
On the employment of Inexact Restoration for the minimization

of functions whose evaluation is subject to errors∗

E. G. Birgin† N. Krejić‡ J. M. Mart́ınez§

March 28, 2016¶

Abstract

Inexact Restoration is a well established technique for continuous minimization problems
with constraints. Recently, it has been used by Krejić and Mart́ınez for optimization of
functions whose evaluation is necessarily inexact and comes from an iterative process. This
technique will be generalized in the present paper and it will be applied to stochastic opti-
mization and related problems. New convergence results will be given and numerical results
will be presented.

Key words: Inexact Restoration, stochastic programming, global convergence, numerical
experiments.

1 Introduction

We will consider the problem

Minimize f(x) subject to x ∈ Ω, (1)

where Ω ⊆ Rn is nonempty, closed, and convex. We assume that, for different reasons, the exact
evaluation of f(x) is not available. Practical situations in which the function that one wants
to minimize cannot be evaluated with high precision are frequent. Strictly speaking, one never
evaluates exactly a function because we are constrained to use floating point arithmetic. Since
evaluation procedures using multiple-precision arithmetic are available, it arises the problem
of deciding the accuracy with which one should compute functions and derivatives in order

∗This work has been partially supported by the Brazilian agencies FAPESP (grants 2010/10133-0, 2013/03447-
6, 2013/05475-7, 2013/07375-0, and 2014/18711-3) and CNPq (grants 309517/2014-1 and 303750/2014-6) and by
the Serbian Ministry of Education, Science, and Technological Development (grant 174030).
†Department of Computer Science, Institute of Mathematics and Statistics, University of São Paulo, Rua do

Matão, 1010, Cidade Universitária, 05508-090, São Paulo, SP, Brazil. e-mail: egbirgin@ime.usp.br
‡Department of Mathematics and Informatics, Faculty of Sciences, University of Novi Sad, Trg Dositeja

Obradovića 4, 21000 Novi Sad, Serbia. e-mail: natasak@uns.ac.rs
§Department of Applied Mathematics, Institute of Mathematics, Statistics, and Scientific Computing

(IMECC), University of Campinas, 13083-859 Campinas SP, Brazil. e-mail: martinez@ime.unicamp.br
¶Revision made on November 22, 2016.

1

to maximize efficiency. In other cases the computation of the objective function comes from
an iterative method whose convergence properties are not always well known. In these cases
different measures of accuracy need to be developed; for example, accuracy may be defined as a
non-increasing function on the number of iterations used by the iterative method that evaluates
the objective function. More frequently, the objective function is the result of a simulation
and the exact functional value depends of the the expectation of a random variable or other
statistical parameters. For example, in modern risk-oriented decisions one optimizes functions
that involve VaR, CVaR, or other risks measures that may be interpreted in terms of percentiles.
Sometimes, simulations include physical experiments. For example, the response of production
processes to operation parameters may involve experiments with random variations of other
parameters whose impact we do not want to evaluate. Finally, macroeconomic decisions usually
involve running different models, that should be combined in a proper way in order to generate
acceptable predictions. In other cases, the evaluation of the response to decisions could involve
increasing research, expert interviews, bibliographic search, and data mining procedures that
could greatly increase the expensiveness of evaluations.

The key question in any of these situations is: To which extent we need to increase the effort
to obtain reliable functional evaluations? Common sense indicates that it is not worthwhile to
invest a lot of work trying to obtain accurate estimations of the objective function if little work
is necessary to decide that the trial set of decisions is far from being optimal. For example,
precision on the combination of drugs for a medical treatment is important if the combination
promises to be the correct one, but not when one is clearly far away of being in the good direction.
On the other hand, the value of a given experiment that leads to an approximate evaluation
increases if such experiment has to be performed with rigorous and accepted rules of sampling.
The idea of this work, as well as the preliminary one [18] is to trace a parallel between the pair
accuracy-value of the function that we want to optimize and the pair feasibility-optimality of
constrained optimization. Namely, we aim to optimize a function f subject to the constraint
that the evaluation of this function is exact. But, since complete exactness is not possible, we
define higher or lower arbitrary levels of inexactness based on the (computational or human)
effort that is employed for improving evaluation accuracy.

In Stochastic Optimization the objective function uses to be (inexactly) evaluated employ-
ing a sample {ξ1, . . . , ξN} of the random variable under consideration. As a consequence, the
evaluation of f(x) is always inexact, and precision is increased when the size N of the sam-
ple grows. For example, suppose that ξ1, . . . , ξn denote the future prices of n assets and that
xj is the fraction of the budget invested on asset j. (In this case we need the constraints∑n

j=1 xj = 1 and x ≥ 0.) Then the return is a random variable given by g(x, ξ) =
∑n

j=1 ξjxj
and it is natural to maximize its expectation under additional suitable constraints. The Sample
Path Optimization or Sample Average Approximation (SAA) method (see, for example, [23])
applies to optimization problems for which the objective function cannot be computed exactly
(or is unaffordable) but can be estimated by simulation. Given N and an independent and
identically distributed (i.i.d.) sample ξ1, ξ2, . . . , ξN of N replications of the random vector ξ,
one considers the function

fN (x) ≡ 1

N

N∑
i=1

g(x, ξi)

2

and the problem given by
Minimize x∈Ω fN (x) (2)

is approximately solved.
Problem (2) is deterministic and, in principle, any standard nonlinear programming solver

may be employed for its solution. Assume that we are able to solve (2) globally up to a tolerance
εglo, i.e. we can compute x∗N (εglo) such that fN (x∗N (εglo)) ≤ fN (x) + εglo, for all x ∈ Ω.
Let εprob ∈ (0, 1) and consider the fulfilment of

|fN (x∗N (εglo))− f∗| ≤ εglo with probability at least 1− εprob, (3)

where f∗ is the optimal value of problem (1). Then, the decision to be made in the SAA method
is to determine the value of N for which solving a single problem of the form (2) guarantees
that (3) will hold. A conservative answer to this question, thus yielding to a potentially large
value of N and, in consequence, a costly SAA problem (2), is given in [24]. Usually, an infinite
sequence of SAA problems with sample size Nk and optimality tolerance (εglo)k, such that
Nk →∞ and (εglo)k → 0, needs to be solved (see, for example, [25]). The sequence {Nk}∞k=1 is
known as schedule. Many papers in the literature deal with the theoretical aspects and practical
issues (such as convergence, convergence rates, and efficiency) associated with the determination
of a schedule and the properties of the optimization method used to solve the SAA optimization
problems. See, for example, [3, 4, 14, 16, 17, 18, 21, 22] and the references therein.

