we assume that the coefficients σi, σj , σk are pairwise distinct. In view of [41, Theorem 16(iii)],
we have

αv > min

(
1

2
,
π

2γv

)
,

where γv is the interior angle of one of the three phases Ωi(a),Ωj(a),Ωk(a) at the vertex v ∈ V, cor-
responding to the coefficient σi, σj or σk that is not an extrema in {σi, σj , σk}. Since the cells of the
Voronoi diagram are convex, we have γv < π, hence αv > 1/2. Thus, proceeding as in the case where v
belongs to the boundary of exactly two phases, we obtain S1(Ω(a)) ∈W 1,1(Ωi(a),R2×2).

Finally, the fact that S1(Ω(a))|Ω0∩Dδ̂
∈ W 1,1(Ω0 ∩ Dδ̂,R

2) for all 0 < δ̂ < δ is also obtained via
Lemma 1. One uses the decomposition (45) and proceeds in a similar way as for the other phases. Note
that in this case the relevant interior vertices belong either to the boundary of two phases or to the
boundary of three phases. In the latter case we have γv ≤ π, see Figure 1, hence αv > 1/2 and the result
is the same as for the other phases.

Using the regularity provided by Proposition 1 we can apply Theorem 2, and in combination with
Theorem 3 we obtain the following result.

Theorem 4. Suppose Assumptions 2 and 3 hold, then the gradient of G(a), defined in (16), is given by

∇G(a) · δa =
∑
i∈Kvor

∑
E∈Eint

i

∫
E

(S1(Ω(a))ν · ν)|Ωi(a)

(x− ai) · δai − (x− ak(i,E)) · δak(i,E)

∥ak(i,E) − ai∥
dx, (47)

where k(i, E) is the index such that E = Ωi(a)∩Ωk(i,E)(a), E int
i the set of interior edges of the cell Ωi(a)

with respect to D0 and S1(Ω(a)) is given by (39).

The gradient ∇G(a) may be simplified using the regularity of some of the terms in S1(Ω(a))ν · ν
across the edges of the diagram. This leads to the following expression of the gradient.

Corollary 3. Suppose Assumptions 2 and 3 hold, then

∇G(a) · δa =
∑
i∈Kvor

∑
E∈Eint

i

δak(i,E) · λk,E + δai · λi,E , (48)

with

λk,E = −
∫
E

Si

(x− ak(i,E))

∥ak(i,E) − ai∥
dx, λi,E =

∫
E

Si
(x− ai)

∥ak(i,E) − ai∥
dx

and

Si := σi(∇U · ∇p+ ∇V · ∇q) + σi(−∂νp∂νU − ∂νq∂νV − ∂νp∂ν(U −H) − ∂νq∂ν(V −H)). (49)

Proof. Let E := ∪i∈Kvor
E int
i denote the set of interior edges of the Voronoi diagram (i.e., edges that are

included in D0). Firstly, we can write ∇G(a) as in (35). Then, as each interior edge E ∈ E is at the
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interface of exactly two cells, whose indices we denote by k1(E) and k2(E), we can reorganize the terms
in (35) by summing over all E ∈ E , which yields:

∇G(a) · δa =
∑
E∈E

δak1(E) · λk1,E + δak2(E) · λk2,E , (50)

where

λk1,E :=

∫
E

JS1(Ω(a))ν · νKE
(x− ak1(E))

∥ak1(E) − ak2(E)∥
dx,

λk2,E := −
∫
E

JS1(Ω(a))ν · νKE
(x− ak2(E))

∥ak1(E) − ak2(E)∥
dx,

and with the jumps

JS1(Ω(a))ν · νKE := (S1(Ω(a))ν · ν)|∂Ωk1(E)(a) − (S1(Ω(a))ν · ν)|∂Ωk2(E)(a).

In view of (39) we have

S1(Ω(a))ν · ν =
1

2
(U − V )2 + σΩ(∇U · ∇p+ ∇V · ∇q)

+ σΩ(−∂νp∂νU − ∂νq∂νV − ∂νp∂ν(U −H) − ∂νq∂ν(V −H)).
(51)

Since U, V ∈ H1(D), we can prove that

J
1

2
(U − V )2KE = 0.

Indeed, we have (U − V )2 ∈ W 1,1(D), hence (U − V )2|Ωi(a) ∈ W 1,1(Ωi(a)) for all i ∈ Kvor. Since
Ωi(a) is Lipschitz, the trace Tr : W 1,1(Ωi(a)) → L1(∂Ωi(a)) is linear and continuous, see [34], thus
(U − V )2|∂Ωi(a) ∈ L1(∂Ωi(a)). In addition, since (U − V )2 ∈ W 1,1(D) and using the continuity of the
trace Tr, we have (U − V )2|∂Ωi(a) = (U − V )2|∂Ωj(a) on the interface E = ∂Ωi(a) ∩ ∂Ωj(a), for all
i, j ∈ Kvor. Therefore, J(U − V )2KE = 0.

Thus, we have show at

JS1(Ω(a))ν · νKE = JσΩ(∇U · ∇p+ ∇V · ∇q)KE
+ JσΩ(−∂νp∂νU − ∂νq∂νV − ∂νp∂ν(U −H) − ∂νq∂ν(V −H))KE .

Finally, rewriting the sum as in (35), we obtain (48), (49).

4.2 Example of a singular case

Here we discuss the case where Assumption 2 does not hold, which creates two difficulties. The first
issue is that, following the theory developed in [13], the motion of the Voronoi cell Ωi(a + tδa) can be
parameterized by a bi-Lipschitz mapping T (·, t) under Assumption 2, which is crucial to prove shape
differentiability, see Theorem 1. If Assumption 2 does not hold, the existence of such mapping is not
guaranteed. Nevertheless, when Assumption 2 does not hold one can still perform the sensitivity analysis
of a 7→ Ω(a) in specific cases using asymptotic analysis, as in [13, Example 8] in the case of cost
functionals that do not depend on the solution to a PDE. The second issue is related to the shape
functional Ω 7→ J (Ω) and is specific to the PDE case. When Assumption 2 does not hold, more than
three phases may meet at a vertex of the Voronoi diagram, which results in a stronger singularity in a
neighborhood of the vertex, as predicted by the theory of weak singularities in corner domains [41, 42, 43].
We illustrate these issues with a particular singular configuration similar to [13, Example 8].

Example 1. Let D = (−1, 1)2, Kvor = {1, 2, 3, 4}, and consider the Voronoi diagram with a1 + tδa1 =
(1/2 + t, 0), a2 = (0, 1/2), δa2 = 0, a3 + tδa3 = (−1/2 − t, 0), a4 = (0,−1/2), δa4 = 0, where t ≥ 0 is a
small parameter; see Figure 2. Assumption 2 does not hold for this configuration. For t > 0, we compute

Ω1(a + tδa) ∩ Ω2(a + tδa) ∩ Ω4(a + tδa) =

{(
t+ t2

1 + 2t
, 0

)}
,

Ω2(a + tδa) ∩ Ω3(a + tδa) ∩ Ω4(a + tδa) =

{(
− t+ t2

1 + 2t
, 0

)}
.
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a3

a4

a1

a2

vr(t)

wr(t)

vl(t)

wl(t)a3 + tδa3

a4

a1 + tδa1

a2

Figure 2: On the left, the four phases Ωi(a), i ∈ Kvor = {1, 2, 3, 4} at t = 0 with the quadruple point
(0, 0) in the center. On the right, the four phases at t > 0, illustrating how the quadruple point (0, 0) at

t = 0 splits into two stable triple points
(
± t+t2

1+2t , 0
)

at t > 0.

This illustrates the instability of the quadruple point {(0, 0)} at t = 0, which immediately splits into two

stable triple points
(
± t+t2

1+2t , 0
)
for t > 0.

The key property to obtain the Hadamard-type formula (31) in Theorem 2, or (47) in Theorem 4, is
the higher regularity S1(Ω(a))|Ωi(a) ∈ W 1,1(Ωi(a),R2×2) for all i ∈ Kvor, which was proved in Proposi-
tion 1 under Assumption 2. When Assumption 2 does not hold as in Example 1, the higher regularity
S1(Ω(a))|Ωi(a) ∈W 1,1(Ωi(a),R2×2) may fail, as a consequence of the following result.

Proposition 2. Suppose Assumption 3 holds, σi, i ∈ Kvor, are constants and the geometry is defined as
in Example 1 (for t = 0), then αv > 1/3, where αv is given in Corollary 2.

Proof. We apply the results of [41, Theorem 16], where three cases are separated when four or more cells
have a common vertex. The first case corresponds to a decreasing sequence σi, i ∈ Kvor, the second case
to an increasing sequence σi, i ∈ Kvor, and in the last case, the sequence σi, i ∈ Kvor is not monotonous.
Let Kvor = {1, 2, 3, 4} and ωi − ωi−1 be the angle of the cell Ωi(a) at the vertex S = (0, 0), with
0 = ω0 < ω1 < ω2 < ω3 < ω4 = 2π. In Example 1, at t = 0, we have ω1 = π/2, ω2 = π, ω3 = 3π/2.

