
A filtered beam search method for the m-machine permutation

flowshop scheduling problem minimizing the earliness and tardiness

penalties and the waiting time of the jobs∗

E. G. Birgin† J. E. Ferreira† D. P. Ronconi‡

April 2, 2019§.

Abstract

This paper addresses the minimization of the absolute deviation of job completion times
from a common due date in a flowshop scheduling problem. Besides this main objective, the
minimization of the waiting time of the jobs in the production environment, that can be seen as
an intermediate inventory cost, is also considered. Initially, a mixed integer programming model
for this problem is proposed and, due to its complexity, heuristic approaches are developed. A
list-scheduling algorithm for the approached problem is introduced. Moreover, a filtered beam
search method that explores specific characteristics of the considered environment is proposed.
Numerical experiments show that the presented methods can be successfully applied to this
problem.

Key words: Scheduling, flowshop, earliness and tardiness, common due date, waiting time,
heuristics, beam search.

1 Introduction

This paper addresses the flowshop scheduling problem. In this environment, there are n jobs and m
machines. Every job must be processed in the m machines and the kth operation of every job must
be conducted on machine k. We consider the case in which all machines must process the jobs in the
same order, known as permutation schedule. The importance of permutation schedules should not
be underestimated, since only permutation schedules are feasible in most real-life situations [16].
A static and deterministic environment is assumed where all jobs are available for processing since
the beginning. Each job i has a known processing time pik on each machine k and there is a
common due date d. Preemption is not allowed. When a job i is completed before its due date,

∗This work has been partially supported by FAPESP (grants 2013/07375-0, 2016/01860-1, and 2018/24293-0) and
CNPq (grants 309517/2014-1 and 306083/2016-7).
†Department of Computer Science, Institute of Mathematics and Statistics, University of São Paulo, Rua do

Matão, 1010, Cidade Universitária, 05508-090, São Paulo, SP, Brazil. e-mail: {egbirgin | jeferre}@ime.usp.br
‡Department of Production Engineering, Polytechnic School, University of São Paulo, Av. Prof. Luciano Gual-

berto, 1380, Cidade Universitária, 05508-010, São Paulo SP, Brazil. e-mail: dronconi@usp.br
§Revision made on August 26, 2019.

1

its earliness is given by Ei = d − Cim, where Cim is its completion time on the last machine.
Conversely, if job i is finished after the desired date, its tardiness is given by Ti = Cim − d. The
objective is to find a schedule that minimizes the sum of tardiness and earliness of the jobs. As
a second objective, among the solutions that minimize the sum of earliness and tardiness (E/T)
of the jobs, we seek a solution that minimizes the waiting time of the jobs between the machines.
This secondary objective can be seen as the intermediate inventory cost, i.e. the cost of carrying
jobs between two adjacent machines (see [20, 24]). This goals’ hierarchy fits the tackled problem
in the bilevel optimization framework [9], in opposition to the multiobjective approach [18].

Practical examples where the minimization of the waiting time of the jobs between the machines
is a relevant aspect of the problem can be found in the biotechnology industry; where delays between
stages increase the chances of contamination or deterioration. As pointed out in [7], there are
products that require refrigeration or storage in other types of controlled facilities that might be
expensive to build or maintain.

Meeting due dates is a common objective for many manufacturing processes. Tardy jobs may
generate contractual penalties and loss of credibility, causing damages to the company’s image and
loss of clients [32]. Early jobs were discouraged since the advent of Just-in-Time approaches due to
the costs generated by those jobs, such as tied-up capital and inventory costs [6]. A particular case
occurs when all jobs have the same due date. Such scenarios can be found in practice, for example,
at a chemical company where different chemicals are manufactured using the same process and
have to be combined as close as possible to a common due date to avoid deterioration [31].

There are two main scenarios in the presence of a common due date. In the unrestrictive case,
the common due date is a decision variable or, if its value is given, it has no influence over the
optimal sequence [10]. This happens, for example, when the due date is greater than or equal
to the sum of all processing times on all machines (see [19]). However, if the due date is given
and it influences the optimal sequence of jobs then it is considered restrictive. The single-machine
problem with restrictive due date is NP-hard [13], and so is the m-machine case.

A wide variety of studies involving scheduling problems with E/T penalties and common due
date can be found in the literature, such as those described in the reviews presented by Baker
and Scudder [3] and Gordon et al. [12]. Nonetheless, both papers only addressed scenarios with
single or parallel machines. The survey of Lauff and Werner [20] tackles this non-regular measure
for multi-machine problems. These authors mention that the development of general strategies for
solving m-machine flowshop problems is of interest. They also mention that the elaboration of
heuristics for solving multi-stage scheduling problems is a worthy contribution for the applicability
of scheduling theory to real world problems [19].

Due to the complexity of the considered problem, heuristic methods for the flowshop environ-
ment have been developed by several authors [31, 36, 20, 21, 38, 30, 15, 14]. However, these papers
deal with the two-machine flowshop scheduling problem with different characteristics. Considering
the m-machine flowshop problems with a common due date, procedures that are applicable to a
wide range of possible due date settings were introduced in [8]. For the restrictive due date sce-
nario, a heuristic based on the bottleneck machine followed by myopic perturbations and a Tabu
Search procedure, that uses the pairwise interchange of jobs, were proposed. In the numerical ex-
periments, for each instance, the authors considered two alternative restrictive common due dates
to evaluate the performance of their approach. For small problems (n ∈ {5, 10} and m = 5), the
average deviation from the optimal solution in each set was less than 1.5%. For larger problems

2

(5 ≤ n ≤ 100 and 5 ≤ m ≤ 20), a comparison with randomly generated sequences was conducted
and the improvements were in the range of 14% to 38%.

According to Yenisey and Yagmahan [39], that presented a review about multi-objective permu-
tation flowshop scheduling problems, there are three groups of objectives for scheduling problems:
(i) based on the completion time, (ii) based on due date, and (iii) based on inventory and utilization
costs. Although the first and second groups of objectives are more commonly used in the flowshop
scheduling problems, studies based on the third objectives’ group can be found in the literature.
Since our secondary objective is the minimization of the waiting time of the jobs between the ma-
chines, which can be seen as the intermediate storage cost for each job, the study of this criterion
associated with the E/T penalties will be briefly reviewed next. In [19], the complexity and other
properties of the two-machine flowshop problem were investigated. Among other results, the au-
thors showed that the problem is NP-hard even with a nonrestrictive common due date. In [7], a
non-permutation flowshop scheduling problem where the jobs have different ready times and due
dates was considered. An integer model and lower bounds were presented and the problem was
heuristically solved by applying Dantzig-Wolfe reformulation and Lagrangian relaxation methods.
In [24], the minimization of the work-in-process inventory considering the machine set up times was
approached. However, only penalties for the tardiness of the batches were taken into account in this
work. In this research, two new recently proposed metaheuristic, namely Teaching-Learning Based
Optimization Algorithm and Jaya, were applied and compared with two known metaheuristics:
Particle Swarm Optimization and Simulated Annealing.

The minimization of the E/T penalties in a no-wait flowshop environment with a common
due date is a problem closely related to the problem considered in the present work, in which
there is no no-wait constraint but the sum of the waiting times of the jobs between the machines
is minimized as a secondary objective. There are only a few papers in the literature that deal
with the minimization of earliness and tardiness penalties in a no-wait flowshop environment.
The two-machines case with learning effect and convex resource-dependent processing times is
considered in [35], where two objectives are seek: (i) the weighted sum of earliness, tardiness, and
flow allowance costs and (ii) the resource consumption cost. The problem, with two machines, is
shown to be solvable in polynomial time. The case in which setup times are sequence-dependent is
considered in [2]. Heuristic methods based on tabu search and particle swarm optimization, that
use a timing algorithm to find an optimal schedule of a given sequence, are proposed.

Considering the reduced amount of works that tackle the minimization of the E/T penalties
associated with the intermediate inventory cost in the m-machine flowshop problem, the objective
of this paper is to contribute to the development of heuristic techniques able to produce reasonable
results for this problem in acceptable time. Initially, a mixed integer linear programming model
that represents the problem is presented. Next, a list scheduling algorithm is proposed, motivated
by its simplicity and applicability to job scheduling in production environments (see, for example,
[22, 23, 4]). The natural extension of the list scheduling algorithm to a filtered beam search method
is also investigated. Filtered beam search is a technique for searching decision trees that involves
systematically developing a small number of solutions in parallel so as to attempt to maximize
the probability of finding a good solution with minimal search effort [25]. The evaluation process
that determines which partial solutions are the promising ones is a crucial component of this
method [26]. The main idea of the presented filtered beam search method is to apply a customized
version of the list scheduling algorithm to locally and globally evaluate partial solutions in an

3

effective way. Considering the component-based view of metaheuristics suggested in [34], it can be
said the beam search method is a matheuristic that combines the search-tree strategy of branch-
and-bound methods with a constructive heuristic used for potentially pruning apparently fruitless
nodes of the search tree.

After the pioneer work of Ow and Morton [25], other authors addressed multimachine prob-
lems with this approach. The jobshop scheduling problem minimizing the makespan was tackled
in [29], where several numerical experiments were conducted in order to analyze the influence of
some of the filtered beam search parameters on its performance. Moreover, a comparison consider-
ing metaheuristic algorithms and dispatching rules was also conducted to expose the competitive
performance of the proposed method. Considering multiple objectives, a filtered beam search ap-
proach for the flexible job shop minimizing the weighted sum of the makespan, the total workload
of machines, and the workload of the most loaded machine was introduced in [33]. An extended
version of the flexible job shop problem that allows the precedences between the operations to
be given by an arbitrary directed acyclic graph instead of a linear order was considered in [4].
The goal in this research was the minimization of the makespan. A list scheduling and a beam
search method were introduced. More recently, considering the permutation flowshop scheduling
problem, a beam-search-based constructive heuristic to minimize the total flowtime was presented
in [11]. The proposed algorithm was inspired in the logic of the beam search, although it remained
a fast constructive heuristic. The results obtained by the proposed algorithm outperformed those
obtained by other constructive heuristics in the literature for the problem.