Inexact Restoration (IR) [1, 2, 5, 6, 9, 11, 12, 15, 19, 20] is a paradigm for nonlinear pro-
gramming that have been proved to be effective in solving constrained optimization problems in
which some structure of the feasible set induces a natural way of recovering feasibility. In this
work, an approach based on Inexact Restoration for tackling problem (1) will be introduced.
Namely, each iteration starts with a point whose performance (function evaluation) has been
computed with certain degree of accuracy. The first procedure is to try a (probably moderate)
increase on the accuracy, which corresponds to the “Feasibility Phase” of Inexact Restoration.
Later (in the so-called “Optimality Phase”), we try promising new variables and we evaluate
performance being tolerant with respect to computational effort. If a (merit) combination of
performance and accuracy is not satisfactory, the new trial point is rejected and a new one is
tried closer to the one on which we started the iteration. Otherwise, the trial parameters are
accepted and define a new iteration. Although the procedure roughly described above could
be considered a, perhaps successful, heuristic, we felt the necessity of devising a mathematical
justification. Following the framework of Inexact Restoration methods, we proved that the in-
troduced procedure asymptotically finds points with maximal evaluation accuracy and that, for
such sequence of points, an optimality condition holds.

The main contribution of the work presented in this paper is to generalize the theory pre-
sented in [18] in such a way that we can ensure the convergence of the proposed IR-based method
for an arbitrary small tolerance εglo > 0, i.e. εglo → 0. In order to achieve convergence to a
solution of the original problem with some (high) probability, in the proposed method the de-
sign of the schedule (sequence {Nk}∞k=1) is obtained as a by-product of the Inexact Restoration
framework. Contrary to [18], where one assumes that the scheduling will eventually result in
some predefined maximal precision, here we allow the schedule to reach an arbitrary small pre-
cision if needed, but minimizing the computational effort of the overall procedure. The theory

3

presented here covers the results in [18] as a special case. The principal advantage of the pro-
posed scheduling is that it is not based on a predefined sequence but relies on the actual progress
achieved in the optimization algorithm. Furthermore, we extend the results presented in [18]
from the unconstrained case to the constrained case as well.

The efficiency of the proposed approach is demonstrated on two important problems. The
first one is a classification problem where one has to solve an optimization problem defined
by the objective function in the form of mathematical expectation. The SAA approach is one
plausible way of solving this problem. Given that the principal cost of this approach is related
to the scheduling, we demonstrate the efficiency of the scheduling that arises from the IR-
based framework. The second example comes from Portfolio Optimization, where we consider
a constrained problem with mathematical expectation again.

The rest of this work is organized as follows. In Section 2 the proposed IR algorithm is
presented. Convergence theory is established in Section 3. Section 4 approaches crucial imple-
mentation details and presents the numerical experiments. Final remarks are given in Section 5.

Notation. ‖ · ‖ denotes the Euclidean norm. R+ denotes the set of non-negative real numbers.
N+ denotes the positive integer numbers.

2 Inexact Restoration algorithm

The Inexact Restoration (IR) algorithm described in this section aims to approximate the min-
imum of f(x) by means of successive evaluations of fN (x) employing samples of N elements.
More generally, we may think that we wish to minimize f(x) and that limN→∞ fN = f in some
sense. The number of sample elements N varies (perhaps decreasing) after each evaluation of
fN as a result of the IR tests and decisions. A restoration step in the IR algorithm corresponds
to increase the number of elements in the sample whereas the optimization step corresponds
to improving the value of fN (x). Strictly speaking the value of fN (x) also depends on the
chosen sample elements (say, fN (x) = fN (ξ1, . . . , ξN , x) but we will maintain the notation that
avoids the mention of the sample elements in order to simplify the notation. The IR approach
presented in this paper is inspired by classical Inexact Restoration algorithms for constrained
optimization. This idea has been used in [18] in the context of the minimization of functions
whose evaluation depends on an iterative process. The main idea consists of considering that the
exact evaluation of the objective function corresponds to feasibility of an implicit constrained
optimization problem. In such a way, restoration steps correspond to steps where we increase
the precision employed to evaluate the objective function. At optimization steps one essentially
maintains the sample and one tries to reduce the corresponding sample-based objective function.
The IR machinery fits well with this approach and suggests practical ideas for implementation.

For our analysis, we consider a bounded continuous function h : R+ → R+ such that h(δ) = 0
if and only if δ = 0 and an integer-valued function N̄ : R+ → N+. The practical meaning of
these functions will be given after proving the main IR results in order to stress the fact that
the IR machinery is independent of this meaning. Moreover, define, for all x ∈ Rn, δ ∈ R+,
θ ∈ (0, 1), and N ≥ N̄(δ), the function

Φ(x, δ,N, θ) = θfN (x) + (1− θ)h(δ).

4

Inspired by classical IR algorithms, the function Φ aims to take into account optimality defined
by the functional values on a sample and feasibility defined by h.

Algorithm 2.1. Let x0 ∈ Ω, δ0 ∈ R+, N0 ≥ N̄(δ0), θ0 ∈ (0, 1), r ∈ (0, 1), α > 0, and β > 0 be
given. Set k ← 0.

Step 1. Restoration Phase

Define δre
k ∈ R+ in such a way that

h(δre
k) ≤ rh(δk) (4)

and a sample with Nk+ 1
2

elements such that Nk+ 1
2
≥ N̄(δre

k) and

fN
k+1

2

(xk) ≤ fNk
(xk) + βh(δk). (5)

Step 2. Updating the penalty parameter

If

Φ(xk, δ
re
k , Nk+ 1

2
, θk) ≤ Φ(xk, δk, Nk, θk) +

1− r
2

(h(δre
k)− h(δk)) , (6)

set θk+1 = θk. Otherwise, set

θk+1 =
(1 + r) (h(δk)− h(δre

k))

2
(
fN

k+1
2

(xk)− fNk
(xk) + h(δk)− h(δre

k)
) . (7)

Step 3. Optimization Phase

Step 3.1. Choose dk ∈ Rn such that xk + dk ∈ Ω.

Step 3.2. Choose δk+1 ∈ R+ (perhaps bigger than δre
k) and Nk+1 ≥ N̄(δk+1). If

fNk+1
(xk + dk) ≤ fN

k+1
2

(xk)− α‖dk‖2 (8)

and

Φ(xk + dk, δk+1, Nk+1, θk+1) ≤ Φ(xk, δk, Nk, θk+1) +
1− r

2
(h(δre

k)− h(δk)) , (9)

set tk = 1, xk+1 = xk + dk, k ← k + 1, and go to Step 1.

Step 3.3. Re-define δk+1 ← δre
k and Nk+1 ← Nk+ 1

2
. Find tk ∈ {1, 10−1, 10−2, . . . } as large as

possible such that
fNk+1

(xk + tkdk) ≤ fNk+1
(xk)− αtk‖dk‖2. (10)

Set xk+1 = xk + tkdk, k ← k + 1, and go to Step 1.