According to [41, Theorem 16(i)(a)], if σi, i ∈ Kvor, is a decreasing sequence we have

αv > min

(
1

2
,
π

2ω3

)
=

1

3

and if σi, i ∈ Kvor, is an increasing sequence we have

αv > min

(
1

2
,

π

2(2π − ω1)

)
=

1

3
.

If σi, i ∈ Kvor, is not monotonous we also get αv > 1/3 using [41, Theorem 16(i)(c)].

Proposition 2 implies that S1(Ω(a))|Ωi(a) does not belong to W 1,1(Ωi(a),R2×2) in general. Indeed,
as discussed in the proof of Proposition 1, the most singular terms in DS1(Ω(a)) are D2U∇p, D2V∇q,
D2p∇U , D2q∇V , D2H∇p, D2H∇q, D2p∇H, D2q∇H. Consider for instance D2U∇p: in view of
expansion (45), the most singular term in D2U∇p is D2(rαv

v )∇(rαv
v ) which behaves like rαv−3

v and since
αv− 3 > −7/3, we have rαv−3

v ̸∈W 1,1(Ωi(a),R2×2). Thus, in general we cannot apply Theorem 2 in the
geometric configuration of Example 1 to obtain the Hadamard-type formula (31). To prove or disprove
shape differentiability, one would have to conduct an asymptotic analysis specifically tailored to this
configuration.
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4.3 Distributed expression of the gradient

The shape derivative can be written in distributed form, as in Theorem 3 or in strong form (47), i.e., as a
sum of integrals over the edges of the diagram, which only depend on θ and not on Dθ. In the context of
free-form shape deformations, distributed expressions of shape derivatives may be advantageous due to
their higher accuracy in the context of finite elements [30] and ease of implementation [38]. In the context
of piecewise smooth shapes considered here, the advantage of the distributed shape derivative is that the
higher regularity of S1 required in Theorem 2 is not required. However, the term Dθ appearing in (38)
creates a difficulty, since θ is only known explicitly along the edges of the Voronoi diagram according to
Theorem 1. This can be resolved in the case of Voronoi diagrams by extending θ inside the cells using
a triangulation and piecewise linear function, as done in [14, Section 4.2]. Here we follow a similar idea,
but we are facing the more general situation where a subset Ω0 of D is not part of the Voronoi diagram.
Compared to [14, Theorem 5] we obtain a slightly less explicit expression of ∇G(a), and we express
∇G(a) as a sum over the vertices of the Voronoi diagram, while in [14, Theorem 5] the sum is expressed
as a double sum over the cells and the vertices of each cell.

Let V be the set of vertices of the Voronoi diagram Ω(a). Since Ωi(a), i ∈ Kvor, is convex, we can
partition Ωi(a) into a set of non-overlapping triangles, where the vertices of each triangle are the site ai
and two consecutive vertices of Ωi(a), using a counterclockwise orientation. Let Dδ̂ be the intermediate
set defined in (27). We also partition Ω0 ∩Dδ̂ into a set of non-overlapping triangles, where the vertices
of each triangle are either in V or on ∂Dδ̂. The union of these triangles thus forms a triangulation T
of Dδ̂. For v ∈ V, introduce the basis functions ψv ∈ C0(Dδ̂,R) such that ψv(v) = 1, ψv(w) = 0 for
all other vertices w of the triangulation T , and ψv is linear on each of the triangle in T . Due to the
continuity of ψv, this determines ψv uniquely in D. The expression of ψv and ∇ψv can be computed
explicitly on each T ∈ T for numerical purposes, see [14, Section 4.2]. We then have the following result.

Theorem 5. Suppose Assumptions 2 and 3 hold, then the gradient of G(a), defined in (16), is given by

∇G(a) · δa =
∑

v∈Vint

δaiv · gviv + δajv · gvjv + δakv · gvkv +
∑
v∈Vbd

δaiv · gviv + δajv · gvjv , (52)

where Vint is the set of interior vertices (w.r.t. D0) of the Voronoi diagram and Vbd the set of boundary
vertices (w.r.t. D0), (iv, jv, kv) are the indices of the three cells that share the common vertex v ∈ Vint,
i.e., v = Ωiv (a) ∩ Ωjv (a) ∩ Ωkv (a), (iv, jv) are the indices of the two cells that share the common vertex
v ∈ Vbd, and, writing (i, j, k) = (iv, jv, kv) for simplicity,

gvi := Mv(j, k, i)
⊤I(v), gvj := Mv(k, i, j)

⊤I(v), gvk := Mv(i, j, k)⊤I(v),

gvi := M ℓ
v (j, i)⊤I(v), gvj := M ℓ

v (i, j)⊤I(v).

Here

Mv(i, j, k) :=
(ai − aj)

⊥ ⊗ (v − ak)⊤

Q(i, j, k)
, Q(i, j, k) := det

(
(aj − ai)

⊤

(ak − ai)
⊤

)
(53)

and

M ℓ
v (j, i) :=

−∇xφℓ(v)⊥ ⊗ (v − ai)
⊤

det

(
(aj − ai)

⊤

∇xφℓ(v)⊤

) (54)

where φℓ is defined in Section 3.2. Also,

I(v) :=

∫
supp(ψv)

S1(Ω(a))∇ψv(x) + S0(Ω(a))ψv(x) dx (55)

where supp(ψv) ⊂ D is the support of ψv.

Proof. The proof is similar to the proof of [14, Theorem 5] and is provided in the appendix for convenience.

Remark 4. Once the triangulation T is chosen explicitly, a more explicit formula for the integral (55)
can be computed for numerical purposes, as in [14].
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5 Conductivity problem with internal measurements

In the previous sections, we have presented the shape sensitivity analysis of the Voronoi diagram for
EIT. Many of these developments apply directly or can be adapted in a straightforward manner to the
case of the conductivity problem with internal data; see in particular Remark 1. Thus, we only present
the main results here and we omit the proofs, which are similar to the EIT case.

We consider the inverse problem of determining a scalar-valued conductivity σ⋆ of a body D ⊂ R2

satisfying the elliptic equation

div(σ⋆∇U⋆) = f in D, (56)

U⋆ = 0 on ∂D, (57)

from noisy domain measurements h = U⋆|D + η of the ground truth potential U⋆ in D, where η : D → R

represents a measurement noise and f ∈ H1(D). The corresponding variational formulation is: Find
U⋆ ∈ H1

0 (D) such that ∫
D
σ⋆∇U⋆ · ∇W =

∫
D
fW for all W ∈ H1

0 (D). (58)

We consider a model conductivity σ ∈ L∞(D) and the associated potential: Find U ∈ H1
0 (D) such that∫

D
σ∇U · ∇W =

∫
D
fW for all W ∈ H1

0 (D). (59)

The cost function is

J(σ) :=
1

2

∫
D

(U(σ) − h)2. (60)

Unlike the EIT case, for this problem we assume D0 = D and we consider a similar setting where
Ω(a) := {Ωi(a)}i∈Kvor is a Voronoi diagram with respect to D, for a given Kvor = {1, . . . , κ0}. We
assume that both σ = σΩ and the ground truth σ⋆ are piecewise constant and have the form

σΩ :=
∑
i∈Kvor

σiχΩi , σ⋆ =
∑
i∈Kvor

σiχΩi(a⋆),

where σi, i ∈ Kvor are given constants. As in the EIT problem, we define J(Ω) := J(σΩ) and the reduced
cost functional

G(a) := J(Ω(a)). (61)

We have the following result for shape differentiability; we omit the proof, which is similar to the proof
of Theorem 3. At this point, Ω ∈ PK(D) is a diagram in the sense of Definition 1, but not necessarily a
Voronoi diagram.

Theorem 6 (distributed shape derivative). Assume Ω ∈ PK(D), f ∈ H1(D), h ∈ H1(D). Suppose
the mapping T satisfies Assumption 1, then the shape derivative of J at Ω in direction θ := ∂tT (·, 0) ∈
C0,1
∂D(D,R2) is given by

dJ (Ω)(θ) =

∫
D
S1(Ω) : Dθ + S0(Ω) · θ dx (62)

where S1(Ω) ∈ L1(D,R2×2) and S0(Ω) ∈ L1(D,R2) are defined by

S1(Ω) =

[
1

2
(U − h)2 − fp+ σΩ∇U · ∇p

]
I2 − σΩ∇p⊗∇U − σΩ∇U ⊗∇p, (63)

S0(Ω) = −(U − h)∇h− p∇f. (64)

The adjoint p ∈ H1
0 (D) is solution of∫

D
σΩ∇p · ∇W = −

∫
D

(U − h)W for all W ∈ H1
0 (D). (65)
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We have the following higher regularity, which is proved similarly to Proposition 1.

Proposition 3. Suppose the assumptions of Theorem 6 and Assumption 2 hold. Then S1(Ω(a))|Ωi(a) ∈
W 1,1(Ωi(a),R2×2) for all i ∈ Kvor.

