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Abstract

The problem of packing ellipsoids in the three-dimensional space is considered in the
present work. The proposed approach combines heuristic techniques with the resolution of re-
cently introduced nonlinear programming models in order to construct solutions with a large
number of ellipsoids. The introduced approach is able to pack identical and non-identical
ellipsoids within a variety of containers. Moreover, it allows the inclusion of additional
positioning constraints. This fact makes the proposed approach suitable for constructing
large-scale solutions with specific positioning constraints in which density may not be the
main issue. Numerical experiments illustrate that the introduced approach delivers good
quality solutions with a computational cost that scales linearly with the number of ellip-
soids; and solutions with more than a million ellipsoids are exhibited.
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1 Introduction

An usual way of studying material properties (from rocks to human tissues) is to assume that
the material is composed by separate discrete particles, like, for example, grains. Ellipsoids are
the simplest non-spherical shapes that can be considered in this case. As pointed out in [35], el-
lipsoids attract attention because of their shape-dependent anisotropic properties, since, in some
applications such as photonic crystals, both positional and orientational order of the ellipsoidal
packing are required. The problem of packing ellipsoids has a number of important applica-
tions, which include the design of high-density ceramic materials, the formation and growth of
crystals [8, 33], the structure of liquids, crystals and glasses [3], the flow and compression of
granular materials [14, 20, 21], the thermodynamics of liquid to crystal transition [1, 7, 32],
the chromosome organization in human cell nuclei [36], and the modeling of vascular network
formation [30]. See also [9, 10, 11, 12, 13, 27] and the references therein for more applications.
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Matão 1010, Cidade Universitária, 05508-090, São Paulo, SP, Brazil. E-mail: egbirgin@ime.usp.br
†Department of Applied Mathematics, Institute of Mathematics, Statistics, and Scientific Computing, State

University of Campinas, Rua Sérgio Buarque de Holanda 651, 13083-859, Campinas, SP, Brazil. E-mail: lo-
bato@ime.usp.br
‡Revision made on May 10, 2018.

1



The problem of packing ellipsoids has been studied in many different ways using a wide range
of techniques. A few recent examples follow. In [19], the Brownian motion of isolated ellipsoidal
particles in water is studied providing insights into processes that are potentially useful for
understanding transport in membranes and the motions of anisotropic macromolecules. In [16],
the authors study through simulations (using discrete element method) the force ratios, force
network, and force probability distribution in the three-dimensional packing of fine ellipsoidal
particles, as a function the size and the shape of the ellipsoids. The discrete element method
is also used in [17], to study the effect of particle size and aspect ratio on packing structure of
fine ellipsoids. In [16], an approach that combines computational fluid dynamics for gas phase
and the discrete element method for particles is used to study flow and force structures of fine
ellipsoids in gas fluidization. Effective properties of composite materials are evaluated in [38].
Periodic random packing of ellipsoids of different volume fractions and aspect ratios are build
using a molecular dynamics-based method and packings with a volume fraction of up to 60%
are built. In [18], dense structures of colloidal ellipsoids with a density of approx. 67% were
self-assembled using direct current electric fields in conjunction with ultraviolet light. In that
work, it is mentioned that studying dense packings is relevant since novel packing structures are
predicted to occur at high volume fractions and crystal unit cells can contribute to a variety
of applications such as, for example, structural color materials. In [37], the random packing
structure of ellipsoids is studied using X-ray tomography.

In the last years, several works [4, 5, 15, 23, 24, 25, 26, 31, 34] addressed the problem
of packing ellipsoids using nonlinear programming models and techniques. In [23, 24], global
optimal solutions to small-sized instances (up to three ellipses or ellipsoids) were sought and local
optimal solutions with up to one hundred ellipsoids were found by adding ellipsoids additively
by means of a heuristic. Good quality solutions to medium- and large-sized instances were
obtained in [4, 5], by seeking local minimizers of nonlinear programming models. The models
proposed in [4] have a number of variables and constraints that is quadratic in the number
of ellipsoids being packed; this being the main limitation for obtaining good quality solutions
for instances with more than a hundred ellipsoids. Models with a number of variables and
constraints that is expected to be linear with respect to the number of ellipsoids being packed
were introduced in [5]. Using those models, solutions with up to five hundred ellipsoids can
be obtained. Anyway, the nonlinear programming models that need to be solved are highly
nonconvex and, in general, existent state-of-the-art methods are not capable of finding good
quality local minimizers of instances with, say, a thousand ellipsoids. The aforementioned works
considered the problem of packing a given collection of ellipsoids within a volume-minimizing
container. If the number of ellipsoids m is very small, global minimizers (with a certificate of
optimality) of the continuous and differentiable nonlinear programming models proposed in [4, 5],
as well as the models considered in [23, 24, 25, 26, 31, 34], can be obtained considering state-
of-the-art global optimization software. For medium- and large-sized instances (m up to, say,
a thousand), state-of-the-art solvers for nonlinear programming may be able to find stationary
points associated with “good quality” solutions to the packing problem. For instances with larger
values of m, the nonconvexity of the models makes almost impracticable to find stationary points
associated with reasonable solutions to the packing problem.

The problem of packing a large number of non-identical spheres with a wide range of “ad-
ditional” constraints through nonlinear models and optimization techniques is in the heart of
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the software Packmol [29, 28]. Packmol is a software to pack molecules. The configuration of
molecules that the method builds is then used as the initial configuration for performing molec-
ular dynamics simulations. A molecule is composed by atoms. In simple terms, a molecule is
represented by a set of small spheres with fixed distances among them. Thus, ultimately, Pack-
mol simple packs spheres (with ad-hoc positioning constraints), which is a relatively simple and
well-studied problem. However, the nonlinear programming problems that need to be solved
are huge, highly nonlinear, and nonconvex; meaning that sate-of-the-art nonlinear programming
methods are not even able to find a feasible point. Density is not an issue (in practical problems
the “volume occupied by atoms in liquid water is approximately 30%”). Moreover, one of the
problem constraints says that molecules must have a minimum distance among them. Other-
wise, the equations that govern the dynamics simulation to be done later are not well defined.
Another interesting application for the packing of ellipsoids in amorphous and not necessarily
dense arrangements consists in building models of cytoplasmic solutions. Building initial config-
urations for molecular dynamics simulations of disordered systems is a known challenge, solved
at the molecular scale by packing strategies, as that of Packmol [29]. For very large molecular
systems, as a cellular environment, the packing of individual atoms becomes prohibitive. How-
ever, in a coarse-grained representation, globular proteins can be thought as spheres or ellipsoids
of variable shapes and dimensions, and cellular environment consists in a crowded protein solu-
tion [22]. It can be constructed by packing ellipsoids of variable shapes, followed by fitting of
the actual atomic representation of the protein structures inside the ellipsoids for subsequent
simulation.

In the present work, we aim to investigate approaches that allow the possibility of repre-
senting molecules with spheres and ellipsoids within Packmol. Thus, we consider the problem
of packing a large number of ellipsoids within a given container. We present a matheuristic
approach based on the nonlinear programming models introduced in [4, 5]. The computational
cost of the proposed method scales linearly with the number of ellipsoids and, therefore, huge
instances can be considered. Moreover, the proposed approach can be applied to a variety of
containers of different shapes as well as it can be used to pack identical and non-identical ellip-
soids. In addition, ad-hoc positioning constraints that apply to a specific ellipsoid or a group of
ellipsoids can be easily handled.

The rest of this paper is organized as follows. In Section 2, we state the problem considered
in this work and introduce some notation. In Section 3, we present the model introduced in [5]
to avoid the overlapping between ellipsoids. In Section 4.1, we present a simple and general
algorithm to solve the problem of packing the largest possible number of ellipsoids inside a given
container. In Section 4.2, we propose some strategies that can be used to compose the general
algorithm. To deal with the case where the number of ellipsoids to be packed is large, we present
what we call the isolation constraints in Section 4.3. These are additional constraints to the
model to prevent large groups of ellipsoids from overlapping and thus reducing the total number
of variables and constraints of the model. The complete nonlinear programming model and
algorithm are presented in Section 5. Some implementation details are discussed in Section 6.
Finally, we present numerical experiments in Section 7 and draw some conclusions in Section 8.
The computer implementation of the method introduced in the present work and the solutions
reported in Section 7 are freely available at http://www.ime.usp.br/~lobato/.

3

http://www.ime.usp.br/~lobato/


2 Problem definition and notation

We represent an ellipsoid in Rn by the set E = {x ∈ Rn | (x − c)>QP−1Q>(x − c) ≤ 1},
where c ∈ Rn is the center of the ellipsoid, Q ∈ Rn×n is an orthogonal matrix that determine
the principal axes of the ellipsoid, and P ∈ Rn×n is a positive definite diagonal matrix so that
the eigenvalues of P

1
2 are the lengths of the semi-axes of the ellipsoid. We denote by int(E) the

interior of E , i.e., int(E) = {x ∈ Rn | (x− c)>QP−1Q>(x− c) < 1}. Also, we denote by ∂E the
frontier of E , i.e., ∂E = {x ∈ Rn | (x− c)>QP−1Q>(x− c) = 1}. The k-th standard basis vector
(i.e., the vector whose k-th components is equal to one and have all the other components equal
to zero) is denoted by ek. The largest eigenvalue of a matrix M is denoted by λmax(M).

