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Abstract

The problem of packing ellipsoids is considered in the present work. Usually, the compu-
tational effort associated with numerical optimization methods devoted to packing ellipsoids
grows quadratically with respect to the number of ellipsoids being packed. The reason is that
the number of variables and constraints of ellipsoids’ packing models is associated with the
requirement that every pair of ellipsoids must not overlap. As a consequence, it is hard to
solve the problem when the number of ellipsoids is large. In this paper, we present a nonlin-
ear programming model for packing ellipsoids that contains a linear number of variables and
constraints. The proposed model finds its basis in a transformation-based non-overlapping
model recently introduced by Birgin, Lobato, and Mart́ınez [Journal of Global Optimization
(2015), DOI: 10.1007/s10898-015-0395-z]. Numerical experiments show the efficiency and
effectiveness of the proposed model.

Key words: Cutting and packing ellipsoids, optimization, nonlinear programming, models,
numerical experiments.

1 Introduction

Ellipsoids’ packing techniques are important tools for several physical-chemistry and con-
densed matter physics applications (see [20, 21, 22, 23, 24, 32] and the references therein). In
a robotic problem addressed in [18], a robot arm and other elements in a scene are approxi-
mated by three-dimensional ellipsoids and it allows the authors to explore the relation between
the overlapping of ellipsoids and the overlapping of free-form objects. In [4] and [20], simu-
lation techniques are employed to study the properties of random packings of ellipsoids. In
both works, rectangular boxes with periodic boundaries are considered in order to simulate the
three-dimensional infinite space, and properties like density, orientation, and contacts among
the ellipsoids are analyzed.
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In the last few decades, many works [5, 7, 14, 15, 16, 19, 29, 37, 38, 39, 40] addressed
the problem of packing non-overlapping spheres in the n-dimensional space within a variety of
fixed- or variable-dimensions containers of different shapes by means of nonlinear programming
(NLP) models and methods. However, to the best of our knowledge, only six very recent
works [8, 25, 30, 31, 35, 36] have considered the problem of packing non-overlapping ellipses,
spheroids, or ellipsoids using nonlinear programming models and optimization techniques.

In 2013, the problem of packing as many identical ellipses as possible within a rectangular
container was considered in [25]. By restricting the ellipses to have their semi-axes parallel to
the Cartesian axes and allowing the centers of the ellipses to belong to a finite set of points
in the plane (grid), the problem was modelled as a mixed-integer linear programming problem
(MILP). As expected, only small instances of the MILP model could be solved to optimality
within an affordable time.

In 2014, the problem of packing a given set of (non-necessarily identical) freely-rotated
ellipses within a rectangle of minimum area was considered [31]. The non-overlapping between
the ellipses was modelled using the idea of separating lines. State-of-the-art global optimization
solvers were able to find solutions for instances with up to 14 ellipses. For instances with up
to 100 ellipses, the authors presented solutions obtained by a constructive heuristic method. The
same problem was addressed in [36]. The problem was modelled using “quasi-phi-functions” that
is an extension of the phi-functions [17] extensively and successfully used to model a large variety
of complicated packing problems. As well as in [31], the non-overlapping between ellipses was
modelled based on the idea of separating lines. Models were tackled by a local optimization
solver combined with ad hoc initial points and a multi-start strategy. Most of the solutions
presented in [31] were improved in [36], where numerical experiments with additional instances
with up to 120 ellipses were also shown.

In 2015, the work [30] extended the ideas presented for the two-dimensional case in [31] to
deal with the three-dimensional problem of packing a given set of (non-necessarily identical)
freely-rotated ellipsoids within a rectangular container of minimum volume. The idea of sepa-
rating lines to model the non-overlapping between ellipses was naturally extended to separating
planes to model the non-overlapping between ellipsoids. Resulting NLP models are non-convex
and highly complex. Numerical experiments in [30], that considered instances with up to 100
ellipsoids, showed that state-of-the-art global optimization solvers were only able to deliver fea-
sible solutions within an affordable prescribed CPU time limit. Heuristic methods were also
proposed in [30]. Also in 2015, [35] extended the methods and methodology proposed in [36]
from the two- to the three-dimensional case; but only spheroids, instead of arbitrary ellipsoids,
were considered in the three-dimensional case. In that work, quasi-phi-functions were defined,
NLP models proposed (based on separating planes), and solutions were delivered by applying
a multi-start strategy associated with a local NLP solver. Illustrative numerical experiments
in [35] describe solutions obtained for instances with up to 12 spheroids.

Still in 2015, continuous and differentiable NLP models for n-dimensional ellipsoids’ packing
problems were proposed in [8]. The non-overlapping between ellipsoids was formulated in two
different ways: (i) based on separating hyperplanes (and, in this sense, similarly to the already
mentioned approaches) and (ii) based on linear transformations. In the latter case, the non-
overlapping between a pair of ellipsoids reduces to the non-overlapping between a sphere and
an ellipsoid. The solution to this simpler problem was inspired in the models proposed in [5]
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for packing circles within an ellipse. The non-overlapping models proposed in [8] were employed
in the same work, as an illustration of their applicability, to tackle five variations of two- and
three-dimensional ellipsoids’ packing problems: (a) packing the maximum number of identical
ellipses with given semi-axis lengths within a rectangular container with given length and width;
(b) finding the rectangular container with minimum area that can pack a given set of ellipses;
(c) finding the elliptical container with minimum area that can pack a given set of identical
ellipses; (d) finding the spherical container with minimum volume that can pack a given set
of identical ellipsoids; and (e) finding the cuboid with minimum volume that can pack a given
set of identical ellipsoids. In all cases, a multi-start strategy combined with a local nonlinear
programming solver was employed with the aim of finding good quality solutions. Numerical
experiments showed that, when applied to the instances of problem (b) presented in [31], the
proposed models and methodology improved most of the solutions presented in [31] and [36].
When applied to problem (e), models proposed in [8] can deal with instances with up to 100
ellipsoids in the sense that good quality solutions can be found within an affordable CPU time
limit. On the other hand, only small-sized instances of the NLP models proposed in [30] and [35]
can be handled by off-the-shelf local or global nonlinear solvers.

Nonlinear programming models introduced in [8, 30, 31, 35, 36] share the following property:
If m ellipsoids are considered, the cost of evaluating the constraints that define the models
is O(m2). This means that, independently of variations in the modelling process that may affect
the difficulties that appear when a local or global solver is employed, they all share the quadratic
complexity in the number of ellipsoids. This inhibits their applicability to large-sized instances
of any kind of ellipsoids’ packing problem.

In the present work, we introduce non-overlapping models with an evaluation cost that
is linear in the number of ellipsoids. As a consequence, models for a variety of ellipses’ and
ellipsoids’ packing problems are introduced and numerical experiments with up to 1 000 ellipsoids
are delivered. To fix ideas, suppose that our problem consists of packing m different ellipsoids
in a given container in Rn without overlapping. Assume that, in principle, each ellipsoid is
placed with its center in the origin. The natural variables of the problem turn out to be
the displacements of the ellipsoids by means of which each ellipsoid is inside the container
and intersections between (the interior of the) ellipsoids do not occur. Each displacement is
a combination of a translation and a rotation. Since the translation is represented by n real
parameters and the rotation is represented by n(n− 1)/2 rotation angles, it is natural to think
that the problem has m[n+n(n−1)/2] variables. However, practical mathematical formulations
usually involve O(m2) unknowns. This is because there exists one non-overlapping requirement
for each pair of ellipsoids and each non-overlapping requirement involves additional specific
variables. For example, in order to verify whether two ellipsoids overlap, one finds the points
in the ellipsoids that realize the minimum distance. These points are “specific” variables that
we would like to eliminate. The main idea of this paper is to eliminate the additional O(m2)
variables by making them implicit by means of suitable geometrical transformations.

The rest of this work is organized as follows. A formal definition of the problem is given in
Section 2. The model introduced in [8] that formulates the non-overlapping problem in terms of
its natural variables plus O(m2) additional variables is briefly presented in Section 3. This model
is then used to derive a new non-overlapping model with implicit variables in Section 4. The
new model contains a linear number of variables and constraints on the number of ellipsoids
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to be packed. In Section 5, we show how to efficiently evaluate the constraints of the non-
overlapping model. In Section 6, we present some numerical experiments that show that the
non-overlapping model introduced in the present work can be used to pack a large number of
ellipsoids. Finally, we draw some conclusions in Section 7. The computer implementation of the
models and methods introduced in the current work and the solutions reported in Section 6 are
freely available at http://www.ime.usp.br/~lobato/.

2 Statement of the problem

An ellipsoid in Rn is a set of the form {x ∈ Rn | (x− c)>M−1(x− c) ≤ 1}, where M ∈ Rn×n

is a symmetric and positive definite matrix. The vector c ∈ Rn is the center of the ellipsoid.
The eigenvectors of M−1 determine the principal axes of the ellipsoid and the eigenvalues of
M

1
2 are the lengths of the semi-axes of the ellipsoid. In this work, we deal with the problem of

packing ellipsoids in the n-dimensional space. This problem can be stated as follows. Let m be
the number of ellipsoids to be packed. We are given the lengths l1i , . . . , l

n
i of the semi-axes of

the i-th ellipsoid for each i ∈ {1, . . . ,m} and we are also given a set C ⊂ Rn, which we call the
container. The objective of the problem is to find ellipsoids E1, . . . , Em such that:

1. Ei has semi-axes with lengths l1i , . . . , l
n
i for all i ∈ {1, . . . ,m};

2. int(Ei) ∩ int(Ej) = ∅, for each i, j ∈ {1, . . . ,m} with i 6= j;

3. Ei ⊆ C for all i ∈ {1, . . . ,m}.

The first constraint states that the ellipsoids must have the given lengths of the semi-axes. The
second requirement is that the ellipsoids must not overlap each other, which means that the
interiors of the ellipsoids must be mutually disjoint. The last constraint says that the ellipsoids
must be inside the container. This is a feasibility problem where one must determine the center
and rotation of each ellipsoid so that the constraints 1, 2, and 3 are satisfied. We also consider
an optimization version of this problem in which the volume of the container must be minimized.