5

Remark. At Step 3.2 the algorithm may decide that the number of elements in the sample
must decrease. The idea is to implement the algorithm in such a way that a decrease of N is
tried when the iterate is far from the solution. The rationale behind this is that very expensive
evaluations are not worthwhile when the functional value is still large. The IR framework
provides a test to decide if the reduction of N is acceptable. Note that, at first sight, the
occurrence of infinitely many steps 3.2 could lead to the generation of a bounded sequence
{Nk} and, so, to the non-convergence of fN to f . This possibility will be discarded by the
convergence theory. In [18] we proved that, for a similar approach, a finite precision defined
by a bound for N is reached. The proof that the satisfactory optimality result holds with
N going to infinity is given in the present paper. The motivations for the tests that guarantee
arbitrary precision and optimality are provided by the Inexact Restoration techniques developed
for smooth constrained optimization. Step 3.2 corresponds to large trial steps in the tangent
approximation to the approximate feasible set and Step 3.3 corresponds to backtracking in the
tangent space.

3 Convergence theory

In this section we will prove that the sequence generated by Algorithm 2.1 converges to a
suitable approximation of a solution to (1). Roughly speaking, limit points of the sequence
will be stationary points with a probability as high as desired and the approximation of the
sample-computed function fN will be satisfactory also with probability arbitrarily close to 1. In
the theoretical proofs we will employ the following assumptions.

Assumption A1 The Restoration Phase defined by Step 1 of Algorithm 2.1 can be computed
in finite time for all k.

Assumption A2 There exists cL > 0 such that, for all k,

‖∇fN
k+1

2

(x)−∇fN
k+1

2

(y)‖ ≤ cL‖x− y‖ for all x, y ∈ Ω,

i.e. the gradient of fN
k+1

2

(·) is Lipschitz-continuous with the same Lipschitz constant for all k.

In addition, there exists c > 0 such that, for all k, we have that fNk
(x) ≤ c for all x ∈ Ω.

Assumption A3 The iterates xk generated by Algorithm 2.1 lie in a bounded set. (This as-
sumption is obviously satisfied if Ω is bounded.)

Assumption A4 There exists τ > 0 such that, for all k, the chosen direction dk satisfies

fN
k+1

2

(xk + tdk) ≤ fN
k+1

2

(xk)− αt‖dk‖2 for all t ∈ [0, τ]. (11)

The plausibility of Assumption A4 will be shown in the following two lemmas. In Lemma 3.1
we prove that Assumption A4 is satisfied in the unconstrained case under a very general gradient-
related choice for dk. In Lemma 3.2 we prove that Assumption A4 also holds for a general
closed and convex Ω if we take dk as a gradient projection. Note that the value of τ > 0 in
Assumption A4 does not depend on k. This is the reason for which, in Lemma 3.1 below, the
upper bound on the norm of dk is required.

6

Lemma 3.1 Suppose that Assumption A2 holds. If there exist cangle ∈ (0, 1) and cbig > csmall >
0 such that for all k ∈ N we choose dk satisfying

dTk∇fNk+1
2

(xk) ≤ −cangle‖dk‖‖∇fN
k+1

2

(xk)‖ (12)

and
cbig‖∇fN

k+1
2

(xk)‖ ≥ ‖dk‖ ≥ csmall‖∇fN
k+1

2

(xk)‖, (13)

then Assumption A4 holds for any α ∈ (0, 1
2cangle/cbig] taking τ = 2α/cL.

Proof: By Assumption A2 and elementary Calculus, we have that, for all t > 0,

fN
k+1

2

(xk + tdk) ≤ fN
k+1

2

(xk) + tdTk∇fNk+1
2

(xk) + cLt
2‖dk‖2/2. (14)

Consequently, by (12),

fN
k+1

2

(xk + tdk) ≤ fN
k+1

2

(xk)− tcangle‖dk‖‖∇fN
k+1

2

(xk)‖+ cLt
2‖dk‖2/2. (15)

Therefore, by (13),

fN
k+1

2

(xk + tdk) ≤ fN
k+1

2

(xk) + (cLt
2/2− tcangle/cbig)‖dk‖2 (16)

and, since α ≤ 1
2cangle/cbig,

fN
k+1

2

(xk + tdk) ≤ fN
k+1

2

(xk) + (cLt
2/2− 2αt)‖dk‖2. (17)

Therefore, (11) holds taking τ = 2α/cL. �

Lemma 3.2 Suppose that Assumption A2 holds. Assume that σmax ≥ σmin > 0 are given
parameters and that, for all k ∈ N, we choose σk ∈ [σmin, σmax] and compute dk = PΩ(xk −
σk∇fN

k+1
2

(xk)) − xk, where PΩ denotes the projection operator onto Ω. Then, Assumption A4

holds taking α = 1/(4σmax) and τ = min{1, 1/(2σmaxcL)}.

Proof: By the definition of dk we have that xk +dk is the projection of xk−σk∇fN
k+1

2

(xk) onto

the convex set Ω. Therefore the points xk, xk − σk∇fN
k+1

2

(xk), and xk + dk are the vertices of

a triangle, the angle corresponding to xk + dk is obtuse, and the opposite side to this vertex is
the biggest one. Therefore,

‖dk + σk∇fN
k+1

2

(xk)‖2 ≤ ‖σk∇fN
k+1

2

(xk)‖2.

So,
‖dk‖2 + σ2

k‖∇fNk+1
2

(xk)‖2 + 2σkd
T
k∇fNk+1

2

(xk) ≤ ‖σk∇fN
k+1

2

(xk)‖2.

Thus,

∇fN
k+1

2

(xk)Tdk ≤ −
1

2σk
‖dk‖2. (18)

7

Since xk and xk + dk ∈ Ω and Ω is convex, we obtain, by Assumption A2 and elementary
Calculus, that

fN
k+1

2

(xk + tdk) ≤ fN
k+1

2

(xk) + t∇fN
k+1

2

(xk)Tdk +
1

2
t2cL‖dk‖2

for all t ∈ [0, 1]. Therefore, by (18),

fN
k+1

2

(xk + tdk) ≤ fN
k+1

2

(xk)− 1

2σk
t‖dk‖2 +

1

2
t2cL‖dk‖2

for all t ∈ [0, 1]. Then,

fN
k+1

2

(xk + tdk) ≤ fN
k+1

2

(xk)−
[

1

2σmax
− 1

2
tcL

]
t‖dk‖2

for all t ∈ [0, 1]. Thus, since τ < 1, for all t ∈ [0, τ], we have:

fN
k+1

2

(xk + tdk) ≤ fN
k+1

2

(xk)−
[

1

2σmax
− 1

2
τcL

]
t‖dk‖2

and, by the hypothesis on τ ,

fN
k+1

2

(xk + tdk) ≤ fN
k+1

2

(xk)−
[

1

2σmax
− 1

4σmax

]
t‖dk‖2

for all t ∈ [0, τ]. Then, by the choice of α in the hypothesis, Assumption A4 holds. �

In the following results we will assume, without mentioning explicitly, that Assumptions A1-
A4 hold. In the next lemma we prove that the penalty parameter θk is non-increasing and
bounded away from zero. This result is crucial in the IR framework to guarantee that, ulti-
mately, the necessity of minimizing the objective function is preserved and that this goal is not
overwhelmed by the search of feasibility.

