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Abstract

Large scale nonlinear systems of equations can be solved by means of inexact
quasi-Newton methods. A global convergence theory is introduced that guarantees
that, under reasonable assumptions, the algorithmic sequence converges to a solution
of the problem. Under additional standard assumptions, superlinear convergence is
preserved.
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1 Introduction

Newton’s method is the most widely used algorithm for solving nonlinear systems of equa-
tions in real-life applications. Consider the system

F (x) = 0, (1)

where F : IRn → IRn has continuous partial derivatives. We denote by J(x) the Jacobian
matrix of F for all x ∈ IRn. The Newton direction dN

k is defined, at each iteration, by

J(xk)dN
k = −F (xk). (2)
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If the Jacobian matrix is Lipschitz-continuous and nonsingular at a solution of the system,
the iteration (2) defines a locally and quadratically convergent method which, moreover,
is invariant under linear transformations both in the range and in the domain space. In
order to generate a globally convergent algorithm, dN

k is used as search direction and the
Newtonian iteration takes the form

xk+1 = xk + αkdk,

where αk > 0 is such that ‖F (x)‖ is sufficiently reduced. The reduction is possible because
dN

k is a descent direction of the merit function.
Solving (2) at each iteration can be expensive. On one hand, one has to compute the

Jacobian at every iteration and, on the other hand, a linear system must be solved ex-
actly. These drawbacks motivated the development of quasi-Newton methods and inexact
Newton methods in the last three decades.

In inexact Newton methods [4, 8] the computation of the Newtonian direction (2) is
replaced by

‖J(xk)dIN
k + F (xk)‖ ≤ θk‖F (xk)‖ (3)

where 0 ≤ θk < θ < 1 for all k = 0, 1, 2, . . .. Usually, dIN
k is obtained by applying some

iterative linear solver to the system J(xk)d = −F (xk).
In quasi-Newton methods the direction is computed by solving

Bkd
QN
k = −F (xk), (4)

where, in general, Bk is not the Jacobian. In many quasi-Newton methods the matrices
Bk are generated in such a way that the linear algebra involved in (4) is minimal. See
[6, 11, 18] and references therein. The most straightforward way of doing this is to keep
the same Jacobian during some iterations, so that no new factorizations are needed during
some steps. This is generally called the Shamanski Method [24].

The combination of the ideas (3) and (4) leads to inexact quasi-Newton methods. See,
for example, [22]. In this case, the search directions are computed by

‖Bkd
IQN
k + F (xk)‖ ≤ θk‖F (xk)‖ (5)

where 0 ≤ θk < θ < 1 for all k = 0, 1, 2, . . ..
Global convergence of methods for solving nonlinear equations is usually obtained using

the residual norm as merit function. See [8, 12] and many others. Unfortunately, in (4)
and (5) it is not possible to ensure that the generated directions are descent directions for
any norm.

In this paper we suggest how that difficulty can be overcome. On one hand, the
inexact Newton condition (3) is imposed sufficiently often. On the other hand, we use a
nonmonotone technique which is similar to the one introduced by Li and Fukushima [13] for
proving global convergence of Broyden’s method and for proving convergence of algorithms
for some nonsmooth problems. The main difference is that the amount of reduction
required at each iteration is proportional to the residual norm in our method, which is
more adequate than the use of the squared norm of the increment for scaling reasons.

2



The paper is organized as follows. In Section 2 we describe the general algorithm and
we give global convergence results. In Section 3 we show that local superlinear convergence
arises from updatings with bounded deterioration. We draw some conclusions in Section 4.

2 Model algorithm and convergence

Assume that F : IRn → IRn, F ∈ C1(IRn). From now on, ‖ · ‖ denotes an arbitrary norm.
Assume that θ ∈ [0, 1), σ ∈ (0, 1), 0 < τmin < τmax < 1 and {ηk} is a sequence such that
ηk > 0 for all k = 0, 1, 2, . . . and

∑∞
k=0 ηk = η < ∞. Finally, let x0 ∈ IRn be an initial

approximation for the solution of F (x) = 0.
Given xk ∈ IRn, the k−th iterate of the algorithm, the steps for obtaining xk+1 are

given in Algorithm 1.