The remaining of this work is organized as follows. Section 2 gives the description of the tackled
problem by presenting its mixed integer linear programming formulation. Section 3 presents a list
scheduling algorithm; while Section 4 introduces the proposed beam search method. Section 5
is devoted to numerical experiments. Section 6 presents some final remarks and lines for future
research.

2 Model

Let n and m be the number of jobs and machines, respectively; let pik be the processing time
of job i on machine k; and let d be the due date, common to all jobs. The mixed integer linear
programming (MILP) model below [27] (see also [17]) formulates the problem of minimizing the
sum of earliness and tardiness of the jobs in a flowshop environment. In the model, the continuous
variables Cik (i = 1, . . . , n, k = 1, . . . ,m) represent the completion time of job i on machine k;
the continuous variables Ei and Ti (i = 1, . . . , n) represent the earliness and tardiness of job i,
respectively; and the binary variables zij (i = 1, . . . , n, j = i+ 1, . . . , n) say whether job i precedes
job j in the sequence (zij = 1) or not (zij = 0).

4

Minimize
∑n

i=1(Ei + Ti) (1)

subject to Ti ≥ Cim − d, i = 1, . . . , n, (2)

Ei ≥ d− Cim, i = 1, . . . , n, (3)

Ci1 ≥ pi1, i = 1, . . . , n, (4)

Ci,k+1 ≥ pi,k+1 + Cik, i = 1, . . . , n, k = 1, . . . ,m− 1, (5)

Cik ≥ pik + Cjk −Mzij , i = 1, . . . , n, j = i+ 1, . . . , n, k = 1, . . . ,m, (6)

Cjk ≥ pjk + Cik −M(1− zij), i = 1, . . . , n, j = i+ 1, . . . , n, k = 1, . . . ,m, (7)

zij ∈ {0, 1}, i = 1, . . . , n, j = i+ 1, . . . , n, (8)

Ti, Ei ≥ 0, i = 1, . . . , n. (9)

Constraints (2), (3), and (9) correspond to the linearization of Ti ≥ max{Cim − d, 0} and
Ei ≥ max{d − Cim, 0}. Thus, they impose lower bounds on the earliness and tardiness of each
job, respectively. Constraints (4) and (5) deal with the completion times of individual jobs. Con-
straint (4) says that the completion time of a job on the first machine must be greater than or
equal to the processing time of the job on that machine. Constraint (5) says that between the
completion time of a job on two consecutive machines there must be enough time to process the
job on the second of the two machines. Constraints (6) and (7) ensure that only one operation is
processed on each machine at any given time. In these two constraints, M is a sufficiently large
positive constant.

It is easy to see in the model that, due to constraint (5), the spare or waiting time of job i
between two consecutive machines k and k + 1 is given by Ci,k+1 − pi,k+1 − Cik, for i = 1, . . . , n
and k = 1, . . . ,m − 1. In the present work, we are interested in minimizing the sum of earliness
and tardiness, as already represented by the objective function (1); and, among the solutions
that minimize it, choosing one that minimizes the sum of the waiting times of the jobs between
consecutive machines. (Note that the time between the beginning of the time horizon and the
instant in which each job starts to be processed in the first machine is not considered in the
quantity we desire to minimize.)

The weighted sum of the waiting times of the jobs between consecutive machines is given by

n∑
i=1

m−1∑
k=1

ωik (Ci,k+1 − pi,k+1 − Cik) , (10)

where ωik ≥ 0 (i = 1, . . . , n, k = 1, . . . ,m − 1), not all null, would represent given weights to
penalize the waiting time of job i between consecutive machines k and k+ 1. In the particular case
in which ωik ≡ 1 for all i and k, since

∑m−1
k=1 (Ci,k+1 − pi,k+1 − Cik) = Cim − Ci1 −

∑m
k=2 pik, we

have that (10) coincides with
n∑
i=1

(Cim − Ci1)−
n∑
i=1

m∑
k=2

pik.

Thus, minimizing the unweighted sum of the waiting times of the jobs between consecutive machines

5

is equivalent to minimizing
n∑
i=1

(Cim − Ci1) . (11)

If we assume that the problem data, i.e. the processing times pik and the common due date d,
are integer values then it is true that every optimal solution of problem (1–9) is such that Ti
and Ei are integer values1. In consequence, if pik and d are all integers, the optimal value of
problem (1–9) assumes an integer value. On the other hand, in an optimal solution, it is also true2

that
∑n

i=1Cim < n(d+ P), where

P =
n∑
i=1

m∑
k=1

pik.

Therefore,
n∑
i=1

(Cim − Ci1) ≤
n∑
i=1

Cim < n(d+ P),

or, equivalently ∑n
i=1 (Cim − Ci1)

n(d+ P)
< 1. (12)

This means that, from the point of view of minimizing the sum of earliness and tardiness, it is
innocuous to add to the objective function the fraction on the left hand side of (12). Moreover, the
minimization of this combined objective has the desired effect of minimizing the sum of earliness and
tardiness and, among solutions with minimum value, choosing one that minimizes the unweighted
sum of the waiting times between consecutive machines. Thus, summing up, the problem considered
in the present work consists in minimizing

n∑
i=1

(Ei + Ti) +

∑n
i=1 (Cim − Ci1)

n(d+ P)
,

or, equivalently,

n(d+ P)

n∑
i=1

(Ei + Ti) +

n∑
i=1

(Cim − Ci1) (13)

subject to (2–9).
It is worth noticing that the described problem is not equivalent to the problem of finding a

single sequence that minimizes the earliness and tardiness and, in a second stage, while preserving
the same sequence and its sum of earliness and tardiness, minimizing the waiting times. A solution

1Given a feasible solution in which there exist i such that Ei or Ti is not integer, it is possible to reduce the value
of Ei or Ti and, in consequence, the objective function value, by pushing job i toward the due date d (pushing other
jobs may be needed as well).

2Consider the feasible solution in which jobs are all processed in the order of their indices; job 1 starts to be
processed at instant d and has completion time C1m = d +

∑m
k=1 p1k; and, for i = 2, . . . , n, job i starts to be

processed at instant Ci−1,m and has completion time Cim = Ci−1,m+
∑m
k=1 pik. In this feasible solution,

∑n
i=1 Cim =

nd +
∑n
i=1

(
(n− i+ 1)

∑m
k=1 pik

)
< nd + n

∑n
i=1

∑m
k=1 pik = n(d + P). Note that tighter strict bounds exist, like,

for example, the one obtained when jobs are ordered not by increasing order of their indices but by the sum of their
processing times Pi =

∑m
k=1 pik.

6

like this one could be obtained as follows. First, obtain a scheduling that minimizes the sum of
earliness and tardiness of the jobs by solving the MILP model (1–9). Assume that z∗ij (i = 1, . . . , n,
j = i+1, . . . , n) represent the optimal sequence and that the optimal sum of earliness and tardiness,
given by (1), is equal to ξ∗. In the second stage, consider the constraints (2–9) in which zij = z∗ij
are fixed as constants plus the constraint

∑n
i=1Ei + Ti = ξ∗ and minimize the sum of the waiting

times given by (11). This problem is a linear programming (LP) problem. Figure 1a shows a
solution obtained by applying this two-stages method to the instance given by n = m = 3, p11 = 1,
p12 = 2, p13 = 3, p21 = 1, p22 = 2, p23 = 1, p31 = 2, p32 = 1, p33 = 1, and d = 7. This solution has
a sum of earliness and tardiness equal to two and a sum of waiting times of the jobs between the
machines equal to one. On the other, when the proposed model (that consists in minimizing (13)
subject to (2–9)) is applied to that instance, a solution with the same sum of earliness and tardiness
(equal to two) but no waiting times between the machines is found (see Figure 1b). If we had not
fixed the sequence zij = z∗ij in the second stage of the two-stages method then the second stage
would consist in solving an MILP instead of an LP problem. Thus, the two-stages approach would
consist in solving two MILP problems; the first one to find the optimal earliness and tardiness and
the second one, restricted to the optimality of the earliness and tardiness, to minimize the waiting
times. This would be equivalent to solving the single proposed model.

3 List scheduling algorithm

In this section a list scheduling algorithm is introduced. The algorithm is composed by three stages.
In the first stage, a sequence possessing a compact scheduling, that hopefully minimizes the waiting
times of the jobs between the machines, is computed. The second stage determines the completion
times of the jobs on the last machine aiming to minimize the sum of earliness and tardiness of
the jobs. In the third stage, the compactness of the scheduling is reestablished by computing the
completion times of the jobs in all the other machines.