Theorem 2 has been written for the EIT case, i.e., for δ > 0. Nevertheless, it can be straightforwardly
adapted to the case δ = 0 and D0 = D needed here. Applying Theorem 2, Theorem 6 and Proposition 3,
we get the following result.

Theorem 7. Suppose the assumptions of Theorem 6 and Assumption 2 hold, then the gradient of G(a),
defined in (61), is given by

∇G(a) · δa =
∑
i∈Kvor

∑
E∈Eint

i

∫
E

(S1(Ω(a))ν · ν)|Ωi(a)

(x− ai) · δai − (x− ak(i,E)) · δak(i,E)

∥ak(i,E) − ai∥
dx, (66)

where k(i, E) is the index such that E = Ωi(a) ∩ Ωk(i,E)(a) and S1(Ω(a)) is given by (63).

The expression of ∇G(a) may be simplified as follows. We omit the proof which is similar to the
proof of Corollary 3.

Corollary 4. Suppose the assumptions of Theorem 6 and Assumption 2 hold, then

∇G(a) · δa =
∑
i∈Kvor

∑
E∈Eint

i

δak(i,E) · λk,E + δai · λi,E , (67)

with

λk,E = −
∫
E

Si

(x− ak(i,E))

∥ak(i,E) − ai∥
dx, λi,E =

∫
E

Si
(x− ai)

∥ak(i,E) − ai∥
dx

and Si := σi(∇U · ∇p− 2∂νp∂νU)|Ωi(a).

Summarizing, the results for the conductivity problem with internal measurements are similar to
EIT as the analysis of the weak singularities is performed in the same way, see Section 4.1. The main
differences are that only a single measurement is involved here, and that D0 = D, meaning some cells of
the Voronoi diagram are in contact with the boundary ∂D.

6 Numerical experiments

In this section, we report numerical experiments with the two problems considered in this work: the
EIT problem (inverse conductivity problems with boundary measurements) and the inverse conductivity
problem with internal measurements. The experiments begin by evaluating the performance of the
Spectral Projected Gradient [15] method in the optimization process (Section 6.1). We then evaluate
the usefulness of a multistart strategy in the optimization process (Section 6.2), using instances of the
inverse conductivity problem with internal measurements, κ0 ∈ {5, 6, . . . , 14} and equidistant σ⋆. In the
sequel (Section 6.3), we consider instances of the inverse problem with boundary measurements (EIT)
with increasing noise and with single and multiple measurements.

In [14, Section 5.2], a detailed comparison of the interface and distributed expressions of the gradient
has been conducted for the potential problem. The advantages and disadvantages of both approaches
have been discussed—for example, the fact that the numerical computation of integrals over triangles
is simpler for the distributed expression compared to computing interface integrals for the interface
expression. The numerical results in [14, Section 5.2] indicate that the reconstructions are similar for
all considered experiments. Additionally, the optimization method requires approximately the same
number of iterations and function evaluations per iteration for both gradient formulations. However,
the computation of the interface expression is three times faster than that of the distributed expression.
Since we expect a similar behavior for the conductivity problems studied in this paper, we have chosen
to use the interface expression of the gradient exclusively.
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In the experiments, we constructed problems with known solution σ⋆ for different values of κ0. The
construction starts by choosing κ0 and drawing a⋆i ∈ D = (0, 1) × (0, 1) for all i ∈ Kvor = {1, . . . , κ0}.
Then we set σ⋆i = i for all i ∈ Kvor. We call this case equidistant. Additional scenarios where each σ⋆i is
randomly assigned a value in {5, 10} (binary case) or a value in {3, 6, 9} (ternary case) are also considered.
Results with instances in these simpler scenarios have been performed and are mentioned in the following
sections. However, due to space limitations, only numerical experiments with the equidistant case are
fully reported.

In all the reported experiments, the initial points were generated as perturbations of the ground
truth. Completely random initial points were also tested, but the results were unsatisfactory and are
not included here. Note that initializations based on ground truth perturbations are not unrealistic
in real-world scenarios. In practice, a sequence of methods and heuristics are often used to obtain
reconstructions, and the ground truth perturbation typically reflects the outcome of another method
that provides a rough first approximation, without requiring prior knowledge. This is well exemplified
by topological derivative-based approaches, such as [16, 28, 29], which on one hand do not require prior
knowledge of the ground truth but on the other hand are not designed to provide a precise approximation
of the interfaces.

In the EIT problem, we also take σ0 = 1 in the boundary layer Ω0. Then we choose Γa = Γupper∪Γlower

and Γb = Γleft ∪ Γright, with Γupper = {x = (x1, x2)T ∈ D : x2 = 1}, Γlower = {x = (x1, x2)T ∈ D :
x2 = 0}, Γleft = {x = (x1, x2)T ∈ D : x1 = 0}, and Γright = {x = (x1, x2)T ∈ D : x1 = 1}. For the
inverse conductivity problems with boundary measurements (EIT) we consider ᾱ ∈ {1, 3} and

g1 = 1 on Γleft ∪ Γright and g1 = −1 on Γupper ∪ Γlower,
g2 = 1 on Γleft ∪ Γupper and g2 = −1 on Γright ∪ Γlower,
g3 = 1 on Γleft ∪ Γlower and g3 = −1 on Γright ∪ Γupper.

When ᾱ = 1, only g1 is used, while when ᾱ = 3, g1, g2 and g3 are used. Then, we solve (3,4) to obtain
U⋆α for α = 1, . . . , ᾱ. Synthetic measurements hα are obtained via the formula hα := U⋆α + ηα, where ηα
is a normal Gaussian noise with mean zero and standard deviation c∥u⋆α∥∞ and c is a parameter that
takes different values depending on the experiment. For the inverse conductivity problem with internal
measurements, we set f ≡ 1 and h := U⋆ + η.

In the generated instances, a⋆i ∈ D for i ∈ Kvor. Including this information in the problem (17), we
arrive at the bound constrained minimization problem given by

Minimize
a∈R2κ0

G(a) subject to a ∈ D. (68)

When the problem (68) refers to the EIT problem, the objective function G is defined in (16). Therefore,
the evaluation of G needs the evaluation of J defined in (15) which, in turn, needs the calculation of Uα
and Vα, solutions of (6) and (7), respectively. The expression for ∇G is given in (48). When the above
problem refers to the inverse conductivity problem with internal measurements, the expression of G is
given by (61), with J(Ω(a)) = J(σΩ(a)), J(σ) defined in (60), with U(σ) solution of (59). For practical
purposes we consider an additional weight in the cost function, i.e.,

J(σ) :=
ζ

2

∫
D

(U(σ) − h)2. (69)

In this case, ∇G is given by (67), multiplied by the weight ζ. The calculations of G(a) and ∇G(a)
require the calculation of a Voronoi diagram associated with the sites a. For this calculation we use the
routines introduced in [11, 12, 13].

In the inverse conductivity problems with boundary and internal measurements, the values of ζα for
α = 1, . . . , ᾱ in the definition of G(a) and ζ in (69) are computed in practice as

ζα =
1∫

D
(Uα(σΩ(a0)) − Vα(σΩ(a0)))

2
and ζ =

1∫
D

(U(σΩ(a0)) − h)2
,

respectively, where a0 is the initial guess of the optimization process. In this way, the terms corresponding
to each measurement hα start with the same magnitude in the calculation of G. (As a consequence,

20



G(a0) = ᾱ/2 for EIT and G(a0) = 1/2 for internal measurements). The noise level of the generated
instance is then computed as

Noise = 100% ×

√√√√∑ᾱ
α=1 ζα∥hα − U⋆α∥2L2(∂D)∑ᾱ

α=1 ζα∥U⋆α∥2L2(∂D)

and Noise = 100% ×
∥h− U⋆∥L2(D)

∥U⋆∥L2(D)
(70)

in the inverse conductivity problems with boundary measurement (EIT) and internal measurement,
respectively.

Given an approximation â of a solution to an instance with known solution σ⋆, in the following
sections we refer to the error E(â) of â defined as

E(â) = 100% ×

∫
D
|σ⋆ − σ(â)|∫

D
σ⋆

. (71)

In [14], we used the Projected Gradient (PG) method [10, 22, 39] in the optimization process. How-
ever, in practice, numerical inaccuracies in the computation of the objective function prevent the method
from recognizing, at each iteration, that a tentative point satisfies a certain condition of decrease of the
objective function with respect to the current point. In the experiments of this work, we verify whether
a non-monotone linear search such as that of the Spectral Projected Gradient (SPG) method [15] can
be beneficial in such a scenario. In the SPG non-monotone linear search, at each iteration a decrease
of the objective function is required, not relative to the current iterate, but to the maximum of the last
M iterations, where M > 0 is a given constant. Thus, the sequence of function values generated by
the method is not necessarily monotonically decreasing. Let a0,a1,a2, . . . be the sequence of iterates
generated by the optimization method. As a stopping criterion we consider ∥aℓ − aℓ−1∥∞ ≤ ϵ, with
ϵ = 10−6, which corresponds to lack of progress. We would like to have used a stopping criterion asking
for a small ∇G(aℓ), but as its calculation depends on the numerical resolution of one or two PDEs, it is
difficult to obtain small values in practice. Precisely, the lack of progress is a consequence of the error
in the calculations of G and ∇G.