Algorithm 1. (Model Algorithm)

Step 1. (Compute the search direction)
Compute dk ∈ IRn.

Step 2. (Backtracking)
Step 2.1. Set α← 1.
Step 2.2. If

‖F (xk + αdk)‖ ≤ [1 + ασ(θ − 1)]‖F (xk)‖+ ηk, (6)

set αk = α and
xk+1 = xk + αkdk. (7)

If (6) does not hold, compute αnew ∈ [τminα, τmaxα], set α← αnew and repeat Step 2.2.

Remark. Since ηk > 0 the condition (6) is satisfied for α > 0 sufficiently small. So, the
backtracking process at Step 2 is necessarily completed at every iteration independently
of the choice of dk. Therefore, the iteration is always well defined.

Lemma 1. Assume that {xk} is a sequence generated by Algorithm 1. If, for some
sequence of indices K0 ⊂ {0, 1, 2, . . .}, limk∈K0

F (xk) = 0, then

lim
k→∞

F (xk) = 0. (8)

In particular, if x∗ is a limit point of {xk} such that F (x∗) = 0 then every limit point of
the sequence is a solution.

Proof. Let ε > 0 be arbitrary. Let k ∈ K0 be such that ‖F (xk)‖ ≤ ε/2 and

∞∑

ℓ=k

ηℓ ≤ ε/2.
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Observe that 0 ≤ 1 + ασ(θ − 1) < 1. So, by (6),

‖F (xj)‖ ≤ ‖F (xj−1)‖+ ηj−1 ∀ j ≥ 1.

Therefore, if j > k we have that

‖F (xj)‖ ≤ ‖F (xk)‖+ ηk + . . . + ηj−1 ≤ ‖F (xk)‖+
∞∑

ℓ=k

ηℓ ≤
ε

2
+

ε

2
= ε.

For the second part of the proof observe that if x∗ is a limit point such that F (x∗) = 0
then the sequence K0 satisfying limk∈K0

F (xk) = 0 necessarily exists. Thus, the proof
follows from the first part. 2

The following lemma will be used in the proof of Theorem 3.

Lemma 2. Assume that {xk} is a sequence generated by Algorithm 1 and that all the
limit points of the sequence {xk} are solutions of (1). Assume, further, that x∗ is a limit
point such that J(x∗) is nonsingular and

lim
k→∞

‖xk+1 − xk‖ = 0. (9)

Then, the whole sequence converges to x∗.

Proof. Since J(x∗) is nonsingular, the inverse function theorem guarantees that there
exists δ > 0 such that ‖F (x)‖ > 0 whenever 0 < ‖x− x∗‖ ≤ δ.

Let ε ∈ (0, δ) be arbitrary.
The set {x ∈ IRn | ε ≤ ‖x − x∗‖ ≤ δ} does not contain any solution of the system.

Therefore, it does not contain any limit point and so, it can contain only a finite number
of iterates. So, there exists k0 such that, for all k ≥ k0,

xk /∈ {x ∈ IRn | ε ≤ ‖x− x∗‖ ≤ δ}. (10)

Let k1 ≥ k0 be such that
‖xk+1 − xk‖ < δ − ε

for all k ≥ k1.
Since x∗ is a limit point, there exists k ≥ k1 such that

‖xk − x∗‖ < ε.

So,
‖xk+1 − x∗‖ ≤ ‖xk+1 − xk‖+ ‖xk − x∗‖ < δ.