The first stage of the list scheduling algorithm determines a schedule starting with an empty
sequence and adding one job at a time at the end of the sequence. When a job is added, it
is scheduled as soon as possible. The first job to be added to the sequence is the job with the
smallest sum of processing times. In case of ties, the job with the smallest index is chosen. Let
σ1, σ2, . . . , σi−1 be the jobs in a partially build schedule with i − 1 jobs and let Cσi−1,k (k =
1, . . . ,m) be the completion time of job σi−1 in each machine k. For each job j ∈ {1, 2, . . . , n} \
{σ1, σ2, . . . , σi−1}, we consider the merit function

Γj = (1− γ)
m∑
k=1

pjk + γ
m−1∑
k=1

∣∣Cσi−1,k+1 − Cσi−1,k − pjk
∣∣ , (14)

where γ ∈ [0, 1] is a parameter. The first term of the merit function is the sum of the processing
times of job j in all the machines. The second term, introduced in [28], computes the fitting of
job j in the “windows” left by job σi−1 between the machines; and it aims to measure the waiting
time of job j between the machines or the idle time of the machines produced by adding job j to
the partial sequence. The job j with smallest Γj is the one added to the sequence, i.e. σi = j.
In case of ties, the job with the smallest index is chosen. As already mentioned, the new job σi
is added to the end of the sequence and scheduled as soon as possible. This means that we will

7

d

0 2 4 6 8 10 t

Machine 3 1 3 2

Machine 2 1 3 2

Machine 1 1 3 2

(a)

d

0 2 4 6 8 10 t

Machine 3 1 2 3

Machine 2 1 2 3

Machine 1 1 2 3

(b)

Figure 1: Both Gantt’s diagrams represent optimal solutions to the problem of minimizing the
sum of earliness and tardiness in a flowshop environment. Solution (a) was found by applying a
two-stages approach that is sub-optimal as a solution method for the proposed problem. Solution
(b) was found by solving the proposed MILP model that, among solutions that minimize earliness
and tardiness, seeks one that minimizes the waiting time of the jobs between the machines.

8

have Cσi,1 = Cσi−1,1 + pσi,1 and Cσi,k = max{Cσi,k−1, Cσi−1,k} + pσi,k for k = 2, . . . ,m. Since the
merit function (14) is computed, for each “non-fixed” job, every time a new job is added to the
partially build schedule, the described first stage of the list scheduling algorithm can be considered
as a dynamic dispatching rule.

The first stage of the list scheduling algorithm seeks producing a sequence with a “compact”
scheduling; but, when doing that, the common due date d is ignored. Thus, in the second stage,
the sequence produced in the first stage is preserved but the completion time of the jobs in the last
machine is recalculated. In this second stage, the completion times of the jobs in machine m − 1
are seen as if they were release times, i.e. rσi ≡ Cσi,m−1 (i = 1, . . . , n); and a new completion
time Cσi,m (i = 1, . . . , n) for each job in the last machine is computed with the timing algorithm
introduced in [30]. This timing algorithm applies to the single machine environment in which there
are n jobs with release dates and a common due date; and, for a given sequence, it computes the
completion times of the jobs that minimizes the sum of earliness and tardiness. Finally, in the third
stage of the list scheduling algorithm, while preserving the completion times of the jobs in the last
machine, the completion times Cσi,k (i = 1, . . . , n, k = 1, . . . ,m − 1) of the jobs in all the other
machines are recomputed in order to recover a compact scheduling.

The proposed list scheduling algorithm is fully described in Algorithm 1. The first stage cor-
responds to lines 2–14. The second stage that simply uses the timing algorithm corresponds to
line 15; while the third stage corresponds to lines 16–19. In the algorithm, the symbol ≺ stands
for lexicographical order; i.e. for any two q-uples v and w, (v1, v2, . . . , vq) ≺ (w1, w2, . . . , wq) means
that there exists 1 ≤ q0 ≤ q such that v` = w` for all ` < q0 and vq0 < wq0 . This notation is
used, for example, in line 3 to concisely express that we consider the jobs by increasing order of the
sum of their processing times and that the smallest index rule is used as a tie-breaking rule. Note
that mentioning the tie-breaking rule allows reproducibility. Notation {a1, a2, . . . } = {b1, b2, . . . }
is used in the algorithm to say that there is a set with elements a1, a2, . . . , a set with elements
b1, b2, . . . , and that these two sets are equal. In particular, we always use this notation with sets
of indices to say that the indices to the left are a permutation of the indices to the right. For
example, line 3 of the algorithm says that the indices i1, i2, . . . , in correspond to the jobs 1, 2, . . . , n
ordered in increasing order of the sum of their processing times, with the smallest index rule as a
tie-breaking rule. Notation swap(a, b) means that the values of a and b are interchanged.

The first stage of the algorithm (lines 2–14) has time complexity O(n2m + n2 log n). (Line 2
is O(nm), line 3 is O(n log n), lines 5–7 are O(m), and lines 8–14 are O(n2m + n2 log n). Since
the timing algorithm introduced in [30] has time complexity O(n) then the second stage of the
the algorithm is O(n). The third stage of the algorithm is O(nm). Thus, Algorithm 1 has time
complexity O(n2m+ n2 log n).

We end this section by illustrating the application of the list scheduling algorithm to the example
given in Section 2, i.e. a small instance with n = m = 3, p11 = 1, p12 = 2, p13 = 3, p21 = 1, p22 = 2,
p23 = 1, p31 = 2, p32 = 1, p33 = 1, and d = 7. In line 2, the sums of the processing times of
the jobs are computed. Thus, we have P1 = 6, P2 = P3 = 4. In line 3, the indices i1, i2, and
i3 such that (Pi1 , i1) ≺ (Pi2 , i2) ≺ (Pi3 , i3) are computed. Since (4, 2) ≺ (4, 3) ≺ (6, 1), we have
i1 = 2, i2 = 3, and i3 = 1. Note that the tie-breaking rule is used to break the tie between P2

and P3 (both equal to 4). In line 4, we set σ = (2, 1, 3). It corresponds to the sequence (1, 2, 3)
in which the job i1 = 2, that is the job with the smallest sum of processing times, was swapped
with job 1. In the sequence σ, job σ1 = 2 is fixed (at the first position of the sequence); while

9

Algorithm 1: List scheduling algorithm.

Data: n,m, d, pik (i = 1, . . . , n; k = 1, . . . ,m), γ
Result: σi (i = 1, . . . , n), Cik (i = 1, . . . , n; k = 1, . . . ,m)

1 begin
2 for i← 1 to n do Pi ←

∑m
k=1 pik

3 let {i1, . . . , in} = {1, . . . , n} be such that (Pi1 , i1) ≺ · · · ≺ (Pin , in)
4 let σ = (1, 2, . . . , n) and swap(σ1, σi1)
5 Cσ1,1 ← pσ1,1

6 for k ← 2 to m do
7 Cσ1,k ← Cσ1,k−1 + pσ1,k

8 for i← 2 to n do

9 for j ← i to n do Γσj
← (1− γ)Pσj

+ γ
∑m−1
k=1

∣∣Cσi−1,k+1 − Cσi−1,k − pσj ,k

∣∣
10 let {j1, . . . , jn−i+1} = {i, . . . , n} be such that (Γσj1

, σj1) ≺ · · · ≺ (Γσjn−i+1
, σjn−i+1)

11 swap(σi, σj1)
12 Cσi,1 ← Cσi−1,1 + pσi,1

13 for k ← 2 to m do
14 Cσi,k ← max{Cσi,k−1, Cσi−1,k}+ pσi,k

15 Considering the common due date d, the processing times pσi,m (i = 1, . . . , n), and the release
dates rσi

≡ Cσi,m−1 (i = 1, . . . , n), recompute Cσi,m (i = 1, . . . , n) by calling the Timing
algorithm introduced in [30, p.65].

16 for k ← m− 1 to 1 with step −1 do
17 Cσn,k ← Cσn,k+1 − pσn,k+1

18 for i← n− 1 to 1 with step −1 do
19 Cσi,k ← min{Cσi+1,k − pσi+1,k, Cσi,k+1 − pσi,k+1}

jobs σ2 = 1 and σ3 = 3 are unfixed jobs. In lines 5–7, the first job of the sequence is scheduled as
soon as possible, that translates into C21 = 1, C22 = 3, and C23 = 4. Figure 3a shows this partial
scheduling highlighting the “windows” left in machines 1 and 2 by the last fixed/scheduled job (the
only one in this case).

We now consider the main loop of the algorithm (lines 8–14) for i = 2, i.e. for the task of fixing
(and scheduling as soon as possible) the second job in the sequence. With that purpose, in line 9,
the merit function (14) is computed for the two unfixed jobs: Γσ2 corresponding to σ2 = 1 and
Γσ3 corresponding to σ3 = 3. The first term in the merit function, multiplied by (1− γ), is simple
the sum of the processing times of the job. The second term, multiplied by γ, measures the fitting
of the unfixed job to the windows left by the last fixed job. Consider first job σ2 = 1, that has
p11 = 1 and p12 = 2. Since the windows in machines 1 and 2 have length 2 and 1, respectively,
job 1 is one time unit smaller on the first machine and one time unit larger in the second machine.
This means that its “fitting score” is 2. Consider now job σ3 = 3, that has p31 = 2 and p32 = 1.
Job 3 has a perfect fitting in both windows and, therefore, its “fitting score” is 0. Thus, we have,
Γσ2 = (1− γ) 6 + γ 2 and Γσ3 = (1− γ) 4 + γ 0; and for any value of the parameter γ ∈ [0, 1], Γσ3

is smaller than Γσ2 . Thus, in line 10 of the algorithm, we have j1 = 3 and j2 = 2, meaning that
job σ3 = 3 is being selected to be fixed as the second job of the sequence. Thus, in line 11, we swap
σ2 and σ3 obtaining σ = (2, 3, 1). Then, in lines 12–14, job 3 is scheduled as soon as possible. This

10

ends the main loop for i = 2. Since there is only one job left unfixed, when i = 3, job 1 is fixed in
the third position of the sequence and scheduled as soon as possible. This ends the first stage of
the list scheduling algorithm with the schedule depicted in Figure 3b. In this stage, the computed
schedule is “compact” in the sense that using the merit function (14) at each step aims to minimize
the waiting times of the jobs between the machines as well as the idle times of the machines.

