
On the minimization of possibly discontinuous functions by

means of pointwise approximations∗

E. G. Birgin† N. Krejić‡ J. M. Mart́ınez§
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Abstract

A general approach for the solution of possibly discontinuous optimization problems by
means of pointwise (perhaps smooth) approximations will be proposed. It will be proved that
sequences generated by pointwise approximation techniques eventually satisfy well justified
stopping criteria. Numerical examples will be given.
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1 Introduction

Many Engineering problems involve the minimization of discontinuous functions. For example,
process models with discontinuous investment costs and fixed charges [17], continuous review
(s,q) inventory systems with constant demand and batch arrivals [10], design of flow sheets for
systems that satisfy fixed demands of steam, electricity, and mechanical power [12], models for
expansion of capacity of telecommunications networks [16], capacity and flow assignment prob-
lems [11], and optimal plastic design [15]. Different techniques have been considered for solving
these seproblems, like integer programming [11], decomposition [16], simulated annealing [12],
among others.

The problem considered in this paper is

Minimize f(x) subject to x ∈ Ω, (1)

where f : Rn → R and ∅ 6= Ω ⊆ Rn. (Note that f(x) < ∞ for all x ∈ Rn.) We will consider
problem (1) with no assumptions on the continuity of the objective function. The idea is to
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replace the objective function with (possibly smooth) approximations with which it is easier to
deal numerically. We will derive conditions under which optima of the approximating functions
are suitable approximations for the original problem.

Many times, practical methods related with this approach rely on smoothing ideas. Smooth-
ing methods for minimizing non-differentiable continuous function have been extensively consid-
ered in the optimization literature (see [9] and the references therein) whereas the case in which
the objective function is discontinuous is rarely encountered [13, 20]. Direct search methods and
methods for discontinuous bounded factorable functions have been introduced recently in [18]
and [19], respectively.

Uniform convergence of a sequence of continuous functions implies continuity of the limit
function f . So, in order to exploit the approximation of a discontinuous function by continuous
ones we must rely in pointwise approximation. In this work we deal with the problem of min-
imizing a (possible discontinuous) function f with constraints. The goal is to investigate the
minimization properties of pointwise approximations of f .

This paper is organized as follows. In Section 2, we assume that finding almost global
minimizers of the approximating functions is possible and we investigate the properties of an al-
gorithm that proceeds by almost-minimization of such approximations with respect to the global
minimization of the objective function. In Section 3 we address the most frequent situation in
which smooth global minimization is not affordable. Assuming smoothness of the constraints, an
algorithm is defined that, at each iteration, finds an Approximate KKT point of the a smooth
approximation of f . We prove that the points so far obtained are interesting candidates to
approximate a solution of the original problem since they obey a theoretical property that is
shared by local minimizers. In Section 4 we provide some numerical examples of the approach
described in the previous sections. Some conclusions are drawn in the last section.

Notation. N denotes the set of natural numbers {1, 2, . . . }. ‖ · ‖ denotes an arbitrary norm
on Rn.

2 Global results

Let {fk} be a sequence of functions such that fk : Rn → R. Assumption A1 below states that
this sequence converges pointwise to f .

Assumption A1 For all k ∈ N, fk : Rn → R is such that

lim
k→∞

fk(x) = f(x) for all x ∈ Ω.

For an arbitrary nonempty set A ⊆ R we say that s ∈ R ∪ {−∞} is the infimum of A if s
is the biggest lower bound of A. In Theorem 2.1 we will prove that, under Assumption A1, the
infimum of fk is, asymptotically, not greater than the infimum of f onto Ω.

Theorem 2.1 If Assumption A1 holds, we have that

lim inf
k∈N

inf
x∈Ω

fk(x) ≤ inf
x∈Ω

f(x). (2)
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Proof: Let a ∈ R be such that
a > inf

x∈Ω
f(x).

Therefore, there exists z ∈ Ω such that f(z) < a. Then, by Assumption A1, for all k large
enough we have that fk(z) < a. Therefore, for all k large enough,

inf
x∈Ω

fk(x) < a.

This implies that
lim inf
k∈N

inf
x∈Ω

fk(x) ≤ a.