But, since k ≥ k0, by (10) we have that

‖xk+1 − x∗‖ < ε.
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Repeating this argument, we obtain that

‖xk+j − x∗‖ ≤ ε

for all j = 1, 2, 3, . . . . Since ε was arbitrary, this implies that the sequence converges to
x∗. 2

Theorem 1. Assume that {xk} is generated by Algorithm 1 and there exists M > 0 such
that, for an infinite sequence of indices K1 ⊂ {0, 1, 2, . . .},

‖J(xk)dk + F (xk)‖ ≤ θ‖F (xk)‖ (11)

and
‖dk‖ ≤M. (12)

Then any limit point of the subsequence {xk}k∈K1
is a solution of the system. Moreover,

if a limit point of {xk}k∈K1
exists, then F (xk) → 0 and every limit point of {xk} is a

solution of (1).

Proof. Suppose K2 ⊂ K1 is a sequence of indices such that

lim
k∈K2

xk = x∗. (13)

Let us consider first the case in which {αk}k∈K2
does not tend to 0. So, there exists a

sequence of indices K3 ⊂ K2 and ᾱ > 0 such that

αk ≥ ᾱ > 0

for all k ∈ K3. Therefore, by (6), for all k ∈ K3,

‖F (xk+1)‖ ≤ ‖F (xk)‖+ ᾱσ(θ − 1)‖F (xk)‖+ ηk.

But, for all k /∈ K3, ‖F (xk+1)‖ ≤ ‖F (xk)‖ + ηk. Adding all these inequalities, we obtain
that

σᾱ(1− θ)
∑

k∈K3

‖F (xk)‖ ≤ ‖F (x0)‖+
∞∑

k=0

ηk = ‖F (x0)‖+ η.

Therefore, limk∈K3
F (xk) = 0. So, F (x∗) = 0.

Now, let us consider the case in which

lim
k∈K2

αk = 0. (14)

By the choice of αnew, for k ∈ K2 large enough, there exists α′
k > αk, α′

k ∈ [αk/τmax, αk/τmin]
such that

lim
k∈K2

α′
k = 0 (15)

and
‖F (xk + α′

kdk)‖ > ‖F (xk)‖+ α′
kσ(θ − 1)‖F (xk)‖+ ηk.
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So,
‖F (xk + α′

kdk)‖ > [1 + α′
kσ(θ − 1)]‖F (xk)‖. (16)

Therefore,
‖F (xk + α′

kdk)− [F (xk) + J(xk)α
′
kdk]‖

+‖F (xk) + J(xk)α
′
kdk‖ > [1 + α′

kσ(θ − 1)]‖F (xk)‖.

So,
‖F (xk + α′

kdk)− F (xk)− J(xk)α
′
kdk]‖

+‖α′
k[F (xk) + J(xk)dk]‖+ (1− α′

k)‖F (xk)‖ > [1 + α′
kσ(θ − 1)]‖F (xk)‖.

Then, by (11),
‖F (xk + α′

kdk)− F (xk)− J(xk)α
′
kdk]‖

+α′
kθ‖F (xk)‖+ (1− α′

k)‖F (xk)‖ > [1 + α′
kσ(θ − 1)]‖F (xk)‖.

This implies, after some algebraic manipulation, that

α′
k‖F (xk)‖(1 − σ)(1− θ) < ‖F (xk + α′

kdk)− F (xk)− J(xk)α
′
kdk]‖. (17)

So,

‖F (xk)‖(1 − σ)(1 − θ) <
‖F (xk + α′

kdk)− F (xk)− J(xk)α
′
kdk]‖

α′
k

.