3 Transformation-based non-overlapping model

In [8], continuous and differentiable nonlinear programming models for packing ellipsoids
within polyhedra and ellipsoids were introduced. Two models for the non-overlapping constraints
were given. One of them is based on a linear transformation that, for every pair of ellipsoids,
converts one of the ellipsoids into a ball. Since this model forms the basis for the non-overlapping
model that will be introduced in this work, we briefly describe it below. For a more detailed
explanation, see [8].

Let I = {1, . . . ,m} be the set of indices of the ellipsoids to be packed. For each i ∈ I, we

denote by P
1
2
i the n×n diagonal matrix whose diagonal entries are the lengths of the semi-axes

of the ellipsoid Ei. Then, for each i ∈ I, we can represent the ellipsoid Ei as

Ei = {x ∈ Rn | (x− ci)>QiP
−1
i Q>i (x− ci) ≤ 1},
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where ci ∈ Rn is the center of the ellipsoid and Qi ∈ Rn×n is an orthogonal matrix that
determines the orientation of the ellipsoid. For example, for n = 2, we can represent Qi as

Qi =

(
cos θi − sin θi
sin θi cos θi

)
, (1)

whereas, for n = 3, we can represent Qi as

Qi =

 cos θi cosψi sinφi sin θi cosψi − cosφi sinψi sinφi sinψi + cosφi sin θi cosψi

cos θi sinψi cosφi cosψi + sinφi sin θi sinψi cosφi sin θi sinψi − sinφi cosψi

− sin θi sinφi cos θi cosφi cos θi

 . (2)

The parameters θi (when n = 2) and θi, φi, and ψi (when n = 3) are called “rotation angles” of
the ellipsoid. Similar parametrizations can be made for n > 3.

Let i, j ∈ I be such that i < j and consider the ellipsoids Ei and Ej . Let Tij : Rn → Rn be
the linear transformation defined by

Tij(x) = P
− 1

2
i Q>i (x− cj). (3)

Let E iji and E ijj be the ellipsoids obtained when the transformation Tij defined in (3) is applied
to Ei and Ej , respectively, i.e.,

E iji =

{
x ∈ Rn |

[
x− P−

1
2

i Q>i (ci − cj)
]> [

x− P−
1
2

i Q>i (ci − cj)
]
≤ 1

}

and
E ijj = {x ∈ Rn | x>Sijx ≤ 1},

where

Sij = P
1
2
i Q
>
i QjP

−1
j Q>j QiP

1
2
i .

Therefore, E iji is a unit-radius ball centered at P
− 1

2
i Q>i (ci − cj) and E ijj is an ellipsoid centered

at the origin (since Sij = V >ij Vij with Vij = P
− 1

2
j Q>j QiP

1
2
i ). By Lemma 3.1 below (that is a

restatement of Lemma 3.1 in [8]), we have that the ellipsoids Ei and Ej overlap if and only if the

ellipsoids E iji and E ijj overlap.

Lemma 3.1. Consider the ellipsoids Ei, Ej, E iji , and E ijj defined above. Thus, the ellipsoids Ei
and Ej overlap if and only if the ellipsoids E iji and E ijj overlap.

Proof. For any x ∈ Rn, we have

(x− ci)>QiP
−1
i Q>i (x− ci) = (x− ci)>QiP

− 1
2

i P
− 1

2
i Q>i (x− ci)

= (x− ci)>(P
− 1

2
i Q>i )>P

− 1
2

i Q>i (x− ci)

= [(x− cj)− (ci − cj)]>(P
− 1

2
i Q>i )>P

− 1
2

i Q>i [(x− cj)− (ci − cj)]
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= [P
− 1

2
i Q>i (x− cj)− P

− 1
2

i Q>i (ci − cj)]>[P
− 1

2
i Q>i (x− cj)− P

− 1
2

i Q>i (ci − cj)]

= [Tij(x)− P−
1
2

i Q>i (ci − cj)]>[Tij(x)− P−
1
2

i Q>i (ci − cj)].

Therefore, we have that x ∈ int(Ei) if and only if Tij(x) ∈ int(E iji ). Furthermore,

(x− cj)>QjP
−1
j Q>j (x− cj) = (x− cj)>QiP

− 1
2

i P
1
2
i Q
>
i QjP

−1
j Q>j QiP

1
2
i P
− 1

2
i Q>i (x− cj)

= (x− cj)>QiP
− 1

2
i SijP

− 1
2

i Q>i (x− cj)

= (x− cj)>(P
− 1

2
i Q>i )>SijP

− 1
2

i Q>i (x− cj)

= [P
− 1

2
i Q>i (x− cj)]>SijP

− 1
2

i Q>i (x− cj)
= Tij(x)>SijTij(x).

Then, x ∈ int(Ej) if and only if Tij(x) ∈ int(E ijj ). Hence, int(Ei) ∩ int(Ej) 6= ∅ if and only if

int(E iji )∩ int(E ijj ) 6= ∅. In other words, the ellipsoids Ei and Ej overlap if and only if the ellipsoids

E iji and E ijj overlap.

Two propositions given in [8] are now required. The frontier of a set E is denoted by ∂E .

Proposition 3.1. Let E = {x ∈ Rn | x>Mx ≤ 1}, where M ∈ Rn×n is symmetric and positive
definite. Thus, for each y ∈ Rn \ int(E), there exist unique x∗ ∈ Rn and µ∗ ∈ R such that
y = x∗ + µ∗Mx∗ and x∗ is the projection of y onto E. Moreover, x∗ ∈ ∂E and µ∗ ∈ R+.

Proof. See the proof of Proposition 4.1 in [8].

Proposition 3.2. Let E = {x ∈ Rn | x>Mx ≤ 1}, where M ∈ Rn×n is symmetric and positive
definite. Thus, for each x ∈ ∂E and µ > 0, we have (x+ µMx)>M(x+ µMx) > 1.

Proof. See the proof of Proposition 4.2 in [8].

For the ball E iji not to overlap with E ijj , the distance between the center ciji of the unit-radius

ball E iji and the ellipsoid E ijj must be at least one. In particular, ciji must not belong to E ijj . If

ciji /∈ E ijj , then, by Proposition 3.1, there exist unique xij ∈ ∂E ijj and µij ∈ R+ such that

ciji = xij + µijSijxij .

Moreover, xij is the projection of ciji onto E ijj . Hence, the distance d(ciji , E
ij
i ) between ciji and E iji

is given by

d(ciji , E
ij
i ) =

∥∥∥ciji − xij∥∥∥ =
∥∥µijSijxij∥∥ .

By Proposition 3.2, if xij ∈ ∂E ijj and µij > 0, then ciji /∈ E ijj . Therefore, we obtain the following
non-overlapping model:

x>ijSijxij = 1, ∀i, j ∈ I such that i < j (4)
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E ijj

Sijxij xij

ciji

E iji

Figure 3.1: Illustration of the transformation-based non-overlapping model.

µ2ij
∥∥Sijxij∥∥2 ≥ 1, ∀i, j ∈ I such that i < j (5)

P
− 1

2
i Q>i (ci − cj) = xij + µijSijxij , ∀i, j ∈ I such that i < j (6)

µij ≥ 0, ∀i, j ∈ I such that i < j (7)

Figure 3.1 illustrates the transformation-based non-overlapping model. The unit-radius
ball E iji centered at ciji is shown to the left; while the ellipsoid E ijj is shown to the right. The

point ciji can be written as the sum of xij (which is the orthogonal projection of ciji onto the

frontier of E ijj ) and a positive multiple of the vector Sijxij .
Notice that µij must be positive in order to satisfy constraints (5,7). Proposition 3.3 below

provides a positive lower bound εij on µij .

Proposition 3.3. Any solution to the system (4)–(7) is such that µij ≥ εij for all i < j, where

εij ≡ ε(Pi, Pj) = λmin(P−1i )λmin(P
1
2
i )λmin(Pj)λmin(P

− 1
2

j ) > 0.

Proof. See the proof of Proposition 4.3 in [8].

By manipulating the equalities and inequalities in model (4)–(7) and including the positive
bound on µij , we obtain the following equivalent non-overlapping model:

x>ij

(
P
− 1

2
i Q>i (ci − cj)− xij

)
= µij , ∀i, j ∈ I such that i < j (8)∥∥∥∥P− 1

2
i Q>i (ci − cj)− xij

∥∥∥∥2 ≥ 1, ∀i, j ∈ I such that i < j (9)

P
− 1

2
i Q>i (ci − cj) = xij + µijSijxij , ∀i, j ∈ I such that i < j (10)

µij ≥ εij , ∀i, j ∈ I such that i < j. (11)
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The numbers of variables and constraints of this non-overlapping model are quadratically
proportional to the number of ellipsoids to be packed. Thus, when the number of ellipsoids
is relatively high, this model becomes very hard to be numerically solved. The introduction
of a new model that does not suffer from this inconvenience starts by reducing the number
of variables and constraints of model (8)–(11). Although those reductions do not reduce the
complexity of evaluating the model, they are the first step in the direction of developing a more
tractable model. In order to reduce the number of constraints, we will combine all constraints
from the non-overlapping model (8)–(11) into a linear number of constraints by simple summing
up the squared infeasibilities. To reduce the number of variables, we will replace the variables
xij and µij from model (8)–(11) with functions that play the same roles as these variables.