In this paper, we consider the problem of packing the maximum number of ellipsoids within a
given container. The ellipsoids must not overlap each other and they must be entirely inside the
container. Formally, given a set C ⊆ Rn, which we call the container, and a sequence of (n×n)-
dimensional positive definite diagonal matrices {Pi}∞i=1, the objective is to find the maximum
nonnegative number m∗ and the ellipsoids Ei = {x ∈ Rn | (x − ci)>QiP

−1
i Q>i (x − ci) ≤ 1}, for

i ∈ I = {1, . . . ,m∗}, in such a way that

1. int(Ei) ∩ int(Ej) = ∅ for all i, j ∈ I with i 6= j;

2. Ei ⊆ C for all i ∈ I.

By finding an ellipsoid Ei we mean determining a vector ci ∈ Rn and an orthogonal matrix
Qi ∈ Rn×n. If Pi = P for all i then the problem reduces to the problem of packing as many
identical ellipsoids (with semi-axis lengths given by the square roots of the diagonal entries of
P ) as possible within the container C.

3 Non-overlapping and containment models

Nonlinear programming models for the non-overlapping of ellipsoids were introduced in [4,
5, 23]. Since the models presented in [4] and [5] are the foundation of the methodology proposed
in this paper, we briefly summarize them in Section 3.1. Besides avoiding the overlap between
the ellipsoids, it is required the ellipsoids to be inside a given container. In Section 3.2, it is
presented a model to include an ellipsoid within a half-space, which was introduced in [4]. This
model will be used to build a cuboidal container and also to construct the so called isolation
constraints that will be presented in Section 4.3.

3.1 Non-overlapping model

Consider the ellipsoids Ei and Ej in Rn defined as

Ei = {x ∈ Rn | (x− ci)>QiP
−1
i Q>i (x− ci) ≤ 1}

and
Ej = {x ∈ Rn | (x− cj)>QjP

−1
j Q>j (x− cj) ≤ 1},
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where ci and cj in Rn are their centers and Qi and Qj are orthogonal matrices in Rn×n that
determine their orientation. For example, for n = 2, we can represent Qi as

Qi =

(
cos θi − sin θi
sin θi cos θi

)
,

whereas, for n = 3, we can represent Qi as

Qi =

 cos θi cosψi sinφi sin θi cosψi − cosφi sinψi sinφi sinψi + cosφi sin θi cosψi

cos θi sinψi cosφi cosψi + sinφi sin θi sinψi cosφi sin θi sinψi − sinφi cosψi

− sin θi sinφi cos θi cosφi cos θi

 .

The parameters θi (when n = 2) and θi, φi, and ψi (when n = 3) are called “rotation angles” of
the ellipsoid. We denote by Ωi ∈ Rq the vector of rotation angles of the i-th ellipsoid (q = 1 when
n = 2 and q = 3 when n = 3). The idea of the model presented in [4] is to transform one of the
ellipsoids into a ball so that the problem of avoiding the overlap between two ellipsoids becomes
the problem of preventing the overlap between a ball and an ellipsoid. By letting Tij : Rn → Rn

be the linear transformation defined by

Tij(x) = P
− 1

2
i Q>i (x− cj) (1)

and applying this transformation to the ellipsoids Ei and Ej , we obtain

E iji =

{
x ∈ Rn |

[
x− P−

1
2

i Q>i (ci − cj)
]> [

x− P−
1
2

i Q>i (ci − cj)
]
≤ 1

}

and
E ijj = {x ∈ Rn | x>Sijx ≤ 1},

respectively, where

Sij = P
1
2
i Q
>
i QjP

−1
j Q>j QiP

1
2
i .

The result is that E iji is a unit-radius ball and E ijj is an ellipsoid, so that avoiding the overlap

between Ei and Ej is equivalent to requiring that the ball E iji and the ellipsoid E ijj do not overlap

(see Lemma 3.1 in [5]). Since E iji is a unit-radius ball, it does not overlap the ellipsoid E ijj if and
only if its center is outside of the ellipsoid and its distance to the frontier of the ellipsoid is at
least one. Let ciji denote the center of the ball E iji . By Proposition 4.1 in [4], if ciji /∈ int(E ijj ),
then we can write

ciji = xij + µijSijxij (2)

for a unique xij ∈ Rn in the frontier of E ijj and a unique scalar µij ≥ 0. Moreover, xij ∈ Rn is

the projection of ciji onto E ijj . By Proposition 4.2 in [4], if ciji can be written as in (2) for some

xij ∈ ∂E ijj and some µij ≥ 0, then ciji /∈ int(E ijj ) and xij is the projection of ciji onto E ijj . Hence,

the distance between ciji and E ijj is given by ‖ciji −xij‖ = ‖µijSijxij‖, which must be at least one

5



for E iji not to overlap with E ijj . Hence, we obtain the following model for the non-overlapping
of ellipsoids:

x>ijSijxij = 1, ∀i, j ∈ I such that i < j (3)

µ2
ij

∥∥Sijxij∥∥2

2
≥ 1, ∀i, j ∈ I such that i < j (4)

P
− 1

2
i Q>i (ci − cj) = xij + µijSijxij , ∀i, j ∈ I such that i < j (5)

µij ≥ 0, ∀i, j ∈ I such that i < j (6)

where I = {1, . . . ,m} is the set of indices of the ellipsoids being packed.
Since this model has a quadratic number of variables and constraints on the number of

ellipsoids to be packed, it becomes rapidly hard to be solved as the number of ellipsoids grows.
In order to alleviate this complexity, a model with a linear number of variables and constraints
was introduced in [5].

To reduce the number of constraints, the constraints of model (3)–(6) are first replaced by
their respective squared infeasibility measures

o(ci, cj ,Ωi,Ωj , xij , µij ;Pi, Pj) = 0, ∀i, j ∈ I such that i < j,

where

o(ci, cj ,Ωi,Ωj , xij , µij ;Pi, Pj) =

(
x>ij
(
P
− 1

2
i Q>i (ci − cj)− xij

)
− µij

)2

+

max{0, εij − µij}2 +

∥∥∥∥xij + µijSijxij − P
− 1

2
i Q>i (ci − cj)

∥∥∥∥2

2

+

max

{
0, 1−

∥∥∥∥P− 1
2

i Q>i (ci − cj)− xij
∥∥∥∥2

2

}2

,

and then combined into m− 1 constraints as follows:

m∑
j=i+1

o(ci, cj ,Ωi,Ωj , xij , µij ;Pi, Pj) = 0, ∀i ∈ I \ {m}.

To reduce the number of variables, for each i, j ∈ I such that i < j, the variables xij and µij are
replaced with Xij ≡ X (ci, cj ,Ωi,Ωj ;Pi, Pj) and Uij ≡ U(ci, cj ,Ωi,Ωj ;Pi, Pj), respectively, where
Xij is a solution to the problem

minimize
x

∥∥∥x− ciji ∥∥∥2

2
subject to x>Sijx = 1,

and Uij is the corresponding Lagrange multiplier. Therefore, the non-overlapping constraints
can be finally written as

m∑
j=i+1

f(ci, cj ,Ωi,Ωj ;Pi, Pj) = 0, ∀i ∈ I \ {m}, (7)
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where

f(ci, cj ,Ωi,Ωj ;Pi, Pj) = max

{
0, 1−

∥∥∥∥P− 1
2

i Q>i (ci − cj)−X (ci, cj ,Ωi,Ωj ;Pi, Pj)

∥∥∥∥2

2

}2

+

max{0, εij − U(ci, cj ,Ωi,Ωj ;Pi, Pj)}2
(8)

and

εij = ε(Pi, Pj) = λmin(P−1
i )λmin(P

1
2
i )λmin(Pj)λmin(P

− 1
2

j ) > 0;

see [4, Prop. 4.3] for details. It is worth noticing that, if the ellipsoids Ei and Ej are far from
each other then f(ci, cj ,Ωi,Ωj ;Pi, Pj) is null and, thus, the quantities X (ci, cj ,Ωi,Ωj ;Pi, Pj) and
U(ci, cj ,Ωi,Ωj ;Pi, Pj) do not need to be computed.

3.2 Containment model

The idea to include an ellipsoid within a half-space is similar to that of avoiding the overlap
between ellipsoids. A transformation is applied to the ellipsoid so that it becomes a ball. The
same transformation is then applied to the half-space, which transforms it into another half-
space. The problem of including an ellipsoid within a half-space then becomes the equivalent
problem of including a ball within a half-space.