Thus, since a > infx∈Ω f(x) was arbitrary,

lim inf
k∈N

inf
x∈Ω

fk(x) ≤ inf
x∈Ω

f(x),

as we wanted to prove. �

The usefulness of the sequence of functions {fk} for solving (1) relies on the possibility that
minimizing fk could be much easier than minimizing f . For example, if the functions fk have
enough structure, one can use structure-oriented global optimization methods for their minimiza-
tion [5]. The following algorithm describes a simple way to use the pointwise approximation
sequence fk with the purpose of minimizing f .

Algorithm 2.1. Let τ ∈ (0, 1) and a sequence {fk} satisfying Assumption A1 be given. Ini-
tialize k ← 1 and ε1 > 0.

Step 1. Employing some global optimization method, suitable for functions with the structure
of fk, find xk ∈ Ω such that

fk(xk) ≤ inf
x∈Ω

fk(x) + εk. (3)

Step 2. Set εk+1 = τεk, k ← k + 1, and go to Step 1.

The property (3) is usually guaranteed by global optimization solvers. Theorem 2.2 provides
the elements to prove the main property of Algorithm 2.1, without using the specific structures
of the function f or the pointwise approximations fk.

Theorem 2.2 If Assumption A1 holds and the sequence {xk} is generated by Algorithm 2.1,
we have that

lim inf
k∈N

fk(xk) ≤ inf
x∈Ω

f(x). (4)

Proof: Let a ∈ R be such that a > infx∈Ω f(x). Therefore, there exists z ∈ Ω such that f(z) < a.
Define η = (a− f(z))/2 > 0. Since fk(z)→ f(z), there exists k0 ∈ N such that fk(z) ≤ f(z) + η
for all k ≥ k0. Therefore, for all k ≥ k0,

inf
x∈Ω

fk(x) ≤ fk(z) ≤ f(z) + η.
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Then, by (3),
fk(xk) ≤ inf

x∈Ω
fk(x) + εk ≤ f(z) + η + εk

for all k ≥ k0. But, since η < a− f(z), this implies that

fk(xk) ≤ a+ εk for all k ≥ k0.

Since this inequality holds for all a > infx∈Ω f(x), we have that

fk(xk) ≤ inf
x∈Ω

f(x) + εk for all k ≥ k0.

Since εk tends to zero, this implies the desired result. �

Observe that the inequality (2) cannot be converted into an equality. In fact, assume that
f(x) = 0 for all x ∈ Rn, fk(x) = 0 for all x 6= 1/k, and fk(1/k) = −1. The sequence fk(x)
converges to 0 for all x ∈ Rn and the right-hand side of (2) is 0. However, the left-hand side
is −1. In Theorem 2.3 the equality is obtained through the assumption that fk(x) over-estimates
f(x). This assumption is stated below.

Assumption A2 For all k ∈ N, fk : Rn → R is such that

fk(x) ≥ f(x) for all x ∈ Ω.

Theorem 2.3 If Assumptions A1 and A2 hold, we have that

lim inf
k∈N

inf
x∈Ω

fk(x) = inf
x∈Ω

f(x).

Proof: Since fk(x) ≥ f(x) we have that

lim inf
k∈N

inf
x∈Ω

fk(x) ≥ lim inf
k∈N

inf
x∈Ω

f(x) = inf
x∈Ω

f(x).

Therefore, the thesis follows from Theorem 2.1. �

Theorem 2.4 If Assumptions A1 and A2 hold and the sequence {xk} is generated by Algo-
rithm 2.1, we have that

lim inf
k∈N

fk(xk) = inf
x∈Ω

f(x).

Proof: It follows from fk(xk) ≤ infx∈Ω fk(x) + εk and the fact that εk tends to zero. �

Corollary 2.1 In addition to the hypotheses of Theorem 2.4, assume that x∗ is a global mini-
mizer of f(x) onto Ω. Then, there exists K, an infinite subsequence of N, such that

lim
k∈K

fk(xk) = f(x∗).
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Proof: Firstly, note that, by the hypothesis, f(x∗) = infx∈Ω f(x). The rest of the proof comes
from the manipulation of the concepts of infimum and limit. �

Remarks. The simple results presented here use neither continuity of f or its approximations fk.
Moreover, convergence of fk to f does not need to be uniform and Ω is an arbitrary set. The
main application of these results corresponds to the case in which the functions fk are more
smooth than f . For example, when f is not continuous while the approximations fk have
continuous derivatives, one can use smooth standard algorithms for minimizing fk in order to
obtain approximations of the minimum of f .