We implemented PG and SPG within the computing platform FEniCS [35, 40], an open-source
software for solving PDEs with the finite element method. The domain D was discretized using a
regular grid with 128 cells in each direction and crossed diagonals. The function spaces used in the
experiments were built using standard Lagrange finite elements: piecewise linear elements (P1) and
piecewise quadratic elements (P2). The P2 elements were used to compute H, whereas the other functions
such as U, V, p, q were approximated using P1 elements. The Neumann problem (3)-(4) for the ground
truth U⋆α was solved using a mixed function space combining P1 elements and a real-valued Lagrange
multiplier to deal with the compatibility condition (2) and the vanishing integral mean. Regarding the
numerical solution of the resulting linear systems, FEniCS uses sparse LU decomposition by default.
The SPG method, as described in [15], has only a few parameters. The parameter M ≥ 1 defines the
degree of non-monotonicity of the sequence of objective function values generated by the method. In the
experiments of the next section, we considered M = 3 and M = 5. The parameters 0 < λmin ≤ λmax

define the safeguards for the spectral step. As recommended in [15], we considered λmin = 10−16

and λmax = 1016. The line search has the parameter γ > 0 of the non-monotone Armijo descent
condition, whose usual value in the literature is γ = 10−4. We used this value in our experiments.
In the line search, each trial step α uses safeguards 0 < σ1 ≤ σ2 < 1 such that a trial step α is
between σ1 times the previous trial and σ2 times the previous trial. As usual in the literature, we
considered σ1 = 0.1 and σ2 = 0.9. To allow full reproducibility, the codes are available at https:

//github.com/Souza-DR/bls2024-conductivity.

6.1 Performance evaluation of a non-monotone optimization process

In this section we consider four instances of the inverse conductivity problem with internal data with
κ0 ∈ {5, 6, 7, 8} and equidistant σ⋆. In the definition of h, we consider parameter c = 0.02 in the
noise generation. We solved each of the four instances using the PG method and SPG method with
M ∈ {3, 5}. Table 1 shows the results. In the table, we show the noise of each instance, the error,
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the objective function value, and the gradient norm of the initial and final reconstructions, and three
measures of the optimization process cost: the number of iterations, the number of functional evaluations
and the CPU time in seconds. The figures in the table show that the PG method performed, in average,
37.25 iterations per problem, 5.66 function evaluations per iteration and took about 0.95 seconds for
each functional evaluation. These figures are 56.75, 2.84 and 0.79 for the SPG with M = 3 and 131.25,
2.56 and 0.78 for the SPG with M = 5. As expected, the more relaxed criteria for the acceptance of the
new iterate reduces by half the number of function evaluations per iteration, when we compare the PG
method with the SPG method (both with M = 3 and M = 5). On the other hand, the SPG method uses
a larger number of iterations than the PG method. This higher number of iterations is not compensated
by the reduction in the number of function evaluations per iteration and, thus, the SPG takes longer
than the PG method. This is compensated by the fact that the SPG method with M = 5 found final
reconstructions with lower values of the objective function in 3 out of the 4 cases. In the remainder of
this paper, we will consider the SPG with M = 5 for all optimization processes.

κ0 Noise E(a0) E(â) G(a0) G(â) ∥∇G(a0)∥2 ∥∇G(â)∥2 #iter #feval Time

P
G

5 2.32 13.84 3.40 0.50 0.02645 1.57395 0.03734 33 153 176.25
6 3.03 9.23 1.46 0.50 0.08382 0.99416 0.14532 23 146 176.85
7 2.47 14.67 2.77 0.50 0.02769 1.42491 0.01772 71 404 543.72
8 3.22 9.71 2.91 0.50 0.07477 1.39102 0.11703 22 131 189.81

S
P
G

M
=

3 5 2.32 13.84 2.78 0.50 0.02549 1.57395 0.01956 27 78 93.53
6 3.03 9.23 1.74 0.50 0.08650 0.99416 0.04638 40 115 148.32
7 2.47 14.67 3.04 0.50 0.02802 1.42491 0.01060 113 292 408.04
8 3.22 9.71 3.01 0.50 0.07569 1.39102 0.12099 47 141 209.88

S
P
G

M
=

5 5 2.32 13.84 1.92 0.50 0.02445 1.57395 0.00301 225 505 624.42
6 3.03 9.23 0.73 0.50 0.08030 0.99416 0.00720 152 411 535.19
7 2.47 14.67 2.87 0.50 0.02778 1.42491 0.02568 112 280 397.19
8 3.22 9.71 2.64 0.50 0.07059 1.39102 0.05199 36 101 160.01

Table 1: Synthetic comparison of the optimization process performed with the Projected Gradient (PG)
method and with the Spectral Projected Gradient (SPG) method with non-monotonicity parameter
M ∈ {3, 5}.

6.2 Usefulness of a multistart strategy in the optimization process

In this section, we consider the same four instances of the previous section, i.e., four instances of the
inverse conductivity problem with internal data, κ0 ∈ {5, 6, 7, 8}, and equidistant σ⋆, plus six additional
instances with the same characteristics but κ0 ∈ {9, 10, 11, 12, 13, 14}. We solved those ten instances with
the SPG method with M = 5 using ten different initial points generated as ground truth perturbations.
This means the initial estimation is given by a0i = a⋆i + r, where r is a random number with uniform
distribution in [−0.1, 0.1], for all i ∈ Kvor. Tables 2, 3 and 4 show the results. In Table 2, the first line
for each value of κ0 ≤ 8 corresponds exactly to what was presented in Table 1 for the SPG with M = 5.
Tables 2, 3 and 4 show an additional last column compared to Table 1. This column corresponds to the
value of Gζ≡1 at the final reconstruction â. As mentioned at the beginning of the section, the function
G is scaled by including in its definition the weight ζ (or the weights ζα for α = 1, . . . , ᾱ in the case of
the EIT problem), which depends on a0. This scaling implies that G(a0) = 1

2 ᾱ. For this reason, values
of G(â) obtained using different initial points a0 cannot be directly compared. Gζ≡1 corresponds to the
function G with ζα = 1 for α = 1, . . . , ᾱ. The values of Gζ≡1(â) for different approximate solutions
â can be compared with the belief that the smaller the better. In that column, for each instance, the
smallest value of Gζ≡1(â) is shown in bold. What is noteworthy is that this smallest value of Gζ≡1(â)
corresponds, in nine of the ten cases to the smallest or second-smallest value of E(â) and in only one
case to the third-smallest value. This relationship justifies the choice of the final reconstruction with the
smallest value of Gζ≡1(â) as solution for a given instance. Of course, choosing the solution â with the
smallest E(â) should be easier, but computing E(â) requires acknowledging the ground truth, which is
generally not available.

Figures 3, 4, and 5 show the graphical representation of the solutions chosen in this way. The
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reconstructions are visually quite accurate, especially for smaller values of κ0. The most significant
aspect, qualitatively, is that the algorithm successfully captures most of the topological features of the
ground truth. For instance, in the case κ0 = 9 shown in Figure 4, the reconstruction preserves exactly
the same topological characteristics as the ground truth: the cells have the same number of edges and
are connected to their neighboring cells in the same manner. In contrast, the topological features of the
initialization are more notably altered; compare, for example, the groups of cells with indices {1, 2, 3} and
{4, 6, 9}. However, it is worth noting that, given the ill-posed nature of the problem, the initialization
was taken not too far off from the ground truth in terms of spatial arrangement, in the sense that the
cells in the initialization occupy positions similar to those in the ground truth.

Naturally, the greater the number of random initial points considered, the better the quality of
the final reconstruction. We chose to keep this number at ten in order to keep the total cost of the
experiments moderate. It is worth noting that with this strategy we found for all ten instances solutions
â with average E(â) equal to 2.03% and never greater than 3.76%. On the other hand, each optimization
process starting from a different initial point is independent of the others and this process can easily
benefit from a parallel computing environment. Experiments analogous to those reported in this section
were also performed with binary and ternary ground truths. The results obtained were analogous, and
these experiments were not included in the present work, since the binary and ternary cases are expected
to be simpler than the equidistant case presented here.

6.3 EIT with different noise levels using single and multiple measurements

In this section we consider instances of the inverse conductivity problem with boundary measurements
(EIT), κ0 ∈ {5, 6, 7, 8, 9}, equidistant σ⋆i and four noise levels with c ∈ {0.0, 0.0025, 0.005, 0.01}. We
start with the case ᾱ = 1. In all the cases with κ0 ≤ 8, solutions â with E(â) less than or equal to 5%
were found. On the other hand, as shown in Table 5 and Figure 6, for the case κ0 = 9, a solution â
with E(â) less than or equal to 5% was found only for the noiseless instance. Therefore, in the sequence,
we consider the instance with κ0 = 9 and different noise levels with ᾱ = 3 measurements. Table 6 and
Figure 7 show the results. We observe that, considering ᾱ = 3 measurements, â with E(â) less than
or equal to 5% were found in all four cases. It should be noted that, with more measurements, the
evaluation of the objective function and its gradient is computationally more expensive. In almost all
cases, the optimization process reached a time limit of four hours of CPU time. Even so, the objective
function is reduced by about two orders of magnitude. As in the case of internal measurements (see the
discussion in Section 6.2), the algorithm is able to successfully captures most of the topological features
of the ground truth, whereas the topological features of the initialization are altered. We observe some
small differences between the topological features of the reconstruction and the ground truth, see for
instance the configuration of cells {1, 8, 9} in the case κ0 = 9 and c = 0.005 of Figure 6.