Since ‖dk‖ is bounded and α′
k tends to zero, the continuity of the derivatives of F imply

that the right-hand side of the above inequality tends to zero for k ∈ K2. Therefore,
limk∈K2

‖F (xk)‖ = 0 and, so, F (x∗) = 0.
The second part of the proof follows from Lemma 1. 2

3 Bounded-deterioration updates

In this section we want to analyze algorithms in which the search direction satisfies the
requirement

‖Bkdk + F (xk)‖ ≤ θ‖F (xk)‖, (18)

where, periodically, Bk = J(xk). The matrices Bk will satisfy a “weak bounded deteri-
oration”(WBD) property. Useful quasi-Newton methods that satisfy the WBD property
have been introduced in the literature [10, 14, 17, 21] and a recent study by Lukšan and
Vlcék [15] seems to indicate that one of them [21] is the most efficient method for many
large-scale problems. A plausible conjecture is that these methods do not possess “lo-
cal convergence without restarts” although a counterexample has not yet been published.
Therefore, it is natural to analyze their globalization under a Jacobian restart strategy.

From now on we denote sk = xk+1−xk. The WBD property for a sequence of Jacobian
approximations Bk states that there exist c1, c2 > 0 (independent of k) such that, for all
k = 0, 1, 2, . . .,
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‖Bk+1 − J(xk+1)‖ ≤ c1‖Bk − J(xk)‖+ c2‖sk‖. (19)

Many quasi-Newton updates satisfy this property. For example, consider quasi-Newton
methods of rank-one secant type that obey the formula

Bk+1 = Bk +
(yk −Bksk)v

T
k

vT
k sk

,

where |vT
k sk| ≥ γ‖vk‖‖sk‖ for some γ > 0 and yk = F (xk+1)−F (xk) for all k. Multipoint

secant methods [3, 9, 16] usually satisfy similar recurrence equations. If J(x) satisfies a
Lipschitz condition

‖J(z)− J(x)‖ ≤ L‖z − x‖ for all x, z ∈ IRn, (20)

it can be proved (see [6], p. 75) that

‖yk − J(xk)sk‖ ≤
L

2
‖sk‖

2 for all k = 0, 1, 2, . . . . (21)

Therefore,

Bk+1 − J(xk+1) = Bk − J(xk)− J(xk+1) + J(xk) +
(yk −Bksk)v

T
k

vT
k sk

= J(xk)− J(xk+1) + Bk − J(xk) +
(J(xk)sk −Bksk)v

T
k

vT
k sk

+
(yk − J(xk)sk)v

T
k

vT
k sk

= J(xk)− J(xk+1) + (Bk − J(xk))(I −
skv

T
k

vT
k sk

) +
(yk − J(xk)sk)v

T
k

vT
k sk

.

So,

‖Bk+1 − J(xk+1)‖ ≤ L‖sk‖+ ‖Bk − J(xk)‖(1 +
‖sk‖‖vk‖

|vT
k sk|

) +
L‖sk‖

2‖vk‖

2|vT
k sk|

≤ (1 + 1/γ)‖Bk − J(xk)‖+ (L + L/(2γ))‖sk‖.

Therefore, (19) holds.

Among the rank-one quasi-Newton formulae that satisfy the bounded deterioration
condition (19) we can cite Broyden’s good and bad methods [2, 5, 20], the Column-
Updating method [10, 17] and the Inverse Column-Updating method [14, 21]. Quasi-
Newton methods that are not of rank-one type can be found in [1, 23].

Theorem 2. Assume that

1. F is uniformly continuous in IRn;

2. {xk} is generated by Algorithm 1;
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3. K = {k1, k2, . . .} ⊂ {0, 1, 2, . . .} is such that kj < kj+1 ≤ kj + m for all j ∈
{0, 1, 2, . . .};

4. Bk = J(xk) for all k ∈ K;

5. J(x) is nonsingular and ‖J(x)−1‖ ≤M for all x ∈ IRn.

6. The search direction dk satisfies the inexact quasi-Newton equation

‖Bkdk + F (xk)‖ ≤ θ‖F (xk)‖, (22)

whenever Bk is nonsingular (If Bk is singular and (22) does not hold, we take dk =
0);

7. The matrices Bk satisfy the WBD property for fixed constants c1, c2 > 0.

Then, either limk∈K ‖xk‖ → ∞ or there exists x∗ ∈ IRn such that xk → x∗, Bk →
J(x∗), F (x∗) = 0 and the search direction satisfies (22) for k sufficiently large.