3 Affordable algorithm and stopping criterion

In this section we will assume that a sequence {fk} that satisfies Assumption A1 is available
and that the set Ω has the form given in Assumption A3 below.

Assumption A3 The domain Ω is the set of x ∈ Rn such that

h(x) = 0 and g(x) ≤ 0, (5)

where h : Rn → Rm and g : Rn → Rp admit continuous first derivatives for all x ∈ Rn.

Moreover, we will use the following assumption.

Assumption A4 The functions fk admit continuous first derivatives for all x ∈ Rn.

Whereas Algorithm 2.1 assumes that we are able to find (almost) global minimizers of fk(x)
subject to x ∈ Ω, the algorithm defined in this section is less ambitious. We will only assume that
it is possible to find almost stationary points of fk(x) onto Ω. Well established algorithms that
are successful for that purpose will be called Standard Algorithms here. The main convergence
property of Standard Algorithms is given below.

Property P1 Assume that {z`} is a sequence generated by a Standard Algorithm applied to the
minimization of fk(z) subject to h(z) = 0 and g(z) ≤ 0, where fk satisfies Assumption A4 and h
and g are as in Assumption A3. Assume, moreover, that {z`} admits a limit point zlim. Then,
at least one of the following two possibilities hold:

1. For all ε > 0, there exists an iterate z` such that

‖∇fk(z`) +∇h(z`)λ` +∇g(z`)µ`‖ ≤ ε,
‖h(z`)‖ ≤ ε,
‖g(z`)+‖ ≤ ε,

min{µ`i ,−gi(z`)} ≤ ε for all i = 1, . . . , p,

(6)

for some λ` ∈ Rm and µ` ∈ Rp
+, and the distance between z` and zlim is smaller than ε.

2. The limit point zlim is infeasible and stationary for the infeasibility measure. This means
that

‖h(zlim)‖+ ‖g(zlim)+‖ > 0 and ∇
[
‖h(zlim)‖22 + ‖g(zlim)+‖22

]
= 0. (7)
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Property P1 is satisfied by many well established smooth optimization algorithms, for exam-
ple the Augmented Lagrangian method Algencan, described in [2, 7]. Essentially, Property P1
means that Standard Algorithms applied to the minimization of fk(z) subject to h(z) = 0
and g(z) ≤ 0, under Assumptions A3 and A4, converges to AKKT (Approximate KKT) points
[3, 7, 14]. Note that, for the fulfillment of Property P1, no constraint qualifications are necessary
at all. The fulfillment of Property P1 by existent methods when applied to the problems that
consists on minimizing fk(z) onto Ω allows us to define the following algorithm.

Algorithm 3.1. Let x0 ∈ Rn, τ ∈ (0, 1), a sequence {fk} satisfying Assumptions A1 and A4,
ε > 0, and kbig ∈ N be given. Initialize k ← 1 and ε1 ≥ ε.

Step 1. Employing some Standard Algorithm for minimizing fk(z) subject to x ∈ Ω (possibly
starting from xk−1), find xk that satisfies (6) with ε substituted by εk.

Step 2. If k ≥ kbig and εk ≤ ε, stop.

Step 3. Set εk+1 = max{ε, τεk}, k ← k + 1, and go to Step 1.

Due to the definitions given, the proof of the following theorem is straightforward.

Theorem 3.1 Let Assumptions A1, A3, and A4 hold. Assume that the sequence {xk} is gen-
erated by Algorithm 3.1. Assume, further, that, for all k ∈ N, the sequence potentially generated
by the Standard Algorithm for minimizing fk(z) subject to z ∈ Ω is bounded and that any limit
point of such sequence belongs to Ω. Then, Algorithm 3.1 is well-defined and stops satisfying
k ≥ kbig and (6).