4 Non-overlapping model with implicit variables

In this section, we present a non-overlapping model with implicit variables. The model is
derived from the transformation-based non-overlapping model briefly described in the previous
section. In Section 4.1, we show how to reduce the number of constraints and in Section 4.2 we
show how to reduce the number of variables. The complete model with implicit variables, that
contains a linear number of variables and constraints, is presented in Section 4.3.

4.1 Reduction of the number of constraints

Consider the non-overlapping model (8)–(11). By replacing each of the inequality constraints
of this model with its squared infeasibility measure, we obtain the following model:(

x>ij
(
P
− 1

2
i Q>i (ci − cj)− xij

)
− µij

)2

= 0, ∀i, j ∈ I such that i < j (12)

max

{
0, 1−

∥∥∥∥P− 1
2

i Q>i (ci − cj)− xij
∥∥∥∥2
}2

= 0, ∀i, j ∈ I such that i < j (13)∥∥∥∥xij + µijSijxij − P
− 1

2
i Q>i (ci − cj)

∥∥∥∥2 = 0, ∀i, j ∈ I such that i < j (14)

max{0, εij − µij}2 = 0, ∀i, j ∈ I such that i < j. (15)

This model is equivalent to the model (8)–(11), in the sense that any solution to (12)–(15) is a
solution to the model (8)–(11) and vice-versa.

For each i ∈ I, let Ωi ∈ Rq denote the vector of rotation angles of the i-th ellipsoid. For each
i, j ∈ I such that i < j, define the sum of the squared infeasibilities o : R3n+2q+1 → R+ by

o(ci, cj ,Ωi,Ωj , xij , µij ;Pi, Pj) =

(
x>ij
(
P
− 1

2
i Q>i (ci − cj)− xij

)
− µij

)2

+ max{0, εij − µij}2

+

∥∥∥∥xij + µijSijxij − P
− 1

2
i Q>i (ci − cj)

∥∥∥∥2 + max

{
0, 1−

∥∥∥∥P− 1
2

i Q>i (ci − cj)− xij
∥∥∥∥2
}2

.

(16)
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Observe that the set of constraints (12)–(15) is equivalent to the constraints

o(ci, cj ,Ωi,Ωj , xij , µij ;Pi, Pj) = 0, ∀i, j ∈ I such that i < j. (17)

In order to obtain a model with a linear number of constraints, we can combine the con-
straints (17) in the following way

m∑
j=i+1

o(ci, cj ,Ωi,Ωj , xij , µij ;Pi, Pj) = 0, ∀i ∈ I \ {m}, (18)

or even combining them into a single constraint:

m−1∑
i=1

m∑
j=i+1

o(ci, cj ,Ωi,Ωj , xij , µij ;Pi, Pj) = 0. (19)

The constraints (18) (or the constraint (19)) are equivalent to the constraints (17). Therefore,
we can replace the constraints (8)–(11) with constraints (18) (or constraint (19)) and obtain an
equivalent model for the non-overlapping of ellipsoids.

Although this new model has a linear number of constraints that models the non-overlapping
of ellipsoids, the total number of terms in the summations is quadratically proportional to
the number of ellipsoids to be packed. Thus, the computational cost of evaluating the con-
straints (18) at a given point is practically the same as the cost of evaluating the constraints
(8)–(11). In Section 5, we will see how to efficiently evaluate these constraints.

4.2 Reduction of the number of variables

Consider the constraints (18) and suppose that the ellipsoids Ei and Ej do not overlap. In this
case, we know that there exist values for xij and µij such that the term o(ci, cj ,Ωi,Ωj , xij , µij ;Pi, Pj)
as defined in (16) vanishes and, therefore, does not contribute to the summation in (18). We can
simply take xij as the projection of ciji onto the ellipsoid E ijj and µij as the nonnegative scalar

that satisfies ciji = xij + µijSijxij . The projection of ciji onto the ellipsoid E ijj is the solution to
the problem

minimize
∥∥∥x− ciji ∥∥∥2

subject to x>Sijx ≤ 1.
(20)

However, taking xij as the solution to the problem (20) does not lead to a good overlapping

measure when ellipsoids Ei and Ej do overlap. If ciji ∈ int(E ijj ), then the solution to the problem

(20) is ciji and we must have µij = 0. Then, the term associated with the distance between ciji
and E ijj will be constant for any ciji ∈ int(E ijj ), as well as the term associated with the positivity
of µij in (18). Consider the following problem:

minimize
∥∥∥x− ciji ∥∥∥2

subject to x>Sijx = 1.
(21)
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If ciji /∈ int(E ijj ), problems (20) and (21) are equivalent and they both have a single solution.
Notice that the null vector is not a feasible solution to problem (21). Thus, since problem (21)
has a single constraint and the matrix Sij is positive definite, the gradient of the constraint
is nonzero at every feasible point. Therefore, any solution to this problem satisfies the linear
independence constraint qualification. This means that the Karush–Kuhn–Tucker optimality
conditions of problem (21) (see, for example, Proposition 3.3.1 in [3]) is satisfied by every
solution to problem (21). Thus, if x∗ is a solution to this problem then there exists µ∗ ∈ R such
that

x∗ + µ∗Sijx
∗ − ciji = 0. (22)

If ciji /∈ int(E ijj ) then, by Proposition 3.1, there exist a unique x∗ ∈ ∂E ijj and a unique µ∗

that satisfy (22). Moreover, µ∗ ≥ 0. On the other hand, if ciji ∈ int(E ijj ) then problem (21)
may have more than one solution. But, by Proposition 4.2, the Lagrange multiplier associated
with the constraint of this problem is the same for any solution and belongs to the interval
[−1/λmax(Sij), 0].

We restate here Lemma 4.1 and Proposition 4.1 that were proved in [8]. Lemma 4.1 will be
used in the proof of Lemma 4.2 and Proposition 4.1 will be used in the proof of Proposition 4.2.
Lemma 4.2 and Proposition 4.2 are introduced in the present work. Lemma 4.2 will be used
in the proof of the Proposition 4.2, which shows that the Lagrange multiplier associated with
the constraint of problem (21) is the same for any solution to this problem. Lemma 4.2 is a
particular case of Proposition 4.2.

Lemma 4.1. Consider ellipsoid E = {z ∈ Rn | z>Dz ≤ 1}, where D ∈ Rn×n is a positive
definite diagonal matrix. For each y ∈ E, there exist x ∈ ∂E and α ∈ [−1/λmax(D), 0] such that
y = x+ αDx.

Proof. See the proof of Lemma 5.1 in [8].

Proposition 4.1. Consider ellipsoid E = {z ∈ Rn | z>Sz ≤ 1}, where S ∈ Rn×n is symmetric
and positive definite. For each y ∈ E, there exist x ∈ ∂E and α ∈ [−1/λmax(S), 0] such that
y = x+ αSx.

Proof. See the proof of Proposition 5.1 in [8].

Lemma 4.2. Consider the ellipsoid E = {z ∈ Rn | z>Dz ≤ 1}, where D ∈ Rn×n is diagonal
and positive definite. Given y ∈ E, there exists a unique α ∈ [−1/λmax(D), 0] and there exists
x ∈ ∂E such that y = x+ αDx. Moreover, if α ∈ (−1/λmax(D), 0] then x ∈ ∂E is unique.

Proof. Let I = {1, . . . , n}. For each i ∈ I, denote the i-th diagonal element of matrix D by di.
Consider the system

yi = xi + αdixi,∀i ∈ I, (23)

x>Dx = 1, (24)

α ∈ [−1/λmax(D), 0]. (25)

10



By Lemma 4.1, the system (23)–(25) has at least one solution. Suppose that (x∗, α∗) be a
solution to this system and that α∗ > −1/λmax(D). We shall prove that this is the only solution
to this system. Notice that this is enough to prove the lemma.

Since α∗ > −1/λmax(D), we have that

1 + α∗di > 0,∀ ∈ I. (26)

By (23), we have yi = (1 + α∗di)x
∗
i for each i ∈ I. Then, (23) and (26) imply that, for each

i ∈ I, x∗i = 0 if yi = 0. However, since x∗ = 0 does not satisfy (24), there must exist i ∈ I such
that yi 6= 0.

Since 1 + α∗di > 0 for each i ∈ I, by (23) we have that

x∗i =
yi

1 + α∗di
, ∀i ∈ I. (27)

In order to derive a contradiction, suppose that the system has a solution (x̄, ᾱ) 6= (x∗, α∗).
If ᾱ = α∗, then x̄ = x∗ by (27). Thus, we must have ᾱ 6= α∗. We shall divide the proof in the
cases where ᾱ > −1/λmax(D) and ᾱ = −1/λmax(D).

Case 1. Suppose that ᾱ > −1/λmax(D). Then, 1 + ᾱdi > 0 for each i ∈ I and, therefore,

x̄i =
yi

1 + ᾱdi
,∀i ∈ I.

By (24), we have that

1 = x∗>Dx∗ =

n∑
i=1

di(x
∗
i )

2 =

n∑
i=1

di
y2i

(1 + α∗di)2
.

If ᾱ < α∗, then 1 + α∗di > 1 + ᾱdi > 0 for each i ∈ I and

1 =
n∑

i=1

di
y2i

(1 + α∗di)2
<

n∑
i=1

di
y2i

(1 + ᾱdi)2
=

n∑
i=1

di(x̄i)
2 = x̄>Dx̄.

If ᾱ > α∗, then 0 < 1 + α∗di < 1 + ᾱdi for each i ∈ I and

1 =
n∑

i=1

di
y2i

(1 + α∗di)2
>

n∑
i=1

di
y2i

(1 + ᾱdi)2
=

n∑
i=1

di(x̄i)
2 = x̄>Dx̄.