To conclude, two key points are worth noting here. First, EIT is inherently more challenging than
the problem with internal measurements, as it relies solely on boundary measurements, which naturally
results in lower reconstruction quality. Second, only a single measurement was used to produce the
results in Figure 6, which is a challenging problem considering the complexity of the geometry. Indeed,
uniqueness of the reconstruction with a single measurement has only been proven for much simpler
geometries, see for instance [6, 21].

7 Concluding remarks

In [14] we have investigated the reconstruction of the potential coefficient in an elliptic equation that
is piecewise constant on a Voronoi diagram. Here we have extended this investigation to the case of
conductivity coefficients in elliptic equations, with applications to EIT. The solution of the PDE in
the conductivity case exhibits strong singularities at the vertices of the Voronoi diagram, which must
be carefully analyzed to prove the shape differentiability. An important aspect of both [14] and the
present work is the relation between the distributed and the boundary expression of the shape gradients,
which leads to two different formulas of the cost functional gradient and consequently to two possible
numerical implementations. On the one hand, the advantage of the distributed expression, which involves
volumetric integrals, is that the shape tensors S1(Ω) and S0(Ω) in Theorems 3 and 6 do not need a
regularity analysis and can be used directly in a numerical implementation. This means that the analysis
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κ0 Noise E(a0) E(â) G(a0) G(â) ∥∇G(a0)∥2 ∥∇G(â)∥2 #iter #feval Time Gζ≡1(â)

5 2.32 13.84 1.92 0.50 0.02445 1.57395 0.00301 225 505 626.46 8.789e-08
5 2.32 9.87 2.36 0.50 0.03955 1.81973 0.03055 80 228 809.44 8.820e-08
5 2.32 8.27 2.02 0.50 0.08871 1.92878 0.01568 70 152 668.40 8.755e-08
5 2.32 12.43 0.93 0.50 0.01679 1.60892 0.00382 63 154 622.87 8.700e-08
5 2.32 13.27 1.25 0.50 0.02127 1.90923 0.00297 211 548 2209.45 8.685e-08
5 2.32 3.35 9.51 0.50 0.26747 1.79383 0.66214 159 522 1705.58 1.648e-07
5 2.32 6.02 1.83 0.50 0.09077 1.94004 0.01131 105 246 1153.10 8.781e-08
5 2.32 14.40 2.22 0.50 0.01287 1.61256 0.00159 60 153 680.89 8.806e-08
5 2.32 5.34 1.30 0.50 0.10172 1.83832 0.03547 50 148 597.60 8.818e-08
5 2.32 10.60 3.14 0.50 0.13292 1.88523 0.05744 41 115 488.08 9.029e-08

6 3.03 9.23 0.73 0.50 0.08030 0.99416 0.00720 152 411 556.57 1.003e-07
6 3.03 8.60 0.52 0.50 0.04922 1.40413 0.02770 43 119 574.56 9.897e-08
6 3.03 14.21 0.74 0.50 0.02369 1.29775 0.00825 55 133 716.46 1.008e-07
6 3.03 14.99 1.67 0.50 0.03576 0.70385 0.01571 98 227 1287.84 1.123e-07
6 3.03 10.42 0.45 0.50 0.03570 0.69982 0.00610 95 235 1291.99 9.935e-08
6 3.03 5.20 0.62 0.50 0.05205 2.19807 0.00928 94 235 1304.52 9.917e-08
6 3.03 11.85 0.69 0.50 0.02388 1.89691 0.00530 106 262 1503.37 1.003e-07
6 3.03 9.30 0.36 0.50 0.08260 1.09238 0.00667 88 225 1280.05 9.892e-08
6 3.03 10.22 0.89 0.50 0.04079 0.90450 0.03334 54 131 790.94 1.015e-07
6 3.03 16.19 0.88 0.50 0.01783 1.65585 0.00361 140 318 2058.18 1.014e-07

7 2.47 14.67 2.87 0.50 0.02778 1.42491 0.02568 112 280 406.58 4.057e-08
7 2.47 8.67 2.65 0.50 0.11333 1.50008 0.03911 87 205 1557.46 3.987e-08
7 2.47 8.26 2.41 0.50 0.07235 1.87241 0.03682 156 379 2858.96 3.846e-08
7 2.47 11.52 1.29 0.50 0.03958 2.23856 0.01809 159 349 2939.70 3.799e-08
7 2.47 7.15 2.23 0.50 0.15238 2.29956 0.07509 224 540 4309.49 3.891e-08
7 2.47 9.39 3.56 0.50 0.04344 1.64397 0.01005 108 306 2185.86 3.951e-08
7 2.47 6.26 1.87 0.50 0.05683 1.70631 0.02648 88 217 1745.32 3.967e-08
7 2.47 9.54 1.78 0.50 0.02788 1.40489 0.00655 111 271 2244.18 3.806e-08
7 2.47 12.91 1.90 0.50 0.15814 1.96233 0.01145 137 335 2815.65 3.813e-08
7 2.47 9.72 1.88 0.50 0.03994 2.15260 0.01390 110 300 2320.54 3.804e-08

8 3.22 9.71 2.64 0.50 0.07059 1.39102 0.05199 36 101 154.64 8.492e-08
8 3.22 6.53 0.87 0.50 0.05853 0.92047 0.01241 157 353 3814.92 7.422e-08
8 3.22 9.05 1.86 0.50 0.10167 1.87974 0.03412 121 292 3025.71 7.591e-08
8 3.22 10.76 0.84 0.50 0.10036 1.37828 0.02507 133 337 3430.74 7.368e-08
8 3.22 10.79 1.10 0.50 0.04690 1.45101 0.01175 166 387 4287.64 7.485e-08
8 3.22 7.10 0.78 0.50 0.06878 2.12588 0.00741 112 265 2962.12 7.358e-08
8 3.22 9.76 0.83 0.50 0.07668 1.73118 0.02337 122 302 3283.14 7.388e-08
8 3.22 10.90 1.12 0.50 0.02822 2.01323 0.00849 119 281 3235.42 7.428e-08
8 3.22 8.53 0.67 0.50 0.04003 1.03357 0.00462 125 294 3450.71 7.363e-08
8 3.22 10.00 0.87 0.50 0.04068 1.09810 0.02049 66 164 1856.91 7.440e-08

Table 2: Results of using ten different initial points in the process of optimizing instances of the conduc-
tivity problem with internal measurements, κ0 ∈ {5, 6, 7, 8}, and equidistant σ⋆.

and the numerical implementation are relatively easy to adapt if one changes the underlying PDE; one
essentially needs to recompute the corresponding S1(Ω) and S0(Ω). On the other hand, the existence of a
boundary expression involving integrals at the edges of the Voronoi diagram, requires a detailed analysis
of the regularity of the solution of the underlying PDE. This regularity can vary significantly depending
on the type of PDE and the specific parameter to be reconstructed. In particular, in the conductivity
case this analysis is more complex compared to the potential case [14]. Related to this issue, it was
also necessary to generalize the framework of [14] by introducing a boundary layer to avoid the lack of
regularity of solutions on the boundary of D. In [14], we observed that the numerical computation of
the boundary gradient is three times faster than the computation of the distributed gradient, for the
same results, which shows that the additional analysis required to obtain the boundary expression can
be useful for the numerical realization. Considering these previous results, we have opted to use only
the interface expression of the gradient for conductivity problems.

