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June 3, 2021¶

Abstract

The Inexact Restoration approach has proved to be an adequate tool for handling the
problem of minimizing an expensive function within an arbitrary feasible set by using dif-
ferent degrees of precision. This framework allows one to obtain suitable convergence and
complexity results for an approach that rationally combines low- and high-precision evalua-
tions. In this paper we consider the case where the domain of the optimization problem is
an abstract metric space. Assumptions about differentiability or even continuity will not be
used in the general algorithm based on Inexact Restoration. Although optimization phases
that rely on smoothness cannot be used in this case, basic convergence and complexity results
are recovered. A new derivative-free optimization phase is defined and the subproblems that
arise at this phase are solved using a regularization approach that takes advantage of differ-
ent notions of stationarity. The new methodology is applied to the problem of reproducing
a controlled experiment that mimics the failure of a dam.
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1 Introduction

For many reasons scientists and engineers may need to optimize problems in which the objective
function is very expensive to evaluate. In these cases, partial, and obviously inexact, evaluations
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are useful. The idea is to decrease as much as possible functional values using partial evaluations
in such a way that, when we have no choice except to evaluate the function with maximal
accuracy, we are already close enough to a solution of the problem. Rational decisions about
when to increase accuracy (and evaluation cost) or even when to try more inexact evaluations
are hard to make. Roughly speaking, we need a compromise between accuracy of evaluation
and functional decrease that is difficult to achieve on a mere heuristic basis.

Most papers on minimization methods with inexact evaluations aim to report the behavior of
modifications of standard algorithms in the presence of errors in the computation of the objective
function, its derivatives, or the constraints [5, 6, 41, 34, 22, 35, 33]. In general, it is assumed
that the objective function and, perhaps its derivatives, can be computed with a given error
bound each time the functional value is required at an arbitrary point. In [5], the underlying
“exact” algorithm is based on adaptive regularization. Trust-region algorithms inspired in [24,
§10.6] are addressed in [35]. High-order complexity of stochastic regularization is considered
in [6]. The case of PDE-constrained optimization is studied in [41]. Nonsmoothness is addressed
in [34]. Convex quadratic problems using Krylov methods are studied in [33]. Many of these
works seem to be influenced by an early paper by Carter [22].

In recent papers [9, 10, 42], a methodology based on the analogy of the Inexact Restoration
idea for continuous constrained optimization and the process of increasing accuracy of function
evaluations was developed. In this approach, it is not assumed that one is able to compute
a functional value (let alone derivatives) within a given required error bound. Instead, it is
assumed that accuracy is represented by an abstract function h(y) such that h(y) = 0 means
maximal accuracy and y is a case-dependent procedure. For instance, y ∈ Y may represent an
algorithm with which one can compute the approximate objective function and h(y) ≥ 0 is an
accuracy-related function. The connection between the value of h(y) and a possible error bound
is not assumed to be known. For example, y may represent the maximal number of iterations
that are allowed for a numerical algorithm that computes the objective function before obtaining
convergence when we know that convergence eventually occurs but an error estimation is not
available. Several additional examples may be found in [10].

Inexact Restoration methods for smooth constrained optimization were introduced in [45].
Each iteration of an Inexact Restoration method proceeds in two stages. In the Restoration
Phase, infeasibility is reduced; and, in the Optimization Phase, the reduction of the objective
function or its Lagrangian is addressed with a possible loss of feasibility. Convergence with
sharp Lagrangians as merit functions was proved in [44]. Applications to bilevel programming
were given in [46, 1]. In [20], an application to multiobjective optimization was described.
The first line-search implementation was introduced in [28]. Nonsmooth versions of the main
algorithms were defined in [2, 25, 27]. The employment of filters associated with Inexact Restora-
tion was exploited in [36, 25]. Applications to control problems were given in [38, 12, 37, 3].
In [26], Inexact Restoration was used to obtain global convergence of a sequential programming
method. Large-scale applications were discussed in [32]. In [31], Inexact Restoration was used
for electronic structure calculations; and problems with a similar mathematical structure were
addressed in [30]. The reliability of Inexact Restoration for arbitrary nonlinear optimization
problems was assessed in [8]. In [21], the worst-case evaluation complexity of Inexact Restora-
tion was analyzed. An application to finite-sum minimization was described in [7]. Continuous
and discrete variables were considered in [11]. Non-monotone alternatives were defined in [29].
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An application to the demand adjustment problem was given in [49]. Local convergence results
were proved in [12].

In [10], an algorithm of Inexact Restoration type applied to minimization with inexact evalu-
ations that exhibits convergence and complexity results, was developed. However, the algorithm
proposed in [10], as well as the algorithms previously introduced in [9, 42], employs derivatives
of the objective function, a feature that may be inadequate in many cases in which one does not
have differentiability at all. This state of facts motivates the present work. Here, the algorithms
of [9, 10, 42] are adapted to the case in which derivatives are not available and the main the-
oretical results are proved. In addition, the domain of the optimization problem is considered
to be a metric space, unlike an Euclidean space as considered in [9, 10, 42]. The reason why we
are proposing the generalization to metric spaces is simple: Many real optimization problems
take place in domains that are not Euclidean spaces and, many times, in domains that are not
even vector spaces. Naturally, there is a price we pay for this generalization because there are
no known optimality conditions that can be invoked to define possible approximate solutions to
the problems. In the current state of development of methods for optimization in metric spaces,
it is natural that the optimality conditions that we can define are inspired by what happens in
Euclidean spaces. In that sense, we emphasize a poorly known or poorly exploited property: In
the Euclidean case, a point being a local minimizer does not imply that that point is also a local
minimizer of a high-order approximation of the objective function. (For example, (0, 0) is a min-
imizer of x2

2−x3
1x2 +x6

1 but is not a local minimizer of its Taylor approximation x2
2−x3

1x2.) That
implication is only valid when the dimension of the space is 1 or when the approximation is of
order 2. If we deal with higher order approximations, the fact that a point is a local minimizer
only implies that it is also a local minimizer of a suitably regularized Taylor approximation.
That is the reason why, in the case of metric spaces, we cannot establish stronger necessary
conditions than those mentioned in the present article. With these limitations, we elaborate
the possible theory that frames affordable and reasonably efficient techniques. Moreover, in the
present work, we focus on a practical problem related with the prediction and mitigation of the
consequences of dam breaking disasters.