In both cases we have that x̄>Dx̄ 6= 1 and, therefore, (x̄, ᾱ) is not a solution to the system
(23)–(25).

Case 2. Suppose that ᾱ = −1/λmax(D). Let I+ = {i ∈ I | di = λmax(D)} and I− = I \ I+.
By (23), we must have that yi = 0 for each i ∈ I+, since 1 + ᾱdi = 0 for each i ∈ I+. Thus,
since α∗ > −1/λmax(D), we must have that x∗i = 0 for each i ∈ I+. Hence, since x∗>Dx∗ = 1,
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there exists i ∈ I− such that x∗i 6= 0 and, consequently, yi 6= 0, since yi = (1 + α∗di)x
∗
i . Since

1 + ᾱdi > 0 for each i ∈ I−, by (23) we have that

x̄i =
yi

1 + ᾱdi
, ∀i ∈ I−.

Therefore,

1 = x∗>Dx∗ =
∑
i∈I

di(x
∗
i )

2 =
∑
i∈I−

di(x
∗
i )

2 =
∑
i∈I−

di
y2i

(1 + α∗di)2
<
∑
i∈I−

di
y2i

(1 + ᾱdi)2
=
∑
i∈I−

dix̄
2
i .

Thus,

x̄>Dx̄ =
∑
i∈I

dix̄
2
i ≥

∑
i∈I−

dix̄
2
i > 1,

that is, (x̄, ᾱ) is not a solution to the system (23)–(25).

Hence, (x∗, α∗) is the only solution to the system (23)–(25).

Proposition 4.2. Consider the ellipsoid E = {z ∈ Rn | z>Sz ≤ 1}, where S ∈ Rn×n is a
symmetric and definite positive matrix. Given y ∈ E, there exists a unique α ∈ [−1/λmax(S), 0]
and there exists x ∈ ∂E such that y = x+ αSx. Moreover, if α ∈ (−1/λmax(S), 0] then x ∈ ∂E
is unique.

Proof. By Proposition 4.1, there exist x∗ ∈ ∂E and α∗ ∈ [−1/λmax(S), 0] such that

y = x∗ + α∗Sx∗. (28)

Suppose that α∗ ∈ (−1/λmax(S), 0]. We shall prove that there do not exist x̄ ∈ ∂E and ᾱ ∈
[−1/λmax(S), 0] such that y = x̄+ ᾱSx̄ and (x̄, ᾱ) 6= (x∗, α∗). In order to derive a contradiction,
suppose that there exist x̄ ∈ ∂E and ᾱ ∈ [−1/λmax(S), 0] such that

y = x̄+ ᾱSx̄ (29)

and (x̄, ᾱ) 6= (x∗, α∗).
Since S is symmetric, there exist a orthogonal matrix Q ∈ Rn×n and a diagonal matrix

D ∈ Rn×n formed by the eigenvalues of S such that S = QDQ> and λmax(S) = λmax(D) (see,
for example, Theorem 8.1.1 in [26]). Consider the ellipsoid E ′ = {z ∈ Rn | z>Dz ≤ 1}.

Then, Q>y ∈ E ′, Q>x∗ ∈ ∂E ′, Q>x̄ ∈ ∂E ′. Moreover, since λmax(S) = λmax(D), we have
that α∗ ∈ (−1/λmax(D), 0] and ᾱ ∈ [−1/λmax(D), 0]. By left multiplying both sides of equations
(28) and (29) by Q, we obtain

Q>y = Q>x∗ + α∗DQ>x∗ (30)

and

Q>y = Q>x̄+ ᾱDQ>x̄. (31)
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By Lemma 4.2, if ᾱ = α∗, we must have Q>x̄ = Q>x∗ and, consequently, x̄ = x∗, which
contradicts the hypothesis that (x̄, ᾱ) 6= (x∗, α∗). If ᾱ 6= α∗, then (30) and (31) contradict
Lemma 4.2.

Hence, if α∗ ∈ (−1/λmax(S), 0], then the system

y = x+ αSx,

x>Sx = 1,

α ∈ [−1/λmax(S), 0]

has a unique solution.

The equation (22) implies that

x∗>(x∗ + µ∗Sijx
∗ − ciji ) = 0.

Since x∗>Sijx
∗ = 1, this implies that

x∗>(ciji − x
∗)− µ∗ = 0.

Therefore, since ciji = P
− 1

2
i Q>i (ci − cj), any solution x∗ to problem (21) together with the

corresponding Lagrange multiplier µ∗ satisfy

x∗>
(
P
− 1

2
i Q>i (ci − cj)− x∗

)
− µ∗ = 0

x∗ + µ∗Sijx
∗ − P−

1
2

i Q>i (ci − cj) = 0.

Thus, if we take Xij as a solution to problem (21) and Uij as the corresponding Lagrange
multiplier, the constraints (18) become

m∑
j=i+1

max

{
0, 1−

∥∥∥∥P− 1
2

i Q>i (ci − cj)−Xij

∥∥∥∥2
}2

+ max{0, εij − Uij}2 = 0, ∀i ∈ I \ {m}. (32)

Thus, the variables xij and µij cease to be part of the non-overlapping model. In (32), we
define Xij to be a mapping whose value is a solution to problem (21) and Uij is the function
whose value is the Lagrange multiplier associated with the value of Xij .

4.3 The model

To make it clearer that xij and µij are no longer variables of the model but functions of the
centers and rotation angles of the ellipsoids Ei and Ej , we shall rewrite (32) in the following way:

m∑
j=i+1

f(ci, cj ,Ωi,Ωj ;Pi, Pj) = 0, ∀i ∈ I \ {m}, (33)
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where

f(ci, cj ,Ωi,Ωj ;Pi, Pj) = max

{
0, 1−

∥∥∥∥P− 1
2

i Q>i (ci − cj)−X (ci, cj ,Ωi,Ωj ;Pi, Pj)

∥∥∥∥2
}2

+

max{0, εij − U(ci, cj ,Ωi,Ωj ;Pi, Pj)}2,

(34)

X (ci, cj ,Ωi,Ωj ;Pi, Pj) is a solution to the problem

minimize
∥∥∥x− ciji ∥∥∥2

subject to x>Sijx = 1,
(35)

and U(ci, cj ,Ωi,Ωj ;Pi, Pj) is the Lagrange multiplier associated with this solution.
This new non-overlapping model has m−1 constraints given by (33) and its variables are the

centers of the ellipsoids (ci ∈ Rn for each i ∈ {1, . . . ,m}) and the rotation angles of the ellipsoids
(Ωi ∈ Rq for each i ∈ {1, . . . ,m}). Therefore, this model has a linear number of variables and
a linear number of constraints on the number of ellipsoids to be packed. The following lemma
shows that the constraints (33) constitute indeed a non-overlapping model.

Lemma 4.3. The constraints (33) are satsified if and only if the ellipsoids do not overlap.

Proof. Firstly, notice that the function f(ci, cj ,Ωi,Ωj ;Pi, Pj) is nonnegative at every point. Let
i, j ∈ {1, . . . ,m} be such that i < j. Suppose that the ellipsoids Ei and Ej do not overlap. Thus,

we have that the ellipsoids E iji and E ijj do not overlap either. So, the distance from the center ciji
of the unit-radius ball E iji to the ellipsoid E ijj is at least one. Since in this case ciji /∈ E ijj , we have

that X (ci, cj ,Ωi,Ωj ;Pi, Pj) is the projection of ciji onto the ellipsoid E ijj . Therefore, recalling

that ciji = P
− 1

2
i Q>i (ci − cj), we have∥∥∥∥P− 1

2
i Q>i (ci − cj)−X (ci, cj ,Ωi,Ωj ;Pi, Pj)

∥∥∥∥ ≥ 1.

Consequently, we have that

max

{
0, 1−

∥∥∥∥P− 1
2

i Q>i (ci − cj)−X (ci, cj ,Ωi,Ωj ;Pi, Pj)

∥∥∥∥2
}2

= 0.

Since X (ci, cj ,Ωi,Ωj ;Pi, Pj) is the solution to problem (21) and U(ci, cj ,Ωi,Ωj ;Pi, Pj) is the
Lagrange multiplier associated with this solution and satisfies (22), we have that

U(ci, cj ,Ωi,Ωj ;Pi, Pj) ≥ 0

by Proposition 3.1. By Proposition 3.3, we have that

U(ci, cj ,Ωi,Ωj ;Pi, Pj) ≥ εij .

Therefore,
max{0, εij − U(ci, cj ,Ωi,Ωj ;Pi, Pj)}2 = 0.
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Hence, if the ellipsoids do not overlap, f(ci, cj ,Ωi,Ωj ;Pi, Pj) vanishes.
Suppose that there exist two ellipsoids that overlap. Let i, j ∈ {1, . . . ,m} such that i < j be

the indices of those ellipsoids. Let ciji be the center of the ball E iji , that is, ciji = P
− 1

2
i Q>i (ci−cj).

Let us consider two cases. Suppose that ciji /∈ int(E ijj ). In this case, X (ci, cj ,Ωi,Ωj ;Pi, Pj) is the

projection of ciji onto ellipsoid E ijj . Since Ei and Ej overlap, we have that the ellipsoids E iji and

E ijj also overlap. Thus, ∥∥∥ciji −X (ci, cj ,Ωi,Ωj ;Pi, Pj)
∥∥∥ < 1.

Therefore,

max

{
0, 1−

∥∥∥∥P− 1
2

i Q>i (ci − cj)−X (ci, cj ,Ωi,Ωj ;Pi, Pj)

∥∥∥∥2
}2

> 0.