Consider the ellipsoid Ei = {x ∈ Rn | (x − ci)
>QiP

−1
i Q>i (x − ci) ≤ 1}, where ci ∈ Rn,

Qi ∈ Rn×n is orthogonal, and Pi ∈ Rn×n is positive definite and diagonal. Let Ti : Rn → Rn be
the linear transformation defined by

Ti(x) = P
− 1

2
i Q>i x. (9)

By applying transformation Ti to Ei, we obtain the unit-radius ball

Eii = {x ∈ Rn | (x− P−
1
2

i Q>i ci)
>(x− P−

1
2

i Q>i ci) ≤ 1}.

Now, consider the half-space H = {x ∈ Rn | w>x ≤ s}, where w ∈ Rn, w 6= 0, and s ∈ R,
and let Hi be the set obtained when transformation Ti is applied to the half-space H, i.e.,

Hi = {x ∈ Rn | w>QiP
1
2
i x ≤ s}.

Requiring Ei ⊆ H is equivalent to requiring Eii ⊆ Hi. For Eii to be contained in Hi, the
center cii of Eii must belong to Hi, and the distance between cii and the frontier ∂Hi = {x ∈
Rn | w>QiP

1
2
i x = s} of Hi must be at least one (the radius of the ball Eii). Since the distance

d(cii, ∂Hi) from cii to the frontier of Hi is given by

d(cii, ∂Hi) =
|w>QiP

1
2
i cii − s|∥∥∥∥P 1

2
i Q
>
i w

∥∥∥∥
2

,
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these conditions are therefore

(w>QiP
1
2
i cii − s)2∥∥∥∥P 1

2
i Q
>
i w

∥∥∥∥2

2

≥ 1 and w>QiP
1
2
i cii ≤ s. (10)

Since cii = P
− 1

2
i Q>i ci, conditions (10) can be equivalently written as(

w>ci − s
)2∥∥∥∥P 1

2
i Q
>
i w

∥∥∥∥2

2

≥ 1 and w>ci ≤ s.

4 Incremental packing of ellipsoids

In this section, the main ingredients of the matheuristic approach for packing ellipsoids
are described in detail. The model algorithm is given in Section 4.1; the nonlinear strategy
used for packing a set of new ellipsoids is described in Section 4.2; and the so-called isolation
constraints, that aims to reduce the complexity of the nonlinear subproblems, are described in
Section 4.3. A similar heuristic was considered in [23, 24], where a constructive approach with
nonlinear programming subproblems and isolation constraints was also considered. However, it
is worth noticing that the nonlinear models, the constructive way of adding new ellipsoids, and
the isolation constraints presented here are different from the ones considered in [23, 24].

4.1 Model algorithm

Briefly, the algorithm to pack ellipsoids inside a given container is as follows. At each
iteration, a certain number of ellipsoids (that were packed in previous iterations) are already
arranged within the container. Once these ellipsoids are packed, they are fixed in their positions
(their centers and rotations are fixed). Then, a new group of ellipsoids is packed, so that they
do not overlap each other and do not overlap with the ellipsoids already fixed.

At the k-th iteration of the algorithm, let Fk = {1, . . . ,mk−1} be the set formed by the indices
of the ellipsoids already packed and fixed in their positions and let Nk = {mk−1 + 1, . . . ,mk}
be the set of indices of the new ellipsoids. In order to pack the new ellipsoids, we must ensure
that (i) they are arranged inside the container, (ii) do not overlap each other, and (iii) do not
overlap with the ellipsoids already fixed.

So, considering a container C ⊆ Rn and the models presented in Sections 3.1 and 3.2, at the
k-th iteration of the algorithm, we must find a solution to the feasibility problem given by

Ei ⊆ C, ∀i ∈ Nk, (11)∑
j∈Nk
j>i

f(ci, cj ,Ωi,Ωj ;Pi, Pj) = 0, ∀i ∈ Nk ∪ Fk, (12)

where f is as defined in (8). The variables of this model are ci ∈ Rn and Qi ∈ Rn×n for each
i ∈ Nk. Notice that ci and Qi for each i ∈ Fk are constants, since the ellipsoids in Fk have
already been fixed.
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4.2 Packing strategy

The algorithm described in the last section requires the new ellipsoids to be inside the con-
tainer, not to overlap each other, and not to overlap with the ellipsoids already packed. However,
those constraints describe a feasibility problem and they do not specify how the new ellipsoids
should be packed. Since the goal is to pack as many ellipsoids as possible, the ellipsoids should
stay tightly grouped within the container. An attempt to achieve this result is to minimize,
in some sense, the heights of the ellipsoids to be packed. The idea is that the new ellipsoids
become in contact with other ellipsoids already packed, so that the ellipsoids are well packed
inside the container. Given an ellipsoid E , we define two heights associated with it: the lower
and the upper height. The lower height is defined as min{xn | x ∈ E} and the upper height is
defined as max{xn | x ∈ E}, where xn is the n-th component of x. Since the goal is to minimize
these heights, we need a simple way to model them. One way of doing this is to model the upper
and lower heights of an ellipsoid by supporting hyperplanes. The idea is to consider hyperplanes
that support the ellipsoid precisely at the points that realize the lower and upper heights.

Consider the half-space S = {x ∈ Rn | w>x ≤ s}, where w ∈ Rn and s ∈ R, and the ellipsoid
Ei = {x ∈ Rn | (x − ci)>QiP

−1
i Q>i (x − ci) ≤ 1}, where ci ∈ Rn, Qi ∈ Rn×n is orthogonal, and

Pi ∈ Rn×n is diagonal and positive definite. We saw in Section 3.2 that, in order to ensure that
the ellipsoid be contained in the half-space S, we can simply require the center of the ellipsoid to
belong to that half-space and the distance between the center of the ball Eii and the frontier of
the half-space Si, obtained by transformation Ti defined in (9), be at least one. To ensure that
∂S supports the ellipsoid Ei, we can just change the minimum distance condition and require it
to be exactly one. Therefore, the conditions(

w>ci − s
)2∥∥∥∥P 1

2
i Q
>
i w

∥∥∥∥2

2

= 1 and w>ci ≤ s (13)

guarantee that the hyperplane ∂S supports the ellipsoid Ei. Moreover, if we take w = en, the n-
th standard basis vector, then ∂S will support the ellipsoid Ei at the point arg max{xn | x ∈ Ei},
and we will necessarily have s = max{xn | x ∈ Ei}. If we take w = −en, then ∂S will support
the ellipsoid Ei at the point arg min{xn | x ∈ Ei}, and we will have s = −min{xn | x ∈ Ei}.

In order to minimize the upper height of the ellipsoid, we can then consider the problem
of minimizing s subject to (11,12,13) with w = en in (13). In an analogous way, in order to
minimize the lower height of the ellipsoid, it is enough to consider the problem of minimizing
−s subject to (11,12,13) with w = −en in (13).

As we will see in Section 7, experiments in the three-dimensional space show that the packed
ellipsoid tends to have its semi-major axis parallel to the upper plane when its upper height is
minimized (the ellipsoid is “standing”). On the other hand, when the lower height is minimized,
the tendency is that the semi-minor axis remains parallel to the upper plane (the ellipsoid is
“lying”). To avoid this kind of behavior, which can result in poor quality solutions, we can
consider the minimization of a convex combination of the lower and upper heights.

Let siinf and sisup denote the lower and upper heights of ellipsoid Ei, respectively. For a given
ξ ∈ [0, 1], we define an intermediate height as ξsiinf +(1− ξ)sisup. Since [ci]n, the n-th component

of the center of the ellipsoid, is equal to 1
2(siinf + sisup), we can write siinf = 2[ci]n − sisup. Then,
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ξsiinf + (1− ξ)sisup = 2ξ[ci]n + (1− 2ξ)sisup. Hence, to minimize the intermediate height, we can
add the variable sisup and the constraints(

e>n ci − sisup

)2∥∥∥∥P 1
2
i Q
>
i en

∥∥∥∥2

2

= 1 and e>n ci ≤ sisup (14)

to the model. For ξ = 1, we have the minimization of the upper height of the ellipsoid being
packed. For ξ = 0, we have the minimization of the lower height of the ellipsoid. For ξ = 1

2 , we
have the minimization of [ci]n, the n-th component of the center of the ellipsoid (which we call
the middle height). Notice that when ξ = 1

2 , the variable sisup and the constraints (14) are not
necessary.

When |Nk| > 1, i.e., when there are more than one ellipsoid being packed at iteration k, we
can minimize the sum of the heights of the ellipsoids:∑

i∈Nk

2ξ[ci]n + (1− 2ξ)sisup.

4.3 The isolation constraints

In addition to ensuring that the new ellipsoids (to be packed) do not overlap each other,
we have to make sure that these ellipsoids do not overlap with the ellipsoids previously packed.
Thus, the number of pairs of ellipsoids whose overlapping should be avoided grows as the number
of previously packed ellipsoids increases. This makes the complexity of the evaluation of the
constraints of each subproblem to increase, making each subproblem more and more difficult to
be solved.