Proof. If ‖xk‖ does not tend to∞ for k ∈ K then {xk}k∈K admits a bounded subsequence.
So, {xk}k∈K admits a limit point x∗ ∈ IRn.

Observe that, if Bk is nonsingular, then (22) implies that

‖dk‖ = ‖B−1

k Bkdk‖ = ‖B−1

k [Bkdk + F (xk)]−B−1

k F (xk)‖

≤ ‖B−1

k ‖θ‖F (xk)‖+ ‖B−1

k ‖‖F (xk)‖

= ‖B−1

k ‖(θ + 1)‖F (xk)‖. (23)

Therefore, for all k ∈ K, ‖dk‖ ≤ 2M‖F (xk)‖. Thus, the assumptions of Theorem 1
hold and, consequently,

lim
k→∞

‖F (xk)‖ = 0

and every limit point is a solution. Let us now prove by induction on j that

lim
k∈K
‖Bk+j − J(xk+j)‖ = lim

k∈K
‖Bk+j − J(xk)‖ = 0. (24)

and
lim
k∈K
‖xk+j+1 − xk+j‖ = 0. (25)

For j = 0, (24) follows from the definition of K. Since ‖J(xk)−1‖ is bounded for k ∈ K,
(25) follows from (23).

Assume that (24) and (25) hold for some j. Then, by the WBD property,

‖Bk+j+1 − J(xk+j+1)‖ ≤ c1‖Bk+j − J(xk+j)‖+ c2‖xk+j+1 − xk+j‖.

Therefore, by the inductive hypothesis,

lim
k∈K
‖Bk+j+1 − J(xk+j+1)‖ = 0.
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But, by (20) and (25),
lim
k∈K
‖J(xk+j+1)− J(xk+j)‖ = 0,

therefore,
lim
k∈K
‖Bk+j+1 − J(xk+j)‖ = 0. (26)

Finally,

‖Bk+j+1 − J(xk)‖ ≤ ‖Bk+j+1 − J(xk+j)‖+ ‖Bk+j − J(xk+j)‖+ ‖Bk+j − J(xk)‖,

so, by (26) and the inductive hypothesis,

lim
k∈K
‖Bk+j+1 − J(xk)‖ = 0

as we wanted to prove. This implies that {‖B−1

k+j+1
‖} is bounded for k large enough. So,

by (23),
lim
k∈K
‖xk+j+2 − xk+j+1‖ = 0.

Therefore, (24) and (25) are proved for all j = 0, 1, 2, . . ..
Let us prove now that

lim
k→∞

‖xk+1 − xk‖ = 0. (27)

Suppose, by contradiction, that this is not true. Then, there exists a sequence of indices
K4 ⊂ {0, 1, 2, . . .} such that ‖xk+1 − xk‖ is bounded away from zero for k ∈ K4. Now, by
the definition of K, each k ∈ K4 is of the form k = ℓ(k) + j(k) for some ℓ(k) ∈ K and
j(k) ≤ m. Therefore, for infinitely many indices in the sequence K4, j(k) is equal to the
same integer j̄ ≤ m.

So, ‖xℓ+j̄+1− xℓ+j̄‖ is bounded away from zero for infinitely many indices ℓ contained
in K. This contradicts the fact that (25) holds for each fixed j.

By (27), we are under the hypothesis of Lemma 2. Therefore, the whole sequence
converges as we wanted to prove. The fact that Bk converges to J(x∗) follows from (24).
This implies that (22) holds for k large enough. 2

Theorem 3. Assume that the hypotheses of Theorem 2 hold and that ‖xk‖ does not tend
to ∞. Assume that

‖Bkdk + F (xk)‖ ≤ θk‖F (xk)‖ (28)

for all k large enough, where limk→∞ θk = 0.
Then, {xk} converges superlinearly to a solution of F (x) = 0.