Now, suppose that ciji ∈ int(E ijj ). Since ciji ∈ int(E ijj ) and X (ci, cj ,Ωi,Ωj ;Pi, Pj) ∈ ∂E ijj , by

(22) and by Proposition 3.2, we must have U(ci, cj ,Ωi,Ωj ;Pi, Pj) ≤ 0. Moreover, since ciji 6=
X (ci, cj ,Ωi,Ωj ;Pi, Pj), we must have U(ci, cj ,Ωi,Ωj ;Pi, Pj) 6= 0. Consequently,

U(ci, cj ,Ωi,Ωj ;Pi, Pj) < 0.

Then,
max{0, εij − U(ci, cj ,Ωi,Ωj ;Pi, Pj)}2 > 0.

Therefore, if the ellipsoids Ei and Ej overlap, f(ci, cj ,Ωi,Ωj ;Pi, Pj) is strictly positive.

We now show that the overlapping measure f of two ellipsoids Ei and Ej given by (34) does
not depend on the scaling of the ellipsoids.

Definition 4.1. Consider the set E ⊆ Rn. For each ν ∈ R++, we define νE = {νx | x ∈ E}.

Consider the ellipsoid Ei = {x ∈ Rn | (x − ci)
>QiP

−1
i Q>i (x − ci) ≤ 1}. Let ν ∈ R++.

According to Definition 4.1, we have

νEi = {νx ∈ Rn | x ∈ Ei}
= {x ∈ Rn | ν−1x ∈ Ei}
= {x ∈ Rn | (ν−1x− ci)>QiP

−1
i Q>i (ν−1x− ci) ≤ 1}

= {x ∈ Rn | (x− νci)>Qi(ν
2Pi)

−1Q>i (x− νci) ≤ 1}.

Thus, νEi is an ellipsoid defined by the tuple (νci,Ωi, ν
2Pi). It is centered at νci, its semi-axis

lengths form the diagonal of νP
1
2
i , and it has the same orientation as the one of ellipsoid Ei.

Lemma 4.4. The function defined in (34) is invariant with respect to the scaling of the ellipsoids.
That is, f(ci, cj ,Ωi,Ωj ;Pi, Pj) = f(νci, νcj ,Ωi,Ωj ; ν

2Pi, ν
2Pj) for each ν ∈ R++.
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Proof. Consider the ellipsoids Ei = {x ∈ Rn | (x − ci)>QiP
−1
i Q>i (x − ci) ≤ 1} and Ej = {x ∈

Rn | (x− cj)>QjP
−1
j Q>j (x− cj) ≤ 1}. Let ν ∈ R++. According to Definition 4.1, we have that

νEi = {x ∈ Rn | (x− νci)>Qi(ν
2Pi)

−1Q>i (x− νci) ≤ 1}
νEj = {x ∈ Rn | (x− νcj)>Qj(ν

2Pj)
−1Q>j (x− νcj) ≤ 1}.

Notice that the constant εij given by Proposition 3.3 for the pair of ellipsoids Ei and Ej is
the same for the pair of ellipsoids νEi and νEj , since

εij ≡ ε(Pi, Pj) = λmin(P−1i )λmin(P
1
2
i )λmin(Pj)λmin(P

− 1
2

j )

= (ν−2νν2ν−1)λmin(P−1i )λmin(P
1
2
i )λmin(Pj)λmin(P

− 1
2

j )

= ν−2λmin(P−1i )νλmin(P
1
2
i )ν2λmin(Pj)ν

−1λmin(P
− 1

2
j )

= λmin((ν2Pi)
−1)λmin((ν2Pi)

1
2 )λmin(ν2Pj)λmin((ν2Pj)

− 1
2 ) = ε(ν2Pi, ν

2Pj).

Thus, we have that

f(νci, νcj ,Ωi,Ωj ; ν
2Pi, ν

2Pj) = max

{
0, 1−

∥∥∥(ν2Pi)
− 1

2Q>i (νci − νcj)−X (νci, νcj ,Ωi,Ωj ; ν
2Pi, ν

2Pj)
∥∥∥2}2

+

max{0, εij − U(νci, νcj ,Ωi,Ωj ; ν
2Pi, ν

2Pj)}2.

Let (νEi)ij be the set obtained by applying the transformation Tij to the ellipsoid νEi, that
is,

(νEi)ij = {x ∈ Rn | x = Tij(z), z ∈ νEi}

= {x ∈ Rn | x = (ν2Pi)
− 1

2Q>i (z − νcj), z ∈ νEi}

= {x ∈ Rn | z = Qi(ν
2Pi)

1
2x+ νcj , z ∈ νEi}

= {x ∈ Rn | (Qi(ν
2Pi)

1
2x+ νcj − νci)>Qi(ν

2Pi)
−1Q>i (Qi(ν

2Pi)
1
2x+ νcj − νci) ≤ 1}

= {x ∈ Rn | (νQiP
1
2
i x+ νcj − νci)>Qi(ν

2Pi)
−1Q>i (νQiP

1
2
i x+ νcj − νci) ≤ 1}

= {x ∈ Rn | ν[QiP
1
2
i x− (ci − cj)]>Qiν

−2P−1i Q>i ν[QiP
1
2
i x− (ci − cj)] ≤ 1}

= {x ∈ Rn | [QiP
1
2
i x− (ci − cj)]>QiP

−1
i Q>i [QiP

1
2
i x− (ci − cj)] ≤ 1}

= {x ∈ Rn | [x− P−
1
2

i Q>i (ci − cj)]>P
− 1

2
i Q>i QiP

−1
i Q>i QiP

1
2
i [x− P−

1
2

i Q>i (ci − cj)] ≤ 1}

= {x ∈ Rn | [x− P−
1
2

i Q>i (ci − cj)]>[x− P−
1
2

i Q>i (ci − cj)] ≤ 1}
= E iji .

Thus, (νEi)ij = E iji . Similarly, we obtain (νEj)ij = E ijj . Therefore, since X (ci, cj ,Ωi,Ωj ;Pi, Pj)

is a projection of the center of E iji onto the frontier of E ijj and X (νci, νcj ,Ωi,Ωj ; ν
2Pi, ν

2Pj) is

a projection of the center of (νEi)ij onto the frontier of (νEj)ij , (νEi)ij = E iji and (νEj)ij = E ijj
imply that

U(νci, νcj ,Ωi,Ωj ; ν
2Pi, ν

2Pj) = U(ci, cj ,Ωi,Ωj ;Pi, Pj)
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by Proposition 4.2, and it is possible to take

X (νci, νcj ,Ωi,Ωj ; ν
2Pi, ν

2Pj) = X (ci, cj ,Ωi,Ωj ;Pi, Pj).

Consequently,

f(νci, νcj ,Ωi,Ωj ; ν
2Pi, ν

2Pj) = max

{
0, 1−

∥∥∥(ν2Pi)
− 1

2Q>i (νci − νcj)−X (νci, νcj ,Ωi,Ωj ; ν
2Pi, ν

2Pj)
∥∥∥2}2

+

max{0, εij − U(νci, νcj ,Ωi,Ωj ; ν
2Pi, ν

2Pj)}2

= max

{
0, 1−

∥∥∥∥P− 1
2

i Q>i (ci − cj)−X (ci, cj ,Ωi,Ωj ;Pi, Pj)

∥∥∥∥2
}2

+

max{0, εij − U(ci, cj ,Ωi,Ωj ;Pi, Pj)}2

= f(ci, cj ,Ωi,Ωj ;Pi, Pj).

Hence, the function defined in (34) is invariant with respect to the scaling of the ellipsoids.

Let ciji ∈ Rn and Sij ∈ Rn×n be a symmetric and positive definite matrix. We have defined
X to be the mapping that returns a solution to problem (35) and U to be the mapping that
returns the Lagrange multiplier associated with that solution. By Proposition 4.2, any solution
to problem (35) is associated with the same Lagrange multiplier. Therefore, no matter what
optimal solution to problem (35) is returned by the mapping X , U will behave like a function.

If ciji /∈ int(E ijj ) then problem (35) has only one solution. On the other hand, if ciji ∈ int(E ijj )
then problem (35) may have multiple optimal solutions. Figure 4.1(a) illustrates some of those
cases. This picture shows an ellipse with semi-axis lengths a and b with a > b. The projection
of the point y1 onto the frontier of the ellipse is univocally determined: the point x1. However,
for any point y2 in the set {y ∈ R2 | b2/a−a < y1 < a− b2/a, y2 = 0}, there are two projections:
x̄2 and x2. If the ellipse is a circle, that is, a = b, then every point in the frontier of the circle
is a projection of the center of the circle onto the frontier. Even if we were able to determine a
single solution to be returned by X in the case in which multiple solutions exist (which is an easy
task since it can be accomplished by tackling (35) with a deterministic nonlinear programming
solver), X would be discontinuous in those cases (see Figure 4.1(b)). In any case, since the set
of points for which problem (35) has multiple optimal solutions has zero measure, it does not
appear that it would be an issue in practice.

Since the constraints (33) depend on X and U whose values are given by the solution of
an optimization problem, the computation of their derivatives (at the points where they are
continuous and differentiable) is nontrivial. In Appendix A, we show how to compute the first
and second order derivatives of the functions that define the constraints (33).