Proof: By the hypothesis, for all k ∈ N, the sequence generated by the Standard Algorithm
for minimizing fk(z) subject to z ∈ Ω is bounded and, so, it admits a limit point. Also by the
hypothesis, such limit point is feasible. Therefore it does not satisfy (7). This means that, by
Property P1, there exists ` ∈ N such that (6) holds. Therefore, Algorithm 3.1 is well defined for
all k ∈ N. Taking k ≥ kbig we obtain the desired result. �

Algorithm 3.1 is well defined under the assumptions that the sequences generated by the
Standard Algorithm are bounded and that limit points of those sequences are feasible. Bound-
edness is generally guaranteed by assumptions on the constraints, for example, when some of
these constraints define a box ` ≤ x ≤ u. The non-existence of infeasible limit points is implied
by the non-existence of infeasible stationary points of the constraints. This property depends
only on the smooth constraints h(x) = 0 and g(x) ≤ 0 and it is not possible to guarantee that
such points do not exist, except in particular cases. For this reason, in practice, we must include
a stopping criterion that detects that, possibly, the Standard Algorithm iteration is close to a
limit point that fulfills (7).

In the case that the assumptions of Theorem 3.1 hold, even if the sequence {xk} converges
to a point at which f is not differentiable, the gradient ∇fk(xk) tend to be a linear combination
of the gradients of the constraints, as stated in (6). In particular, if there are no constraints at
all, the gradient ∇fk(xk) tends to zero.
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We have presented an algorithm that, under reasonable conditions, stops at a point that
satisfies k ≥ kbig and (6). The question that naturally arises is: Is the stopping criterion based
on k ≥ kbig and (6) reasonable? In other words, do these properties tell us something about the
optimality of the solution found by Algorithm 3.1?

Let us give an example: Imagine, for a moment that we deal with smooth unconstrained
minimization. Why we believe that the approximate annihilation of the gradient of the objective
function is a suitable stopping criterion for related algorithms? The answer, of course, is that
at local minimizers that gradient is null. Therefore, although we cannot be sure that we stop
at local minimizers, at least we stop at points that verify a property that is satisfied by local
minimizers.

In the same sense, we will prove now that, roughly speaking, if x̄ is a local minimizer of f(x)
subject to x ∈ Ω, the stopping conditions k ≥ kbig and (6) hold at x̄. Note that the formulation
of the stopping conditions k ≥ kbig and (6) is based on a sequence of approximating functions
that satisfy Assumptions A1 and A4, but not necessarily A2. In order to guarantee that those
conditions hold at a local minimizer we need to assume A2. The condition A2 plays, with respect
to the stopping criterion based on k ≥ kbig and (6), the same role that constraint qualifications
(for example, linear independence of active constraints) play with respect to KKT conditions in
nonlinear programming: Constraint qualifications guarantee that local minimizers satisfy KKT
conditions, but one considers that the fulfillment of KKT is a good symptom of optimality,
independently of the satisfaction of the constraint qualification. (This observation should not
be confused with the notion of AKKT conditions for smooth constrained optimization, which
do not employ constraint qualifications at all.)

Theorem 3.2 Assume that x̄ is a local minimizer of f(x) subject to x ∈ Ω and that Ω and {fk}
fulfill Assumptions A1, A2, and A4. Then, there exists a sequence {xk} that converges to x̄ and
such that, for all kbig ∈ N and ε > 0, there exists k ≥ kbig, λk ∈ Rm, and µk ∈ Rp

+ satisfying (6).

Proof: Define
f̄(x) = f(x) + ‖x− x̄‖22

and
f̄k(x) = fk(x) + ‖x− x̄‖22

for all x ∈ Ω and k ∈ N. By Assumption A1,

lim
k→∞

f̄k(x) = f̄(x) for all x ∈ Ω. (8)

Moreover, as x̄ is a local minimizer of f onto Ω, there exists δ > 0 such that, for all x ∈ Ω with
0 < ‖x− x̄‖2 ≤ δ, one has that f̄(x) > f̄(x̄) = f(x̄). Thus, x̄ is a strict local minimizer of f̄(x)
onto Ω.