The rest of this paper is organized as follows. The main contributions of the paper are
surveyed in Section 2. The basic Inexact Restoration algorithm for problems with inexact evalu-
ation without error bounds is introduced in Section 3. This algorithm is the one described in [10]
with the difference that the domain Ω is an arbitrary metric space here, instead of a subset of
Rn. This extension may be useful for cases in which we have discrete or qualitative variables
or when the original problem is formulated on a functional space. The proofs of the complexity
and convergence results for this algorithm are similar to the ones reported in [10]. Since the
employment of derivatives is essential for the definition of the Optimization Phase in [10], in
the present contribution we need a different approach for that purpose. This is the subject
of Section 4. The Optimization Phase requires sufficient descent of an iteration-dependent in-
exactly evaluated function. Sufficient descent of this function is equivalent to simple descent
of an associated forcing function, therefore the required sufficient descent may be obtained by
applying an arbitrary number of iterations of an ad hoc monotone minimization algorithm to
an associated forcing function. This monotone algorithm, that depends on characteristics of the
function being minimized, is called MOA (Monotone Optimization Algorithm) in the rest of the
paper. In this phase, we may take advantage of the theoretically justified possibility of relaxing
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precision. In Section 5, we concentrate at the definition of a strategy for MOA. Our choice is
to solve the problem addressed by MOA by means of suitable surrogate models associated with
iterated adaptive regularization. Theoretical results of the previous sections are summarized in
Section 6. In Section 7, we describe an implementation that is adequate for the practical prob-
lem that we have in mind. The idea is to simulate a small-scale controlled physical experiment
that mimics the failure of a dam, described in [23]. We rely on an MPM-like (Moving Particles
Method) approach in which the dynamic of the particles is governed by the behavior of the Spec-
tral Projected Gradient (SPG) method applied to the minimization of a semi-physical energy.
Our optimization problem consists of finding the parameters of the energy function by means of
which the trajectory of the SPG method best reproduces physical experiments reported in [23].
In Section 8, we state conclusions and lines for future research.

Notation. N+ denotes the non-negative integer numbers; while R+ denotes the non-negative
real numbers. The symbol ‖ · ‖ denotes the Euclidean norm of vector and matrices.

2 Main problem and contributions

Consider the problem

Minimize (with respect to x) f(x, y) subject to h(y) = 0 and x ∈ Ω, (1)

where Ω is an arbitrary metric space, Y is an abstract set, h : Y → R+, and f : Ω×Y → R. For
further reference, d(x, z) denotes the distance between x and z in Ω. Y is sometimes interpreted
as a set of indices according to which the objective function is computed with different levels
of accuracy. The nature of these indices varies with the problem and, for this reason, Y is
presented as an arbitrary set. The function h(y) is assumed to be related with the accuracy
in the evaluation of f associated with the index y ∈ Y . The smaller the value of h(y), the
higher the accuracy; while maximal accuracy corresponds to h(y) = 0. In principle, problem (1)
consists of minimizing the objective function with maximal accuracy.

As an illustrative example of problem (1), let Ω be a set of shapes, each shape being the
union of two n-dimensional ellipsoids with nonempty intersection and that contains a given
set of points. Ω can be endowed with the Hausdorff distance thus being a metric space. The
objective is to find a shape x ∈ Ω with minimal volume. The volume of x ∈ Ω can be computed
approximately by considering a grid in Rn and computing the fraction of grid points belonging
to x. Then, each element y ∈ Y is a natural number representing the number of grid elements.
Assuming that the maximum allowed number of grid elements is M , we can define h(y) =
1/y − 1/M .

In this article, the domain Ω of the optimization problem (1) is a metric space, opposed to
our previous paper [10], where it was the Euclidean space or a subset of it. We have in mind,
therefore, spaces formed by functions in which it is possible to define a metric, and optimization
problems defined on discrete sets. Because of this level of generality, the objective function f can
rarely be computed exactly, so inaccurate evaluations are unavoidable. However, there are many
ways to deal with inaccuracy of functional evaluations. In this article each instance of inaccurate
evaluation is identified by an element y of an abstract set Y . For example, if the evaluation
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of the function comes from an iterative process, each y can be identified with the maximum
number of iterations allowed. If the evaluation depends on a discretization grid, Y is the set
of all possible grids. To each y, a “score” h(y) is attributed such that h(y) = 0 corresponds to
the exact evaluation of the objective function while h(y) > 0 corresponds to different degrees
of inaccuracy; and the smaller the value of h(y), the higher the evaluation accuracy. Therefore,
problem (1) consists in minimizing f(x, y) with respect to x ∈ Ω, restricted to h(y) = 0.

The evaluation of f(x, y) when h(y) = 0 is very often impossible or extremely expensive,
therefore, we must rely on evaluations of f(x, y) with h(y) small. However, the cost of evaluating
f(x, y) generally increases as h(y) decreases. Therefore, the strategy for solving problem (1) relies
on solving problems of the form “Minimize f(x, yk)” with h(yk) → 0. A rational way of doing
this has been defined in [10] for the case in which the domain is Euclidean and is extended here
to the general case.

Clearly, with this level of generality differentiability arguments are out of question and
we need “derivative-free” procedures for the (approximate) minimization of f(x, yk). For this
purpose we consider that the objective function may be approximated, at each iteration, by
a suitable model and that approximate minimization of such model is affordable. The precise
determination of the model is, of course, problem-dependent. Under suitable assumptions,
we prove that, in finite time, it is possible to obtain good approximations to a solution of
problem (1). Finally, we present a practical application that concerns fitting models of dam
breaking.

3 Main algorithm

In this section, the problem, the algorithm, and the convergence results introduced in [10] are
revisited. Of note is that in the present contribution the domain of the problem is a general
metric space instead of a subset of Rn. The proofs of the theorems presented in this section are
analogous to the ones given in [10], with the occurrences of ‖x − z‖ replaced by the distance
d(x, z) between x and z.

Let us define a merit function Φ : Ω× Y × (0, 1)→ R by

Φ(x, y, θ) = θf(x, y) + (1− θ)h(y).

The merit function Φ combines objective function evaluation and accuracy level. Here, f(x, y)
is the value of the objective function for a feasible x when the accuracy level is determined by
y ∈ Y . Therefore, Φ(x, y, θ) represents a compromise between optimality and accuracy. The
penalty parameter θ is updated at each iteration of the main algorithm. The main algorithm,
with an Optimization Phase different from the one of the algorithm introduced in [10], follows.

Algorithm 3.1. Let x0 ∈ Ω, y0 ∈ Y , θ0 ∈ (0, 1), ν > 0, r ∈ (0, 1), α > 0, and β > 0 be given.
Set k ← 0.

Step 1. Restoration phase

Define yre
k ∈ Y in such a way that

h(yre
k ) ≤ rh(yk) (2)
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and
f(xk, y

re
k ) ≤ f(xk, yk) + βh(yk). (3)

Step 2. Updating the penalty parameter

If

Φ(xk, y
re
k , θk) ≤ Φ(xk, yk, θk) +

1− r
2

(h(yre
k )− h(yk)) , (4)

set θk+1 = θk. Otherwise, set

θk+1 =
(1 + r) (h(yk)− h(yre

k ))

2
(
f(xk, y

re
k )− f(xk, yk) + h(yk)− h(yre

k )
) . (5)

Step 3. Optimization phase

Compute yk+1 ∈ Y and xk+1 ∈ Ω, such that

f(xk+1, yk+1) ≤ f(xk, y
re
k )− αd(xk, xk+1)ν (6)

and

Φ(xk+1, yk+1, θk+1) ≤ Φ(xk, yk, θk+1) +
1− r

2
(h(yre

k )− h(yk)) . (7)

Update k ← k + 1, and go to Step 1.