From an optimization point of view, the problems considered in this paper are challenging in many
ways. They present many local non-global minimizers, the objective function is computationally ex-

24



κ0 Noise E(a0) E(â) G(a0) G(â) ∥∇G(a0)∥2 ∥∇G(â)∥2 #iter #feval Time Gζ≡1(â)
9 3.05 20.69 10.42 0.50 0.08061 1.59456 0.19981 11 43 69.66 1.109e-07
9 3.05 14.11 1.74 0.50 0.05866 1.63884 0.03365 176 431 5722.41 4.175e-08
9 3.05 18.53 10.55 0.50 0.13269 1.37553 0.93506 17 57 619.71 1.796e-07
9 3.05 17.75 7.38 0.50 0.02748 1.19211 0.12002 230 526 7675.06 5.187e-08
9 3.05 12.38 1.64 0.50 0.04320 1.57088 0.01446 125 295 4283.45 4.134e-08
9 3.05 12.37 2.43 0.50 0.06234 1.73905 0.01879 169 423 5932.15 4.264e-08
9 3.05 13.85 3.53 0.50 0.05248 1.61066 0.06157 120 276 4292.42 4.880e-08
9 3.05 17.78 18.69 0.50 0.08420 1.84086 0.17109 42 123 1741.63 3.078e-07
9 3.05 17.84 9.01 0.50 0.06722 1.72205 0.16450 46 119 1758.55 1.970e-07
9 3.05 13.98 14.29 0.50 0.12998 1.04280 0.20469 114 291 4471.82 9.273e-08

10 2.69 30.06 20.19 0.50 0.04767 1.13143 0.05833 47 150 255.85 1.265e-07
10 2.69 17.52 10.43 0.50 0.06197 1.82301 0.11740 187 435 8710.94 4.718e-08
10 2.69 18.28 5.64 0.50 0.02877 1.72603 0.07920 87 225 4264.91 2.679e-08
10 2.69 33.52 15.57 0.50 0.05601 1.23234 0.08386 79 212 4167.45 1.421e-07
10 2.69 19.27 19.78 0.50 0.04194 1.72884 0.09039 37 105 1945.40 7.415e-08
10 2.69 20.97 6.28 0.50 0.02580 1.72048 0.12663 88 228 4666.56 3.616e-08
10 2.69 20.79 2.08 0.50 0.01828 1.76763 0.00966 314 748 16482.42 2.189e-08
10 2.69 14.50 4.33 0.50 0.03339 1.77251 0.02499 134 320 7340.65 2.420e-08
10 2.69 11.65 3.59 0.50 0.10777 1.53868 0.10470 283 670 15906.48 2.527e-08

11 3.10 20.61 16.03 0.50 0.05048 1.66585 0.05891 100 231 440.81 8.346e-08
11 3.10 25.91 19.03 0.50 0.07569 2.07564 0.14712 126 290 8345.51 1.900e-07
11 3.10 22.35 3.81 0.50 0.04970 1.76190 0.01029 174 387 11309.82 5.078e-08
11 3.10 16.14 10.87 0.50 0.05196 1.77382 0.04083 86 227 5980.53 1.547e-07
11 3.10 18.46 4.32 0.50 0.03913 1.73745 0.01434 222 491 14951.01 5.084e-08
11 3.10 22.74 4.08 0.50 0.04322 1.75091 0.00949 171 402 11837.77 5.008e-08
11 3.10 12.84 2.90 0.50 0.03615 1.56743 0.01055 69 198 4937.83 4.945e-08
11 3.10 19.94 6.78 0.50 0.13705 1.68287 0.05164 77 181 5486.65 6.870e-08
11 3.10 13.79 2.84 0.50 0.04927 1.65762 0.02551 156 360 11257.69 5.019e-08
11 3.10 13.98 13.35 0.50 0.09788 1.31820 0.33009 18 79 1376.19 1.704e-07

12 2.98 18.49 2.04 0.50 0.03522 1.82255 0.01638 125 286 570.41 3.199e-08
12 2.98 15.33 7.97 0.50 0.02693 1.27821 0.05275 36 92 3008.83 4.153e-08
12 2.98 16.93 3.62 0.50 0.03133 1.95410 0.02426 171 390 13800.89 3.398e-08
12 2.98 11.61 5.13 0.50 0.07889 1.73299 0.05346 65 194 5445.55 3.874e-08
12 2.98 17.27 2.89 0.50 0.02405 1.40865 0.02112 71 183 5911.34 3.039e-08
12 2.98 18.77 9.24 0.50 0.04445 1.38472 0.05084 51 139 4290.87 6.926e-08
12 2.98 16.13 2.76 0.50 0.05464 1.75073 0.00882 112 241 9433.72 3.019e-08
12 2.98 15.60 4.86 0.50 0.03918 1.70271 0.04309 121 281 10804.14 3.384e-08
12 2.98 19.94 4.04 0.50 0.03623 1.62085 0.03217 84 201 7301.44 3.649e-08
12 2.98 15.22 5.91 0.50 0.05721 2.16036 0.17645 38 97 3466.54 4.776e-08

Table 3: Results of using ten different initial points in the process of optimizing instances of the conduc-
tivity problem with internal measurements, κ0 ∈ {9, 10, 11, 12}, and equidistant σ⋆.

pensive to evaluate, as is its gradient, and the objective function and gradient are computed with error
since they depend on the numerical solution of PDEs. In this paper, we showed that the problem of
multiple local solutions can be partially circumvented by using different initial guesses. However, the
initial guesses considered are perturbations of a known solution, and the study of alternative strategies
could be a future line of work. In contrast to what was done in [14], in this paper we considered the use
of the Spectral Projected Gradient (SPG) as an alternative to the classical Projected Gradient method.
Equipped with a non-monotone linear search that allows the value of the objective function to be in-
creased from one iteration to the next, SPG proved to be effective and generally found better quality
solutions than the classical Projected Gradient. However, there are specialized methods for dealing with
problems where the objective function and constraints are evaluated inaccurately. Checking whether the
problems under consideration fit into the theoretical framework of these methods and whether they can
be applied to them could also be a line of future work.

Conflict of interest statement: On behalf of all authors, the corresponding author states that there
is no conflict of interest.
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κ0 Noise E(a0) E(â) G(a0) G(â) ∥∇G(a0)∥2 ∥∇G(â)∥2 #iter #feval Time Gζ≡1(â)
13 2.89 20.55 13.43 0.50 0.06285 1.27564 0.11881 87 238 489.00 3.490e-08
13 2.89 22.39 12.79 0.50 0.04078 1.95351 0.06430 178 400 17862.53 4.329e-08
13 2.89 13.00 4.97 0.50 0.05157 1.88547 0.02771 211 470 21159.12 1.926e-08
13 2.89 17.74 16.42 0.50 0.10944 1.95232 0.73691 69 180 7482.35 1.175e-07
13 2.89 22.13 13.24 0.50 0.02336 1.80700 0.06277 103 255 10970.83 4.158e-08
13 2.89 18.73 11.64 0.50 0.01930 1.38184 0.02183 199 456 21590.15 2.735e-08
13 2.89 15.50 3.76 0.50 0.01661 1.65920 0.01365 205 482 21867.62 1.924e-08
13 2.89 20.33 13.01 0.50 0.04214 1.46118 0.09023 59 158 6663.72 3.679e-08
13 2.89 15.23 16.27 0.50 0.04179 1.98155 0.05757 133 322 15123.02 4.598e-08

14 2.90 10.44 3.43 0.50 0.10264 1.44940 0.13051 55 179 385.20 1.589e-08
14 2.90 18.37 3.37 0.50 0.03417 1.53146 0.01793 77 190 10679.42 1.730e-08
14 2.90 11.17 5.26 0.50 0.09079 1.62372 0.10239 33 103 4652.08 1.967e-08
14 2.90 17.47 2.60 0.50 0.05677 2.06821 0.11010 60 196 8771.41 1.617e-08
14 2.90 13.47 6.04 0.50 0.02708 2.07065 0.01264 90 239 13045.20 1.817e-08
14 2.90 9.98 5.81 0.50 0.04811 1.74643 0.04226 49 129 7022.91 1.843e-08
14 2.90 9.77 5.14 0.50 0.17494 1.50279 0.17384 58 156 8366.47 2.021e-08
14 2.90 10.09 6.02 0.50 0.19330 1.84977 0.11049 41 102 5916.89 1.977e-08
14 2.90 13.40 5.03 0.50 0.02962 2.24646 0.02551 45 113 6556.95 2.017e-08

Table 4: Results of using ten different initial points in the process of optimizing instances of the conduc-
tivity problem with internal measurements, κ0 ∈ {13, 14}, and equidistant σ⋆.
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Figure 3: Graphical representation of solutions found for instances of the conductivity problem with
internal measurements, κ0 ∈ {5, 6, 7, 8}, and equidistant σ⋆. As a starting point, ten different ground
truth perturbations were considered. For each of the ten initial points, the optimization process was
performed. The solution with the lowest value of Gζ≡1(â) among the ten solutions is reported in this
figure.