The second stage of the list scheduling algorithm consists in using the Timing algorithm in-
troduced in [30, p.65] to recompute the completion times of the jobs in the last (third) machine.
With this purpose, the completion times of the jobs in the second machine are used as if they
were release times. So we consider rσ1 = Cσ1,2 = 3, rσ2 = Cσ2,2 = 4, and rσ3 = Cσ3,2 = 6. For
the sequence σ = (2, 3, 1) with these release times and the due date d = 7, the scheduling that
minimizes the E/T measure is Cσ1,3 = 6, Cσ2,3 = 7 = d, and Cσ3,3 = 10; and so this is the output
of the second stage of the list scheduling algorithm. Note that, in this stage, only the completion
times in the last machine are modified, potentially increasing the waiting times of the jobs between
the last but one machine and the last machine. See Figure 3c. The E/T measure of the scheduling
being constructed is now determined and its value is 4. (Job 2 is one unit of time early; job 3 ends
at the due date; and job 1 is three units of time late.)

In the third and last stage of the list scheduling algorithm (lines 16–19), the completion times
in all machines other than the last one are recomputed so as to reduce the waiting times that might
be enlarged in the second stage. This is the meaning of trying to recover the “compactness” of
the schedule in the third stage. This goal is achieved introducing each job to the system as late as
possible, that reduces the aggregated waiting times. See Figure 3d. The final scheduling has E/T
measure equal to 4 (as already determined at the second stage) and sum of the waiting times equal
to 2 (job σ1 = 2 and σ2 = 3 have a unit of waiting time between machines 2 and 3 each; while job
σ3 = 1 has no waiting time). The constructed scheduling is not optimal, since, as it was shown in
Section 2, the optimal schedule has E/T measure equal to 2 and no waiting times at all.

4 Beam search method

In this section, a filtered beam search algorithm that applies to the tackled problem is introduced. A
beam search algorithm is a semi-enumerative deterministic approach that consists in constructing,
simultaneously, a “small” population of solutions. The amount of solutions that are constructed
simultaneously is usually named β and it is known as “width of the beam”. Assume that construct-
ing a solution involves L steps and that, at a given stage ` < L, we have β partial solution. There
may be a huge number of possibilities for transforming a partial solution at stage ` into a partial
solution at stage `+ 1; and choosing among a huge number of possibilities may be very expensive.
Thus, in a filtered beam search method, possibilities are filtered with a cheap procedure. For each
solution at stage `, α partial solutions that will potentially populate stage `+ 1 are selected with a
local search. Then, a more expensive procedure named global search is applied to the α× β partial
solutions; and the best β are chosen to constitute the set of partial solutions of stage `+ 1. When
the last stage is reached, partial solutions are in fact complete solutions and the best among them
is returned. In the filtered beam search method being introduced in this work, we have L = n
since, as well as in the list scheduling algorithm, jobs are added one at a time, starting from an
empty sequence until reaching a sequence with the n considered jobs.

11

0 2 4 6 8 10 t

Machine 3 2

Machine 2 2
w

Machine 1 2
w

(a)

0 2 4 6 8 10 t

Machine 3 2 3 1

Machine 2 2 3 1

Machine 1 2 3 1

(b)

d

0 2 4 6 8 10 t

Machine 3 2 3 1

Machine 2 2 3 1

Machine 1 2 3 1

(c)

d

0 2 4 6 8 10 t

Machine 3 2 3 1

Machine 2 2 3 1

Machine 1 2 3 1

(d)

Figure 2: Illustration of the application of the list scheduling algorithm to a simple small instance
with three jobs and three machines. (a) Partial schedule with a single job. The picture highlights
the “windows” left by the job on machines 1 and 2. Windows are denoted by “w” in the picture. (b)
Schedule obtained at the first stage, in which a sequence is constructed and jobs are scheduled as
soon as possible. (c) Schedule obtained after the second stage, in which the due date is considered
and the completion times in the last machine are recomputed in order to minimize the E/T measure
for the already computed sequence. (d) Final schedule.

12

A beam search method is a natural way of extending a list scheduling algorithm like the one
introduced in the previous section. In the list scheduling, at each iteration (stage or step) `, we
have a partial solution with `− 1 “fixed” jobs and the `th job of the sequence must be chosen. For
each “unfixed” job j, the merit function Γj given by (14) is computed and the job that minimizes it
is chosen. Of course, this is a local greedy choice. In the beam search, for each one of the β partial
solution with `−1 jobs, the α unfixed jobs with smallest value of the merit function are considered
as candidates to occupy the `th position in the sequence. Then, each one of the α × β partial
solutions with ` jobs are evaluated in a more expensive way (global search) by completing them
using, again, the list scheduling algorithm. Among the α × β partial solutions with ` jobs, the β
ones that, when completed, posses the smallest value of the objective function (13) are selected to
constitute the new population of solutions (now with ` fixed jobs).

The filtered beam search algorithm is described in Algorithm 2. The set L represents the
population with β partial solutions that, in line 3, is initialized as an empty set. Lines from 4
to 10 build the β partial solutions of the first level. These partial solutions have a single job
that corresponds to one of the β jobs with smallest sum of processing times. In case of ties,
the smallest index rule is used as a tie-breaking rule. Each partial solution is represented by a
permutation σ = (σ1, σ2, . . . , σn) of the sequence (1, 2, . . . , n). If the partial solution is a solution
with `− 1 fixed jobs then σ1, . . . , σ`−1 represent the fixed jobs; while σ`, . . . , σn correspond to the
unfixed jobs. This is why, if j1, . . . , jβ represent the indices of the β jobs with smallest sum of their
processing times (computed at line 5), the β partial solutions with a single fixed job are constructed
by considering the sequence σ = (1, 2, . . . , n) and interchanging σ1 and σj for each j ∈ {j1, . . . , jβ}
(see line 8). In addition to the partial sequence, a partial solution also saves the completion times
of the fixed jobs, that, in the first level of the method, corresponds to scheduling the fixed job
in an optimal way, i.e. with its completion time equal to the due date if possible or with the
smallest tardiness otherwise, plus no waiting time between the machines (see line 9). In line 10,
it can be seen that pairs of the form (σ,C) are added to L, σ representing the partial sequence
and C representing the completion times of the fixed jobs. The portion of the algorithm that we
are describing mentions β̄ = min{β, n} instead of β, so it is well defined even when the parameter
β is larger than n. The description of the way the first level is built ends here. The large loop from
lines 11 to 39 corresponds to the construction of the remaining n − 1 stages and it is described
below.

The construction of a new set of partial solutions with one more fixed job starts defining L′ as
an empty set (see line 12). This set will contain a set of α×β partial solutions that will potentially
constitute the new set L. Most of them will be discarded to reduce its cardinality to β (see lines
from 35 to 38) and the iteration will end by setting L ← L′ (see line 39). For each partial solution
(σ,C) in L, we consider ᾱ possibilities for the job that might occupy the `th position in σ, where
ᾱ is the minimum between the given parameter α and the remaining quantity of unfixed jobs (see
line 13). The selection of the jobs starts by discarding the completion times C and recomputing
Cσi,k (i = 1, . . . , `− 1, k = 1, . . . ,m) by scheduling the jobs σ1, . . . , σ`−1 as soon as possible. With
this scheduling, for each unfixed job j ∈ {σ`, . . . , σn}, it is computed the merit function Γσj , and
the ᾱ unfixed jobs with the smallest value of the merit function are selected. The indices of these
unfixed jobs are represented by j1, . . . , jᾱ (see lines from 18 to 21). Then, ᾱ copies of the partial
sequence with ` − 1 jobs are done. In each one of them, a job j ∈ {j1, . . . , jᾱ} is located at the
`th position of the sequence; and, aiming to evaluate the quality of the sequence, it is completed

13

using the list scheduling algorithm (lines 25 to 28). Then, for each sequence, the completion times
of the jobs are computed as it is done in the list scheduling algorithm, i.e. the timing procedure
is used to compute the completion time of all the jobs in the last machine (line 29) and, then, the
completion times in the other machines are computed aiming to obtain a compact sequence with
small waiting times between the machines (lines 30 to 33). At this point, we have a set of partial
solutions with ` jobs that will potentially constitute the new set L. The objective function (13) is
evaluated (line 38) and the best β solutions are preserved, while to others are discarded. It should
be stressed that the sequences were completed (with the list scheduling procedure) with the only
purpose of evaluating their quality. This means that, for the selected ones, only the first ` jobs
will be keep fixed. The algorithm ends the main loop after n steps with β solutions. The best one
among these β solutions is chosen (line 41) as the one to be returned and the algorithm ends.

Algorithm 2 has two additional parameters that were not mentioned yet, namely, `small and βlarge.
They are both related to the expansion of the first levels of the search tree, that strongly affects
the quality of the delivered solutions. At levels ` ≤ `small, the filtering strategy is inhibited (see
line 13). Moreover, the number of partial solutions at any level ` ≤ `small is not β but βlarge (see
line 35). The combination of these two features aims to construct, with an extra effort, a level
` = `small with a more diverse set of good quality partial solutions.

14

Algorithm 2: Filtered Beam Search algorithm.
Data: n,m, d, pik (i = 1, . . . , n; k = 1, . . . ,m), α, β, βlarge, `small, γ.
Result: σi (i = 1, . . . , n), Cik (i = 1, . . . , n; k = 1, . . . ,m).