Given an iterate (xk, yk), at Step 1 we compute the function with an accuracy determined
by yre

k ∈ Y , which is better than the accuracy given by yk. At Step 2 we update the penalty
parameter with the aim of decreasing the merit function at the restored pair (xk, y

re
k ) with respect

to the merit function computed at (xk, yk). This is typical in Inexact Restoration methods for
constrained optimization. Note that, using (2), (3), the negation of (4), and the fact that
θk > 0, it is easy to show that both the numerator and the denominator of (5) are positive and
that θk+1 ∈ (0, θk]. At Step 3 (optimization phase), we compute the new iterate, at which the
objective function value should decrease with respect to the restored pair in the sense of (6) and
the merit function should be improved with respect to (xk, yk) in the sense of (7).

The theoretical results below describe the properties of Algorithm 3.1 and the generated
sequence of iterates. These results state the algorithm is well-defined and that any desired
accuracy level, for the evaluation of the objective function, can be reached in a finite number
of iterations. (In fact, a complexity result is presented and an upper bound on the number
of iterations is given.) A first step towards an optimality result, including complexity bounds,
is also given. The optimality results will be completed in the remaining of the work with the
definition of a particular strategy for computing xk+1 and yk+1 at Step 3 and the analysis of its
convergence properties.

In Assumption 3.1 we state that defining yre
k satisfying (2) and (3) at Step 1 of Algorithm 3.1

is always possible. Notice that assuming we can define yre
k satisfying (2) is a simple assumption,

since it corresponds to assuming that we have the capability of increasing the accuracy for the
evaluation of the objective function. On the other hand, the capability of making the defined yre

k

to satisfy (3) is problem-dependent; and plausible choices are given in [10]. In Assumption 3.2,
basic assumptions on functions h and f are stated.
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Assumption 3.1 At Step 1 of Algorithm 3.1, for all k ∈ N+ it is possible to compute, in finite
time, yre

k satisfying (2) and (3).

Lemma 3.1 Suppose that Assumption 3.1 holds. Then, Algorithm 3.1 is well defined.

Proof: Replace, in Lemma 2.3 of [10], the occurrences of ‖x− z‖ with d(x, z). 2

Assumption 3.2 There exist hmax > 0 and fmin ∈ R such that, for all y ∈ Y and x ∈ Ω we
have that h(y) ≤ hmax and f(x, y) ≥ fmin.

Theorem 3.1 Suppose that Assumptions 3.1 and 3.2 hold. Given εfeas > 0, the number of
indices k such that h(yk) > εfeas is bounded above by

cfeas

εfeas
, (8)

where cfeas only depends on x0, y0, r, θ0, β, hmax, and fmin.

Proof: This proof follows as the one of Corollary 2.2 of [10] with the replacements stated in the
proof of Lemma 3.1. 2

Theorem 3.2 Suppose that Assumptions 3.1 and 3.2 hold. Then, the series
∑∞

k=0 d(xk, xk+1)ν

is convergent. Moreover, given εdist > 0, the number of iterates k at which d(xk, xk+1) > εdist is
not bigger than

cdist

ενdist

, (9)

where cdist only depends on α, x0, y0, r, θ0, β, hmax, and fmin.

Proof: See Theorem 2.2 and Corollary 2.3 of [10] and perform the substitutions of the norm of
differences with appropriate distances. 2

Theorem 3.3 Suppose that Assumptions 3.1 and 3.2 hold. Then,

lim
k→∞

h(yk) = 0. (10)

Moreover, if Ω is complete and ν ≤ 1, the sequence {xk} is convergent.

Proof: The property (10) follows from Theorem 3.1. By the convergence of the series
∑∞

k=0 d(xk, xk+1)ν

with ν ≤ 1 we have that {xk} is a Cauchy sequence. Since Ω is complete it turns out that {xk}
is convergent. 2

The convergence of the sequence {xk} when ν ≤ 1 had not been considered in [10]. In general,
in nonconvex optimization, it is proved that every convergent subsequence of the sequence
generated by an algorithm has optimality properties but convergence of the whole sequence
is rarely obtained. The validity of the theorem does not necessarily lead us to use ν ≤ 1
in numerical computations, since, on the one hand, the convergence to zero of the distance
between consecutive iterates is, in general, a good indication of optimality and, on the other
hand, values of ν greater than 1 do not prevent the total sequence from being convergent.
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4 A general framework for the Optimization Phase

In this section, we consider the implementation of Step 3 of Algorithm 3.1. Obviously, if, for
any given precision parameter yk+1, we apply any monotone optimization algorithm (MOA)
to the minimization of f(x, yk+1) + αd(xk, x)ν subject to x ∈ Ω, starting with xk as initial
approximation, we find x ∈ Ω such that

f(x, yk+1) ≤ f(xk, yk+1)− αd(xk, x)ν .

This follows from the fact that even x = xk satisfies such inequality. However this is not a
guarantee for the fulfillment of

f(x, yk+1) ≤ f(xk, y
re
k )− αd(xk, x)ν . (11)

and

Φ(x, yk+1, θk+1) ≤ Φ(xk, yk, θk+1) +
1− r

2
(h(yre

k )− h(yk)) , (12)

as required at Step 3 of Algorithm 3.1. Therefore, before accepting the “solution” obtained by
MOA as new iterate xk+1, we must test whether (11) and (12) hold. If (11) and (12) hold,
then we accept xk+1 = x. Otherwise, if after a finite number of trials with arbitrary yk+1 we
fail to find x satisfying (11) and (12), we discard the MOA solution x and apply MOA to the
minimization of f(x, yre

k ) + αd(xk, x)ν . This time, the “solution” obtained by MOA necessarily
yields the fulfillment of (11) and (12) and we may accept yk+1 = yre

k and xk+1 = x. Two natural
questions arise:

1. Why not using directly yk+1 = yre
k , instead of trying first one or more different precision

parameters yk+1?

2. Which stopping criterion should we use for MOA?

The answer to the first question is the following: We normally want to choose yk+1 6= yre
k in such a

way that h(yk+1) > h(yre
k ) because h(y′) > h(y) generally implies that the cost of evaluating the

objective function with precision given by y′ is smaller than the cost of evaluating the objective
function with precision defined by y. In other words, we want to obtain the maximum possible
progress without unnecessary evaluation effort. The answer to the second question is problem-
dependent. Roughly speaking, we assume that MOA is equipped with a stopping criterion
related to optimality. Recall that we are dealing with metric spaces in which nothing similar to
KKT conditions exists. The idea of using an auxiliary algorithm for the fulfillment of descent
conditions in the Optimization Phase of Inexact Restoration comes from [18], where Generating
Set Search algorithms [40, 39] were employed as subalgorithms for an Inexact Restoration method
for derivative-free optimization with smooth constraints.