On the other hand, assuming that a sufficiently large number of ellipsoids has been packed,
it is expected that there is no possibility for the new ellipsoids to be in contact with most of
the fixed ellipsoids, since the latter should be surrounded by several other ellipsoids. Let N
be the set of the new ellipsoids and F̃ be the set formed by the ellipsoids already packed and
that cannot touch the new ellipsoids in a feasible solution. By adding constraints to ensure
that the ellipsoids in N are sufficiently distant from the ellipsoids in F̃ , we can remove the non-
overlapping constraints between these two groups of ellipsoids. For this change in the model to
have the desired effect (making the subproblems simpler), it is clear that the new constraints
should be “easier” than the original non-overlapping constraints. By easy constraints we mean
constraints that are smaller in number, defined by simpler functions, and/or involve a small
number of variables. We will call these new constraints the isolation constraints. We say that
an ellipsoid is isolated if it is possible to easily infer that the isolation constraints ensure that
the new ellipsoids do not overlap with the ellipsoid in question.

We present Figure 4.1 to illustrate the isolation of ellipsoids. Consider the packing of ellipses
inside a rectangle. In Figure 4.1(a), it is shown some ellipses already packed inside the rectangle.
Now consider the problem of packing a new ellipse. Due to the non-overlapping constraints, this
new ellipse could touch only the blue ellipses. The set F̃ is formed by the green ellipses in
Figure 4.1(a). Now, consider the isolation constraint that requires the new ellipse to lie above

10



(a) (b)

Figure 4.1: Illustration of the isolation constraints. (a) Ellipses already packed and fixed in their
positions. A new ellipse to be packed should not overlap any of them. The blue ellipses are the
ones that could possibly be touched by a new ellipse to be packed. (b) The isolation constraint
requires a new ellipse to be packed to lie above the highlighted line. This implies that only
the red ellipses need to be considered in the non-overlapping model; thus reducing the model
complexity.

the line illustrated in Figure 4.1(b). Thus, the green ellipses are isolated and the original non-
overlapping constraints associated with these ellipses can be removed.

Because of the simplicity of the isolation constraints, these constraints may isolate ellipsoids
that could touch the new ellipsoids in a feasible solution (as it is the case for some green ellipses
in Figure 4.1(b)). Anyway, it is important to point out that the isolation constraints ensure that
the new ellipsoids do not overlap with the isolated ellipsoids. Even if the isolation constraints
are not able to isolate all ellipsoids of F̃ , the expectation is that most of these ellipsoids are
isolated and the subproblems have very low numbers of constraints and variables.

5 Complete model and algorithm

Consider the case where the container C is the following hypercube with side length l:

C = {x ∈ Rn | −l ≤ 2xi ≤ l,∀i ∈ {1, . . . , n}}.

This hypercube can be modeled by 2n half-spaces, each one corresponding to a different side of
the hypercube. Each side of the hypercube can then be modeled according to the model presented
in Section 3.2. Hence, the inclusion of ellipsoid Ei = {x ∈ Rn | (x− ci)>QiP

−1
i Q>i (x− ci) ≤ 1}

11



within C can be modeled by the following constraints:(
ξe>` ci − l/2

)2∥∥∥∥P 1
2
i Q
>
i e`

∥∥∥∥2

2

≥ 1, ∀` ∈ {1, . . . , n},∀ξ ∈ {−1, 1},

ξe>` ci ≤ l/2, ∀` ∈ {1, . . . , n},∀ξ ∈ {−1, 1}.

In our experiments, we considered two types of isolation constraints. The first one constrains
the new ellipsoids to remain within a certain hyperrectangle R centered at u ∈ Rn and whose
sides have length s > 0, with the exception of the side along the n-th dimension, which has
infinity length:

R = {x ∈ Rn | −s/2 ≤ xi − ui ≤ s/2, ∀i ∈ {1, . . . , n− 1}}. (15)

Similarly to the hypercube model, the inclusion of ellipsoid Ei within R can be modeled as:(
ξe>` (ci − u)− s/2

)2∥∥∥∥P 1
2
i Q
>
i e`

∥∥∥∥2

2

≥ 1, ∀` ∈ {1, . . . , n− 1},∀ξ ∈ {−1, 1},

ξe>` (ci − u) ≤ s/2, ∀` ∈ {1, . . . , n− 1},∀ξ ∈ {−1, 1}.

The second type of isolation constraint requires the new ellipsoids to lie within the following
half-space H:

H = {x ∈ Rn | xn ≥ h}, (16)

where h ∈ R. Therefore, the inclusion of ellipsoid Ei within H can be modeled as:(
e>n ci − h

)2∥∥∥∥P 1
2
i Q
>
i en

∥∥∥∥2

2

≥ 1 and e>n ci ≥ h.

Finally, the non-overlapping can be modeled as in (7) and the upper height of ellipsoid Ei as
in (14).

Now, consider an iteration k of the algorithm. Let Fk be the set of indices of the ellipsoids
packed in previous iterations, Nk be the set of indices of the ellipsoids that must be packed at
this iteration, and F̄k ⊆ Fk be the set of indices of fixed ellipsoids that should be considered in
the non-overlapping constraints. After determining the isolation constraints (parameters s > 0,
u ∈ Rn, and h ∈ R) and, consequently, the set F̄k, the problem that must be solved at this
iteration is the following:

minimize
∑
i∈Nk

2ξ[ci]n + (1− 2ξ)sisup (17)

subject to
∑
j∈Nk
j>i

f(ci, cj ,Ωi,Ωj ;Pi, Pj) = 0, ∀i ∈ Nk ∪ F̄k, (18)
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(
ξe>` ci − l/2

)2∥∥∥∥P 1
2
i Q
>
i e`

∥∥∥∥2

2

≥ 1, ∀i ∈ Nk,∀` ∈ {1, . . . , n},∀ξ ∈ {−1, 1}, (19)

ξe>` ci ≤ l/2, ∀i ∈ Nk,∀` ∈ {1, . . . , n},∀ξ ∈ {−1, 1}, (20)(
ξe>` (ci − u)− s/2

)2∥∥∥∥P 1
2
i Q
>
i e`

∥∥∥∥2

2

≥ 1, ∀i ∈ Nk,∀` ∈ {1, . . . , n− 1}, ∀ξ ∈ {−1, 1}, (21)

ξe>` (ci − u) ≤ s/2, ∀i ∈ Nk,∀` ∈ {1, . . . , n− 1}, ∀ξ ∈ {−1, 1}, (22)(
e>n ci − h

)2∥∥∥∥P 1
2
i Q
>
i en

∥∥∥∥2

2

≥ 1, ∀i ∈ Nk, (23)

e>n ci ≥ h, ∀i ∈ Nk, (24)(
e>n ci − sisup

)2∥∥∥∥P 1
2
i Q
>
i en

∥∥∥∥2

2

= 1, ∀i ∈ Nk, (25)

e>n ci ≤ sisup, ∀i ∈ Nk. (26)

Considering that the problem (17)–(26) may be infeasible or that a local optimization solver
may fail in finding a feasible point depending on the initial guess, we apply a multi-start strat-
egy starting up to τ times from different initial guesses. The algorithm stops when, at a given
iteration k, it is not possible to solve the problem (17)–(26) within τ trials. Therefore, we can
summarize the algorithm as follows:

Algorithm 1.
Input: The container C and the lengths of the semi-axes of the ellipsoids given by the matrices
{Pi}∞i=1.
Output: m∗ (the number of ellipsoids packed) and Qi and ci for i ∈ {1, . . . ,m∗}.
Step 1. Let k ← 0.
Step 2. Let k ← k + 1 and t← 0.
Step 3. Let t← t+ 1. If t > τ , stop.

Step 3.1. Determine the set Nk.
Step 3.2. Determine the isolation constraints.
Step 3.3. Determine the set F̄k.
Step 3.4. Determine the initial solution.
Step 3.5. Try to solve the subproblem (17)–(26).
Step 3.6. Analyze the solution found.

Step 4. If the subproblem was solved, go to Step 2. Otherwise, go to Step 3.

13



6 Implementation details

6.1 Determining the isolation constraints and the set F̄k

The hyperrectangle R is defined by u ∈ Rn and s > 0. The parameter s > 0 can be fixed
since the beginning of the algorithm, but u must vary at each iteration of Step 3 of Algorithm 1
so that we can fill up the whole container with ellipsoids. We decided to choose each coordinate
of u uniformly random on the interval [−l/2, l/2] at Step 3.2. Once u is determined, we compute
the set F̄0

k , which will be used to determine the second type of isolation constraints (constraints
(23) and (23)). This is the set of indices of ellipsoids that were packed in previous iterations of
the algorithm and that could perhaps overlap with an ellipsoid that would be contained in R.
Ideally, F̄0

k should be the set
{i ∈ Fk | Ei ∩ int(R) 6= ∅}. (27)

But since it may be computationally costly to find the set (27), we check for sufficient conditions
that guarantee that Ei ∩ int(R) = ∅. The set F̄0

k will then be formed by indices i ∈ Fk for which
it was not possible show that Ei ∩ int(R) = ∅. Hence, F̄0

k will be a (potentially proper) superset
of (27).