27



Ground truth Initialization Reconstruction
κ
0

=
9

N
o
is

e
=

3.
0
5%

E(a0) = 12.38% E(â) = 1.64%
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Figure 4: Graphical representation of solutions found for instances of the conductivity problem with
internal measurements, κ0 ∈ {9, 10, 11, 12}, and equidistant σ⋆. As a starting point, ten different ground
truth perturbations were considered. For each of the ten initial points, the optimization process was
performed. The solution with the lowest value of Gζ≡1(â) among the ten solutions is reported in this
figure.
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Figure 5: Graphical representation of solutions found for instances of the conductivity problem with
internal measurements, κ0 ∈ {13, 14}, and equidistant σ⋆. As a starting point, ten different ground
truth perturbations were considered. For each of the ten initial points, the optimization process was
performed. The solution with the lowest value of Gζ≡1(â) among the ten solutions is reported in this
figure.
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κ0 Noise E(a0) E(â) G(a0) G(â) ∥∇G(a0)∥2 ∥∇G(â)∥2 #iter #feval Time Gζ≡1(â)

9

0.00 20.69 19.20 0.50 0.00059 1.49325 0.00528 109 302 13490.77 1.095e-07
0.00 14.11 20.83 0.50 0.00290 1.81081 0.10915 115 289 14468.53 2.166e-07
0.00 18.49 6.87 0.50 0.00034 1.85430 0.01603 57 160 1514.02 2.575e-08
0.00 17.75 19.87 0.50 0.00112 1.24957 0.00812 110 291 14552.49 2.084e-07
0.00 12.38 10.63 0.50 0.00100 1.90085 0.01255 115 275 14478.44 7.536e-08
0.00 12.37 4.72 0.50 0.00070 1.79104 0.02275 116 283 14423.01 4.925e-09
0.00 13.85 7.99 0.50 0.00063 2.05734 0.07946 114 281 14478.30 1.289e-08
0.00 17.60 6.64 0.50 0.00580 2.56375 0.05070 115 275 14425.31 5.447e-08
0.00 17.84 12.31 0.50 0.04928 1.98596 0.84315 116 299 14550.73 8.348e-08
0.00 13.98 9.98 0.50 0.00651 1.79156 0.38681 116 273 14411.68 9.192e-08

9

0.37 20.69 21.06 0.50 0.00084 1.49353 0.00607 55 131 14606.83 1.559e-07
0.37 14.11 26.23 0.50 0.05043 1.81098 0.86530 56 132 14522.53 3.773e-06
0.37 18.49 6.60 0.50 0.00019 1.85479 0.01548 57 143 14522.14 1.481e-08
0.37 17.75 19.18 0.50 0.00209 1.24960 0.01384 53 126 14471.93 3.889e-07
0.37 12.38 13.30 0.50 0.00179 1.90089 0.05280 55 126 14597.96 1.350e-07
0.37 12.37 5.38 0.50 0.00196 1.78791 0.13449 56 124 14410.34 1.383e-08
0.37 13.85 10.89 0.50 0.00251 2.05716 0.08039 52 122 14441.49 5.127e-08
0.37 17.60 6.72 0.50 0.00701 2.57003 0.06360 55 131 14474.25 6.554e-08
0.37 17.84 13.46 0.50 0.05923 1.98629 1.49077 57 144 14618.80 1.012e-07
0.37 13.98 10.28 0.50 0.00893 1.78929 0.09559 56 132 14479.43 1.266e-07

9

0.74 20.69 20.43 0.50 0.00079 1.49380 0.00410 54 132 14430.64 1.456e-07
0.74 14.11 21.38 0.50 0.00216 1.81113 0.01869 55 133 14523.42 1.615e-07
0.74 18.49 7.47 0.50 0.00026 1.85526 0.01024 55 129 14430.02 1.975e-08
0.74 17.75 22.26 0.50 0.00102 1.24962 0.04309 53 121 14591.56 1.894e-07
0.74 12.38 12.19 0.50 0.00154 1.90089 0.01375 55 125 14404.56 1.157e-07
0.74 12.37 5.98 0.50 0.00425 1.78469 0.14621 56 137 14540.93 3.007e-08
0.74 13.85 10.91 0.50 0.00258 2.05688 0.05396 52 130 14601.09 5.301e-08
0.74 17.60 6.74 0.50 0.00749 2.57654 0.07019 55 130 14527.62 6.984e-08
0.74 17.84 13.67 0.50 0.06408 1.98673 1.58814 56 137 14547.79 1.108e-07
0.74 13.98 10.51 0.50 0.00941 1.78695 0.09402 56 134 14581.12 1.343e-07

9

1.48 20.69 19.56 0.50 0.00075 1.49432 0.00429 53 123 14526.01 1.380e-07
1.48 14.11 20.42 0.50 0.00399 1.81136 0.03503 54 134 14483.71 2.992e-07
1.48 18.49 8.45 0.50 0.00076 1.85619 0.04700 56 130 14476.60 5.803e-08
1.48 17.75 17.73 0.50 0.00343 1.24966 0.03752 52 118 14478.70 6.401e-07
1.48 12.38 13.09 0.50 0.00185 1.90084 0.01423 53 122 14613.06 1.396e-07
1.48 12.37 5.49 0.50 0.00497 1.77801 0.07882 56 134 14629.78 3.552e-08
1.48 13.85 10.25 0.50 0.00293 2.05606 0.34238 52 118 14586.15 6.055e-08
1.48 17.60 6.77 0.50 0.00934 2.58481 0.06106 54 131 14427.43 8.656e-08
1.48 17.84 14.06 0.50 0.07080 1.98689 0.86912 55 149 14606.08 1.267e-07
1.48 13.98 10.39 0.50 0.00907 1.78211 0.07990 55 136 14504.87 1.310e-07

Table 5: Details of the optimization process of instances of the inverse conductivity problem with bound-
ary measurements (EIT), κ0 = 9, equidistant σ⋆i , and ᾱ = 1. Four noise levels were considered with
c ∈ {0.0, 0.0025, 0.005, 0.01} as the standard deviation parameter of the normal Gaussian noise. As
starting point of the optimization process, ten different ground truth perturbations were considered.
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Figure 6: Graphical representation of solutions found for instances of the inverse conductivity problem
with boundary measurements (EIT), κ0 = 9, equidistant σ⋆i , and ᾱ = 1. Notice the presence of the
thin boundary layer Ω0 in this problem, compare with Figure 1. Four noise levels were considered with
c ∈ {0.0, 0.0025, 0.005, 0.01} as the standard deviation parameter of the normal Gaussian noise. As a
starting point, ten different ground truth perturbations were considered. For each of the ten initial
points, the optimization process was performed. The solution with the lowest value of Gζ≡1(â) among
the ten solutions is reported in this figure.
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κ0 Noise E(a0) E(â) G(a0) G(â) ∥∇G(a0)∥2 ∥∇G(â)∥2 #iter #feval Time Gζ≡1(â)

9

0.00 20.69 8.91 1.50 0.00149 1.84273 0.02414 137 323 43275.82 2.234e-07
0.00 14.11 7.70 1.50 0.00260 2.02049 0.06024 135 320 43488.66 1.797e-07
0.00 18.49 3.27 1.50 0.00034 1.92826 0.00824 139 321 43395.14 4.275e-08
0.00 17.75 12.22 1.50 0.00229 1.46566 0.03871 135 291 43392.04 3.479e-07
0.00 12.38 9.77 1.50 0.00179 2.39166 0.02079 135 316 43279.50 1.251e-07
0.00 12.37 3.20 1.50 0.00197 1.76478 0.07176 139 310 43484.77 3.020e-08
0.00 13.85 4.63 1.50 0.00117 2.41552 0.03156 138 328 43227.29 3.623e-08
0.00 17.60 2.99 1.50 0.00160 2.54720 0.10741 139 317 43482.93 7.247e-08
0.00 17.84 4.96 1.50 0.02193 2.11237 0.58281 140 352 43481.12 2.861e-07
0.00 13.98 3.48 1.50 0.00102 1.82756 0.10038 138 317 43399.82 1.821e-08

9

0.39 20.69 12.03 1.50 0.00182 1.84156 0.01291 106 242 33899.66 2.834e-07
0.41 14.11 8.11 1.50 0.00334 2.02382 0.10730 135 306 43325.11 2.376e-07
0.45 18.49 3.45 1.50 0.00053 1.93105 0.01507 140 314 43425.96 7.108e-08
0.41 17.75 11.53 1.50 0.00094 1.46375 0.00967 133 307 43241.74 1.580e-07
0.41 12.38 9.35 1.50 0.00184 2.39224 0.02961 135 319 43275.75 1.279e-07
0.40 12.37 3.21 1.50 0.00365 1.76904 0.08020 140 299 43345.77 5.448e-08
0.41 13.85 4.61 1.50 0.00213 2.42190 0.11112 140 326 43460.94 6.169e-08
0.42 17.60 2.63 1.50 0.00133 2.55103 0.13593 139 341 43395.70 6.412e-08
0.40 17.84 3.09 1.50 0.00639 2.10844 0.34126 141 344 43364.62 9.961e-08
0.44 13.98 3.43 1.50 0.00194 1.82777 0.19277 140 315 43465.01 3.765e-08

9

0.79 20.69 11.64 1.50 0.00229 1.84017 0.00670 80 195 26351.34 3.365e-07
0.81 14.11 8.04 1.50 0.00438 2.02809 0.03609 141 324 43412.80 3.014e-07
0.89 18.49 3.31 1.50 0.00089 1.93381 0.01008 145 346 43305.13 1.185e-07
0.82 17.75 11.17 1.50 0.00135 1.46154 0.01413 138 311 43282.35 2.159e-07
0.83 12.38 9.04 1.50 0.00259 2.38828 0.03591 143 328 43402.48 1.754e-07
0.81 12.37 2.96 1.50 0.00708 1.77349 0.10515 145 338 43425.55 1.082e-07
0.82 13.85 4.60 1.50 0.00445 2.42726 0.07455 105 269 33355.06 1.226e-07
0.83 17.60 3.35 1.50 0.00386 2.55483 0.15252 145 344 43363.86 1.657e-07
0.80 17.84 3.24 1.50 0.01282 2.10408 0.75484 145 361 43223.72 1.936e-07
0.88 13.98 3.86 1.50 0.00491 1.83122 0.05147 145 319 43435.91 1.005e-07