Summing up, the strategy to compute yk+1 ∈ Y and xk+1 ∈ Ω at Step 3 of Algorithm 3.1 is
described by Algorithm 4.1 below.

Algorithm 4.1.

Step 1. Choose yk+1 ∈ Y .
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Step 2. Define, for all x ∈ Ω,
F (x) = f(x, yk+1) + αd(x, xk)

ν . (13)

Step 3. Consider the subproblem

Minimize F (x) subject to x ∈ Ω. (14)

By using an appropriate monotone iterative (derivative-free) minimization Algorithm MOA,
starting with x = xk, compute xtrial ∈ Ω such that

F (xtrial) ≤ F (xk) (15)

and xtrial satisfies a stopping criterion related to MOA to be specified later.

Step 4. If yk+1 = yre
k or

f(xtrial, yk+1) ≤ f(xk, y
re
k )− αd(xk, xtrial)

ν and

Φ(xtrial, yk+1, θk+1) ≤ Φ(xk, yk, θk+1) + 1−r
2 (h(yre

k )− h(yk)) ,
(16)

then return yk+1 and xk+1 = xtrial.

Step 5. Re-define yk+1 = yre
k , and go to Step 2.

Remark 4.1. At Step 1 of Algorithm 4.1, we have the chance of choosing a looser precision
yk+1, i.e. yk+1 such that h(yk+1) > h(yk), and, with this precision, trying to improve (at Step 3)
the current approximate solution xk. The success of this attempt depends on the capacity of
computing xtrial satisfying (15) at Step 3 that also satisfies (16). By means of a judicious choice
of yk+1, we may obtain, simultaneously and with low computational cost, a smaller function
value and, consequently, substantial progress in terms of distance to the true solution of the
original problem.

Remark 4.2. Note that (15) is equivalent to

f(xtrial, yk+1) ≤ f(xk, yk+1)− αd(xk, xtrial)
ν (17)

and that when yk+1 = yre
k the fulfillment of (17) implies trivially the fulfillment of (16). This is

the reason why, at Step 4, the test of (16) is not necessary when yk+1 = yre
k .

Returning back to Algorithm 3.1, by Theorems 3.1 and 3.2, given εfeas > 0 and εdist > 0,
there exists an iteration index k not larger than

cfeas

εfeas
+
cdist

ενdist

, (18)

where cfeas and cdist are constants that only depend on the problem and algorithmic constants,
such that

h(yk+1) ≤ εfeas and d(xk, xk+1) ≤ εdist. (19)
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It is quite natural to ask whether (19) implies, in some sense, feasibility and optimality of
the original problem. Observe, firstly, that, by Step 3 (of Algorithms 3.1 and 4.1), xk+1 ∈
Ω. Moreover, there is no doubt that h(yk+1) ≤ εfeas implies that the objective function has
been computed at xk+1 with high precision. Finally, xk+1 is an approximate minimizer of
f(x, yk+1) + αd(x, xk) in the sense that this point satisfies an optimality condition related to
MOA. Since α (parameter of Algorithm 3.1) is assumed to be small and, by (19), xk+1 is close
to xk, this is the best justification that we have for saying that, in some sense, xk+1 is almost
optimal. Recall that we work in a general metric space where a vectorial structure for defining
optimality conditions is not assumed to exist at all. As a consequence, our confidence in the
fact that (18) and (19) reflect optimality relies in the properties of the algorithm MOA. This is
the subject of the following section.

5 Monotone Optimization Algorithm

At Step 3 of Algorithm 4.1, we need to find xtrial ∈ Ω such that

F (xtrial) ≤ F (xk) (20)

and xtrial satisfies a stopping criterion related to MOA, where MOA is an appropriate monotone
optimization algorithm applied to the minimization of F (x) subject to x ∈ Ω. Unfortunately,
there are no implementable algorithms for minimizing a function over a general metric space.
Therefore, the problem of minimizing F (x) for x ∈ Ω must be solved by means of a reduction
to a finite dimensional linear space. We perform this reduction in two steps. Let us define, for
all x̄, x ∈ Ω, a surrogate model M(x̄, x) such that the following assumption holds.

Assumption 5.1 For each x̄ ∈ Ω, M(x̄, x) satisfies:

1. For all x̄ ∈ Ω, M(x̄, x̄) = F (x̄).

2. There exists L ≥ 0 and p+ 1 > 0 such that, for all x̄, x ∈ Ω,

F (x) ≤M(x̄, x) + Ld(x̄, x)p+1. (21)

3. There exists σ ≥ 0 such that M(x̄, x) + σd(x̄, x)p+1 is bounded below in Ω.

4. For all x̄ ∈ Ω and σ > 0, it is affordable to solve, up to some given precision, the problem

Minimize M(x̄, x) + σd(x̄, x)p+1 subject to x ∈ Ω. (22)

The idea is to substitute the (approximate) minimization of F (x) with the (approximate)
minimization of (22). It could be argued that (22) is a minimization problem over a metric
space, as well as the minimization of F (x). However, it is expected that a model of F (x) can be
built whose minimization over the metric space reduces to a finite dimensional minimization. For
example, if Ω is a space of continuous functions, we may approximate the minimization over Ω by
a minimization over a finite dimensional space of splines and we may employ Taylor-like models
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for this minimization. As a whole, we could obtain the structure required by Assumption 5.1.
An alternative to this model choice is presented in Section 7.

The algorithm MOA, for minimizing F over Ω based on the regularized model, is defined as
follows. Note that the third condition in Assumption 5.1 implies that M(x̄, x) + σ′d(x̄, x)p+1 is
bounded below in Ω for all σ′ ≥ σ.

Algorithm 5.1 (MOA). Let σmin > 0, γ > 0, and x0 ∈ Ω be given. Initialize j ← 0.

Step 1. Set `← 1 and choose σj,1 ∈ [0, 1] such that M(xj , x)+σj,1d(xj , x)p+1 is bounded below
in Ω.

Step 2. Compute xj,` ∈ Ω a solution of (22) with x̄ = xj and σ = σj,`.

Step 3. Test the condition
F (xj,`) ≤ F (xj)− γd(xj , xj,`)

p+1. (23)

If (23) does not hold, then set σj,`+1 = max{σmin, 2σj,`}, `← `+ 1, and go to Step 2.

Step 4. Set xj+1 = xj,`, σj = σj,`, j ← j + 1, and go to Step 1.