Let ai denote the largest semi-axis length of ellipsoid Ei, i.e., ai = λmax(P
1
2
i ). Let Bi be the

minimal bounding sphere of Ei, i.e.,

Bi = {x ∈ Rn | (x− ci)>(x− ci) ≤ a2
i }.

It is easy to verify whether Bi ∩ int(R) = ∅. And if Bi ∩ int(R) = ∅, then Ei ∩ int(R) = ∅. It
may happen that Ei∩ int(R) = ∅ but Bi∩ int(R) 6= ∅. In this case, we verify whether there exist
ξ ∈ {−1, 1} and ` ∈ {1, . . . , n− 1} such that(

ξe>` (ci − u)− s/2
)2∥∥∥∥P 1

2
i Q
>
i e`

∥∥∥∥2

2

≥ 1 and ξe>` (ci − u) ≥ s/2. (28)

If (28) is verified for some ξ ∈ {−1, 1} and ` ∈ {1, . . . , n−1}, then one of the sides of R separates
Ei from R and, therefore, Ei ∩ int(R) = ∅. Notice that it may be the case that Ei ∩ int(R) = ∅
but none of those conditions could be verified (and then such an index i would unnecessarily
belong to F̄0

k ). Figure 6.1 shows the projection onto the x-y plane of an ellipsoid in the three-
dimensional space and the set R. Although this ellipsoid does not intersect the interior of R,
none of the conditions above can be verified. The dashed circle represent the projection of the
minimal bounding sphere of the ellipsoid.

Once the set F̄0
k is computed, we are ready to define the second type of isolation constraints.

If F̄0
k = ∅, then the second type of isolation constraints is not necessary. Suppose that F̄0

k 6= ∅.
As we see in (23) and (24), these isolation constraints are determined by the parameter h ∈ R.
Let h0 be the highest middle height of an ellipsoid in F̄0

k , i.e.,

h0 = max
i∈F̄0

k

[ci]n, (29)
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Figure 6.1: Projection of the three-dimensional set R and the three-dimensional ellipsoid onto
the x-y plane.

and b denote the largest semi-axis length among the new ellipsoids, i.e.,

b = max
j∈Nk

λmax(P
1
2
j ).

For a given γ ≥ 0, we define h = h0 − γb. Finally, we let

F̄k = {i ∈ F̄0
k | Ei ∩ int(H) = ∅}.

An illustrative example of the construction of the set F̄k is given in Figure 6.2. The ellipsoids
in Fk, that were packed in previous iterations, are shown in Figure 6.2(a). The hyperrectangle
with side length s is highlighted in Figure 6.2(b). A new ellipsoid that is placed inside this
hyperrectangle can only possibly overlap with the blue ellipsoids, which therefore form the set
F̄0
k . Once F̄0

k is found, the second type of isolation constraints is defined. The hyperplane
that determines the half-space H (see (16)) is placed at a distance γb from the center of the
highest (in the sense of maximum middle height) ellipsoid in F̄0

k ; see Figure 6.2(c). Then, a new
ellipsoid placed inside the hyperrectangle and above this hyperplane can only overlap with the
red ellipsoids, which constitute the set F̄k.

6.2 Removing unnecessary constraints

Let ` ∈ {1, . . . , n− 1} and ξ ∈ {−1, 1}. Consider the pairs of constraints (19,20) and (21,22)
associated with ` and ξ. Notice that only one pair among these two are necessary in the model
(17)–(26), as one will necessarily implies the other.

15



s

γb

(a) (b) (c)

Figure 6.2: Selection of the ellipsoids to be considered in the non-overlapping constraints. (a)
Fixed ellipsoids from the set Fk. (b) First type of isolation constraints and determination of set
F̄0
k formed by the blue ellipsoids. (c) Considering also the second type of isolation constraints,

the set F̄k is then formed by the red ellipsoids.

Since the objective of the model is to minimize the height of the ellipsoids, they will be as
low as possible from the “top lid” of the cube. In this case, the constraints (19,20) associated
with ` = n and ξ = 1 would play no role in the model. We then remove these constraints and
check whether they are satisfied when we obtain a solution to the problem. Some advantages of
removing these constraints from the model are that we can easily construct an initial feasible
solution when the container is almost full and the number of constraints are reduced.

6.3 Defining the initial solution

The initial solution is defined by the centers and rotation angles of the ellipsoids in Nk. Each
rotation angle of the ellipsoids is uniformly randomly chosen on the interval [−π, π]. The center
of the ellipsoids are randomly chosen so that the ellipsoid are assuredly inside the container and
satisfy the isolation constraints. For each i ∈ Nk, we define the first n− 1 components of ci to
be

[ci]` = max{−l/2 + ai,min{l/2− ai, u` + β(s/2− ai)}}, for each ` ∈ {1, . . . , n− 1},

where β is a random variable that follows a uniform distribution on the interval [−1, 1].
If F̄k = ∅, let h̄ = −l/2. Otherwise, let h̄ be defined as follows:

h̄ = max
j∈F̄k

{[cj ]n + aj}.

Let r = |Fk|+ 1 and suppose that Nk = {r, r + 1, . . . , r + |Nk| − 1}. For each i ∈ Nk, we define
the last component of the center of Ei to be

[ci]n = h̄+ ai + 2
i−1∑
j=r

aj .

This construction guarantees that the initial solution is feasible: every ellipsoid is inside the
container, satisfy the isolation constraints, and do not overlap with any other ellipsoid.
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6.4 Solving the subproblems and analyzing the solution found

We solve problem (17)–(26) with the nonlinear programming solver Algencan [2, 6] ver-
sion 3.0.0. As we saw in Section 6.2, after a solution is returned by the solver, we must check
whether it satisfies the constraints (19,20) associated with ` = n and ξ = 1, since we removed
these constraints from the model. If they are not satisfied, then we declare that the solution is
not feasible. Even if the solution is feasible, we must check whether this solution is acceptable.
We say that a solution is acceptable if it is feasible (it satisfies all constraints of the model (17)–
(26), including (19,20) associated with ` = n and ξ = 1), and each of the new packed ellipsoids
is acceptably packed. An ellipsoid with index i ∈ Nk is acceptably packed if at least one of the
following statements is true:

1. it touches the bottom side of the container (i.e., the constraint (19) associated with i,
` = n and ξ = −1 holds with equality);

2. it touches an ellipsoid packed in previous iterations;

3. it touches another acceptably packed ellipsoid.

If the solution found is acceptable, we declare that the subproblem was solved. Otherwise,
we declare that the subproblem was not solved.

6.5 Reducing the size of Nk

Consider the situation where, at an iteration k of Algorithm 1, we want to pack |Nk| > 1
ellipsoids. Suppose that it is not possible to pack |Nk| ellipsoids after the τ trials of Step 3
of Algorithm 1. This situation naturally occurs when the container is almost full of ellipsoids.
However, it could be the case that it is possible to pack less than |Nk| ellipsoids. For example,
considering the container is almost full, it may not be possible to pack five more ellipsoids, but
two new ellipsoids could fit in the container.

In order to consider this situation and improve Algorithm 1, we modify Step 3 in the following
way. When t > τ , we stop Algorithm 1 if and only if |Nk| = 1. If t > τ but |Nk| > 1, we reduce
the size of |Nk| by one unit, let t← 0, and continue again from Step 3.

6.6 Objective

Given ξ ∈ [0, 1], the objective of problem (17)–(26) is to minimize the sum of the heights of
the ellipsoids: ∑

i∈Nk

2ξ[ci]n + (1− 2ξ)sisup.

When ξ = 1
2 , the above expression becomes simply∑

i∈Nk

[ci]n.

In this case, the variables sisup, for i ∈ Nk, and the constraints (25)–(26) can be removed from
the problem.
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7 Numerical experiments and discussion

We implemented, in Fortran 90, the model (17)–(26) and the optimization procedure de-
scribed in Section 5. To solve the nonlinear programming problems, we used Algencan [2, 6]
version 3.0.0. The models, the optimization procedure, and Algencan were compiled with the
GNU Fortran compiler (GCC) 5.4.0 with the -O3 option enabled. The tests were run on a ma-
chine with Intel R© Xeon R© Processor X5650, 8GB of RAM memory, and Ubuntu 16.04 operating
system. Our computer implementation of the method and the solutions reported in this section
are freely available at http://www.ime.usp.br/~lobato/.