For all k ∈ N, let Bk be the closed Euclidean ball with center x̄ and radius δ/k, and let Sk
be the boundary of this ball. Since Ω is closed, Ω ∩Bk and Ω ∩ Sk are compact. Therefore, by
continuity, f̄k(x) admits a global minimizer onto Ω ∩Bk for all k ∈ N.

Since x̄ is a local minimizer on Bk we have that, for all x ∈ Sk,

f(x̄) ≤ f(x).
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Therefore,

f(x̄) < f(x) +
‖x− x̄‖2

2
.

This implies that

f(x̄) < f(x) + ‖x− x̄‖2 − ‖x− x̄‖
2

2
.

So, by the definition of f̄ ,

f(x̄) < f̄(x)− ‖x− x̄‖
2

2
= f̄(x)− (δ/k)2/2. (9)

By Assumption A1 there exists jk ∈ N such that jk > jk−1 if k > 1 and

fjk(x̄) < f(x̄) + (δ/k)2/4.

Then, by (9),
f̄jk(x̄) < f̄(x)− (δ/k)2/4.

Then, by Assumption A2,
f̄jk(x̄) < f̄jk(x)− (δ/k)2/4.

Since this inequality holds for all x ∈ Sk it turns out that the global minimizer of f̄jk(x) subject
to x ∈ Bk ∩ Ω does not belong to Sk.

Let zk be the global minimizer of f̄jk(x) subject to x ∈ Bk ∩ Ω. We proved above that
‖zk − x̄‖ < δ/k. Therefore zk is a local minimizer of fjk(x) subject to h(x) = 0 and g(x) ≤ 0.
Then, by the AKKT property of local minimizers of smooth functions [3, 7], we have that there
exist xk ∈ Rn, λk ∈ Rm and µk ∈ Rp

+ such that ‖xk − zk‖ < δ/(2k), and, in addition, (6) holds.
Moreover, since jk > jk−1 for k > 1 it turns out that, eventually, jk ≥ kbig. This completes the
proof. �

4 Numerical Examples

In this section we present illustrative examples on the application of Algorithm 3.1.

4.1 Avoiding the greediness phenomenon in penalty methods for nonlinear
programming

In this section, we present an application of a smoothing process to the solution of optimization
problems of the form

Min ϕ(x) subject to g(x) ≤ 0, (10)

where ϕ : Rn → R and g : Rm → R are continuously differentiable. Let Ω = {x ∈ Rn | g(x) ≤ 0}
be the feasible region and let ϕub ∈ R be such that ϕ(x) ≤ ϕub for all x ∈ Ω, assumed to be
known. It is easy to see that solving problem (10) is equivalent to solving the discontinuous
unconstrained optimization problem given by

Min f(x),
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where

f(x) =

{
ϕ(x), if x ∈ Ω,
ϕub + Φ(x), otherwise,

and

Φ(x) =
m∑
i=1

max{0, gi(x)}2.

Let {ωk}∞k=1 such that ωk → 0 when k → ∞ and {κk}∞k=1 such that κk → ∞ when k → ∞
be given sequences of positive numbers. We define

Ωk = {x ∈ Rn | g(x) ≤ −ωk} ⊆ Ω and Ω̄k = Ω \ Ωk,

and we also define ϕk(x) : Ω→ R as

ϕk(x) =

{
ϕ(x), if x ∈ Ωk,
ϕ(x) [1−Hk(x)] +

(
ϕub + Φ(x)

)
[Hk(x)] , if x ∈ Ω̄k,

(11)

where

Hk(x) =
κkΦk(x)

1 + κkΦk(x)

and

Φk(x) =
m∑
i=1

max{0, gi(x) + ωk}2.

Note that (11) is equivalent to:

ϕk(x) = ϕ(x) [1−Hk(x)] +
(
ϕub + Φ(x)

)
[Hk(x)] for all x ∈ Ω.

We now define the sequence of continuously differentiable functions fk : Rn → R given by

fk(x) =

{
ϕk(x), if x ∈ Ω,
ϕub + Φ(x), otherwise.