Remark 5.1. It is worth noting that Algorithm 5.1 may be seen as a generalization of the
projected gradient method for the convex constrained minimization of a smooth function, in
which a trial point xj,` of the form xj,` = PΩ(xj − σ−1

j,`∇F (xj)) can be seen as the solution to

subproblem (22) with M(x̄, x) := ∇F (x̄)T (x−x̄)+σ‖x−x̄‖2, x̄ = xj , and σ = σj,`. Algorithm 5.1
has been defined without a stopping criterion. If η > 0 is a small tolerance, condition

d(xj+1, xj) ≤ η,

tested at Step 4 right before going back to Step 1, would correspond to the well-known stopping
criterion

‖PΩ(xj − σ−1
j ∇F (xj))− xj‖ ≤ η, (24)

associated with the norm of the so called scaled continuous projected gradient (evaluated at xj).
Note that criterion (24) is satisfied by xj and that, by (23), F (xj+1) ≤ F (xj)− γηp+1 < F (xj).

Remark 5.2. As expressed in Remark 5.1, Algorithm 5.1 (MOA) was defined without a stop-
ping criterion. Defining the algorithm in this way is necessary in order to be able to assert
theoretical results such as that of Theorem 5.2. On the other hand, a stopping criterion must
be added between Steps 2 and 3 of Algorithm 5.1 (MOA) when this algorithm is called to com-
pute xtrial at Step 3 of Algorithm 4.1. The stopping criterion is given by the statement “If xj,`
satisfies (20) plus a stopping criterion to be defined later, then stop by defining xtrial = xj,`.”

The theorem below shows that Algorithm 5.1 is well-defined and, additionally, it gives an
evaluation complexity result for each iteration.

Theorem 5.1 Assume that M(·, ·), L ≥ 0, and p+ 1 > 0 are such that Assumption 5.1 holds.
Then, the jth iteration of Algorithm 5.1 is well defined and finishes with the fulfillment of (23)
after at most O(log(L+ γ)) evaluations of F .
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Proof: By (21), and the fact that, by the definition of xj,`, M(xj , xj,`) + σj,`d(xj , xj,`)
p+1 ≤

M(xj , xj), we have that

F (xj,`) ≤ M(xj , xj,`) + Ld(xj , xj,`)
p+1

= M(xj , xj,`) + σj,`d(xj , xj,`)
p+1 − σj,`d(xj,`, xj)

p+1 + Ld(xj , xj,`)
p+1

≤ M(xj , xj) + (L− σj,`)d(xj , xj,`)
p+1

= F (xj) + (L− σj,`)d(xj , xj,`)
p+1.

Therefore, (23) holds if σj,` ≥ L + γ that, by construction, occurs in the worst case when
` ≥ log2 ((L+ γ)/σmin) + 2. Since F is evaluated only at points xj,` to test condition (23), this
completes the proof. 2

Theorem 5.2 Assume that F (x) ≥ Flow for all x ∈ Ω, M(·, ·), L ≥ 0, and p + 1 > 0 are such
that Assumption 5.1 holds and the sequence {xj} is generated by Algorithm 5.1. Then, given
η > 0, the number of iterations such that

d(xj , xj+1) > η (25)

is bounded above by ⌊
F (x0)− Flow

γηp+1

⌋
. (26)

Moreover, the number of evaluations of F is bounded above by⌊
F (x0)− Flow

γηp+1

⌋
×
(

log2

(
L+ γ

σmin

)
+ 2

)
.

Proof: By (23) we have that, for all j = 0, 1, 2, . . . ,

F (xj+1) ≤ F (xj)− γd(xj , xj+1)p+1. (27)

If, for an iteration j, (25) holds, then, by (27),

F (xj)− F (xj+1) ≥ γηp+1, (28)

meaning that, at this iteration j, there is a decrease of the objective function of at least γηp+1.
Since, by definition, xj ∈ Ω for all j and F (x) ≥ Flow for all x ∈ Ω, then the amount of such
decreases is limited by (F (x0) − Flow)/(γηp+1). Thus the number of iterations at which (25)
holds is limited by (26). The second part of the proof follows from Theorem 5.1. 2

Corollary 5.1 Assume that F (x) ≥ Flow for all x ∈ Ω, M(·, ·), L ≥ 0, and p+ 1 > 0 are such
that Assumption 5.1 holds and the sequence {xj} is generated by Algorithm 5.1. Then,

lim
j→∞

d(xj , xj+1) = 0. (29)

12



Proof: The corollary follows immediately from Theorem 5.2. 2

Let us review the results obtained up to now. Algorithm 3.1 is our main Inexact Restoration
algorithm, for which we proved that h(yk)→ 0 and d(xk, xk+1)→ 0. Algorithm 4.1 describes the
implementation of Step 3 of Algorithm 3.1. However, for the implementation of Algorithm 4.1,
we need a Monotone Optimization Algorithm MOA (Algorithm 5.1), which was given in this
section. MOA is an iterative algorithm based on model regularization that aims to minimize an
arbitrary function F . We proved that the distance between consecutive iterates of MOA tends
to zero. The question that we wish to answer now is: In which sense MOA finds an approximate
minimizer of F? The answer to this question requires definitions of criticality that are given
below.

Definition 5.1 We say that x∗ ∈ Ω is a critical point of the problem of minimizing F over Ω,
related to model M(·, ·) and p + 1 > 0 (in short, (M,p)-critical) if there exists σ ∈ [0, 2L] such
that x∗ is a local minimizer of M(x∗, x) + σd(x∗, x)p+1 subject to x ∈ Ω.

In the following lemma we prove that local minimizers of F over Ω are, in fact, (M,p)-critical.

Lemma 5.1 Suppose that x∗ ∈ Ω is a local minimizer of F (x) subject to x ∈ Ω. Assume,
moreover, that M(·, ·), L ≥ 0, and p+ 1 > 0 are such that Assumption 5.1 holds. Then, for all
σ ≥ L, x∗ is a local minimizer of M(x∗, x) + σd(x∗, x)p+1 subject to x ∈ Ω.

Proof: Let σ ≥ L and suppose that there exists a sequence {xj} contained in Ω that con-
verges to x∗ and M(x∗, xj) + σd(x∗, xj)

p+1 < M(x∗, x∗) = F (x∗) for all j. Then, since σ ≥ L,
M(x∗, xj) + Ld(x∗, xj)

p+1 < F (x∗) for all j. Therefore, by (21), F (xj) < F (x∗) for all j and,
thus, x∗ is not a local minimizer of F (x). 2

The inspiration for the definition of criticality comes from the analysis of the finite dimen-
sional case in which the metric space Ω is Rn, F is as smooth as desired, and M(x∗, x) is the
Taylor polynomial of order p around x∗. If x∗ is a local minimizer it is natural to believe that
this point will also be a minimizer of M(x∗, x). At least, this is what happens when n = 1,
independently of the value of p, and when p ∈ {1, 2}, independently of n. However, this is not
true if p > 2 and n > 1. For example, take F : R2 → R given by

F (z1, z2) = z2
2 − z3

1z2 + z6
1 .