Lemma 3.3 The sequence {θk} generated by Algorithm 2.1 remains in (0, 1), is non-increasing,
and is bounded below by a positive quantity that only depends on β, r, and θ0.

Proof: At each iteration, we have that θk+1 = θk when (6) takes place and that θk+1 is computed
by (7) otherwise. If (6) does not hold, it turns out that

Φ(xk, δ
re
k , Nk+ 1

2
, θ) > Φ(xk, δk, Nk, θ) +

1− r
2

(h(δre
k)− h(δk)) (19)

for θ = θk. On the other hand, since h(δre
k) < h(δk) and, thus,

h(δre
k)− h(δk) ≤ 1− r

2
(h(δre

k)− h(δk)),

we have that the negation of (19) always holds strictly if θ = 0. Since Φ is a linear function
on θ, this means that there exists a unique θ ∈ (0, θk) that verifies

Φ(xk, δ
re
k , Nk+ 1

2
, θ) = Φ(xk, δk, Nk, θ) +

1− r
2

(h(δre
k)− h(δk)) . (20)

8

This θ is the quantity θk+1 computed at (7). Therefore, in order to prove the lemma, it only
remains to be shown that θk+1 defined by (7) is bounded away from zero. In fact, by (7), (4)
and (5) we have:

1

θk+1
= 2

[fN
k+1

2

(xk)− fNk
(xk)

h(δk)− h(δre
k)

+ 1

]
1

1 + r
≤ 2

[
βh(δk)

(1− r)h(δk)
+ 1

]
1

1 + r
= 2

[
β

(1− r)
+ 1

]
1

1 + r
.

This completes the proof. �

Lemma 3.4 shows that each iteration of the algorithm satisfies both the requirement of
decreasing the approximate objective function and the function Φ, that combines optimality
and feasibility. Note that, together with Assumption A4, Lemma 3.4 implies that Algorithm 2.1
is well defined.

Lemma 3.4 For all k = 0, 1, 2, . . . , (8) and (9) hold. Moreover, either tk = 1 is set at
Step 3.2, or, after a finite number of evaluations which only depend on τ , (10) holds and
tk ∈ {1, 10−1, 10−2, . . . } is set at Step 3.3. In addition, in this case, we have that tk ≥ τ/10 and

Φ(xk+1, δk+1, Nk+1, θk+1) ≤ Φ(xk, δk, Nk, θk+1) +
1− r

2
(h(δre

k)− h(δk)) . (21)

Proof: The fact that (10) takes place after a finite number of evaluations that only depends on
τ is a trivial consequence of Assumption A4. Also by Assumption A4, the first value of t such
that (10) holds is not smaller than τ/10. Let us show now that, at Step 3.3, when (10) holds,
we also obtain (21).

If (6) holds then we have that θk+1 = θk and, therefore, (6) also holds substituting θk with
θk+1. If (6) does not hold, the choice (7) of θk+1 is such that (6) holds (by equality) substituting
θk with θk+1. Therefore, in any case we have:

Φ(xk, δk+1, Nk+1, θk+1) ≤ Φ(xk, δk, Nk, θk+1) +
1− r

2
(h(δre

k)− h(δk)) . (22)

On the other hand,

Φ(xk+1, δk+1, Nk+1, θk+1) = θk+1fNk+1
(xk+1) + (1− θk+1)h(δk+1,)

≤ θk+1

[
fNk+1

(xk)− αtk‖dk‖2
]

+ (1− θk+1)h(δk+1)

= θk+1fNk+1
(xk) + (1− θk+1)h(δk+1)− θk+1αtk‖dk‖2

= Φ(xk, δk+1, Nk+1, θk+1)− θk+1αtk‖dk‖2

≤ Φ(xk, δk+1, Nk+1, θk+1)

and (21) holds by (22). �

In the following theorem we prove that the algorithm is satisfactory with respect to feasi-
bility, which, in this case, means accurate evaluation of the objective function. This property
is represented by the statement h(δre

k) → 0 when k → ∞. Note that validity of the theorem
is independent of the meaning of h which, up to now, has been associated with accuracy (or
feasibility) only in terms of motivation.

9

Theorem 3.1 The series
∑∞

k=0 h(δk) and
∑∞

k=0 h(δre
k) are convergent.

Proof: By (4) we only need to prove that
∑∞

k=0 h(δk) is convergent. By Lemma 3.3, there exists
θ∗ > 0, the limit of the non-increasing sequence {θk}. Define ρk = (1 − θk)/θk for all k ∈ N.
Clearly {ρk} is non-decreasing and bounded above by 1/θ∗ − 1. Therefore,

∞∑
k=0

(ρk+1 − ρk) = lim
k→∞

ρk+1 − ρ0 <∞. (23)

Now, since {h(δk)} is bounded, (23) implies that

∞∑
k=0

(ρk+1 − ρk)h(δk) <∞. (24)

On the other hand, by (21) in Lemma 3.4, (11), and the definition of xk+1, we have that

Φ(xk+1, δk+1, Nk+1, θk+1) ≤ Φ(xk, δk, Nk, θk+1)− (1− r)2

2
h(δk). (25)

Inequality (25) is equivalent to

fNk+1
(xk+1) + ρk+1h(δk+1) ≤ fNk

(xk) + ρk+1h(δk)− (1− r)2

2θk+1
h(δk).

Adding and subtracting ρkh(δk) and rearranging, as θk+1 ∈ (0, 1), we get:

(1− r)2

2
h(δk) ≤ (ρk+1 − ρk)h(δk) +

[
(fNk

(xk) + ρkh(δk))−
(
fNk+1

(xk+1) + ρk+1h(δk+1)
)]
.

Summing over all k, we obtain:

∞∑
k=0

(1− r)2

2
h(δk) ≤

∞∑
k=0

(ρk+1 − ρk)h(δk) +

[
(fN0(x0) + ρ0h(δ0))− lim

k→∞
(fNk

(xk) + ρkh(δk))

]
that, by (24) and the boundedness of {xk} and {ρk}, implies that

∞∑
k=0

(1− r)2

2
h(δk) <∞.

Thus,
∞∑
k=0

h(δk) <∞,

as we wanted to prove. �

Finally, in Theorem 3.2, we prove that we are able to find points at which the gradient of
the approximate sample-based function is as small as desired.

10

Theorem 3.2 The series
∑∞

k=0 ‖dk‖2 is convergent.