Clearly, fk(x) ≥ f(x) for all k and all x ∈ Rn, since, by definition, ϕk(x) ≥ ϕ(x) for all k and
all x ∈ Ω. Moreover, it is also easy to see that limk→∞ fk(x) = f(x) for all x ∈ Rn. Thus,
Assumptions A1, A2, and A4 are fulfilled by the sequence {fk}.

Summing up, in the application being described, the original nonlinear programming prob-
lem (10) is modeled as an equivalent discontinuous unconstrained minimization problem, which
is tackled by solving a sequence of smooth unconstrained problems of the form

Min fk(x)

for k = 1, 2, . . . . The smooth functions fk(x) were constructed in such a way that the original
objective function ϕ(x) in (10) plays no role whenever x /∈ Ω. This was done with the purpose
of avoiding an inconvenience of penalty methods known as greediness, which is the tendency
of being attracted by spurious infeasible points at which the objective function goes to minus
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infinity (see [4, 8] for details).

Example 4.1.1:

Min
10∏
i=1

xi subject to 0.25 ≤ ‖x‖22 ≤ 1.

We consider a random initial guess x0 = 0.75 x̄0/‖x̄0‖2, where x̄0 is such that its components x̄0
i

are random values with uniform distribution in the interval [−1, 1]. It is worth noting that when
a classical optimization method based on penalization is applied to this problem, the sequence of
iterates xk diverges very quickly and

∏10
i=1 x

k
i → −∞ when k →∞. This is what happens when,

for example, the Augmented Lagrangian method Algencan [2, 7] is applied to this problem.
We now describe the application of Algorithm 3.1. Since, for each k, the subproblem of

minimizing fk at Step 1 of Algorithm 3.1 is an unconstrained smooth problem, the method
proposed in [6], named Gencan, was used as the “Standard Algorithm” required to tackle the
subproblems. We considered ε1 = 10−4. In the definition of fk, we set ω1 = 10−4 and κ1 = 10
and, for k > 1, ωk = ωk−1/10 and κk = 10κk−1. Table 1 shows the results. For each k ∈
{1, . . . , 5} the table displays the values of ωk and κk that define fk, the tolerance εk used to stop
the process of minimizing fk at a point xk such that ‖∇fk(xk)‖∞ ≤ εk, the number of iterations
‘#it’ required to achieve this stopping criterion, the values of ‖xk‖2 (from which feasibility can
be observed), and the objective functional value

∏10
i=1 x

k
i . In the five calls, Gencan successfully

solved the subproblems. In the first two subproblems, the initial guess satisfies the stopping
criterion, meaning that x2 = x1 = x0. The main work is done minimizing f3 to obtain x3 that
already is a reasonable approximation to the solution. The last two optimizations (of f4 and f5)
are very quick and simple increase the number of correct digits in the solution. At the end, we
have, as expected, x5

i ≈ 1/
√

10 for i = 1, . . . , 10.

k εk ωk κk # it ‖xk‖2
∏10

i=1 x
k
i

1 10−4 10−4 10 0 5.6250000D-01 7.3735355D-08
2 10−5 10−5 102 0 5.6250000D-01 7.3735355D-08
3 10−6 10−6 103 215 9.9999903D-01 -9.9999512D-06
4 10−7 10−7 104 5 9.9999990D-01 -9.9999950D-06
5 10−8 10−8 105 5 9.9999999D-01 -9.9999994D-06

Table 1: Results of applying Algorithm 3.1 to Example 4.1.1.

4.2 Additional illustrative problems

In this section we show the performance of the introduced method when applied to the four
problems considered in [18], where direct search methods for minimizing discontinuous functions
were introduced. The four problems are two-dimensional bound-constrained problems of the
form

Minimize f(x) subject to x ∈ Ω ≡ [−1, 1]2,
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where function f is discontinuous and is given by one of the four functions defined below:

Example 4.2.1:

f(x) =

{
f1(x) ≡ x2

1 + x2
2, if x ∈ Ω1 ≡ {x ∈ R2 | x1/2 ≤ x2 ≤ 2x1},

f2(x) ≡ x2
1 + x2

2 + 10, if x ∈ Ω2 ≡ Ω \ Ω1.