The origin is a global minimizer of F . However, its Taylor polynomial of order p ∈ {4, 5} is

M(z1, z2) = z2
2 − z3

1z2,

for which the origin is not a local minimizer. For a similar example with p = 3, take

F (z1, z2) = z2
2 − z2

1z2 + z4
1 .

In fact, when x∗ is a local minimizer of F , the regularized Taylor polynomial has a minimum at
x∗, if the regularization parameter is not smaller than the Lipschitz constant L.
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The definition of critical point for the minimization of F is insightful but is not sufficient
for practical purposes. As in most optimization problems, we need a definition of approximate
critical points dependent of a given tolerance parameter η > 0. This definition is given below.
In short, we say a point is η-critical if its distance to a local minimizer of a regularized model is
smaller than η.

Definition 5.2 We say that x̄ ∈ Ω is an η-critical point, with respect to the minimization of
F over Ω, related to model M(·, ·) and p + 1 > 0 (in short, η-(M,p)-critical) if there exists
σ ∈ [0, 2L] and z ∈ Ω such that d(x̄, z) ≤ η and z is a local minimizer of M(x̄, x) + σd(x̄, x)p+1

subject to x ∈ Ω.

Theorem 5.3 Assume that F (x) ≥ Flow for all x ∈ Ω, M(·, ·), L ≥ 0, and p + 1 > 0 are such
that Assumption 5.1 holds and the sequence {xj} is generated by Algorithm 5.1. Then, given
η > 0, the number of iterations such that xj is not η-(M,p)-critical is bounded above by⌊

F (x0)− Flow

γηp+1

⌋
.

Proof: This proof follows immediately from Theorem 5.2. 2

6 Condensed theoretical results

The following theorem summarizes the theoretical results related to the solution of problem (1)
using the techniques described in this paper. In the hypothesis of this theorem, we included
the decision that MOA is executed until the obtention of a local minimizer of the regularized
model only when h(yk+1) is small (smaller than or equal to εfeas). In fact, we do not need to
solve subproblems with high precision at previous iterations of the main algorithm. Of course,
in practice it is sensible to solve subproblems using MOA with reasonable precision, otherwise
our main purpose of being close to a solution when h(y) is small (and evaluation is expensive)
could fail to be satisfied. It is interesting to observe that even basic Inexact Restoration results
share this characteristic. See, for example, Remark 1 in [28, p.336] with respect to the algorithm
for the optimization phase in classical constrained optimization problems.

Theorem 6.1 Consider the application of Algorithm 3.1, with Step 3 implemented according to
Algorithm 4.1 and Step 3 of Algorithm 4.1 implemented according to Algorithm 5.1 (MOA), for
finding an approximate solution to problem (1). Suppose that Assumptions 3.1, 3.2, and 5.1 hold.
Let εfeas, εdist, η > 0 be given. Assume, in addition, that, if h(yk+1) ≤ εfeas, then MOA is executed
until it finds an η-(M,p)-critical point for the problem of minimizing f(x, yk+1) + αd(x, xk)

ν

subject to x ∈ Ω. Then there exists an iteration index k not larger than

cfeas

εfeas
+
cdist

ενdist

,

where cfeas only depends on x0, y0, r, θ0, β, hmax, and fmin and cdist only depends on α, x0, y0,
r, θ0, β, hmax, and fmin, such that
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(i) h(yk+1) ≤ εfeas and d(xk, xk+1) ≤ εdist, and

(ii) xk+1 is η-(M,p)-critical for the problem of minimizing f(x, yk+1) + αd(x, xk)
ν .

Proof: Item (i) in the thesis follows from Theorems 3.1 and 3.2; while (ii) comes from Theo-
rem 5.3 due to the hypothesis on the execution of MOA when h(yk+1) ≤ εfeas. 2

Regarding the values of which cfeas and cdist depend on, note that x0, y0, θ0, ν, r, α,
and β are (constant) parameters of Algorithm 3.1; while hmax and fmin are problem dependent
constants referred to in Assumption 3.2. Recall that Assumption 3.1 says that restoration
is always possible, Assumption 3.2 says that h is bounded above and f is bounded below,
and Assumption 5.1 describes characteristics of the model that is used in the MOA algorithm.
Moreover, note that, if h(yk+1) > εfeas, it is enough to assume that the point x computed by
MOA satisfies M(x̄, x) + σd(x̄, x)p+1 ≤M(x̄, x̄), i.e. that a “rough” minimization is done.

7 Numerical experiments

In this section, the methodology introduced in this work is applied to the problem of reproducing
a controlled experiment that mimics the failure of a dam. The section begins by tackling the
choice of an adequate surrogate model and describing particular cases of Algorithm 3.1, Algo-
rithm 4.1 (Optimization Phase), and Algorithm 5.1 (MOA algorithm for addressing problem (14)
at Step 3 of Algorithm 4.1).

The choice of an adequate surrogate model is highly problem-dependent. Whereas in the
smooth case Taylor-like models should be interesting, this is not the case when differentiability
is out of question. A default approach in the context of this paper consists of choosing as model
for f(x, yk+1) + αd(xk, x)ν (see (13)) the function

M(xk, x) = [f(x, yk′) + αd(xk, x)ν ]− f(xk, yk′) + f(xk, yk+1) (30)

where k′ < k+1. In this way, M(xk, xk) = F (xk) as required at Assumption 5.1 and solving (22)
is, very likely, affordable, as the evaluation of f(x, yk′) should be cheaper than the evaluation
of f(x, yk+1) due to the requirement k′ < k + 1. The particular case of Algorithms 3.1–5.1 that
employs (30) as a surrogate model follows.

Algorithm 7.1. Let x0 ∈ Ω, y0 ∈ Y , θ0 ∈ (0, 1), ν > 0, r ∈ (0, 1), α > 0, β > 0, εfeas > 0,
εdist > 0, and η > 0 be given. Set k ← 0.

Step 1. Restoration phase

Define yre
k ∈ Y satisfying (2) and (3).

Step 2. Updating the penalty parameter

Compute θk+1 by means of (4) and (5).

Step 3. Optimization phase

Step 3.1. Set yk+1 = yk.
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Step 3.2. If h(yk+1) ≤ εfeas, then call Algorithm 5.1 with the surrogate model defined
by (30) and xk as initial guess, returning when an η-(M,p)-critical point xtrial is
found. On return, define xk+1 = xtrial and stop.

Step 3.3. Execute one iteration of Algorithm 5.1 with the surrogate model defined by (30)
and xk as initial guess to find xtrial. On return, if (16) is fulfilled, then define xk+1 =
xtrial and go to Step 4.

Step 3.4. Set yk+1 = yre
k .

Step 3.5. If h(yk+1) ≤ εfeas, then call Algorithm 5.1 with the surrogate model defined
by (30) and xk as initial guess, returning when an η-(M,p)-critical point xtrial is
found. On return, define xk+1 = xtrial and stop.