1 begin
2 Pi ←

∑m
k=1 pik for i = 1, . . . , n

3 L ← ∅
4 β̄ ← min{β, n}
5 if β̄ < n then let {j1, . . . , jn} = {1, . . . , n} be such that (Pj1 , j1) ≺ · · · ≺ (Pjn , jn)
6 else let j1 = 1, j2 = 2, . . . , jn = n
7 foreach j ∈ {j1, . . . , jβ̄} do
8 let σ = (1, 2, . . . , n) and swap(σ1, σj)
9 Cσ1,m ← max{d, Pσ1} − pσ1,m, for k ← m− 1 to 1 with step −1 do Cσ1,k ← Cσ1,k+1 − pσ1,k+1

10 L ← L ∪ {(σ,C)}
11 for `← 2 to n do
12 L′ ← ∅
13 if ` ≤ `small then ᾱ = n− `+ 1 else ᾱ← min{α, n− `+ 1}
14 foreach (σ,C) ∈ L do
15 Cσ1,1 ← pσ1,1, for k ← 2 to m do Cσ1,k ← Cσ1,k−1 + pσ1,k
16 for i← 2 to `− 1 do
17 Cσi,1 ← Cσi−1,1 + pσi,1, for k ← 2 to m do Cσi,k ← max{Cσi,k−1, Cσi−1,k}+ pσi,k

18 if ᾱ < n− `+ 1 then

19 for j ← ` to n do Γσj ← (1− γ)Pσj + γ
∑m−1
k=1

∣∣Cσ`−1,k+1 − Cσ`−1,k − pσj ,k
∣∣

20 let {j1, . . . , jn−`+1} = {`, . . . , n} be such that (Γσj1 , σj1) ≺ · · · ≺ (Γσjn−`+1
, σjn−`+1)

21 else let j1 = `, j2 = `+ 1, . . . , jn−`+1 = n
22 foreach j ∈ {j1, . . . , jᾱ} do
23 let σ̄ be a copy of σ and swap(σ̄`, σ̄j)
24 Cσ̄`,1 ← Cσ̄`−1,1 + pσ̄`,1, for k ← 2 to m do Cσ̄`,k ← max{Cσ̄`,k−1, Cσ̄`−1,k}+ pσ̄`,k
25 for i← `+ 1 to n do

26 for t← i to n do Γσ̄t ← (1− γ)Pσ̄t + γ
∑m−1
k=1

∣∣Cσ̄i−1,k+1 − Cσ̄i−1,k − pσ̄t,k
∣∣

27 swap(σ̄`, σ̄t1), where t1 is the index corresp. to the smallest {(Γσ̄t , σ̄t) | t = i, . . . , n}
28 Cσ̄i,1 ← Cσ̄i−1,1 + pσ̄i,1, for k ← 2 to m do Cσ̄i,k ← max{Cσ̄i,k−1, Cσ̄i−1,k}+ pσ̄i,k

29 Considering the common due date d, the processing times pσ̄i,m (i = 1, . . . , n), and the
release dates rσ̄i ≡ Cσ̄i,m−1 (i = 1, . . . , n), compute C̄σ̄i,m (i = 1, . . . , n) by calling the
Timing algorithm introduced in [30, p.65].

30 for k ← m− 1 to 1 with step −1 do
31 C̄σ̄n,k ← C̄σ̄n,k+1 − pσ̄n,k+1

32 for i← n− 1 to 1 with step −1 do
33 C̄σ̄i,k ← min{C̄σ̄i+1,k − pσ̄i+1,k, C̄σ̄i,k+1 − pσ̄i,k+1}

34 L′ ← L′ ∪ {(σ̄, C̄)}

35 if ` ≤ `small then β̄ ← βlarge else β̄ ← β
36 if |L′| > β̄ then
37 foreach (σ̄, C̄) ∈ L′ do
38 By setting Ej = max{0, d− C̄σ̄j} and Tj = max{0, C̄σ̄j − d}, for j = 1, . . . , n, compute the

objective function value f(σ̄, C̄) given by (13).

39 Keep the β̄ pairs (σ̄, C̄) ∈ L′ with smallest (f(σ̄, C̄), σ̄`) and discard the others.

40 L ← L′

41 Let σ and C be such that (σ,C) ∈ L is the element with smallest (f(σ,C), σn).

15

5 Numerical experiments

Algorithms 1 and 2 were implemented in C/C++ and are freely avaliable for download at http:

//www.ime.usp.br/~egbirgin/. Codes were compiled with the g++ compiler of GCC (version
6.3.0 20170516, Debian 6.3.0-18+deb9u1) using the optimization option “-O3”. All tests were
conducted on a 2.40GHz Intel(R) Xeon(R) CPU E5645 with 216GB of RAM memory and running
GNU/Linux operating system (Debian 9, kernel 4.9.0-6-amd64 x86 64).

In the numerical experiments, we considered a set composed by 2,400 instances introduced in [8]
and available at http://home.iitk.ac.in/~pmehta/flowshop.htm

3, that follows the experimen-
tal design suggested in [37]. First, the twenty four combinations of the number of jobs n and the
number of machines m with n ∈ {5, 10, 20, 50, 80, 100} and m ∈ {5, 10, 15, 20} are considered. For
each combination, fifty instances are generated choosing the processing times pik (i = 1, . . . , n,
k = 1, . . . ,m) as random integer numbers in the range [1, 99] with discrete uniform distribution.
Finally, for each of the 1,200 instances, two different restrictive due dates d′ = b1

2(d1 + d2)c and
a random integer d′′ in the range [d2, d1] with discrete uniform distribution are considered, where
d2 = min1≤i≤n {

∑m
k=1 pik} and d1 satisfying d1 ≥ d2 is an integer unrestrictive due date. (See [8,

pp.5596-5597] for details in the way d1 is computed.) From now on, we refer to the 1,200 instances
with due date d′ and to the 1,200 instances with due date d′′ as Set d′ and Set d′′, respectively.

5.1 Evaluation of the list scheduling algorithm’s parameter γ

In this section, the experiments aim to evaluate the performance of the list scheduling algorithm
for variations of its parameter γ ∈ {0, 0.1, . . . , 1}. Note that, when γ = 0, the list scheduling
algorithm generates the same sequence generated by the well-known SPT (smallest processing
time) dispatching rule using the total processing time. In [30], the problem of minimizing the mean
absolute deviation from a common due date in a flowshop environment with two machines (i.e.
problem (1–9) with m = 2) was considered; and some heuristic approaches were introduced. Nine
different dispatching rules were considered for the process of constructing an initial guess for the
heuristic approaches and, in that context, the SPT rule was the most successful one. This means
that the present comparison includes a comparison against a dispatching rule that showed to be
very effective in a similar problem.

Tables 1 and 2 show the results of the list scheduling algorithm applied to the instances in
Sets d′ and d′′, respectively. For each instance I, the list scheduling algorithm is being applied
with eleven different values of γ ∈ {0, 0.1, . . . , 1}. Let fIγ̄ be the value of the objective function (13)
associated with the solution obtained by the list scheduling algorithm when applied to instance I
with γ = γ̄ and let

fImin = min
γ∈{0,0.1,...,1}

{fIγ } and fImax = max
γ∈{0,0.1,...,1}

{fIγ }.

The relative index deviation (RDI) associated with the performance of the list scheduling algorithm
with γ = γ̄ when applied to instance I is given by

RDIIγ̄ =
fIγ̄ − fImin

fImax − fImin

.

3A copy is also available at http://www.ime.usp.br/~egbirgin/

16

It is clear from the definition that the index goes from zero to one and that, the smaller the value of
the index, the better the relative performance of the method. Each cell in the tables corresponds to
the average of the RDIIγ computed over each subset of 50 instances with the same number of jobs n

and machines m. The last two rows in the tables also show, for each γ, the average of the RDIIγ
over the whole set of 1,200 instances in Sets d′ and d′′ and the number of times the list scheduling
algorithm found the best solution using this value of γ. In both tables, it can be observed that the
smallest average RDIIγ and the largest number of best solutions are obtained when γ = 1

2 . It is
worth noticing that, in both tables, the number of best solutions as a function of γ exhibits a nice
bell-shaped curve.

Size γ

n m 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

5 5 0.46 0.39 0.32 0.26 0.27 0.23 0.26 0.27 0.30 0.39 0.48
5 10 0.20 0.23 0.22 0.24 0.30 0.36 0.42 0.49 0.62 0.72 0.78
5 15 0.44 0.39 0.38 0.37 0.42 0.37 0.33 0.35 0.44 0.46 0.51
5 20 0.32 0.31 0.29 0.30 0.29 0.36 0.44 0.45 0.51 0.67 0.68
10 5 0.67 0.58 0.50 0.48 0.41 0.32 0.24 0.26 0.35 0.51 0.60
10 10 0.55 0.47 0.45 0.35 0.40 0.29 0.28 0.39 0.49 0.59 0.71
10 15 0.50 0.46 0.43 0.38 0.39 0.33 0.25 0.35 0.37 0.56 0.68
10 20 0.46 0.39 0.32 0.28 0.28 0.33 0.32 0.39 0.49 0.60 0.75
20 5 0.66 0.59 0.52 0.41 0.36 0.30 0.26 0.37 0.48 0.62 0.78
20 10 0.63 0.47 0.44 0.40 0.32 0.32 0.30 0.39 0.48 0.57 0.70
20 15 0.64 0.59 0.47 0.42 0.38 0.27 0.38 0.39 0.57 0.57 0.68
20 20 0.62 0.52 0.44 0.39 0.34 0.31 0.31 0.37 0.44 0.56 0.68
50 5 0.55 0.39 0.27 0.20 0.13 0.13 0.14 0.25 0.47 0.72 0.94
50 10 0.70 0.55 0.42 0.29 0.19 0.18 0.21 0.33 0.58 0.77 0.89
50 15 0.74 0.55 0.38 0.30 0.21 0.19 0.26 0.33 0.54 0.74 0.80
50 20 0.80 0.58 0.47 0.36 0.28 0.23 0.24 0.39 0.55 0.68 0.79
80 5 0.45 0.27 0.18 0.13 0.09 0.10 0.14 0.29 0.47 0.78 0.99
80 10 0.61 0.42 0.34 0.21 0.14 0.10 0.17 0.32 0.64 0.84 0.90
80 15 0.74 0.52 0.33 0.27 0.17 0.17 0.20 0.29 0.57 0.76 0.84
80 20 0.74 0.53 0.36 0.27 0.21 0.16 0.17 0.37 0.55 0.71 0.84
100 5 0.37 0.23 0.15 0.09 0.05 0.06 0.12 0.25 0.45 0.72 1.00
100 10 0.61 0.42 0.29 0.21 0.15 0.12 0.14 0.39 0.69 0.87 0.94
100 15 0.74 0.50 0.34 0.23 0.19 0.10 0.19 0.35 0.62 0.84 0.86
100 20 0.76 0.49 0.32 0.25 0.18 0.14 0.17 0.39 0.61 0.79 0.86