9

1.58 20.69 10.70 1.50 0.00463 1.83676 0.02209 53 137 17714.48 6.221e-07
1.62 14.11 7.79 1.50 0.00671 2.03953 0.15738 137 322 43210.21 4.496e-07
1.79 18.49 3.83 1.50 0.00267 1.93925 0.02297 144 329 43461.54 3.566e-07
1.65 17.75 12.49 1.50 0.00802 1.45633 0.10066 143 313 43225.89 1.175e-06
1.66 12.38 9.76 1.50 0.00665 2.37681 0.03209 138 325 43343.10 4.480e-07
1.63 12.37 3.09 1.50 0.02116 1.78275 0.10141 143 330 43324.74 3.417e-07
1.64 13.85 4.31 1.50 0.01337 2.42319 0.10950 140 358 42834.43 3.583e-07
1.67 17.60 4.91 1.50 0.01195 2.56226 0.16121 143 349 43408.14 5.060e-07
1.60 17.84 5.68 1.50 0.06209 2.09417 1.13798 146 375 43282.10 8.141e-07
1.76 13.98 3.84 1.50 0.01576 1.84483 0.07556 142 317 43292.95 3.283e-07

Table 6: Details of the optimization process of instances of the inverse conductivity problem with bound-
ary measurements (EIT), κ0 = 9, equidistant σ⋆i , and ᾱ = 3. Four noise levels were considered with
c ∈ {0.0, 0.0025, 0.005, 0.01} as the standard deviation parameter of the normal Gaussian noise. As
starting point of the optimization process, ten different ground truth perturbations were considered.

32



Ground truth Initialization Reconstruction
κ
0

=
9

N
oi

se
=

0.
0%

E(a0) = 13.98% E(â) = 3.48%
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Figure 7: Graphical representation of solutions found for instances of the inverse conductivity problem
with boundary measurements (EIT), κ0 = 9, equidistant σ⋆i , and ᾱ = 3. Four noise levels were considered
with c ∈ {0.0, 0.0025, 0.005, 0.01} as the standard deviation parameter of the normal Gaussian noise. As
a starting point, ten different ground truth perturbations were considered. For each of the ten initial
points, the optimization process was performed. The solution with the lowest value of Gζ≡1(â) among
the ten solutions is reported in this figure.
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Appendix

We recall [37, Theorem 2.8], which is an application of the implicit function theorem suited for shape
optimization problems with PDE constraints. We refer to [37] for the proof.

Assumption 4. Let Ω ∈ P(D), E = E(Ω), F = F (Ω) be two Banach spaces with F reflexive, and
consider a parameterization Ωt defined by (21) for t ∈ [0, t1] for some t1 > 0 and θ ∈ C0,1

∂D(D,Rd). Let
L : [0, t1] × E × F → R be defined as

L(t, φ, ψ) := ⟨A(t, φ), ψ⟩F∗,F + B(t, φ), (72)

where
A : [0, t1] × E → F ∗ and B : [0, t1] × E → R,

with A ∈ C1([0, t1]×E,F ∗) and F ∗ is the dual of F . Let u ∈ E be such that A(0, u) = 0 and B : [0, t1]×
E → R be differentiable at (0, u). Denote by A(u) := ∂φA(0, u) ∈ L(E,F ∗), L(u) := ∂sA(0, u) ∈ F ∗ and
B(u) := ∂φB(0, u) ∈ E∗.

Theorem 8. Suppose that Assumption 4 holds and the linear operator A(u) : E → F ∗ is an isomorphism.
Then, there exists t0 ∈ (0, t1] and a unique C1 function [0, t0] ∋ s 7→ us ∈ E such that u0 = u and
A(t, ut) = 0 for all t ∈ [0, t0]. Also, the derivative u̇ ∈ E of t 7→ ut at t = 0 exists and u̇ ∈ E is the
unique solution of

A(u)u̇ = −L(u) ∈ F ∗. (73)

Furthermore, let θ ∈ C0,1
∂D(D,Rd), T be the associated mapping satisfying Assumption 1, Ωt defined

in (21), and suppose that
J(Ωt) = L(t, ut, ψ) for all ψ ∈ F (Ω). (74)

Then under the above assumptions the shape derivative of J(Ω) in direction θ is given by

dJ(Ω)(θ) = ∂tL(0, u, p) = ⟨L(u), p⟩F∗,F + ∂tB(0, u), (75)

where the adjoint state p ∈ F is the unique solution of

A(u)∗p = −B(u) ∈ E∗, (76)

and A(u)∗ : F → E∗ is the adjoint of A(u) : E → F ∗.

Proof of Theorem 5

Proof. In this proof we write Ω instead of Ω(a) for simplicity. Let Vi be the set of vertices of the cell
Ωi(a), then we either have v = Yijk(0) if v ∈ Vi is an interior vertex, or v = Xijℓ(0) if v ∈ Vi is a
boundary vertex (with respect to ∂D0), see Section 3.2. Define θv := d

dtYijk(0) if v ∈ Vi is an interior

vertex or θv := d
dtXijℓ(0) if v ∈ Vi is a boundary vertex. Using [13, Theorem 7] we know that

θv = Mv(j, k, i)δai +Mv(k, i, j)δaj +Mv(i, j, k)δak (77)

if v ∈ Vi is an interior vertex. Here, (i, j, k) denote the indices of the three cells of the vertex v.
If v is a boundary vertex which is not a singular point of ∂D0, then θv is tangential to ∂D0, and we

have

θv = M ℓ
v (j, i)δai + M ℓ

v (i, j)δaj , (78)

see [13, Theorem 8]. Here (i, j) are the two indices of the cells of the vertex v and φℓ are the level set
functions representing the edges of ∂D0, see Section 3.2. If v is a boundary vertex which is also a singular
point of ∂D0, then θv = 0.

Next, introduce θ : D → R2 defined as

θ(x) :=
∑
v∈V

θvψv(x). (79)
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By definition of ψv, one has θ ∈W 1,∞(D,R2). Thanks to Assumption 2, one can show that the mapping
T (x, t) = x+ tθ(x), x ∈ D, where θ is defined by (79), is bi-Lipschitz and valid to use in Theorem 1, see
the proof of [14, Theorem 5]. We have θ = ∂tT (·, 0).

Thus, using Theorem 1 we have G(a + tδa) = J(Ω(a + tδa)) = J(T (Ω, t)), hence

∇G(a) · δa =
d

dt
(J(Ω(a + tδa)))|t=0 = dJ(Ω)(θ).

Next, we compute, in view of (79), Dθ =
∑
v∈V θv ⊗∇ψv and

S1(Ω) : Dθ =
∑
v∈V

S1(Ω) : (θv ⊗∇ψv) =
∑
v∈V

S1(Ω)∇ψv · θv.

This yields, using Theorem 3,

dJ(Ω)(θ) =

∫
D
S1(Ω) : Dθ + S0(Ω) · θ dx =

∑
v∈V

θv ·
∫
D
S1(Ω)∇ψv(x) + S0(Ω)ψv(x) dx

=
∑
v∈V

θv ·
∫
supp(ψv)

S1(Ω)∇ψv(x) + S0(Ω)ψv(x) dx. (80)

Thus we have obtained

∇G(a) · δa = dJ(Ω)(θ) =
∑

v∈Vint

θv · I(v) +
∑
v∈Vbd

θv · I(v).

Finally, using (77) and (78) we obtain (52).
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nonsmooth domains. Journal de Mathématiques Pures et Appliquées, 134:328–368, 2020.

[37] A. Laurain, P. T. P. Lopes, and J. C. Nakasato. An abstract Lagrangian framework for computing
shape derivatives. ESAIM. Control, Optimisation and Calculus of Variations, 29:article 5, 2023.

[38] A. Laurain and K. Sturm. Distributed shape derivative via averaged adjoint method and applica-
tions. ESAIM. Mathematical Modelling and Numerical Analysis, 50(4):1241–1267, 2016.

[39] E. S. Levitin and B. T. Polyak. Constrained minimization methods. USSR Computational Mathe-
matics and Mathematical Physics, 6(5):1–50, 1966.

[40] A. Logg, K.-A. Mardal, and G. N. Wells, editors. Automated Solution of Differential Equations by
the Finite Element Method, volume 84 of Lecture Notes in Computational Science and Engineering.
Springer, 2012.

[41] D. Mercier. Minimal regularity of the solutions of some transmission problems. Mathematical
Methods in the Applied Sciences, 26(4):321–348, 2003.

[42] S. Nicaise. Polygonal interface problems, volume 39 of Methoden und Verfahren der Mathematischen
Physik [Methods and Procedures in Mathematical Physics]. Verlag Peter D. Lang, Frankfurt am
Main, 1993.
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