Step 3.6. Execute one iteration of Algorithm 5.1 with the surrogate model defined by (30)
and xk as initial guess to find xtrial. On return, define xk+1 = xtrial.

Step 4. Set k ← k + 1 and go to Step 1.

Remark 7.1 If Algorithm 7.1 fails in the attempt to calculate yre
k ∈ Y satisfying (2) and (3)

at Step 1, this reveals that Assumption 3.1 does not hold. If Algorithm 5.1 fails in any of the
tasks required at Steps 3.2, 3.3, 3.5, or 3.6 in Algorithm 7.1, this reveals that Assumption 5.1
does not hold. In either of these two cases, stop with an appropriate failure message.

Remark 7.2 If h(yk+1) > εfeas, we execute just one iteration of Algorithm 5.1; see Steps 3.3
and 3.6. Note that, by Theorem 6.1, from the theoretical point of view, it is not necessary to
run Algorithm 5.1 up to high precision in this case; therefore, to execute only one iteration is an
admissible choice. This choice proved to be beneficial in the specific problem considered in the
numerical experiments but, of course, the performance of this choice depends on the problem.
In fact, we expect that, in many cases, this is a reasonable effort that we may invest in the cases
that the objective function has been computed poorly in order to approximate the current point
to a solution.

In what follows we describe the application of Algorithm 7.1 to the problem of fitting a
descriptive model for a controlled physical experiment that aims to simulate and record the
failure of a dam in [23]. As it is well known, hydro-geological hazardous natural phenomena like
debris flows, avalanches and submerged landslides can cause significant damage and loss of lives
and properties. A number of tragic incidents all over the world is well documented and analyzed
in scientific literature but these events are extremely complex and still challenging in terms of
mathematical modelling and numerical simulations. The key interaction that yields fast flow
events is the one between solid grains and interstitial fluid. We briefly review here the results
reported in [23] which are based on a small scale experiment and two numerical simulations with
different methods.

The experiment [23] is a standard small-scale model of column collapse with saturated mate-
rial that allows propagation in air in order to achieve similarity with natural flow-like landslide.
A glass fume cuboid with fixed length and width is closed at one end while the second end has a
movable vertical gate (see Figure 1 of [23]). The cuboid is filled with a saturated granular mix-
ture. The column height is varied to achieve different aspect ratios between height and length.
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The solid grains exhibit uniform granular distribution and density. The gate and opening mech-
anism is designed in such a way that partial desaturation prior to the collapse is avoided and the
fast uplift of the gate triggers the propagation of the saturated mixture in a way that resembles
natural disasters. The results of this physical experiment are documented by high resolution
photos and essentially demonstrate similar behaviour for all aspect ratios. However, the time
evolution of the normalized front position is different depending on the aspect ratio. Initially,
when the gate is lifted both grain and water start moving forward at the open end of column.
Then the upper parts head toward the bottom with the failing surface evolving in time. At the
end of the process the granular front stops while the water filters through the solid phase.

Two conceptually different approaches are addressed in [23] for numerical simulations of
column collapse. The first one, based on a Discrete Element Method (DEM), assumes that the
granular material is represented by an assembly of particles interacting at contact points. The
key issue, both conceptually and computationally, in this approach is the definition of a contact
model between particles. The second approach is based on continuum models that require the
definition of a constitutive model of the material, which is still an open question for landslides.
A number of solvers for continuum models is available but they differ greatly in mathematical
description and discretization of the continuum domain. In [23] two numerical methods are
tested: a mixed continuum-discrete DEM-LBM (Lattice-Boltzmann) method and a two-phase
double point Material Point Method (MPM). DEM-LBM offers more insight into the microscopic
structure of the granular material but it has significant limitations due to computational costs.
Given that the cost increases with the total number of particles and the decrease of mesh size,
DEM-LBM is suitable for large grain or small scale experiments. The MPM approach is more
applicable to real-scale problems as its efficiency is not influenced by the grain size. However,
this method is very sensitive to the choice of the constitutive model and in the simulations
reported in [23] predicted a faster collapse with higher velocities than the DEM-LBM method.

In [23], the considered granular material (sand) has a uniform granulometric distribution with
mean radius 0.125cm and grain density 2625km/m3. A rectangular box with base 4cm × 5cm
and height 7cm is filled with sand (approximately 8,000 grains) and one of the 5cm-width sides
is removed. Four different frames corresponding to instants t/tref = tκ for κ = 1, 2, 3, 4 (with
t1 = 0.44, t2 = 1.10, t3 = 2.20, and t4 = 5.0) that illustrate the dynamics of the system are
presented. (See [23, Fig.2, p.685].) Pictures have a squared paper on background. Figures 1(a–
d) show, for each of the four frames in [23, Fig.2, p.685], the boxes completely or partially filled
with sand.

Let us now describe the approach we used to reproduce the above described physical exper-
iment. Denote pj = ([pj ]1, [pj ]2)T ∈ R2 for j = 1, . . . , np, p = (pT1 , . . . , p

T
np)

T ∈ R2np , and

Ψx(p) = x

 np∑
j=1

np∑
i=j+1

max
{

0, (2r)2 − ‖pj − pi‖22
}2

+ (1− x)

np∑
j=1

[pj ]2, (31)

where the “radius” r > 0 and the “weight” x ∈ (0, 1) ⊂ R are given constant. In this formulation,
np represents the number of balls, each pj ∈ R2 (j = 1, . . . , np) is the center of a ball, the first
term in (31) (multiplied by x) forces the balls’ centers to be the “correct distance” apart; while
the second term in (31) (multiplied by 1− x) “pushes all the balls toward the ground”.
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(a) Instant t/tref = 0.44 (b) Instant t/tref = 1.1

(c) Instant t/tref = 2.2 (d) Instant t/tref = 5

Figure 1: Graphical representation of the four frames in [23, Fig.2, p.685]. Gray boxes represent
boxes that are completely or partially filled with sand; while white boxes represent empty boxes.

Consider the problem

Minimize Ψx(p1, . . . , pnp) subject to p ∈ D, (32)

where D = {p ∈ R2np | pj ≥ 0 for j = 1, . . . , np}. Independently of the value of x ∈ (0, 1),
a solution to problem (32) consists in np points representing the centers of np non-overlapping
identical balls with radius r “resting on the floor” of the positive orthant of the two-dimensional
Cartesian space. Thus, the dam collapse is modeled not just by changing x but also by changing,
simultaneously, the number of iterations of an optimization methods applied to (32) as we now
describe.