7.1 Evaluation of the isolation constraints and algorithmic parameters

In a first set of numerical experiments, we aim to evaluate the two types of isolation con-
straints described in Section 5. The first one constrains the new ellipsoids to remain within a
hyperrectangle with infinite height. The second type of isolation constraint requires the new
ellipsoids to lie above a certain plane parallel to the x-y plane. The isolation constraints depend
on some parameters. The first type of isolation constraint depends on the choice of the lengths
of the sides of the hyperrectangle (parameter s ∈ R in (15)). As for the second type, we need
to decide at which point the plane must pass through (parameter h ∈ R in (16)). Ideally, the
presence of isolation constraints should not affect the quality of the solution. Thus, we need to
determine what would be good parameters for those constraints. Let b be the largest length of a
semi-axis among the new ellipsoids to be packed. We shall let s = ηb and h = h0−γb (where h0

is given by (29)) for the factors η and γ varying in the set {4, 5, . . . , 10}. Notice that the values
of these parameters will not change during the execution of Algorithm 1. Another parameter
that must be chosen is the size of the set Nk, i.e., the number of ellipsoids that must be packed
at each iteration. We decided to let the size of this set be the same for all iterations (unless this
size is reduced as explained in Section 6.5). We considered sets of sizes from 1 to 5.

To assess the influence of these parameters on the quality of the solution, we considered the
packing of ellipsoids with semi-axis lengths 1, 0.75, and 0.5 within a cube with side length 30.
The objective is to minimize the middle height of the ellipsoids (i.e., taking ξ = 1/2 in (17) and
thus minimizing the sum of the n-th coordinate of the centers of the ellipsoids), according to
Algorithm 1 presented in Section 5. At each iteration k of Algorithm 1, we use τ = 100, i.e.,
we try to solve the subproblem at most 100 times. As explained in Section 6.5, if it was not
possible to solve the subproblem after τ attempts, we reduce the size of Nk by one unit, and
try to solve the subproblem again within τ new attempts. Once the number of ellipsoids to be
packed is reduced, it is never increased again.

Tables 7.1 and 7.2 show the results we have obtained when packing the ellipsoids one by one,
considering |Nk| = 1 for each iteration k. Each entry in these tables has two numbers and is
associated with a particular choice of η and γ. For Table 7.1, each entry shows the number of
ellipsoids that were packed (left) and the CPU time in seconds (right).

As expected, the quality of the solution improves as the length of the side of the hyperrect-
angle increases. On the other hand, the behavior is not clear with respect to the γ parameter,
which determine the height of the hyperplane. This suggests that even for γ = 4, the hyperplane
is low enough not to affect the quality of the solution. We can also gauge the impact of η and γ
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by checking whether the isolation constraints were active at the solution found at each iteration.
Table 7.2 shows the number of iterations where the first isolation constraint was active (left)
and the number of iterations where the second isolation constraint was active (right).

When η = γ = 4, the second type of isolation constraint is active only in two iterations out of
10272, which is a negligible amount. For any other combination of values for η and γ, the second
type of isolation constraint is never active. This suggests that 4 can be a reasonable choice for
the value of γ. Nevertheless, the first type of isolation constraint is active in a considerable
number of iterations. For η = 4, this constraint is active around 48% of the iterations. For
η = 10, this figure drops to 11%.

Tables 7.3 and 7.4 show the results when the ellipsoids are packed two by two; Tables 7.5
and 7.6 present the results when the ellipsoids are packed three at a time; Tables 7.7 and 7.8
show the results when the ellipsoids are packed four at a time; Tables 7.9 and 7.10 present the
results when the ellipsoids are packed five by five.

Hyperplane height factor γ

4 5 6 7 8 9 10

H
y
p
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n
g
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fa
ct

o
r
η 4 10272 802 10319 911 10322 994 10313 1108 10313 1197 10322 1311 10322 1356

5 10520 934 10523 1022 10489 1180 10497 1290 10494 1393 10515 1590 10465 1652

6 10590 1097 10573 1248 10584 1408 10591 1649 10591 1817 10584 1903 10594 2086

7 10648 1246 10653 1448 10640 1721 10633 1898 10645 2137 10644 2396 10640 2705

8 10683 1425 10686 1764 10682 2010 10674 2383 10681 2683 10690 2883 10700 3498

9 10712 1747 10713 2091 10711 2403 10706 2818 10716 3129 10693 3541 10706 4051

10 10722 1949 10724 2412 10716 2876 10725 3415 10732 3736 10724 4399 10707 4851

Table 7.1: Number of ellipsoids packed (left) and CPU time in seconds (right) considering the
strategy of packing one ellipsoid at a time.

Hyperplane height factor γ
4 5 6 7 8 9 10
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η 4 4988 2 5026 0 5005 0 5057 0 5007 0 4913 0 4967 0

5 3561 0 3480 0 3551 0 3561 0 3572 0 3561 0 3627 0
6 2655 0 2721 0 2714 0 2663 0 2692 0 2592 0 2719 0
7 2117 0 2085 0 2156 0 2154 0 2125 0 2167 0 2102 0
8 1759 0 1775 0 1742 0 1687 0 1753 0 1670 0 1647 0
9 1412 0 1358 0 1448 0 1475 0 1467 0 1457 0 1410 0
10 1212 0 1180 0 1237 0 1248 0 1232 0 1248 0 1200 0

Table 7.2: Number of subproblems in which the first type of isolation constraint was active (left)
and number of subproblems in which the second type of isolation constraint was active (right),
considering the strategy of packing one ellipsoid at a time.

Let N be the number of ellipsoids that are packed at each iteration of the algorithm. We
can observe that the CPU time increases when N increases. This is because the subproblems
become harder to solve when there are more ellipsoids to pack at the same time. However, the
quality of the solution is not considerably improved when N increases; it is almost the same for
all N ∈ {1, 2, 3, 4, 5}.
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Hyperplane height factor γ

4 5 6 7 8 9 10
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η 4 10136 3182 10199 3330 10213 3648 10192 3769 10196 3940 10177 4140 10207 4482

5 10453 2752 10460 3077 10458 3376 10472 3636 10475 4038 10463 4167 10471 4841

6 10572 3306 10591 3503 10577 4042 10575 4174 10588 4597 10592 5085 10572 5276

7 10637 2973 10631 3243 10638 3731 10632 4088 10633 4339 10652 4952 10647 5342

8 10683 3089 10663 3865 10668 4049 10681 4464 10690 4952 10672 5434 10687 6090

9 10701 3458 10690 3928 10713 4328 10697 4869 10702 5393 10699 5982 10686 6671

10 10704 3931 10708 4975 10712 5687 10711 6372 10711 6722 10724 7353 10726 8350

Table 7.3: Number of ellipsoids packed (left) and CPU time in seconds (right) considering the
strategy of packing two ellipsoids at a time.

Hyperplane height factor γ
4 5 6 7 8 9 10
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or
η 4 4136 32 4207 8 4205 0 4181 0 4217 0 4197 0 4165 0

5 3304 7 3301 0 3317 0 3198 0 3329 0 3304 0 3337 0
6 2629 1 2486 0 2529 0 2629 0 2551 0 2582 0 2589 0
7 2094 0 2055 0 2096 0 2041 0 2039 0 2037 0 2072 0
8 1654 3 1639 0 1716 0 1714 0 1684 0 1686 0 1685 0
9 1326 2 1419 0 1435 0 1453 0 1472 0 1392 0 1459 0
10 1159 0 1191 0 1206 0 1195 0 1155 0 1240 0 1176 0

Table 7.4: Number of subproblems in which the first type of isolation constraint was active (left)
and number of subproblems in which the second type of isolation constraint was active (right),
considering the strategy of packing two ellipsoids at a time.

Hyperplane height factor γ

4 5 6 7 8 9 10
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η 4 10091 9828 10129 10081 10106 10880 10139 11003 10138 11968 10124 11856 10113 12921

5 10422 8666 10446 8503 10443 8722 10451 9424 10403 10166 10456 10499 10416 10823

6 10565 6917 10571 7864 10558 8362 10564 8934 10551 9116 10559 10190 10562 10267

7 10633 6328 10631 7528 10637 8221 10651 8718 10643 9697 10646 10070 10645 10411

8 10704 8212 10680 9091 10676 9924 10680 10304 10704 10954 10679 11630 10688 13076

9 10693 6870 10728 7323 10705 8480 10713 9583 10714 10004 10716 10708 10703 12014

10 10703 8015 10718 9070 10717 10178 10723 11057 10713 13129 10728 13889 10729 15097

Table 7.5: Number of ellipsoids packed (left) and CPU time in seconds (right) considering the
strategy of packing three ellipsoids at a time.