Example 4.2.2:

f(x) =

{
f1(x) ≡ 10x2

1 + x2
2, if x ∈ Ω1 ≡ {x ∈ R2 | x1 ≥ 0},

f2(x) ≡ 10x2
1 + 10x2

2, if x ∈ Ω2 ≡ Ω \ Ω1.

Example 4.2.3:

f(x) =

{
f1(x) ≡ x2

1 + x2
2, if x ∈ Ω1 ≡ {x ∈ R2 | x2 = 2x1},

f2(x) ≡ x2
1 + x2

2 + 10, if x ∈ Ω2 ≡ Ω \ Ω1.

Example 4.2.4:

f(x) =



f1(x) ≡ x2
1 + x2

2, if x ∈ Ω1 ≡ {x ∈ R2 | x1/2 ≤ x2 ≤ 2x1},

f2(x) ≡ x2
1 + x2

2 + 5, if x ∈ Ω2 ≡ {x ∈ R2 | x1 ≤ 0 and x2 ≤ 0} \ Ω1,

f3(x) ≡ x2
1 + x2

2 + 10, if x ∈ Ω3 ≡ {x ∈ R2 | x2 ≤ x1/2 and x1 ≥ 0} \ (Ω1 ∪ Ω2) ,

f4(x) ≡ x2
1 + x2

2 + 15, if x ∈ Ω4 ≡ Ω \ (Ω1 ∪ Ω2 ∪ Ω3) .

These problems were tackled by solving a sequence of bound-constrained smooth problems
given by

Minimize fk(x) subject to x ∈ Ω ≡ [−1, 1]2, (12)

for k = 1, 2, . . . . Note that, by definition, the feasible set Ω satisfies Assumption A3. In
Examples 4.2.1–4.2.3, we have that

fk(x) =
(

1−H1
k(x)

)
f1(x) +H1

k(x)f2(x),

H1
k(x) =

κkω1(x)

1 + κkω1(x)
,

and ω1(x) is the squared infeasibility measure associated with Ω1. This means that if we assume
that Ω1 is defined as Ω1 ≡ {x ∈ Rn | h(x) = 0 and g(x) ≤ 0}, where h : Rn → Rm and
g : Rn → Rp are smooth functions (as it is in fact the case in the considered examples) then
ω1(x) is given by ‖h(x)‖22 +‖g(x)+‖22. The sequence {κk} is a sequence of positive numbers that
goes to infinity when k goes to infinity. In the numerical experiments, we considered κk = 10k.
In Example 4.2.4, we define the squared infeasibility measures ωi associated with the sets Ωi

and the corresponding H i
k functions for i = 1, 2, 3. In this case, fk is given by

fk(x) =
(

1−H1
k(x)

)
f1(x)+H1

k(x)

{(
1−H2

k(x)
)
f2(x)+H2

k(x)

[(
1−H3

k(x)
)
f3(x)+H3

k(x)f4(x)

]}
.
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In the four cases, the sequence {fk} satisfies Assumptions A1 and A4 although, in general, does
not satisfy Assumption A2.

We now describe the application of Algorithm 3.1. This time, for each k, the subproblem
that is solved at Step 1 of Algorithm 3.1 is the bound-constrained smooth problem (12). Once
again, the subproblems were solved using the bound-constrained solver Gencan. We considered
ε1 = 10−4 and κ1 = 10 and, for k > 1, εk = εk−1/10 and κk = 10κk−1. Table 2 shows the results.
For each k ∈ {1, . . . , 5}, the table displays the value of κk that defines fk, the tolerance εk used to
stop the process of minimizing fk at a point xk such that ‖PΩ(xk−∇fk(xk))−xk‖∞ ≤ εk (that,
for convex-constrained minimization is a stopping criterion equivalent to (6)), the number of
iterations, functional evaluations, and gradient evaluations (#it, #fcnt, and #gcnt, respectively)
required to achieve this stopping criterion for the kth subproblem, the value of fk(xk), and the
point xk itself. The initial point was always a random initial point x0 ∈ [−1, 1]2.