Average 0.58 0.45 0.36 0.30 0.26 0.23 0.25 0.35 0.51 0.67 0.78

of best
124 153 180 234 302 357 298 188 133 99 77solutions

Table 1: Analysis of the influence of the weight γ in the performance of the list scheduling algorithm
when applied to the 1,200 instances in Set d′.

17

Size γ

n m 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

5 5 0.46 0.40 0.34 0.30 0.33 0.29 0.32 0.32 0.33 0.43 0.47
5 10 0.26 0.26 0.22 0.20 0.30 0.37 0.44 0.50 0.62 0.71 0.77
5 15 0.43 0.39 0.42 0.42 0.41 0.38 0.35 0.38 0.45 0.48 0.51
5 20 0.29 0.36 0.36 0.36 0.35 0.36 0.47 0.49 0.56 0.69 0.69
10 5 0.66 0.60 0.50 0.43 0.35 0.34 0.26 0.30 0.37 0.51 0.58
10 10 0.61 0.53 0.51 0.39 0.41 0.35 0.37 0.44 0.50 0.61 0.65
10 15 0.51 0.46 0.41 0.36 0.42 0.35 0.30 0.39 0.41 0.57 0.63
10 20 0.46 0.43 0.37 0.36 0.34 0.35 0.42 0.48 0.55 0.60 0.73
20 5 0.66 0.57 0.47 0.40 0.36 0.31 0.34 0.40 0.49 0.61 0.75
20 10 0.66 0.53 0.49 0.44 0.35 0.36 0.33 0.36 0.47 0.59 0.65
20 15 0.62 0.58 0.49 0.42 0.37 0.31 0.42 0.42 0.54 0.59 0.67
20 20 0.62 0.51 0.46 0.44 0.36 0.32 0.32 0.36 0.42 0.54 0.65
50 5 0.58 0.45 0.35 0.22 0.20 0.20 0.21 0.23 0.51 0.69 0.88
50 10 0.72 0.57 0.46 0.35 0.31 0.17 0.27 0.34 0.55 0.69 0.79
50 15 0.71 0.56 0.42 0.33 0.28 0.27 0.27 0.31 0.56 0.70 0.74
50 20 0.76 0.59 0.50 0.43 0.29 0.24 0.23 0.41 0.54 0.64 0.77
80 5 0.53 0.38 0.30 0.22 0.16 0.12 0.16 0.28 0.49 0.75 0.91
80 10 0.64 0.49 0.41 0.27 0.20 0.14 0.21 0.28 0.61 0.77 0.83
80 15 0.73 0.54 0.39 0.35 0.28 0.20 0.20 0.30 0.54 0.72 0.80
80 20 0.69 0.52 0.36 0.31 0.23 0.19 0.15 0.36 0.58 0.71 0.81
100 5 0.48 0.37 0.29 0.21 0.16 0.13 0.17 0.26 0.44 0.71 0.89
100 10 0.64 0.49 0.37 0.31 0.25 0.14 0.17 0.34 0.67 0.85 0.86
100 15 0.71 0.51 0.39 0.28 0.23 0.15 0.21 0.37 0.56 0.76 0.82
100 20 0.72 0.53 0.37 0.30 0.21 0.22 0.22 0.38 0.62 0.72 0.81

Average 0.59 0.48 0.40 0.34 0.30 0.26 0.28 0.36 0.52 0.65 0.74

of best
126 144 167 218 267 362 287 202 148 119 104solutions

Table 2: Analysis of the influence of the weight γ in the performance of the list scheduling algorithm
when applied to the 1,200 instances in Set d′′.

5.2 Evaluation of the beam search algorithm’s parameters α and β

In the experiment of the present section, we aim to evaluate the influence of the beam search
parameters α and β in the method’s performance. Parameter `small, that inhibits the filtering at
levels ` ≤ `small, and parameter βlarge ≥ β, that determines the beam width when ` ≤ `small, have a
twofold nature. On the one hand, for medium- and large-sized instances, they intensify the search
for better quality partial solutions at the beginning of the search tree. On the other hand, for
small-sized instances, they allow all possible sequences to be tested. Based on the latter objective,
we arbitrarily set `small = 4 and βlarge = 120; since using these values implies that all possible
sequences are considered for instances with up to 5 jobs. Based on the numerical experimentation

18

with the list scheduling algorithm in the previous section, we also set γ = 0.5.
Table 3 shows the results of applying the beam search algorithm with the sixteen combinations

of α and β ∈ S ≡
{⌈

1
4n
⌉
,
⌈

1
2n
⌉
,
⌈

3
4n
⌉
, n
}

to 20% of the instances in Sets d′ and d′′, i.e. 10 instances
(over a total of 50) for each combination of n and m. The left-hand-side of the table displays, in
each cell associated with a pair (ᾱ, β̄) ∈ S×S, the average of RDII

ᾱ,β̄
over all considered instances I,

where

RDIIᾱ,β̄ =
fI
ᾱ,β̄
− fImin

fImax − fImin

,

fI
ᾱ,β̄

is the value of the objective function (13) associated with the solution obtained by the beam

search algorithm when applied to instance I with α = ᾱ and β = β̄ (other than `small = 4,

βlarge = 120, and γ = 0.5), fImin = minα,β∈S

{
fIα,β

}
, and fImax = maxα,β∈S

{
fIα,β

}
. The right-

hand-side of the table shows, for each pair (ᾱ, β̄) ∈ S × S, the number of best solutions obtained.
Every column in the table shows that, the larger the width of the beam β, the smaller the relative
deviation index and the larger the number of best solutions found. On the other hand, the behavior
of the method as a function of the filtering parameter α is not very clear. A big improvement is
obtained from α = d1

4ne to α = d1
2ne, but better results are not always obtained for larger values

of α. Overall, the best combination (among the tested combinations) is given by α = d1
2ne and

β = n. Of course, the larger the values of α and β, the larger the computational effort of the
beam search algorithm. Figure 3 displays the average CPU time in seconds, computed over all the
instances being considered in the present experiment, as a function of α and β.

Figure 3: Average CPU time in seconds of the beam search algorithm as a function of its parame-
ters α and β.

19

RDI Number of best solutions

α
=
⌈ 1 4
n
⌉

α
=
⌈ 1 2
n
⌉

α
=
⌈ 3 4
n
⌉

α
=
n

α
=
⌈ 1 4
n
⌉

α
=
⌈ 1 2
n
⌉

α
=
⌈ 3 4
n
⌉

α
=
n

β =
⌈

1
4n
⌉

0.58 0.51 0.49 0.49 73 78 79 80

β =
⌈

1
2n
⌉

0.39 0.33 0.33 0.33 86 90 88 90

β =
⌈

3
4n
⌉

0.29 0.23 0.22 0.23 101 108 106 108

β = n 0.21 0.13 0.15 0.14 114 139 125 133

(a) Set d′.

RDI Number of best solutions

α
=
⌈ 1 4
n
⌉

α
=
⌈ 1 2
n
⌉

α
=
⌈ 3 4
n
⌉

α
=
n

α
=
⌈ 1 4
n
⌉

α
=
⌈ 1 2
n
⌉

α
=
⌈ 3 4
n
⌉

α
=
n

β =
⌈

1
4n
⌉

0.60 0.49 0.50 0.50 72 73 72 75

β =
⌈

1
2n
⌉

0.37 0.33 0.34 0.35 80 77 80 75

β =
⌈

3
4n
⌉

0.27 0.20 0.25 0.24 98 105 96 98

β = n 0.21 0.12 0.16 0.16 110 136 118 128

(b) Set d′′.

Table 3: Evaluation of the beam search method for different combinations of its parameters α
and β ∈

{⌈
1
4n
⌉
,
⌈

1
2n
⌉
,
⌈

3
4n
⌉
, n
}

applied to 20% of the instances in Sets d′ and d′′.

5.3 Beam search algorithm versus list scheduling algorithm

Having fixed α = d1
2ne, β = n, `small = 4, βlarge = 120, and γ = 0.5, the beam search algorithm was

applied to all the 2,400 instances in Sets d′ and d′′; and we now evaluate the improvement obtained
by the beam search algorithm over the list scheduling algorithm. Table 4 shows the results. For
each pair (n,m), the table shows the average, over all the fifty instances I with n jobs and m
machines, of the gap given by

100%

(
fIBS − fILS

fILS

)
,

where fIBS and fILS are the values of the objective function (13) associated with the solution com-
puted by the beam search and the list scheduling algorithms, respectively, when applied to in-
stance I. The table shows an average gap of approximately −22%, meaning that the beam search
algorithm improves the solutions found by the list scheduling algorithm in 22% in average. The
table also shows the average CPU time in seconds used by the beam search algorithm. The list
scheduling algorithm never uses more than 0.02 seconds of CPU time to solve any of the considered

20

instances.