Table 7.1 shows the results when we pack one ellipsoid at a time and minimize its middle
height (ξ = 1/2). Now, we also consider the strategy of packing one ellipsoid at a time but
minimizing a different height. We consider the minimization of the lower (ξ = 1), upper (ξ = 0),
and a random height of the ellipsoid at each iteration. For the minimization of the random
height, the value of ξ is determined right before Step 3.5 of Algorithm 1 and is chosen uniformly
randomly on the interval [0, 1]. Table 7.11 shows the results for the minimization of the lower
height. Table 7.12 shows the results for the minimization of the upper height. Table 7.13 shows
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Hyperplane height factor γ
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η 4 3200 60 3213 5 3214 10 3202 0 3190 0 3196 0 3206 0

5 2905 28 2858 3 2870 0 2871 0 2878 0 2802 0 2869 0
6 2388 10 2346 1 2407 0 2400 0 2387 0 2409 0 2370 0
7 1953 6 1923 0 1914 0 1908 0 2000 0 1952 0 1933 0
8 1591 11 1627 0 1642 0 1660 0 1559 0 1590 0 1580 0
9 1368 11 1347 0 1371 0 1326 0 1367 0 1355 0 1341 0
10 1154 2 1154 0 1152 0 1183 0 1122 0 1212 0 1228 0

Table 7.6: Number of subproblems in which the first type of isolation constraint was active (left)
and number of subproblems in which the second type of isolation constraint was active (right),
considering the strategy of packing three ellipsoids at a time.
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η 4 9970 20733 9987 21274 10053 22357 10096 23086 10052 25256 10094 25904 10067 26082

5 10374 16535 10381 17116 10432 18480 10412 19091 10419 20358 10420 21256 10419 24043

6 10586 13691 10569 15675 10540 15807 10579 17302 10595 17735 10564 18643 10572 21131

7 10640 11892 10615 13458 10642 15006 10663 15772 10648 16857 10655 18224 10641 18933

8 10665 13736 10664 14151 10686 17169 10692 18058 10695 18977 10708 20193 10699 21173

9 10737 12215 10719 12982 10699 13392 10724 15166 10731 16183 10705 17712 10700 20276

10 10726 11885 10729 13707 10732 15965 10732 15920 10715 19010 10713 19049 10733 21747

Table 7.7: Number of ellipsoids packed (left) and CPU time in seconds (right) considering the
strategy of packing four ellipsoids at a time.

Hyperplane height factor γ
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η 4 2463 148 2473 76 2478 13 2498 0 2500 3 2494 0 2475 1

5 2390 74 2401 33 2406 1 2388 0 2415 0 2395 0 2412 0
6 2149 35 2100 4 2175 0 2100 0 2123 0 2159 0 2128 0
7 1823 14 1852 1 1847 0 1843 0 1828 0 1793 0 1795 0
8 1535 27 1495 1 1496 0 1528 0 1543 0 1487 0 1472 0
9 1265 2 1317 2 1330 0 1279 0 1330 0 1347 0 1297 0
10 1163 15 1137 0 1086 0 1116 0 1135 0 1110 0 1129 0

Table 7.8: Number of subproblems in which the first type of isolation constraint was active (left)
and number of subproblems in which the second type of isolation constraint was active (right),
considering the strategy of packing four ellipsoids at a time.

the results for the minimization of a random height. We can observe that the quality of the
solutions is much lower than those found in previous experiments in which the middle height
was minimized.

In Figure 7.1, we show the graphical representation of the best solution found for the min-
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Hyperplane height factor γ
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r
η 4 9775 37713 9964 39789 9995 42632 9957 44250 10030 43969 10068 50037 10059 50803

5 10341 32992 10388 33020 10388 35112 10392 36862 10388 38651 10411 42044 10434 42090

6 10534 25741 10571 24587 10558 26670 10558 26549 10552 29312 10597 30355 10571 32104

7 10635 20672 10666 22122 10646 22820 10642 24923 10631 26333 10644 27509 10622 30696

8 10694 22447 10715 24865 10686 25509 10700 28227 10702 30934 10709 32085 10712 33478

9 10717 18196 10727 19469 10710 22592 10716 24535 10737 25709 10713 28514 10714 29317

10 10736 17115 10740 19820 10742 21425 10731 22140 10729 24293 10727 26382 10731 28502

Table 7.9: Number of ellipsoids packed (left) and CPU time in seconds (right) considering the
strategy of packing five ellipsoids at a time.

Hyperplane height factor γ
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η 4 1963 214 1986 107 2006 43 1996 35 2016 9 2017 3 2012 2

5 2006 94 2022 20 2013 6 2020 0 2027 1 2027 0 2019 0
6 1888 52 1859 13 1874 1 1876 0 1851 0 1857 0 1885 0
7 1660 20 1662 2 1675 0 1656 0 1678 0 1666 0 1677 0
8 1416 12 1408 3 1416 0 1442 0 1419 0 1444 0 1419 0
9 1262 14 1238 0 1266 0 1278 0 1246 0 1294 0 1283 0
10 1074 7 1097 0 1090 0 1114 0 1091 0 1115 0 1118 0

Table 7.10: Number of subproblems in which the first type of isolation constraint was active
(left) and number of subproblems in which the second type of isolation constraint was active
(right), considering the strategy of packing five ellipsoids at a time.

Hyperplane height factor γ
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η 4 9954 767 9955 859 9969 966 9974 1022 9967 1086 9952 1150 9941 1268

5 10060 928 10110 1043 10125 1210 10127 1327 10102 1388 10099 1503 10095 1638

6 10156 1104 10149 1319 10152 1443 10163 1611 10166 1762 10165 1992 10145 2173

7 10178 1311 10182 1550 10190 1773 10190 2005 10186 2285 10202 2474 10205 2691

8 10199 1498 10221 1880 10217 2196 10231 2546 10202 2838 10221 3157 10233 3361

9 10260 1854 10258 2329 10272 2526 10235 3048 10251 3415 10255 3821 10244 4174

10 10249 2098 10273 2582 10254 3022 10261 3491 10259 3989 10257 4540 10265 5199

Table 7.11: Number of ellipsoids packed (left) and CPU time in seconds (right) considering the
strategy of packing one ellipsoid at a time and minimizing the lower height of the ellipsoid.

imization of each kind of height of the ellipsoid. Figure 7.1(a) represents the solution obtained
by minimizing the middle height of the ellipsoid to be packed. In this case, 10732 ellipsoids were
packed. Figure 7.1(b) represents the solution found by minimizing the lower height of the ellip-
soid to be packed. In this case, 10273 ellipsoids were packed. We can notice that the semi-minor
axis of the ellipsoids tends to be almost perpendicular to the base of the cube (the ellipsoids
are almost “lying”). In Figure 7.1(c), we have the solution with 10281 ellipsoids obtained by
minimizing the upper height of the ellipsoid. We observe in this case another trend: the ellip-
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Hyperplane height factor γ
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r
η 4 9748 908 9777 1019 9745 1123 9788 1248 9775 1329 9774 1585 9763 1529

5 9982 1048 9997 1196 9995 1466 9985 1478 9977 1576 10003 1745 10010 1846

6 10101 1196 10135 1364 10104 1605 10111 1761 10122 1916 10123 2076 10119 2251

7 10168 1300 10175 1586 10166 1775 10185 2047 10157 2238 10160 2455 10176 2720

8 10226 1664 10230 1948 10230 2269 10220 2654 10227 3019 10237 3521 10245 3998

9 10249 2289 10261 2744 10243 3028 10264 3339 10250 3758 10250 4049 10241 3707

10 10269 2204 10256 2670 10266 3105 10281 3591 10272 3983 10273 4490 10256 4899

Table 7.12: Number of ellipsoids packed (left) and CPU time in seconds (right) considering the
strategy of packing one ellipsoid at a time and minimizing the upper height of the ellipsoid.

Hyperplane height factor γ
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η 4 10052 1029 10027 1197 10049 1292 10040 1422 10039 1574 10038 1655 10041 1741

5 10244 1540 10233 1679 10231 1820 10223 1924 10236 2136 10202 2310 10230 2514

6 10315 2027 10306 2359 10311 2058 10298 2703 10308 3089 10320 3275 10294 3408

7 10374 1775 10361 2371 10337 2769 10352 3318 10351 3152 10353 3759 10358 3796

8 10388 2450 10383 2986 10368 3346 10389 3811 10380 4127 10371 4474 10372 4968

9 10414 2379 10409 2809 10419 3339 10414 3870 10403 4204 10420 5496 10416 5231

10 10438 2699 10419 3227 10418 4084 10410 4507 10429 5278 10425 5853 10430 6391

Table 7.13: Number of ellipsoids packed (left) and CPU time in seconds (right) considering the
strategy of packing one ellipsoid at a time and minimizing a random height of the ellipsoid.

soids have their semi-major axes nearly perpendicular to base of the cube (the ellipsoids are
almost “standing”). Figure 7.1(d) shows the solution with 10438 ellipsoids found by minimizing
a random height of the ellipsoid. Contrary to what occurred in the minimization of the lower
and upper heights, we cannot notice any positioning trend of the ellipsoids when we minimize
the middle or a random height. They are positioned in a more varied way (they are “messier”),
which should have contributed in getting a higher quality solution.