Proof: The inequalities (8) and (10), and the lower bound for tk stated at Lemma 3.4 (say
tk ≥ t∗ for all k) imply that

fNk+1
(xk+1)− fNk

(xk) = fNk+1
(xk+1)− fN

k+1
2

(xk) + fN
k+1

2

(xk)− fNk
(xk)

≤ −αtk‖dk‖2 + fN
k+1

2

(xk)− fNk
(xk)

≤ −αt∗‖dk‖2 + |fN
k+1

2

(xk)− fNk
(xk)|

≤ −αt∗‖dk‖2 + βh(δk).

Thus, for an arbitrary integer k, we have

fNk
(xk)− fN0(x0) ≤ −αt∗

k−1∑
j=0

‖dj‖2 + β

k−1∑
j=0

h(δj).

Therefore, by Assumptions A2 and A3, and Theorem 3.1,

αt∗

∞∑
j=0

‖dj‖2 <∞,

as we wanted to prove. �

If h is associated with feasibility then Theorem 3.1 means that limit points of the sequence
generated by Algorithm 2.1 are feasible points; while if h is associated with precision of evaluation
of the objective function of (1), Theorem 3.1 means that in the limit the objective function is
evaluated exactly. On the other hand, Theorem 3.2 implies that limit points satisfy an optimality
condition as well.

Corollary 3.1 If Ω = Rn and we choose α and dk as in the hypotheses of Lemma 3.1, we have
that

lim
k→∞

‖∇fN
k+1

2

(xk)‖ = 0.

Proof: The desired result follows from (13) and Theorem 3.2. �

Corollary 3.2 If Ω is an arbitrary closed and convex set and we choose α and dk as in the
hypotheses of Lemma 3.2, we have that

lim
k→∞

‖PΩ(xk − σk∇fN
k+1

2

(xk))− xk‖ = 0

for all k ∈ N.

Proof: The desired result follows from Theorem 3.2. �

11

4 Implementation features and numerical experiments

Algorithm 2.1, as well as the Projected Gradient method (that will be used for comparison
purposes), were implemented in Fortran 90. All tests were conducted on a computer with 3.5
GHz Intel Core i7 processor and 16GB 1600 MHz DDR3 RAM memory, running OS X Yosemite
(version 10.10.4). Codes were compiled by the GFortran Fortran compiler of GCC (version
4.9.2) with the -O3 optimization directive enabled. Regarding the parameters of Algorithm 2.1,
arbitrarily but based on previous experimentation with Inexact Restoration methods, we set
δ0 = 0.01, N0 = N̄(δ0), θ0 = 0.9, and α = 10−4. The remaining parameters will be mentioned
below.

4.1 Implementation details

Defining h(δ) = δ, and N̄(δ) = d1/δe, the interpretation of the convergence results presented in
the previous section is that, given εopt > 0 and N > 0, Algorithm 2.1 obtains, in finite time, a
sample with Nk+1 ≥ N elements and a point xk such that xk satisfies an optimality condition
for minimizing fNk+1

(x) subject to x ∈ Ω with precision εopt. At Step 3.1 of Algorithm 2.1, we
considered

dk = PΩ(xk −∇fNk+1
(xk))− xk.

So, by Lemma 3.2, if Assumption A2 holds, Assumption A4 holds as well. With this choice, a
natural stopping criterion for Algorithm 2.1 is given by

Nk+1 ≥ N and ‖PΩ(xk −∇fNk+1
(xk))− xk‖∞ ≤ εopt. (26)

Moreover, due to the choice of the search direction, in order to evaluate the performance of
Algorithm 2.1, it would be natural to compare it against the classical Projected Gradient (PG)
method applied to the minimization of fN (·) and considering the stopping criterion

‖PΩ(xk −∇fN (xk))− xk‖∞ ≤ εopt. (27)

At Step 3.2, we always try δk+1 = 0.01 and Nk+1 = N̄(δk+1). The idea behind this radical
choice is to drastically reduce sample sizes that may be unnecessarily large at the beginning or
far for a solution.

The freedom in the condition (4) at Step 1 allows one to use an adaptive choice for the
samples employed at each iteration of the method. The idea is that, if one is far from the
solution, it is not worthwhile to use a very big sample, but large samples are justified if we think
that we are close to a solution. Specifically, we define

δre
k =

{
r1δk, if Nk ≥ N or ‖PΩ(xk−1 −∇fNk

(xk−1))− xk−1‖∞ > εopt,

r2δk, otherwise,
(28)

where r1 = 1−10−6 and r2 = 0.1 (the parameter r being given by max{r1, r2}). The effect of this
should be that a suitable approximation to a solution should be obtained employing reasonable
small samples being big samples reserved to the case in which we are close to a solution. There

12

is no practical way to guarantee that, for a given value of β > 0, the choice (28) of δre
k plus

Nk+ 1
2

= N̄(δre
k) will satisfy (5). Therefore, in practice, we compute

max
k=0,1,2,...

{[βk]+},

where

βk ≡
fN

k+1
2

(xk)− fNk
(xk)

h(δk)

and [·]+ = max{0, ·}, in order to verify whether this sequence appears to be bounded above
(meaning that Assumption A1 holds) or not.

4.2 A classification problem

We now describe a classification scheme that can be written as an optimization problem. Assume
that there exists an (oracle) unknown function ω : B → {1,−1} that is used to classify any
ξ ∈ B ⊆ Rm attributing to it 1 or −1. To fix ideas we may think in B = {ξ ∈ Rm | ξmin ≤ ξi ≤
ξmax, i = 1, . . . ,m}, where ξmax ≥ ξmin are given values. Usually, N > 0, an independent and
identically distributed sample or training set of labelled examples

D = {(ξi, ωi), i = 1, . . . , N,where ξi ∈ B and ωi ≡ ω(ξi) ∈ {1,−1}}

are given, and the goal is to find a classifier Cx(ξ) that depends on unknown parameters x ∈ Rn

such that Cx(ξi) ≤ 0 if ω(ξi) = −1 and Cx(ξi) ≥ 0, if ω(ξi) = 1. Since such classifier may not
exist, one seeks to minimize the function given by

f(x) = fN (ξ1, . . . , ξN , x) =
1

N

[∑
i∈I

max{0, Cx(ξi)}2 +
∑
i∈O

max{0,−Cx(ξi)}2
]
,

where I = {i ∈ {1, . . . , N} | ωi = −1} and O = {i ∈ {1, . . . , N} | ωi = 1}, subject to appropriate
constraints on the parameters x (that may define the shape of the classifier). This was the
problem considered in [8] (where it was arbitrarily considered the case N = 10 000). On the
other hand, in this work, we consider the stochastic problem given by

Minimize E

(∑
i∈I

max{0, Cx(ξ)}2 +
∑
i∈O

max{0,−Cx(ξ)}2
)

subject to x ∈ Ω,

where I = {ξ ∈ B | ω(ξ) = −1}, O = {ξ ∈ B | ω(ξ) = 1}, and Ω represents the constraints
on x. It is assumed that consulting the oracle ω(·) is expensive and that the goal is to find Cx(·)
in order to (a) mimic the oracle answer and (b) understanding the relevance (or not) of each
component of ξ in the classification.