5 Evaluation of the constraints

5.1 Evaluation of the overlapping measure

In order to evaluate the constraints (33) at a given point, we need to find the values of
X (ci, cj ,Ωi,Ωj ;Pi, Pj) and U(ci, cj ,Ωi,Ωj ;Pi, Pj). As we have seen, if the ellipsoids Ei and Ej do
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Figure 4.1: (a) Projections of the points y1 and y2 onto the frontier of the ellipse. The projection
of y1 is univocally determined; while y2 has two projections x̄2 and x2. (b) The points y1 and
y2 can be arbitrarily close, but their projections x1 and x2 may be far from each other.

not overlap, then f(ci, cj ,Ωi,Ωj ;Pi, Pj) in the summation in (33) is zero. Thus, if we know that
the ellipsoids Ei and Ej do not overlap, then we do not need to evaluate the functions X and U .

Suppose that we do not know whether the ellipsoids Ei and Ej overlap. In this case, we need
to compute the values of X (ci, cj ,Ωi,Ωj ;Pi, Pj) and U(ci, cj ,Ωi,Ωj ;Pi, Pj). For this, we need to
solve the problem

minimize 1
2

∥∥∥x− ciji ∥∥∥2
subject to x>Sijx = 1,

where ciji = P
− 1

2
i Q>i (ci − cj). By performing the change of variable w = S

1
2
ijx, this problem is

equivalent to the problem

minimize 1
2w
>S−1ij w − c

ij
i

>
S
− 1

2
ij w

subject to w>w = 1.
(36)

The objective function of problem (36) is a convex quadratic function and the feasible set is the
frontier of the unit-radius ball centered at the origin. This problem can be numerically solved
by the algorithm proposed in [33].

5.2 Efficient evaluation of the constraints

The total number of terms presented in constraints (33) is O(m2). However, most of these
terms do not need to be computed when the constraints are evaluated at a point that is almost
feasible, that is, a point where most of the ellipsoids do not overlap each other. In a feasible
solution, only a constant number of ellipsoids may touch a given ellipsoid. For example, suppose
that the ellipsoids are identical balls. In the two-dimensional case, at most six balls can touch
a given ball. In the three-dimensional case, this number is twelve. For identical ellipsoids,
the number of ellipsoids that can touch a given one will depend on the eccentricities of these
ellipsoids. In any case, in a (almost) feasible solution, only O(m) terms need to be evaluated.
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If the ellipsoids Ei and Ej do not overlap, then the term associated with this pair of ellipsoids
in the summation (33) is zero and does not need to be evaluated. A sufficient condition for the
ellipsoids Ei and Ej not to overlap is that their enclosing balls do not overlap. An enclosing ball
of a set is a ball that contains that set. The minimal enclosing ball of Ei is the ball with radius

ri = λmax(P
1
2
i ) centered at ci. Therefore, if∥∥ci − cj∥∥ ≥ ri + rj

then the ellipsoids Ei and Ej do not overlap. Let

R = max
i∈I
{ri}.

Thus, every ellipsoid Ei is contained in a ball with radius R centered at ci. Therefore, if∥∥ci − cj∥∥ ≥ 2R (37)

then the ellipsoids Ei and Ej do not overlap.
The method described here to identify the pairs of ellipsoids that do not meet the condi-

tion (37) has been used in other works, such as [15] and [34], to identify pairs of balls that may
overlap. Let l = 2R and consider a hypercube with edge length L that contains the container.
This hypercube can be covered by dL/len hypercubes with edge lengths l whose interiors are
mutually disjoint. We refer to each of these hypercubes with edge lengths l as a region. Two
regions are adjacent if they share at least one vertex. Suppose that Ei and Ej have their centers
in non-adjacent regions. In this case, since each region is a hypercube with edge length 2R, we
must have

∥∥ci − cj∥∥ ≥ 2R, that is, the ellipsoids Ei and Ej do not overlap. Therefore, if two
ellipsoids are in non-adjacent regions, they do not overlap. If two ellipsoids are in the same
region or in adjacent regions, they may or may not overlap. Hence, considering all the terms
that appear in the constraints (33), we can evaluate only those that are associated with pairs of
ellipsoids that lie in the same region or in adjacent regions.

Each ellipsoid can be assigned to a region in constant time based on its center. The region
of the ellipsoid Ei is defined as the tuple

(p([ci]1), . . . , p([ci]n))

where
p(x) = min{max{1, bx/lc}, Nreg}

and Nreg = dL/le. The method to determine which pairs of ellipsoids should be considered works
as follows. First, an n-dimensional array with Nreg entries for each dimension is created. Each
element of this array is associated with a region and stores a list with the indices of ellipsoids
that belong to that region. This structure can be constructed in O(m) time. Also, there is
a list with the non-empty regions (regions that have at least one ellipsoid). This list is also
constructed in O(m) time. Then, for each non-empty region and for each ellipsoid Ei in that
region, the term f(ci, cj ,Ωi,Ωj ;Pi, Pj) associated with the ellipsoids Ei and Ej is computed for
each ellipsoid Ej in that region and in adjacent regions. Considering the case where all the
ellipsoids have approximately the same size, each region will contain only a constant number of
ellipsoids in an almost feasible solution. In this case, this algorithm performs in O(m) time.
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6 Numerical experiments

In this section, we present some experiments to show that the non-overlapping model (33)
with implicit variables introduced in the present work can be used to solve instances larger
than the ones solved by the transformation-based model (8)–(11) introduced in [8]. Since the
former model can be solved faster (by solved we mean that a stationary point can be found),
it opens the possibility for the use of a multi-start strategy to potentially obtain better quality
solutions. On the one hand, this strategy could not be applied with the original transformation-
based model for medium- or large-sized instances due to the excessive amount of time spent to
perform a single local minimization starting from a given initial guess. For example, a single
local minimization of the problem of packing 100 three-dimensional ellipsoids within a minimum
volume ball took almost 20 hours in the numerical experiments reported in [8]. On the other
hand, the model with implicit variables is not suitable for small-sized instances because of the
overhead of evaluating the non-overlapping constraints that were designed for medium- and
large-sized instances and, in that case, the models introduced in [8] should be preferred.

We have implemented two- and the three-dimensional versions of the introduced non-over-
lapping models with implicit variables in Fortran 2003, as well as the optimization procedure. To
solve the nonlinear programming problems, we used Algencan [1, 11] version 3.0.0, which is avail-
able for downloading at the TANGO Project web page (http://www.ime.usp.br/~egbirgin/
tango/). The models, the optimization procedure, and Algencan were compiled with the GNU
Fortran compiler (GCC) 4.7.2 with the -O3 option enabled. The experiments were run on an

Intel 2.4GHz Intel R© Core
TM

i7-3770 with 16GB of RAM memory and Debian GNU/Linux 7.8
(Linux version 3.2.0-4-amd64) operating system. Our computer implementation and the solu-
tions reported in this section are freely available at http://www.ime.usp.br/~lobato/.

Algencan is an augmented Lagrangian method for nonlinear programming that solves the
bound-constrained subproblems using Gencan [2, 9, 10], an active-set method for bound-cons-
trained minimization. Gencan adopts the leaving-face criterion described in [9], that employs
spectral projected gradients defined in [12, 13]. For the internal-to-the-face minimization, Gen-
can uses an unconstrained algorithm that depends on the dimension of the problem and the
availability of second-order derivatives. For small problems with available Hessians, a Newto-
nian trust-region approach is used (see [2]); while for medium- and large-sized problems with
available Hessians a Newtonian line-search method that combines backtracking and extrapola-
tion is used. When second-order derivatives are not available, each step of Gencan computes the
direction inside the face using a line-search truncated-Newton approach with incremental quo-
tients to approximate the matrix-vector products and memoryless BFGS preconditioners (this is
the case of the problems considered in the present section, for which only first-order derivatives
were coded). In all the experiments described in the present section, the local solver Algencan
was run using its default parameters; while the optimality and feasibility tolerances εfeas and εopt
(that are parameters that must be provided by the user) were both set to 10−4. Those tolerances,
related to the stopping criteria, are used to determine whether a solution (stationary point) to
the optimization problem being solved has been found. See [11, pp. 116–117] for details.

Although Algencan is a local nonlinear programming solver, it was designed in such a way
that global minimizers of subproblems are actively pursued, independently of the fulfillment of
approximate stationarity conditions in the subproblems. In other words, Algencan’s subproblem
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solvers try always to find the lowest possible function values, even when this is not necessary
for obtaining approximate local minimizers. As a consequence, practical behavior of Algencan
is usually well explained by the properties of their global-optimization counterparts [6]. The
“preference for global minimizers” of Algencan has been discussed in [1]. This has also been
observed in papers devoted to numerical experiments concerning Algencan and other solvers
(see, for example, [27, 28] and the references therein). This does not mean at all that Algencan
is always able to find global minimizers.

6.1 Two-dimensional packing

In this section, we consider the problem of packing ellipses within a minimum area container.
Each instance is defined by the lengths of the semi-axes of them ellipses to be packed and the type
of the container. For illustration purposes, we have considered circles, ellipses, and rectangles
as containers. We used the models introduced in [8] for modelling the confinement of ellipses
within circles, ellipses, and rectangles. Assuming that the lengths of semi-axes of the i-th ellipse

are ai and bi, for each i ∈ I, P
1
2
i is the diagonal matrix whose diagonal entries are ai and bi. For

each i ∈ I, the rotation matrix for the i-th ellipse is given by (1). Therefore, the variables of
the problem that determine the center and orientation of the i-th ellipse are ci ∈ R2 and θi ∈ R,
respectively, for i ∈ I. When the container is a circle, the additional variable r determines the
radius of the circular container. When the container is an ellipse, the additional variables a
and b determine the lengths of semi-axes of the elliptical container. When the container is a
rectangle, the additional variables l and w determine the length and width of the rectangular
container. The containment model may have additional variables depending on the type of the
container. For more details about the containment models, see [8].