7.2 Comparison with other approaches

The works in [4] and [5] have dealt with the problem of packing a given collection of ellipsoids
within a container whose volume must be minimized. The method proposed in [4] is suitable
for small-sized instances having up to 100 ellipsoids. The method introduced in [5] is not
appropriate for small-sized instances but for medium-sized instances with no more than 1,000
ellipsoids. Although the problem considered in this work is different from the ones considered
in [4] and [5], we can try to compare how the method introduced in the present paper performs
on those small- and medium-sized instances. The largest instance considered in [4] has 100
ellipsoids with semi-axis lengths (1, 0.75, 0.5). For the problem that aims to minimize the volume
of a cuboidal container, a cuboid with approximate side lengths (5.17787, 5.73271, 8.26307) was
found in [4] for that instance. To compute this solution required more than 2 days and 17 hours
(in a computational environment similar to the one being considered in the present work). In [5],
the largest instance considered for packing three-dimensional ellipsoids within a cuboid has 500
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ellipsoids with semi-axis lengths (1, 0.75, 0.5). For this instance, a solution with a cuboid with
side lengths (9.24587, 10.29180, 12.22661) was found after more than one day of computational
time. Bringing each of these instances to the problem considered in the present work, we fix the
container as the cuboid having one of those side lengths and try to pack as many ellipsoids with
semi-axis lengths (1, 0.75, 0.5) as possible. We have fixed the parameters η = 10, γ = 10, and
τ = 100, and packed the ellipsoids one by one. For the first instance, our method was able to
pack 86 ellipsoids in less than 21 seconds. For the second instance, a solution with 431 ellipsoids
was found in less than 155 seconds. For these instances, we see that the packings presented in [4]
and [5] have higher densities than the ones produced by our current method. The explanation for
this result relies, on the one hand, on the fact that the approaches introduced in [4] and [5] pack
all the ellipsoids at the same time while minimizing the volume of the container; allowing the
ellipsoids to be arranged in a more compact way and directly pursuing a higher density packing.
On the other hand, it is important to notice that the approaches presented in [4] and [5] cannot
be applied to large-sized instances and, even for small-sized instances, the method proposed
here is much faster. Moreover, the method introduced in the present work was developed for
large-sized instances, sacrificing quality of the solution in favor of a time complexity that grows
linearly with the number of ellipsoids; the isolation constraints described in Section 4.3 being
an example of that policy.

In [9, 27], studies on the density of ellipsoids’ packings were reported. The authors were
able to show how the density of packings of three-dimensional identical ellipsoids varies with
the ellipsoids’ shape. Experiments in [9] were conducted considering the packing of 1,000 el-
lipsoids within a cube with periodic boundary conditions. For ellipsoids with semi-axis lengths
(1, 1, 1.9−1) and (1.3, 1, 1.3−1), for example, the packings found in [9] have densities close to
0.70 and 0.735, respectively; the latter being the packing with the highest density found in that
work. We used our method to pack these ellipsoids within a cube with side length 20. Again,
we fixed the parameters η = 10, γ = 10, and τ = 100, and packed the ellipsoids one by one. For
the first instance, our method found a packing containing 2,118 ellipsoids (which has a density
around 0.583) within 10 minutes. For the second instance, a packing with density 0.585 and
1,119 ellipsoids was found within 7 minutes. In this case, the higher density obtained in [9] can
be partially explained by the fact that (i) all ellipsoids are packed at the same time and (ii) the
container has periodic boundary conditions, which increases the “useful space” of the container.
Moreover, our method found both solutions in a few minutes; while computational times are not
reported for the solutions presented in [9].

7.3 Applicability of the proposed approach

It is important to highlight the flexibility of the matheuristic approach being introduced in
the present work, that was not developed seeking dense packings. The proposed approach allows
the packing of non-identical ellipsoids, the addition of specific positioning constraints for each
ellipsoid, and the addition of minimum distance constraints, among others. It is important to
notice that, for some practical applications, the density is not the main focus. The approach
presented here generalizes the one introduced in [29] for constructing initial configurations for
molecular dynamics simulations. In this scenario, sphere packing problems with additional
constraints and a density of approximately 30% are seek, as illustrated by the figure in [29,
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p.2162]. We finish the numerical experiments presenting three examples that illustrate the
flexibility of the proposed approach.

In the first illustrative example, we consider the problem of packing non-identical ellipsoids
within a cube. In this experiment, we chose the length of each semi-axis of each ellipsoid to
be uniformly random on the interval [0.1, 1]. The ellipsoids were packed one at a time with
their middle heights being minimized. Considering a cube with side length 30 and using the
parameters η = 10, γ = 6, and τ = 100, we were able to pack 23860 ellipsoids in 2h45m.
Figure 7.2 illustrates this solution.

In a second illustrative example, we aim to show that the computational cost of the in-
troduced strategy scales linearly with the number of ellipsoids being packed. We consider the
packing of ellipsoids with semi-axis lengths (1, 0.75, 0.5) within a cube with side length 140. We
have chosen to pack one ellipsoid at a time and to minimize the middle height of the ellipsoid.
We have also chosen η = 10, γ = 4, and τ = 10000. Figure 7.3 shows the packing of 1,126,474
ellipsoids. This solution was found in 4d14h32m.

In the last illustrative example, we aim to show what can be achieved with additional posi-
tioning constraints. We consider the problem of simultaneously packing various kinds of ellip-
soids within different regions that are determined by a cube C, an ellipsoid E , and a ball B. The
cube has side lengths 128; the ellipsoid has semi-axis lengths (48, 24, 24); and the ball has radius
12. They are all centered at the origin, so that the ellipsoid lies within the cube and the ball lies
within the ellipsoid. There are four groups of ellipsoids that must be packed. The first group
has (red) ellipsoids with semi-axis lengths (1, 0.75, 0.5). These ellipsoids must be packed so that
they are inside one of the halves of the cube C but their centers are outside the ellipsoid E . The
second group has (green) ellipsoids with semi-axis lengths that are uniformly random on the
interval [0.25, 1]. These ellipsoids must be inside the other half of the cube C but their centers
must be outside the ellipsoid E . The third group has (yellow) ellipsoids with semi-axis lengths
(0.75, 0.6, 0.5) whose centers must be inside the ellipsoid E but outside the ball B. Finally, the
fourth group has (blue) ellipsoids with semi-axis lengths (0.5, 0.4, 0.3) and their centers must be
inside the ball B. We used the parameters η = 10, γ = 10, and τ = 1000. Figure 7.4 illustrates
the solution found containing 1,101,052 ellipsoids. Figure 7.5(a) shows only the ellipsoids whose
last component of the center is nonpositive; while Figure 7.5(b) shows only the ellipsoids whose
second component of the center is nonpositive.

8 Concluding remarks

The problem of packing ellipsoids in the three-dimensional space has been tackled through
the application of global and local nonlinear optimization techniques in recent years. In all cases,
only small- and medium-sized problems could be solved due to the nonconvexity of the highly
complex considered models. In the present work, we introduced a matheuristic that uses non-
linear programming models and methods for solving small subproblems. In a constructive way,
we were able to find solutions to packing problems with a huge number of ellipsoids. Problems
with identical and non-identical ellipsoids can be tackled with the proposed approach. Moreover,
the introduced method is flexible enough so it can easily handle positioning and other type of
additional constraints. Assessing the quality of the obtained solutions, in the sense measuring
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in some way how far they are from a global solution is an open question that may be addressed
in future research. On the other hand, the presented strategy is the first one based on nonlinear
programming able to deliver solutions to that kind of huge ellipsoids’ packing problems.

Acknowledgements. The authors are indebted to the anonymous referees whose comments
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and CNPq (grant 309517/2014-1).

26



(a) (b)

(c) (d)

Figure 7.1: Packing of ellipsoids with semi-axis lengths (1, 0.75, 0.5) within a cube with side
length 30. (a) 10732 ellipsoids obtained by minimizing the middle height of the ellipsoid. (b)
10273 ellipsoids obtained by minimizing the lower height. (c) 10281 ellipsoids obtained by
minimizing the upper height. (c) 10438 ellipsoids obtained by minimizing a random height.
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Figure 7.2: Packing of 23860 ellipsoids with uniformly random semi-axis lengths in the interval
[0.1, 1] within a cube with side length 30. This solution was found by packing ellipsoids one by
one, minimizing the middle height, and using η = 10, γ = 6, and τ = 100.
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Figure 7.3: Packing of 1,126,474 ellipsoids with semi-axis lengths (1, 0.75, 0.5) within a cube
with side length 140. This solution was found by packing ellipsoids one by one, minimizing the
middle height, and using η = 10, γ = 4, and τ = 10000.
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Figure 7.4: Solution found for the problem of packing various kinds of ellipsoids within different
regions.
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(a) (b)

Figure 7.5: Partial views of the interior of the solution found for the problem of packing various
kinds of ellipsoids within different regions. (a) Only ellipsoids whose first component of the
center is nonpositive are shown. (b) Only ellipsoids whose last component of the center is
nonpositive are shown.
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