Size Set d′ Set d′′

n m gap (%) time gap (%) time

5 5 -20.00 0.08 -20.71 0.08
5 10 -24.13 0.10 -23.41 0.09
5 15 -25.37 0.10 -25.79 0.10
5 20 -30.13 0.11 -29.55 0.11
10 5 -20.80 1.67 -20.14 1.67
10 10 -25.37 1.94 -24.29 1.95
10 15 -28.79 2.19 -25.55 2.17
10 20 -29.00 2.42 -26.93 2.44
20 5 -20.15 14.08 -19.43 14.01
20 10 -24.31 16.56 -22.01 16.75
20 15 -24.58 18.89 -22.85 18.94
20 20 -26.08 21.81 -24.24 21.72
50 5 -17.72 235.47 -17.68 239.48
50 10 -21.20 294.88 -19.59 295.64
50 15 -21.63 342.63 -21.03 341.75
50 20 -22.42 401.70 -21.54 400.60
80 5 -16.59 1227.46 -16.82 1200.81
80 10 -18.70 1543.24 -19.19 1552.12
80 15 -20.09 1843.45 -19.78 1856.81
80 20 -20.29 2172.28 -19.90 2170.82
100 5 -15.66 2786.91 -16.26 2809.85
100 10 -18.34 3604.56 -18.24 3607.43
100 15 -17.98 4296.59 -18.23 4334.85
100 20 -19.44 5184.46 -19.44 5176.73

Average -22.03 1000.57 -21.36 1002.79

Table 4: Improvement of the beam search algorithm over the list scheduling algorithm.

5.4 Beam search and list scheduling algorithms against upper bounds computed
by a commercial solver

In the next experiment, we consider instances with up to 50 jobs and 20 machines and we compare
the solutions obtained by the list scheduling algorithm (with γ = 0.5) and the beam search algorithm
(with α = d1

2ne, β = n, `small = 4, βlarge = 120, and γ = 0.5) against solutions obtained with
CPLEX. The model was implemented in C/C++ using the ILOG Concert Technology and solved
using IBM ILOG CPLEX 12.8.0. As described, for example, in [1] and [5], by default, a solution is
reported as optimal by the solver when

absolute gap = best feasible solution− best lower bound ≤ εabs

21

or

relative gap =
| best feasible solution− best lower bound |

10−10 + | best feasible solution |
≤ εrel,

with εabs = 10−6 and εrel = 10−4, where “best feasible solution” corresponds to the smallest value
of the objective function related to a feasible solution generated by the solver. The objective
function (13) has the particular property of assuming relatively large integer values at feasible
points. Thus, a stopping criterion based on a relative error less than or equal to εrel = 10−4 may
stop the solver prematurely. On the other hand, due to the integrality of the objective function
values, an absolute error strictly smaller than 1 is enough to prove optimality. Therefore, in the
numerical experiments, we considered εabs = 1−10−6 and εrel = 0. All other parameters of CPLEX
were set with their default values. A CPU time limit of one hour was imposed.

As a whole, 1,600 instances were considered, namely, instances in the Sets d′ and d′′ with
n ∈ {5, 10, 20, 50} and m ∈ {5, 10, 15, 20}. The comparison splits the instances into two sets: 800
small-sized instances with n ∈ {5, 10}, for which it is expected CPLEX to find optimal solutions,
and 800 medium-sized instances with n ∈ {20, 50}.

In the small-sized instances, CPLEX was run in two different ways – considering and not
considering the solution found by the list scheduling algorithm as a warm start. Table 5 shows
the results. For each subset of fifty instances, the table shows in column #Opt the number of
instances for which an optimal solution was found and the average CPU time in seconds used by
CPLEX in those instances in which an optimal solution was found. (In the remaining instances,
the CPU time limit of one hour was reached and that time was not included in the average.)
As it can be seen in the table, CPLEX without the warm start was unable to find an optimal
solution (within the CPU time limit) in eight instances; while the same happened with the warm-
started CPLEX in six instances. As a whole, none of the variants was able to find an optimal
solution in five instances only and, therefore, optimal solutions for 795 instances (out of 800) were
found. Although, for the remaining five instances, small gaps were obtained, the comparison will
consider the 795 instances for which an optimal solution is available. (Details can be found in
http://www.ime.usp.br/~egbirgin/.)

Tables 6 and 7 show the performances of the list scheduling and the beam search method,
respectively, in the 795 small-sized instances with known optimal solution. For each pair (n,m),
column #Inst says how many instances with known optimal solution are being considered; while
column #Opt says in how many instances the method (list scheduling or beam search) was able to
find an optimal solution. For those #Inst−#Opt instances I for which the method was not able
to find an optimal solutions, column “gap” shows the average of the relative gap given by

100%

(
fIM − fIOPT

fIOPT

)
,

where fIM and fIOPT are the values of the objective function (13) associated with the solution com-
puted by the method being evaluated and the optimal solution computed by CPLEX, respectively,
when applied to instance I. Column “time” shows the average CPU time in seconds. (For the case
of the list scheduling algorithm, CPU times are omitted since it never uses more than 10−5 seconds
of CPU time.) For example, Table 7 shows that, in Set d′ with (n,m) = (5, 5), 50 instances are
being considered; an optimal solution was found by the beam serach method in 32 of them; and, in

22

the 18 cases in which an optimal solution was not found, the average relative gap of the objective
function (13) is 0.0005%. These figures suggests the beam search method performed very well in
the small-sized instances, finding good quality solutions in a small fraction of a second. On the
other hand, Table 6 shows that, as expected, the list scheduling algorithm rarely finds an optimal
solution; solutions being, in average, approximately 40% far from an optimal solution.

The small average relative gaps in column “gap” of Table 7 deserve further explanations. The
objective function (13) consists in the earliness and tardiness penalty (1) of the jobs multiplied by
a “large constant” plus the term (11) related to the waiting times of the jobs. Thus, the larger the
constant, the smaller the gap, whenever the solution found by the beam search methods is optimal
for the earliness and tardiness measure (1). Column #Opt(E/T) says in how many of the instances
for which an optimal solution was not found, the solution is optimal for the earliness and tardiness
measure (1). For example, comparing #Inst against #Opt + #Opt(E/T), it is possible to see
that, as expected, the beam search method found solutions that are optimal for the earliness and
tardiness measure (1) whenever n = 5. For the instances in which the solutions found are optimal
only for the earliness and tardiness measure (1), column gap(W) shows the average relative gap
in the waiting measure (11); and for the instances in which the solutions found are not optimal
for the earliness and tardiness measure, column gap(E/T) shows the average relative gap of the
earliness and tardiness measure (1). Summing up, Table 7 shows that (a) the beam search method
found optimal solutions in approximately half of the instances; (b) when an optimal solutions is
not found, the solution found is optimal for the earliness and tardiness measure in approximately
half of the cases; and (c) in the remaining one quarter of the instances, the gap in the earliness
and tardiness measure is small. Moreover, the overall gap is also small and the method never uses
more than five hundredths of a second of CPU time in average.

CPLEX CPLEX with warm start

Size Set d′ Set d′′ Set d′ Set d′′

n m #Opt time #Opt time #Opt time #Opt time

5 5 50 26.91 50 23.75 50 20.56 50 20.11
5 10 50 22.80 50 23.27 50 19.85 50 20.54
5 15 50 23.39 50 23.47 50 19.70 50 20.22
5 20 50 20.84 50 21.35 50 19.48 50 19.13
10 5 50 800.47 50 582.96 50 799.85 50 602.62
10 10 49 951.29 48 966.58 49 1033.03 49 1069.88
10 15 49 1303.49 47 1016.49 49 1257.09 49 1128.52
10 20 50 1693.98 49 1522.34 50 1719.58 48 1423.80

Table 5: Performance of CPLEX in 800 small-sized instances.

In the medium-sized instances, CPLEX was also run in two different ways – considering and not
considering the solution found by the list scheduling algorithm as a warm start. Within the imposed
CPU time limit (one hour), in none of the instances the solver was able to achieve the required
absolute or relative gap in order to report a solution as optimal. Table 8 compares the solutions
found by the beam search algorithm against the best feasible solutions found by CPLEX. The
table shows, for each set of 50 instances with the same number of jobs and machines, the average

23

Size
#Inst #Opt #Opt–E/T gap–W (%) gap–E/T (%) gap (%)

n m

5 5 50 2 1 72.40 30.65 28.81
5 10 50 1 1 25.53 43.87 42.11
5 15 50 3 0 – 42.19 39.65
5 20 50 0 0 – 59.79 59.79
10 5 50 0 0 – 28.77 28.77
10 10 49 0 0 – 37.70 38.16
10 15 49 0 0 – 47.02 47.10
10 20 50 0 0 – 47.01 47.01

Average 0.75 0.25 48.97 42.21 41.50

(a) Set d′

Size
#Inst #Opt #Opt–E/T gap–W (%) gap–E/T (%) gap (%)

n m

5 5 50 2 2 107.14 34.65 31.87
5 10 50 1 0 – 38.32 37.56
5 15 50 2 0 – 44.15 42.38
5 20 50 0 1 31.58 57.91 56.75
10 5 50 0 0 – 28.74 28.74
10 10 49 0 0 – 38.36 38.84
10 15 49 0 0 – 40.35 40.52
10 20 49 0 0 – 46.47 46.93

Average 0.63 0.38 81.95 41.13 40.48

(b) Set d′′

Table 6: Evaluation of the list scheduling algorithm in 795 small-sized instances with known optimal
solution.

improvement of the beam search algorithm over the best feasible solution found by CPLEX. The
table also shows the average CPU time per instance of the beam search algorithm. It should be
noted that the larger the instances, the larger the average improvement. Overall, using no more
than 10 seconds of CPU time per instance, the beam search algorithm improved the best feasible
solution found by CPLEX (with the CPU time limit of one hour) in %15.70 for instances in Set d′

and in %12.03 for instances in Set d′′. It should be noted that, due to the nature of the objective
function of the problem under consideration, and considering that, very likely, solutions being
compared are not optimal, the reported gaps of improvement correspond to improvements in the
E/T measure.