Example 1. In this example, we consider m = 2, n = 3, Cx(ξ) = C(c,r)(ξ) = ‖ξ − c‖2 − r2, and
Ω ≡ Rn meaning that the classifier is a circle of radius |r| centered at c in R2. Following [8], we
consider four instances of this example corresponding to four different oracles as follows:

13

Instance 1.1. ω(ξ) = −1 if ξ belongs to a circle with radius 7 centered at the origin and
ω(ξ) = 1, otherwise.

Instance 1.2. ω(ξ) = −1 if ξ belongs to a square of side 7 centered at the origin and ω(ξ) = 1,
otherwise.

Instance 1.3. ω(ξ) = −1 if ξ belongs to a rectangle with height equal to 7 and width equal to
14 centered at the origin and ω(ξ) = 1, otherwise.

Instance 1.4. ω(ξ) = −1 if ξ belongs to a triangle with vertices (−7, 0), (0,−7), and (7, 7) and
ω(ξ) = 1, otherwise.

In all cases we considered B = {ξ ∈ R2 | − 10 ≤ ξi ≤ 10, i = 1, 2}.

Example 2. In this example, we consider m = 2, n = q(q + 1), Cx(ξ) = C(A,b)(ξ) = ξTAξ +

bT ξ−1, and Ω ⊂ Rq×q as the set of positive definite matrices A ∈ Rq×q with all their eigenvalues
λi(A), i = 1, . . . , q, satisfying

0 < λmin ≤ λi(A) ≤ λmax < +∞,

where 0 < λmin ≤ λmax < +∞ are given parameters. This means that the classifier is an ellipse
in R2. It is worth noting that, given a square matrix A, its projection onto the closed and convex
set Ω can be computed in two steps [10, 13]. In the first step one symmetrizes A and in the
second step one computes the QDQT decomposition of the symmetrized matrix and replaces its
eigenvalues by their projection onto the interval [λmin, λmax]. In the numerical experiments, we
consider λmin = 10−4 and λmax = 104. Moreover, the same four instances corresponding to the
oracles described for Example 1, that here we named Instances 2.1–2.4, are also considered.

4.3 Numerical results of the classification problem

As described in two previous subsections, in the numerical experiments we evaluated the per-
formance of the Inexact Restoration method (Algorithm 2.1), called “IR method” from now on,
and we compare it against the classical Projected Gradient method, called “PG method” from
now on. In the stopping criteria (26) and (27) for the IR and the PG method, respectively, we
considered εopt = 10−4 and N ∈ {104, 105, . . . , 108}.

The cost that dominates the computations in both methods is the evaluation of the objective
function. In the case of the PG method, that is applied to the minimization of fN (·), the cost
of evaluating the objective function is given by cN , where c > 0 is a constant that represents
the cost of evaluating C(p), i.e. verifying whether a point p ∈ R2 is “inside” or “outside”
the classifier C. Therefore, the total cost of the PG method is given by the total number of
functional evaluations, “#fcnt” times cN . In order to avoid big figures, we will scale this total
effort dividing it by cN and, therefore, the reported “total effort” of the PG method will be
given by the total number of functional evaluations #fcnt. In the case of the IR method, which
evaluates the objective function with samples of varying sizes, the scaled total effort is given by

cN0

N
+

#it∑
k=0

[
c(sk+ 1

2
Nk+ 1

2
+ sk+1Nk+1)

cN

]
=

1

N

(
N0 +

#it∑
k=0

[
sk+ 1

2
Nk+ 1

2
+ sk+1Nk+1

])
,

14

Example 1: Circular classifier Example 2: Ellipsoidal classifier
Total Effort Total Effort

PG method IR method PG method IR method

N = 104

O
ra

cl
e circle 100 114 350 153

square 64 63 – 1,667
rectangle 31 54 831 2,525
triangle 31 46 1,005 1,559

N = 105

O
ra

cl
e circle 66 13 340 17

square 67 55 – 1,457
rectangle 37 35 1,205 1,784
triangle 29 29 1,081 747

N = 106

O
ra

cl
e circle 66 3 183 6

square 67 46 – 682
rectangle 37 24 884 1,614
triangle 28 24 686 459

N = 107

O
ra

cl
e circle 60 2 197 3

square 67 40 – 671
rectangle 37 13 1,453 969
triangle 28 20 541 256

N = 108

O
ra

cl
e circle 59 1 197 7

square 67 5 – 466
rectangle 37 2 1,488 155
triangle 28 3 655 296

Table 1: Comparison between the Projected Gradient (PG) and the Inexact Restoration (IR)
methods applied to Instances 1.1 to 1.4 of Example 1 and Instances 2.1 to 2.4 of Example 2
varying N ∈ {104, 105, . . . , 108}.

where #it is the number of iterations performed until the stopping criterion is reached and
sk+ 1

2
and sk+1 are the number of functional evaluations with samples of sizes Nk+ 1

2
and Nk+1,

respectively, performed at iteration k.
Table 1 presents a comparison of the performances of both methods when applied to Instances

1.1–1.4 of Example 1 and Instances 2.1–2.4 of Example 2 varying N ∈ {104, 105, . . . , 108}. In
all cases, except the case of the PG method applied to Instance 2.2, the methods achieved their
respective stopping criteria and found qualitative equivalent solutions. In the case in which
the PG method was unable to achieve its stopping criterion (marked with “–” in the table), it
stopped due to a very small step in the line search (smaller than 10−16). Moreover, even in this
case, the projected gradient was relatively small (of the order of 10−3) and the final iterate was
a “reasonable approximation” to a solution. Figure 1 shows a pictorial representation of the
solutions found.

A comparison of the figures in the table shows that the IR method is more efficient in 32 out
of the 40 considered combinations of instances and N (i.e. 80% of the cases). The PG method

15

(a) circular oracle (b) squared oracle

(c) rectangular oracle (d) triangular oracle

Figure 1: Solutions to the four considered instances of Examples 1 (circular classifier) and 2
(ellipsoidal classifier). In the case of instances (a) and (b) both solutions coincide.