6.1.1 Identical ellipses

Since this is a non-convex optimization problem, we employ a multi-start strategy in order
to enhance the probability of finding good quality solutions. At each iteration of the multi-start
strategy, an initial solution is constructed and then the NLP local solver Algencan is used to
solve the problem starting from this initial solution. In the initial solution of the first iteration,
the ellipses to be packed are not rotated and their centers are arranged in a generalisation of
the hexagonal lattice for circles (see Figure 6.1(a)). For each of the subsequent iterations, the
initial solution is given by a random perturbation of the most recent feasible solution found.
The centers and rotation angles of the ellipses are perturbed by at most 2.5%. A CPU time
limit of 48 hours for running the multi-start strategy on each considered instance was imposed.

Table 6.1 shows the results obtained for the problem of packing m ∈ {100, 200, 300, 400, 500,
1000} identical ellipses with semi-axis lengths 2 and 1 within a minimum area ellipse. The first
column shows the number m of ellipses packed. The second and third columns show the area of
the container and the density of the packing in the best solution found, respectively. Areas and
densities are rounded to 5 decimal places (results up to the machine precision can be found in
http://www.ime.usp.br/~lobato/). The fourth and fifth columns show the number of local
minimizations and the total time spent until the best solution was found, respectively. The
sixth column shows the total number of (completed) local minimizations performed within the
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m Area Density
# Local minimi- Time to Total Avg. time
zations to find find the # local mini- per local

the best solution best solution mizations minimization
100 720.94153 0.87152 542 1d09h00m38s 755 3m48s
200 1429.04475 0.87935 168 1d02h41m47s 295 9m40s
300 2135.66113 0.88261 49 13h30m17s 188 15m14s
400 2849.03264 0.88215 88 1d21h32m10s 93 30m19s
500 3553.45497 0.88410 104 1d22h15m45s 112 25m10s

1000 7110.81559 0.88361 22 1d22h10m38s 22 2h05m56s

Table 6.1: Numerical results of the solutions found to the problem of packing m ∈
{100, 200, 300, 400, 500, 1000} identical ellipses with semi-axis lengths a = 2 and b = 1 within a
minimum area ellipse.

m Area Density
# Local minimi- Time to Total Avg. time
zations to find find the # local mini- per local

the best solution best solution mizations minimization
100 718.30400 0.87473 5462 1d15h24m55s 6759 25s
200 1424.01823 0.88246 1811 1d23h30m46s 1827 1m34s
300 2125.50589 0.88683 839 1d23h30m27s 846 3m23s
400 2821.35592 0.89080 425 1d15h37m55s 529 5m20s
500 3524.99378 0.89123 773 1d15h01m11s 996 2m52s

1000 7012.42249 0.89601 94 1d22h09m52s 103 27m36s

Table 6.2: Numerical results of the solutions found to the problem of packing m ∈
{100, 200, 300, 400, 500, 1000} identical ellipses with semi-axis lengths a = 2 and b = 1 within a
minimum area rectangle.

imposed CPU time limit and the last column shows the average time per local minimization.
Figure 6.1 shows graphical representations of the initial and the best solutions found for the

problem of packing 100 ellipses within a minimum area ellipse. Figure 6.1(a) depicts the initial
solution of the first iteration. Figure 6.1(b) represents the initial solution of the 542nd iteration
and Figure 6.1(c) shows the solution found in the 542nd local minimization. Figure 6.2 illustrates
the best solutions found for the problem of packing m ellipses, for m ∈ {200, 300, 400, 500, 1000},
within a minimum area ellipse.

The results we obtained for the problem of packing identical ellipses within a minimum area
rectangle are shown in Table 6.2. Figure 6.3 depicts the best solutions found within the imposed
CPU time limit.

6.1.2 Non-identical ellipses

We also dealt with the problem PC of packing m non-identical ellipses within a minimum
area circle. We considered an instance formed by m = 231 ellipses with mutually different pairs
of semi-axis lengths belonging to the set {(1 + 0.2α, 1 + 0.2β) | α, β ∈ {0, 1, . . . , 20}, α ≤ β}.
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(a) (b) (c)

Figure 6.1: First and final solutions to the problem of packing m = 100 identical ellipses with
semi-axis lengths a = 2 and b = 1 within a minimum area ellipse. (a) First initial (feasible)
solution. (b) Initial (infeasible) solution at iteration 542. (c) Solution found at iteration 542.

In order to create an initial solution to this problem, we considered another problem, called
PS , whose solution will serve as a starting guess to problem PC . Problem PS is the problem
of packing the ellipses without overlap so that the sum of the squared distances of the ellipses’
centers to the origin of the Cartesian coordinate system is minimum. For solving problem PS ,
we considered a multi-start strategy similar to the one used for solving the problem of packing
ellipses within a minimum area ellipse. We imposed a CPU time limit of one hour to solve
problem PS . Figure 6.4(a) depicts the solution found to this problem within the given time
limit. This is the first initial solution to problem PC . (The circle that appears around the
ellipses in Figure 6.4(a) is not related to problem PS but it is part of the initial solution for
problem PC .) For problem PC , the same multi-start strategy was used and Figure 6.4(b) shows
the best solution found after 48 hours (and 135 local minimizations). In this solution, the
container has radius 49.39860, approximately.

6.2 Three-dimensional packing

In this section, we consider the problems of packing ellipsoids within a minimum volume
ball and within a minimum volume cuboid. We used the models introduced in [8] for modelling
the confinement of ellipsoids within balls and cuboids. We deal with instances formed by m ∈
{100, 200, 300, 400, 500} identical ellipsoids with semi-axis lengths l1 = 1, l2 = 0.75, and l3 = 0.5.

For each i ∈ I, P
1
2
i is the diagonal matrix whose diagonal entries are l1, l2, and l3. For each

i ∈ I, the rotation matrix for the i-th ellipsoid is given by (2). As in the two-dimensional
experiments, we use a multi-start strategy in order to find good quality solutions. The initial
solution is defined as follows. The ellipsoids are not rotated and their centers correspond to m
points in the set {(δ1l1, δ2l2, δ3l3) | δ1, δ2, δ3 ∈ Z} that are closest to the origin. In this way, the
ellipsoids do not overlap in the initial solution. The containers (ball and cuboid) in the initial
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m = 200 m = 300 m = 400

m = 500 m = 1000

Figure 6.2: Graphical representation of the solutions found to the problem of packing m ∈
{200, 300, 400, 500, 1000} identical ellipses with semi-axis lengths a = 2 and b = 1 within a
minimum area ellipse.

24



m = 100 m = 200 m = 300

m = 400 m = 500

m = 1000

Figure 6.3: Graphical representation of the solutions found to the problem of packing m ∈
{100, 200, 300, 400, 500, 1000} identical ellipses with semi-axis lengths a = 2 and b = 1 within a
minimum area rectangle.
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(a) (b)

Figure 6.4: Initial and final solutions to the problem of packing m = 231 non-identical ellipses
whit semi-axis lengths belonging to the set {(1 + 0.2α, 1 + 0.2β) | α, β ∈ {0, 1, . . . , 20}, α ≤ β}
within a minimum area ball. (a) Initial (feasible) solution. (b) Best solution found.

solution are the smallest ones that contain the enclosing balls of each ellipsoid. For each of the
subsequent iterations, the initial solution is given by a random perturbation of the most recent
feasible solution found. The centers and rotation angles of the ellipsoids were perturbed by at
most 10%.

Table 6.3 exhibits the results for the minimization of the volume of the spherical container;
while Table 6.4 presents the results for the minimization of the volume of the cuboidal container.
The first column shows the number m of packed ellipsoids. The second and third columns show
the volume of the container and the packing density in the best solution found, respectively.
The fourth and fifth columns show the number of local minimizations (number of multi-start
iterations) and the total time required to find the best solution found. The sixth and seventh
columns show the number of (completed) local minimizations and the average time per local
minimization within the CPU time limit of 48 hours.

Figure 6.5 depicts some solutions that appeared during the multi-start procedure for the
problem of packing m = 100 identical ellipsoids within a minimum volume ball. Figure 6.5(a)
illustrates the first initial solution that was constructed for this problem. Figure 6.5(b) shows
the initial solution for the 369th iteration and Figure 6.5(c) displays the solution found at itera-
tion 369. Figure 6.6 illustrates the solutions for the problem of packing m ∈ {200, 300, 400, 500}
identical ellipsoids within a minimum volume ball; while Figure 6.7 exhibits the solutions for the
problem of packing m ∈ {100, 200, 300, 400, 500} identical ellipsoids within a minimum volume
cuboid.
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(a) (b) (c)

Figure 6.5: First and final solutions to the problem of packing m = 100 identical ellipsoids with
semi-axis lengths l1 = 1, l2 = 0.75, and l3 = 0.5 within a minimum volume ball. (a) First
initial (feasible) solution. (b) Initial (infeasible) solution at iteration 369. (c) Solution found at
iteration 369.

m Volume Density
# Local minimi- Time to Total Avg. time
zations to find find the # local mini- per local

the best solution best solution mizations minimization
100 235.84476 0.66603 369 22h45m07s 894 3m13s
200 466.02054 0.67413 252 1d14h37m57s 309 9m18s
300 690.88831 0.68208 137 1d23h07m55s 142 20m15s
400 924.38840 0.67971 64 1d23h43m17s 64 44m44s
500 1166.65841 0.67320 89 1d20h49m59s 89 30m13s

Table 6.3: Numerical results of the solutions found to the problem of packing m ∈
{100, 200, 300, 400, 500} identical ellipsoids with semi-axis lengths l1 = 1, l2 = 0.75, and l3 = 0.5
within a minimum volume ball.