As it can be seen in Table 2, when Algorithm 3.1 is applied to Example 4.2.1, almost all
the work is done when k = 1. The point x1 is also a solution for the subproblem corresponding
to k = 2 and this is the reason why nothing is done at the second iteration of the algorithm.
Then, a single iteration of the bound-constrained solver Gencan is done when minimizing f3

starting from x2 = x1 to obtain x3 that is almost identical to the previously obtained points.
The process continues with x3 = x4 = x5. The performance is analogous in the other three
examples and the method found a good approximation to the known solution x∗ = (0, 0)T in all
cases using a reduced number of functional evaluations. On the one hand, if these results are
compared to the ones reported in [18], it can be concluded that Algorithm 3.1 is very effective
and efficient (the method proposed in [18] fails, as supported by the underlying theory, when
applied to Example 4.2.3 because Ω1 has an empty interior). The method proposed in the
present work also performs a very reduced number of functional evaluations when compared
to the one introduced in [18]; although in the present context a single evaluation of fk means
evaluating all parts of the piecewise defined functions f and ∇fk(·) is also evaluated. On the
other hand, building fk requires to have access to the piecewise definition of f ; while the method
proposed in [18] may be applied to black-box discontinuous functions.
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Example 4.2.1

k εk κk #it #fcnt #gcnt fk(xk) xk

1 10−4 10 5 28 14 4.3e−24 (1.7e-12, 8.8e-13)
2 10−5 102 0 1 2 8.1e−24 (1.7e-12, 8.8e-13)
3 10−6 103 1 2 4 3.9e−24 (1.7e-12, 8.8e-13)
4 10−7 104 0 1 2 3.9e−24 (1.7e-12, 8.8e-13)
5 10−8 105 0 1 2 3.9e−24 (1.7e-12, 8.8e-13)

Example 4.2.2

k εk κk #it #fcnt #gcnt fk(xk) xk

1 10−4 10 1 2 6 1.7e-16 (4.2e-9, 7.5e-10)
2 10−5 102 0 1 2 1.7e-16 (4.2e-9, 7.5e-10)
3 10−6 103 0 1 2 1.7e-16 (4.2e-9, 7.5e-10)
4 10−7 104 0 1 2 1.7e-16 (4.2e-9, 7.5e-10)
5 10−8 105 1 2 4 4.6e-19 (-1.2e-12, 6.8e-10)

Example 4.2.3

k εk κk #it #fcnt #gcnt fk(xk) xk

1 10−4 10 3 25 10 1.3e-17 (1.6e-9, 3.2e-9)
2 10−5 102 0 1 2 1.3e-17 (1.6e-9, 3.2e-9)
3 10−6 103 1 2 4 1.3e-17 (1.6e-9, 3.2e-9)
4 10−7 104 0 1 2 1.3e-17 (1.6e-9, 3.2e-9)
5 10−8 105 0 1 2 1.3e-17 (1.6e-9, 3.2e-9)

Example 4.2.4

k εk κk #it #fcnt #gcnt fk(xk) xk

1 10−4 10 3 25 11 5.7e-14 (2.1e-7 1.0e-7)
2 10−5 102 0 1 2 5.7e-14 (2.1e-7 1.0e-7)
3 10−6 103 0 1 2 5.7e-14 (2.1e-7 1.0e-7)
4 10−7 104 1 2 4 3.3e-33 (5.9e-17, 2.5e-17)
5 10−8 105 0 1 2 3.3e-33 (5.9e-17, 2.5e-17)

Table 2: Results of applying Algorithm 3.1 to Examples 4.2.1–4.2.4.

13



5 Conclusions

The theoretical results presented in this paper showed that, under very mild conditions, assum-
ing global minimization of subproblems, global minimizers of the original discontinuous problem
are obtained. Moreover, if we only assume that the subproblems solver finds asymptotically
stationary points, the sequence generated by the algorithm converges to points that satisfy a
sequential optimality condition. Obviously, it is not possible to claim universal robustness or
efficiency of smoothing methods that obey the assumptions given here. However, illustrative
numerical experiments showed that this approach can be useful to solve interesting problems.
For example, applications to smoothed quantile regression [1] seems to be attractive and will
deserve to be considered in the near future.

Acknowledgments. The authors would like to thank the associate editor and the three referees
for their comments and remarks that helped a lot to improve the first version of this work.
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