16

 100

 1000

 10000

 100000

 1x10
6

 1x10
7

 1x10
8

 1x10
9

 0 50 100 150 200 250

S
am

p
le

 s
iz

e

Iteration number

 100

 1000

 10000

 100000

 1x10
6

 1x10
7

 1x10
8

 1x10
9

 0 100 200 300 400 500 600 700 800

S
am

p
le

 s
iz

e

Iteration number

(a) circular oracle (b) squared oracle

 100

 1000

 10000

 100000

 1x10
6

 1x10
7

 1x10
8

 1x10
9

 0 50 100 150 200 250

S
am

p
le

 s
iz

e

Iteration number

 100

 1000

 10000

 100000

 1x10
6

 1x10
7

 1x10
8

 1x10
9

 0 200 400 600 800 1000 1200

S
am

p
le

 s
iz

e

Iteration number

(c) rectangular oracle (d) triangular oracle

Figure 2: Samples size as the method evolves in the four instances of Example 2 (ellipsoidal
classifier).

is more efficient in seven other instances and there is a tie between the two methods in a single
instance. The instances in which the PG method is competitive are related to small values of N ;
while the instances in which the IR method is more efficient are the instances with very large
values of N . If we consider the instances with N = 108 only, the IR method is at least twice
faster than the PG method and, in some cases, it is ten times faster and up to more than fifty
times faster than the PG method. The cases in which the IR method appears to be extremely
fast are cases in which samples with size N are required by the method (i.e. used to evaluate
the objective function) only once or twice. Figure 2 displays, for the four instances of Example 2
with N = 108, the evolution of the size of the samples as the method evolves. It is very clear
that, as desired, big samples are used only when the method approaches a solution.

17

4.4 A portfolio optimization problem

Assume that, using simulation, we are able to produce as many scenarios of future prices of a set
of assets as we desire. One of the strategies used to compose a portfolio consists of maximizing the
expected return minus a multiple of the estimated standard deviation. This objective function
satisfies adequately the requirement of combining future profits with a cautious attention to
risk. Moreover, variations on the weight given to the standard deviation produce different
solutions and the corresponding pairs return/deviation represent the classical Pareto curve of
non-dominated decisions, among which the investor should chose the one that best fits his/her
desires, perhaps based on non-quantifiable criteria. Fixing the weight of the standard deviation
we are in presence of a problem of the type analyzed in this paper. As in previous examples,
we are interested in the optimization of the original problem, employing a moderate number of
scenarios at the portfolio trials that are far from a solution.

Let us consider a portfolio consisting of n assets and assume that ξ ∈ Rn is a continuous
random variable that represents a certain scenario of future prices of the assets. Thus, if xj
is the present value of z units of the asset j, then ξjxj is the inflation-discounted prize of z
units of the asset j one period later under the scenario represented by ξ. The expected return
of a portfolio x ∈ Rn is E(

∑n
i=1 ξjxj); while its standard deviation is given by σ(

∑n
i=1 ξjxj).

Including the budget constraint
∑n

j=1 xj = 1 and non-negativity constraints x ≥ 0, the objective
of an investor could be

Maximize γ

E(
n∑

j=1

ξjxj)

+ (1− γ)

−σ(
n∑

j=1

ξjxj)

 subject to
n∑

j=1

xj = 1 and x ≥ 0,

where γ ∈ [0, 1] is a given parameter. As in the previous subsection, we assume that a large
integer N > 0 and small tolerance εopt > 0 are given and that the objective is to find a point
x∗ ∈ Ω such that

‖PΩ (x∗ −∇fN (x∗))− x∗‖∞ ≤ εopt

for some N ≥ N , where

Ω =

x ∈ Rn |
n∑

j=1

xj = 1 and x ≥ 0

 ,

fN (x) = γ

 n∑
j=1

ξ̄jxj

+ (1− γ)

−
√√√√√ 1

N

N∑
i=1

 n∑
j=1

[ξi]jxj −
n∑

j=1

ξ̄jxj

2
 ,

and

ξ̄ =
1

N

N∑
i=1

ξi ∈ Rn.

For the scenarios’ generation, following [7], we considered the date range from January 14,
2013, to January 12, 2015, that, for the NYSE exchange, implies in 503 observable days. Com-
panies were taken from the listing of the NYSE exchange available at http://www.nasdaq.com/

18

http://www.nasdaq.com/screening/company-list.aspx
http://www.nasdaq.com/screening/company-list.aspx

screening/company-list.aspx that contains 3 300 companies (accessed on January 13, 2015).
We considered the first 100 listed companies excluding those with less than 503 observations and
those that contain the character ˆ in its symbol. We took historical data (adjusted close value)
from Yahoo! Finance using the web tool available at http://finance.jasonstrimpel.com,
that is able to download multiple stock data series on one spreadsheet. We named this real data
D̂ ∈ R503×100. To obtain a matrix D ∈ R503×n with n = 101, we added a last column given by
(1, 1, . . . , 1)T ∈ R503 corresponding to a risk-free asset. Using matrix D as a source, we computed
the matrix of growing factors G ∈ R502×n whose elements gij are given by gij = di+1,j/dij for
i = 1, . . . , 502 and j = 1, . . . , n. Each scenario ξ ∈ Rn will represent a scenario that corresponds
to applying 250 random growing factors to the unitary vector e = (1, . . . , 1)T ∈ Rn (note that
250 observable days corresponds to a calendar year).

For comparison purposes, it is worth noting that the asset with largest expected profit is
asset j = 21 with ξ̄21 ≈ 1.8601 (when we consider 106 as well as 107 scenarios). Therefore, when
γ = 1, the solution to the problem at hand (that in this case reduces to a linear programming
problem) is given by investing all the budget on asset j = 21. On the other hand, when
γ = 0, the considered problem reduces to minimizing the standard deviation of the portfolio.
In this case, the solution is given by investing all the budget in the risk-free asset j = 101, that
behaves exactly in the same way for all possible scenario. It is worth noting that the objective
function is not differentiable at points where the standard deviation vanishes. For that reason,
in the numerical experiments we considered γ ∈ {1, 0.9, . . . , 0.4}. We also considered that
εopt = 10−4 and N ∈ {106, 107}. Table 2 shows the results. In all cases both methods (PG and
IR) satisfied the stopping criterion and found equivalent solutions. In the case N = 106, the
Inexact Restoration method used approximately half of the computational effort required by the
Projected Gradient method; while in the larger case (N = 107), the IR method was almost one
order of magnitude faster than the PG method. Figure 3 shows the value of the expected return
versus the standard deviation in the solutions found for the different values of the parameter γ.

5 Concluding remarks

Perhaps the main theoretical meta-optimization consequence of this work is that the key word
in Inexact Restoration is “inexactness” instead of “feasibility” or even “restoration”. In [18] this
consequence was timidly suggested as we still relied on a reformulation of the minimization of
f(x) using an auxiliary constraint z = f(x). Here we discarded such interpretation at all and,
as a matter of fact, our present preference is the reverse one: Instead of thinking inexactness
through the model of infeasibility, we believe that it is more useful to think infeasibility through
the model of inexactness. For example, in nonlinear programming, the evaluation of f(x) at
an infeasible point may be considered an inexact evaluation of f(x) and we conjecture that
many useful ideas may come from the encounter between the IR framework and the treatment
of inexactness in mathematical problems.