m Volume Density
# Local minimi- Time to Total Avg. time
zations to find find the # local mini- per local

the best solution best solution mizations minimization
100 245.00312 0.64113 125 19h22m54s 324 8m51s
200 477.21441 0.65832 113 1d18h17m59s 139 20m16s
300 708.62093 0.66501 165 1d06h34m00s 298 9m16s
400 935.85630 0.67138 45 1d22h32m20s 45 1h02m03s
500 1163.44519 0.67506 16 1d01h44m10s 27 1h43m41s

Table 6.4: Numerical results of the solutions found to the problem of packing m ∈
{100, 200, 300, 400, 500} identical ellipsoids with semi-axis lengths l1 = 1, l2 = 0.75, and l3 = 0.5
within a minimum volume cuboid.
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m = 200 m = 300

m = 400 m = 500

Figure 6.6: Graphical representation of the solutions found to the problem of packing m ∈
{200, 300, 400, 500} identical ellipsoids with semi-axis lengths l1 = 1, l2 = 0.75, and l3 = 0.5
within a minimum volume ball.
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m = 100 m = 200 m = 300

m = 400 m = 500

Figure 6.7: Graphical representation of the solutions found to the problem of packing m ∈
{100, 200, 300, 400, 500} identical ellipsoids with semi-axis lengths l1 = 1, l2 = 0.75, and l3 = 0.5
within a minimum volume cuboid.
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7 Concluding remarks

Up to the authors acknowledge, all published nonlinear programming models for avoiding
the overlapping between ellipsoids have a quadratic number of variables and constraints on
the number of ellipsoids to be packed. Therefore, when the number of ellipsoids is relatively
large, solving these models become a computationally prohibitive task. In order to alleviate this
shortcoming, we proposed a model with implicit variables, inspired by the transformation-based
non-overlapping model introduced in [8], that has a linear number of variables and constraints.
Moreover, a clever algorithm for evaluating the whole model in linear time was also proposed.
Numerical experiments showed that, by considering the proposed non-overlapping model, it is
possible to tackle problems one or two order of magnitude larger than the instances previously
addressed in the literature.
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A Derivatives

The computation of the derivatives of the function defined in (33) is nontrivial. That is
because this function depends on the functions X and U whose values are given by the solution
of an optimization problem. Firstly, we will show the derivatives of the terms that compose the
function defined in (33) in terms of the derivatives of the functions X and U . Next, we will
show how to compute the derivatives of the functions X and U . To simplify the notation, we
will denote by Xij the value X (ci, cj ,Ωi,Ωj ;Pi, Pj) and by Uij the value U(ci, cj ,Ωi,Ωj ;Pi, Pj).

A.1 First order derivatives

Let i, j ∈ {1, . . . ,m} such that i < j. We have that X (ci, cj ,Ωi,Ωj ;Pi, Pj) is a solution to
the problem

minimize 1
2

∥∥∥x− ciji ∥∥∥2
subject to x>Sijx = 1,

(38)

where ciji = P
− 1

2
i Q>i (ci−cj), and U(ci, cj ,Ωi,Ωj ;Pi, Pj) is the corresponding Lagrange multiplier.

According to the Karush–Kuhn–Tucker first-order necessary conditions for problem (38), we have

Xij + UijSijXij − ciji = 0

Xij
>SijXij − 1 = 0.

Thus, by defining the function F : Rn × Rn × Rq × Rq → Rn+1 as

F (ci, cj ,Ωi,Ωj) =

 Xij + UijSijXij − ciji
1
2

(
Xij
>SijXij − 1

)  , (39)

we have that F (ci, cj ,Ωi,Ωj) = 0 for all ci, cj ∈ Rn and for all Ωi,Ωj ∈ Rq. That is, F is
an identically zero function. Therefore, we have that the derivative of function F is also an
identically zero function. Hence, for each variable v of the function F and for each component
` ∈ {1, . . . , n+ 1} of F , we have

dF`

dv
=
∂F`

∂v

dv

dv
+
∂F`

∂Uij
dUij
dv

+

n∑
k=1

∂F`

∂[Xij ]k

d[Xij ]k
dv

= 0. (40)
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Once the values of Xij and Uij are known, we have, for each ` ∈ {1, . . . , n + 1}, analytical
expressions for ∂F`

∂v , ∂F`
∂Uij , and ∂F`

∂[Xij ]k
for each k ∈ {1, . . . , n}. On the other hand, the values of

dUij
dv and

d[Xij ]k
dv for each k ∈ {1, . . . , n} are unknown, but can be computed by solving the linear

system provided by (40):

∂F1
∂[Xij ]1

· · · ∂F1
∂[Xij ]n

∂F1
∂Uij

∂F2
∂[Xij ]1

· · · ∂F2
∂[Xij ]n

∂F2
∂Uij

...
...

...
...

∂Fn+1

∂[Xij ]1
· · · ∂Fn+1

∂[Xij ]n

∂Fn+1

∂Uij





d[Xij ]1
dv
...

d[Xij ]n
dv

dUij
dv


= −



∂F1
∂v

∂F2
∂v
...

∂Fn+1

∂v


.

Then, for each i, j ∈ {1, . . . ,m} such that i < j, we need to solve 2(n + q) linear systems with
n + 1 equations and n + 1 variables (one linear system for each variable among ci, cj , Ωi and
Ωj).

Once i and j are fixed, observe that the 2(n + q) linear systems have the same coefficient
matrix. The only difference between these systems are their right-hand sides. Thus, in order to
solve these linear systems, we can factorize the coefficient matrix only once and then, for each
right-hand side, solve the linear system with the coefficient matrix already factorized.

A.2 Second order derivatives

For each variable v of the function F defined in (39) and for each component ` of F , we
define the function Gv

` as the total derivative of the function F` with respect to v:

Gv
` (ci, cj ,Ωi,Ωj) =

dF`

dv
(ci, cj ,Ωi,Ωj).

Since the function F is identically zero, its derivative is also identically zero. Then, for each
variable u of the function Gv

` , we have

dGv
`

du
=
∂Gv

`

∂u

du

du
+
∂Gv

`

∂Uij
dUij
du

+

n∑
k=1

∂Gv
`

∂[Xij ]k

d[Xij ]k
du

= 0. (41)

Next, we present the partial derivatives of the function Gv
` , that appear in the expression (41).

The partial derivative of Gv
` with respect to the variable u is given by

∂Gv
`

∂u
=
∂2F`

∂u∂v
+

∂2F`

∂u∂Uij
dUij
dv

+
∂F`

∂Uij
∂

∂u

(
dUij
dv

)
+

n∑
k=1

∂2F`

∂u∂[Xij ]k

d[Xij ]k
dv

+
n∑

k=1

∂F`

∂[Xij ]k

∂

∂u

(
d[Xij ]k

dv

)
.

The partial derivative of Gv
` with respect to Uij is given by

∂Gv
`

∂Uij
=

∂2F`

∂Uij∂v
+

∂2F`

∂Uij∂Uij
dUij
dv

+
∂F`

∂Uij
∂

∂Uij

(
dUij
dv

)
+
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n∑
k=1

∂2F`

∂Uij∂[Xij ]k

d[Xij ]k
dv

+
n∑

k=1

∂F`

∂[Xij ]k

∂

∂Uij

(
d[Xij ]k

dv

)

=
∂2F`

∂Uij∂v
+

n∑
k=1

∂2F`

∂Uij∂[Xij ]k

d[Xij ]k
dv

.

Finally, the partial derivative of Gv
` with respect to Xij is given by

∂Gv
`

∂[Xij ]t
=

∂2F`

∂[Xij ]t∂v
+

∂2F`

∂[Xij ]t∂Uij
dUij
dv

+
∂F`

∂Uij
∂

∂[Xij ]t

(
dUij
dv

)
+

n∑
k=1

∂2F`

∂[Xij ]t∂[Xij ]k

d[Xij ]k
dv

+
n∑

k=1

∂F`

∂[Xij ]k

∂

∂[Xij ]t

(
d[Xij ]k

dv

)

=
∂2F`

∂[Xij ]t∂v
+

∂2F`

∂[Xij ]t∂Uij
dUij
dv

+
n∑

k=1

∂2F`

∂[Xij ]t∂[Xij ]k

d[Xij ]k
dv

.

The simplifications in the expressions of the derivatives of Gv
` with respect to Uij and Xij come

from the removal of null elements.
Considering that the values of the first order derivatives of the function F are known, the

equation (41) provides the following linear system

∂F1
∂[Xij ]1

· · · ∂F1
∂[Xij ]n

∂F1
∂Uij

∂F2
∂[Xij ]1

· · · ∂F2
∂[Xij ]n

∂F2
∂Uij

...
...

...
...

∂Fn+1

∂[Xij ]1
· · · ∂Fn+1

∂[Xij ]n

∂Fn+1

∂Uij





∂
∂u

(
d[Xij ]1
dv

)
...

∂
∂u

(
d[Xij ]n

dv

)
∂
∂u

(
dUij
dv

)


= −



bu,v1

bu,v2

...

bu,vn+1


for each variable u and for each variable v of the function F . The components of the right-hand
side of this system are given by

bu,v` =
∂2F`

∂u∂v
+

∂2F`

∂u∂Uij
dUij
dv

+
n∑

k=1

∂2F`

∂u∂[Xij ]k

d[Xij ]k
dv

+
∂Gv

`

∂Uij
dUij
du

+
n∑

k=1

∂Gv
`

∂[Xij ]k

d[Xij ]k
du

for each ` ∈ {1, . . . , n + 1}. Notice that the coefficient matrix of this linear system does not
depend on the variables u and v. Therefore, for each i, j ∈ {1, . . . ,m} such that i < j, we have
(n + q)(2(n + q) + 1) linear systems (one for each pair of variables u and v of the function F )
with n+ 1 variables each one, and all of them have the same coefficient matrix.
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