Assume that p0 ∈ D corresponds to the configuration represented in Figure 2. Given a
maximum of iterations y ∈ N+, let p0, p1, p2, . . . , pȳ ∈ D be the ȳ ≤ y iterates that result from
the application of the Spectral Projected Gradient (SPG) method [13, 14, 15, 16] to problem (32)
starting from p0 and using as a stopping criteria a maximum of y iterations or finding an iterate
pȳ such that

‖PD(pȳ −∇Ψx(pȳ))− pȳ‖∞ ≤ εspg
opt := 10−8,

where PD represents the projector operator onto D. We aim to verify whether, by adjusting the
weight x in (31) and the maximum number of iterations y of the SPG method, it is possible to
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construct a two-dimensional simulation of the dynamics of the dam-failure physical experiment
through the iterates p0, p1, p2, . . . , pȳ.

Figure 2: Initial guess p0 for the SPG method.

We consider solving problem (32) with r = 0.125 and np = 419 using SPG with the initial
guess p0 depicted on Figure 1. We associate with the four frames depicted in Figures 1(a–d)
binary matrices M1,M2,M3,M4 ∈ {0, 1}8×20 that represent whether there is sand in each box
of the frame or not. In an analogous way, we define M(p) ∈ {0, 1}8×20 as the matrix associated
with the point p = (pT1 , . . . , p

T
np)

T ∈ D ⊂ R2np , that indicates whether each box contains at least

a point pj or not. Given two A = (aij), B = (bij) ∈ {0, 1}8×20, we also define the fitness function

Π(A,B) =
20∑
j=1

8∑
i=1

|aij − bij |.

For a full sequence of iterates p0, p1, p2, . . . , pȳ ∈ Ω of the SPG method, that depends on the
weight x and the maximal number of iterations y, we define

f(x, y) = 1− 1

640
max
c≥0

{
4∑

κ=1

Π
(
M(pbc tκc),Mκ

)}
,

where, if bc tκc > ȳ and, thus, pbc tκc does not exist, then we consider Π
(
M(pbc tκc),Mκ

)
= 0.

The value of f can be computed by inspection of c. Finally, we define h(y) = 1/y and Ω = {x ∈
R | 0 ≤ x ≤ 1}.

We implemented Algorithm 7.1 in Fortran. In the numerical experiments, we considered,
α = 10−4, β = 100, θ0 = 0.5, ν = 2, r = 2, p = 2, εfeas = 1/12,800, εdist = 10−4, and η = 10−6.
In Algorithm 5.1, we considered σmin = 10−4 and γ = 10−4. The optimality condition of
Algorithm 5.1 defined by η is that the objective function to which this criterion is applied is
not bigger, at the approximate optimizer z, than the values at the feasible points of the form
z ± η. The model M(xk, x) is given by (30) with k′ = max{0, k − 1}. For the approximate
minimization of the model we employ standard global one-dimensional search. As initial guess,
we considered (x0, y0) = (0.5, 100). All tests were conducted on a computer with a 3.4 GHz Intel
Core i5 processor and 8GB 1600 MHz DDR3 RAM memory, running macOS Mojave (version
10.14.6). Code was compiled by the GFortran compiler of GCC (version 8.2.0) with the -O3
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optimization directive enabled. Table 1 shows the results; while Figure 3 illustrates de obtained
solution. A rough comparison with Figure 9 of [23] indicates that our results are similar to the
ones obtained by DEM-LBM and seem to be closer to the experimental results than the ones
reported for MPM. As in the case of DEM-LBM and MPM, the discrepancies with respect to
the experimental results are due to the behavior of the top part of the column. The whole
process was completed in less than 1 minute of CPU time. The objective function equal to
1− 618/640 ≈ 0.03 at the final iterate means that at 97% of the “pixels” of the measured data
matched the prediction of the model.

k xk yk f(xk, yk)

0 0.5 100 1− 556/640
1 0.9 200 1− 561/640
2 0.99 400 1− 604/640
3 0.99 800 1− 604/640
4 0.999 1,600 1− 613/640
5 0.99925 3,200 1− 617/640
6 0.999275 6,400 1− 618/640
7 0.999275 12,800 1− 618/640

Table 1: Details of the application of Algorithm 7.1.

8 Final remarks

The application of Inexact Restoration to problems in which the objective function is evaluated
inexactly has proved to be successful according to recent literature [9, 10, 42]. Real-life opti-
mization problems use to be defined in domains more general than finite-dimensional Euclidean
spaces, so that differentiability is out of question. The present paper aims to extend the estab-
lished theory to this more general context. For this purpose, we found out that regularization-
based algorithms are suitable for solving subproblems that arise in the Optimization Phase of
IR. The regularization tools introduced in this paper are naturally inspired in the Euclidean
case, as this is the environment in which regularization algorithms have been intensively devel-
oped in the last few years. In particular, we needed to introduce new optimality criteria and
we emphasized the subtleties related with high-order models for minimization problems. We do
not claim that the approach suggested in this paper for the Optimization Phase of IR is the
definite word on this subject. In fact, much research is necessary to take advantage of the most
reliable mathematical structures that are associated with real-life problems. Topological vector
spaces should be considered in order to include problems in which the unknowns are generalized
functions (distributions) and the topology is given by systems of semi-norms [17].

Many natural phenomena tend to converge to equilibrium states that are characterized as
minimizers of “energy functions”. This is the reason why physical laws sometimes inspire opti-
mization algorithms. For example, in [50] a method for solving nonlinear equations is linked to
a system of second-order ordinary differential equations inspired in classical mechanics. In this
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(a) p384 associated with t1 = 0.44 (b) p961 associated with t2 = 1.1

(c) p1922 associated with t3 = 2.2 (d) p4369 associated with t4 = 5.0

Figure 3: Graphical representation of p384, p961, p1922, and p4369 (corresponding to c = 873.2)
of a run of SPG with x = 0.999275 and y = 12,800. The red line is a rough representation of
the physical experiment profile according to Fig. 2 of [23].

paper, we suggested a movement in the opposite direction: Simulating a physical phenomenon
by means of the behavior of an optimization algorithm. Of course this does not mean that
physical events that are usually modelled by means of complex systems of differential equa-
tions may be always mimicked by the sequence of iterations of a simple minimization algorithm.
However, the possibility that a minimization algorithm could give a first general approach to a
complex phenomenon in which the basic principle is energy minimization cannot be excluded,
especially when many physical parameters are unknown and, in practice, need to be estimated
using available data.

We are optimistic that the techniques described in this paper may help understanding,
describing and, at some point, predicting technological disasters due to dam breaking. Many
qualitative and partially quantitative description of dam disasters exist in the scientific literature.
For example, in [43] we find a useful report about the Brumadinho tailings dam disaster in Brazil
in 2019. The paper contains many references about this event, other dam disasters, and the
application of mathematical models to their analysis. See, for example, [47]. We plan to apply
the techniques introduced in the present paper to the support of models of the Brumadinho event
in the context of the activity of CRIAB (acronym for “Conflicts, Risks and Impacts Associated
with Dams” in Portuguese), an interdisciplinary research group created at the University of
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Campinas for prediction and mitigation of the consequences of dam disasters.
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