Acknowledgments. The authors would like to thank the two referees for their comments and
remarks that helped to improve the first version of this work.

19

http://www.nasdaq.com/screening/company-list.aspx
http://www.nasdaq.com/screening/company-list.aspx
http://finance.jasonstrimpel.com

Portfolio optimization problem
Total Effort

PG method IR method

N = 106

p
ar

am
et

er
γ

1.0 29 6
0.9 115 66
0.8 50 31
0.7 40 22
0.6 36 17
0.5 26 12
0.4 25 19

N = 107

p
ar

am
et

er
γ

1.0 28 3
0.9 116 17
0.8 50 5
0.7 40 4
0.6 36 4
0.5 26 9
0.4 26 12

Table 2: Comparison between the Projected Gradient (PG) and the Inexact Restoration
(IR) methods applied to the portfolio optimization problem with N ∈ {106, 107} and γ ∈
{1, 0.9, . . . , 0.4}.

-0.5

-0.45

-0.4

-0.35

 1.72 1.74 1.76 1.78 1.8 1.82 1.84 1.86

(M
in

u
s)

 S
ta

n
d
ar

d
 d

ev
ia

ti
o
n

Expected return

γ = 1.0

γ = 0.9

γ = 0.8

γ = 0.7

γ = 0.6

γ = 0.5

γ = 0.4

Figure 3: Expected return versus standard deviation for γ varying from 1 to 0.4.

20

References

[1] R. Andreani, S. L. Castro, J. L. Chela, A. Friedlander, and S. A. Santos, An inexact-
restoration method for nonlinear bilevel programming problems, Computational Optimiza-
tion and Applications 43, pp. 307–328, 2009.

[2] N. Banihashemi and C. Y. Kaya, Inexact Restoration for Euler discretization of box-
constrained optimal control problems, Journal of Optimization Theory and Applications
156, pp. 726-760, 2013.

[3] F. Bastin, Trust-region algorithms for nonlinear stochastic programming and mixed logit
models, Ph.D. Thesis, University of Namur, Namur, Belgium, 2004.

[4] F. Bastin, C. Cirillo, and Ph. L. Toint, And adaptive Monte Carlo algorithm for computing
mixed ligit estimators, Computational Managment Science 3, pp. 55–79, 2006.

[5] E. G. Birgin, L. F. Bueno, and J. M. Mart́ınez, Assessing the reliability of general-purpose
Inexact Restoration methods, Journal of Computational and Applied Mathematics 282, pp.
1–16, 2015.

[6] E. G. Birgin and J. M. Mart́ınez, Local convergence of an Inexact Restoration method and
numerical experiments, Journal of Optimization Theory and Applications 127, pp. 229–247,
2005

[7] E. G. Birgin and J. M. Mart́ınez,On the application of an Augmented Lagrangian algorithm
to some portfolio problem, EURO Journal on Computational Optimization 4, pp. 79–92,
2016.

[8] E. G. Birgin, J. M. Mart́ınez, and M. Raydan, Spectral Projected Gradient meth-
ods: Review and Perspectives, Journal of Statistical Software 60(3), 2014 (DOI:
10.18637/jss.v060.i03). http://www.jstatsoft.org/v60/i03.

[9] L. F. Bueno, A. Friedlander, J. M. Mart́ınez, and F. N. C. Sobral, Inexact Restoration
method for derivative-free optimization with smooth constraints, SIAM Journal on Opti-
mization 23, pp. 1189–1231, 2013.

[10] R. Escalante and M. Raydan, Dykstra’s Algorithm for a Constrained Least-Squares Matrix
Problem, Numerical Linear Algebra and Applications 3, pp. 459–471, 1996.

[11] A. Fischer and A. Friedlander, A new line search Inexact Restoration approach for nonlinear
programming, Computational Optimization and Applications 46, pp. 333–346, 2010.

[12] M. A. Gomes-Ruggiero, J. M. Mart́ınez, and S. A. Santos, Spectral projected gradient
method with Inexact Restoration for minimization with nonconvex constraints, SIAM Jour-
nal on Scientific Computing 31, pp. 1628–1652, 2009.

[13] N. J. Higham, Computing a nearest symmetric positive semidefinite matrix, Linear Algebra
and its Applications 103, pp. 103–118, 1988.

21

http://www.jstatsoft.org/v60/i03

[14] T. Homem-de-Mello, Variable-sample methods for stochastic optimization, ACM Transac-
tions on Modeling and Computer Simulation 13, pp. 108–133, 2003.

[15] C. Y. Kaya and J. M. Mart́ınez, Euler discretization and Inexact Restoration for optimal
control, Journal of Optimization Theory and Applications 134, pp. 191–206, 2007.

[16] N. Krejić and N. Krklec, Variable sample size methods for unconstrained optimization,
Journal of Computational and Applied Mathematics 245, pp. 213–231, 2013.

[17] N. Krejić and N. Krklec-Jerinkić, Nonmonotone line search methods with variable sample
size, Numerical Algorithms 68, pp. 711–739, 2015.

[18] N. Krejić and J. M. Mart́ınez, Inexact Restoration approach for minimization with inexact
evaluation of the objective function, Mathematics of Computation 85, pp. 1775–1791, 2016.

[19] J. M. Mart́ınez, Inexact Restoration method with Lagrangian tangent decrease and new
merit function for nonlinear programming, Journal of Optimization Theory and Applica-
tions 111, pp. 39–58, 2001.

[20] J. M. Mart́ınez and E. A. Pilotta, Inexact restoration algorithms for constrained optimiza-
tion, Journal of Optimization Theory and Applications 104, pp. 135–163, 2000.

[21] R. Pasupathy, On choosing parameters in Retrospective Approximation algorithms for
stochastic root finding and simulation optimization, Operations Research 58, pp. 889–901,
2010.

[22] J. O. Royset, On sample size control in sample average approximations for solving smooth
stochastic programs, Computational Optimization and Applications 55, pp. 265–309, 2013.

[23] R. Y. Rubinstein and A. Shapiro, Discrete Event Systems: Sensitivity Analysis and Stochas-
tic Optimization by the Score Function Method, Wiley, New York, 1993.

[24] A. Ruszczyński and A. Shapiro (eds.), Stochastic Programming – Handbook in Operations
Research and Management Science, Elsevier, New Yoek, NY, 2003.

[25] A. Shapiro, D. Dentcheva, and A. Ruszczyński, Lectures on Stochastic Programming: Mod-
elling and Theory, SIAM and MPS, Philadelphia, PA, 2009.

22

	Introduction
	Inexact Restoration algorithm
	Convergence theory
	Implementation features and numerical experiments
	Implementation details
	A classification problem
	Numerical results of the classification problem
	A portfolio optimization problem

	Concluding remarks