Proof. By Theorem 2, the sequence converges to a solution x∗ and Bk → J(x∗). By (23)
we have that, for k large enough,

‖dk‖ ≤ 2‖J(x∗)
−1‖‖F (xk)‖. (29)

By the uniform continuity of J(x) we have that

‖F (xk + dk)− F (xk)− J(xk)dk‖ ≤ o(‖dk‖)
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for all k = 0, 1, 2, . . .. Therefore, by (28) and (29),

‖F (xk + dk)‖ ≤ ‖F (xk) + J(xk)dk‖+ o(‖dk‖)

≤ ‖F (xk) + Bkdk‖+ ‖Bk − J(xk)‖‖dk‖+ o(‖dk‖)

≤ θk‖F (xk)‖+ 2‖Bk − J(xk)‖‖J(x∗)
−1‖‖F (xk)‖+ o(‖F (xk)‖).

Since Bk → J(x∗) and ‖F (xk)‖ → 0, this implies that

lim
k→∞

‖F (xk + dk)‖

‖F (xk)‖
= 0. (30)

So, for k large enough,
‖F (xk + dk)‖ ≤ (1− σ)‖F (xk)‖.

Therefore, (6) holds with α = 1. So, for k large enough, xk+1 = xk + dk. Then, by (30),

lim
k→∞

‖F (xk+1)‖

‖F (xk)‖
= 0. (31)

By the nonsingularity of J(x∗) there exist constants csmall, cbig > 0 such that

csmall‖x− x∗‖ ≤ ‖F (x)‖ ≤ cbig‖x− x∗‖

for all x in a neighborhood of x∗. Then, by (31),

lim
k→∞

‖xk+1 − x∗‖

‖xk − x∗‖
= 0,

as we wanted to prove. 2

4 Conclusions

Quasi-Newton methods are important tools for solving nonlinear simultaneous equations.
They are especially useful when the evaluation of the Jacobian matrix (or a part of it)
is difficult, cumbersome or impossible, at least analytically. When the system has many
variables, direct resolution of the linear system that arises at each iteration can be im-
practical and, so, its inexact resolution using iterative linear methods is usually preferred.
These are the main motivations for the development of inexact quasi-Newton methods.

The main difficulty for proving global convergence of quasi-Newton methods is that
the directions generated are not, in general, descent directions for the norm of the system.
Up to our knowledge, only for Broyden’s method a global convergence theory has been
given where this difficulty is satisfactory circumvented. See [13].

However, there are many other quasi-Newton methods which are potentially useful
in practical situations. For example, structured quasi-Newton methods are used when
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some entries of the Jacobian matrix are easy to evaluate but others are not. The local
convergence of these methods has been exhaustively analyzed in [6] (Cap. 11), [7, 19]. It
does not seem to be possible to provide global versions of these methods that do not use
Jacobian information in some sense.

Structured quasi-Newton updates can be very useful and are usually suggested by the
structure of the system. Sometimes it is not possible to prove that these structured up-
dates satisfy least change variational principles as defined, for example, in [6] (Cap. 11).
However, weak bounded deterioration is usually satisfied. For example, in nonlinear pro-
gramming problems the Hessian of the augmented Lagrangian has a structure that inspires
the approximation of a term of the form

∑
hi(x)∇2hi(x) by a symmetric matrix that is

close to the null matrix when |hi(x)| is small for all i. Several useful possibilities that
satisfy WBD can be suggested.

Superlinear convergence is preserved if one uses updates that satisfy a weak bounded
deterioration property. Many practical algorithms, including most structured quasi-Newton
methods, satisfy this property, so that suitable globally and locally convergent algorithms
can be easily devised.
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