24

Size
#Inst #Opt #Opt–E/T gap–W (%) gap–E/T (%) gap (%) time

n m

5 5 50 32 18 28.61 – 0.0005 0.0017
5 10 50 32 18 18.90 – 0.0003 0.0019
5 15 50 41 9 16.06 – 0.0001 0.0021
5 20 50 36 14 17.46 – 0.0002 0.0022
10 5 50 27 5 2.75 1.61 0.6722 0.0334
10 10 49 17 11 4.14 1.70 0.9804 0.0389
10 15 49 24 5 1.28 2.06 1.1634 0.0437
10 20 50 14 8 1.10 2.39 2.0858 0.0485

Average 28 11 14.98 1.99 0.6105 0.0215

(a) Set d′

Size
#Inst #Opt #Opt–E/T gap–W (%) gap–E/T (%) gap (%) time

n m

5 5 50 30 20 29.21 – 0.0004 0.0017
5 10 50 39 11 17.79 – 0.0001 0.0019
5 15 50 40 10 15.92 – 0.0001 0.0020
5 20 50 36 14 20.67 – 0.0002 0.0022
10 5 50 12 11 9.29 1.09 1.0170 0.0335
10 10 49 13 10 3.04 1.68 1.4601 0.0390
10 15 49 18 11 0.54 2.49 2.1593 0.0433
10 20 49 10 6 1.71 2.52 2.1931 0.0488

Average 25 12 14.81 1.94 0.8456 0.0215

(b) Set d′′

Table 7: Evaluation of the beam search method in 795 small-sized instances with known optimal
solution.

5.5 Comparison of the beam search algorithm for the minimization of the ear-
liness and tardiness of the jobs against the method introduced in [8]

The method introduced in [8] seeks the minimization of the sum of the earliness and tardiness in
a flowshop environment with a common due date; while ignoring the waiting times between the
machines, i.e. it applies to problem (1–9). Therefore, the comparison presented in this section
considers the sum of earliness and tardiness only, given by the objective function (1). Table 9
presents a comparison of the beam search algorithm introduced in the present work (with α =
d0.5ne, β = n, `small = 4, βlarge = 120, and γ = 0.5) against the tabu search algorithm introduced
in [8]. For each pair (n,m), the table shows the average, over all the fifty instances I with n jobs

25

Size Set d′ Set d′′

n m gap (%) time gap (%) time

20 5 -3.53 0.28 -1.23 0.28
20 10 -9.12 0.33 -4.48 0.33
20 15 -12.46 0.38 -5.49 0.38
20 20 -13.33 0.43 -6.69 0.43
50 5 -18.10 4.44 -14.70 4.80
50 10 -22.42 5.79 -20.18 5.91
50 15 -22.96 6.76 -21.76 6.84
50 20 -23.72 7.87 -21.71 8.02

Average -15.70 3.29 -12.03 3.37

Table 8: Evaluation of the beam search method in 800 medium-sized instances for which an upper
bound was computed using CPLEX.

and m machines, of the gap given by

100%

(
f̂IBS − f̂IChandra

f̂IChandra

)
,

where f̂IBS and f̂IChandra are the values of the objective function (1) associated with the solution
computed by the beam search method being introduced in the present work and the tabu search
method introduced in [8], respectively, when applied to instance I. The table shows average gaps
equal to −3.73% and −1.97% for the instances in Sets d′ and d′′, respectively. This means that
the beam search method improves the solutions found by the tabu search method in 3.73% and
1.97% in average for the instances in Sets d′ and d′′, respectively. Note also that, in general, the
larger the values of n and m, the larger the gaps. The table also shows, in columns “W”, “T”, and
“L”, for each subset of 50 instances, the number of times the solution found by the beam search
method was better than (win), equal to (tie), and worst than (loss) the solution found by the
tabu search method. The CPU time in seconds required by the beam search method was already
depicted in Table 4. The solutions obtained by the tabu search method were taken from http:

//home.iitk.ac.in/~pmehta/flowshop.htm. Since the CPU time of the tabu search method
when applied to the considered instances was not reported in [8], the present comparison is limited
to the quality of the solutions obtained by the methods and a comparison of the corresponding
efforts is not possible.

6 Conclusions

The minimization of the earliness and tardiness penalties in a flowshop environment with a com-
mon due date is a problem that has already been addressed in the literature. As a byproduct of
the minimization of the deviation from the common due date, many methods deliver a compact
scheduling. However, the minimization of the waiting times between the machines has never been

26

Size Set d′ Set d′′

n m gap (%) W T L gap (%) W T L

5 5 -0.86 23 27 0 -0.69 11 39 0
5 10 -1.02 21 29 0 -1.59 17 33 0
5 15 -1.02 18 32 0 -1.14 15 35 0
5 20 -0.93 20 30 0 -0.74 13 37 0
10 5 -0.72 35 7 8 -0.24 23 17 10
10 10 -1.45 39 3 8 -1.12 26 7 17
10 15 -1.41 36 5 9 -0.14 20 17 13
10 20 -1.16 32 5 13 0.18 19 8 23
20 5 -2.18 35 1 14 -0.68 29 0 21
20 10 -2.82 45 0 5 -0.45 29 0 21
20 15 -3.54 43 0 7 -0.53 31 0 19
20 20 -4.33 44 0 6 -1.01 32 0 18
50 5 -2.53 48 0 2 -0.96 35 0 15
50 10 -5.35 50 0 0 -2.86 40 0 10
50 15 -5.85 50 0 0 -3.79 41 0 9
50 20 -5.71 49 0 1 -3.51 42 0 8
80 5 -2.92 48 0 2 -1.42 36 0 14
80 10 -6.15 50 0 0 -4.02 42 0 8
80 15 -7.01 50 0 0 -3.88 42 0 8
80 20 -7.35 50 0 0 -4.51 43 0 7
100 5 -3.59 49 0 1 -1.40 34 0 16
100 10 -6.39 50 0 0 -3.42 41 0 9
100 15 -7.31 50 0 0 -4.64 43 0 7
100 20 -7.87 50 0 0 -4.84 44 0 6

Average -3.73 41.04 5.79 3.17 -1.97 31.17 8.04 10.79

Table 9: Comparison against the results obtained in [8] for the problem of minimizing the sum of
earliness and tardiness only.

formally included in the problem as it was done in the bilevel approach considered in the present
work then formulated as an MILP problem. The model is based on precedence variables. While
positional variable would also have been used (see [27]), the proposed model can easily incorporate
different weights ωik to penalize the waiting time of each job i between each pair of consecutive
machines k and k + 1 (i = 1, . . . , n, k = 1, . . . ,m − 1). Since the weighted sum of waiting times
may be more adequate to represent real situations, it might be a line for future research. In ad-
dition to the MILP formulation of the problem, a list scheduling and its natural extension as a
filtered beam search algorithm were introduced. The beam search algorithm is deterministic, has
finite termination, and it has two main parameters only. Moreover, its computational cost can be
easily adjusted varying these two parameters. In the present work, the introduced methods were
meticulously described, including tie-breaking rules, in order to allow reproducibility. Perhaps, one

27

of the most important contributions of the present work is to show that a simple method with
several positive characteristics can be successfully used to address a difficult problem like the one
being considered in the present work. The minimization of the earliness and tardiness penalties
in a no-wait flowshop environment with a common due date is a problem closely related to the
problem considered in the present work, in which there is no no-wait constraint but the sum of the
waiting times of the jobs between the machines is minimized as a secondary objective. Adapting
the introduced methods to tackle this related problem might be a line for future research.

28

References

[1] R. Andrade, E. G. Birgin, and R. Morabito, Two-stage two-dimensional guillotine cutting
stock problems with usable leftovers, International Transactions in Operational Research 23,
pp. 121–145, 2016.

[2] S. Arabameri and N. Salmasi, Minimization of weighted earliness and tardiness for no-wait
sequence-dependent setup times flowshop scheduling problem, Computers & Industrial Engi-
neering 64, pp. 902–916, 2013.

[3] K. R. Baker and G. D. Scudder, Sequencing with earliness and tardiness penalties: a review,
Operations Research 38, 22–36, 1990.

[4] E. G. Birgin, J. E. Ferreira, and D. P. Ronconi, List scheduling and beam search methods for an
extended version of the flexible job shop scheduling problem, European Journal of Operational
Research 247, pp. 421–440, 2015.

[5] E. G. Birgin, O. C. Romão, and D. P. Ronconi, The multiperiod two-dimensional non-guillotine
cutting stock problem with usable leftovers, International Transactions in Operational Re-
search, to appear (DOI: 10.1111/itor.12648).

[6] D. Biskup and M. Feldmann, Benchmarks for scheduling on a single machine against restrictive
and unrestrictive common due dates, Computers & Operations Research 28, pp. 787–801, 2001.

[7] K. Bülbül, P. Kaminsky, and C. Yano, Flow shop scheduling with earliness, tardiness, and
intermediate inventory holding costs, Naval Research Logistics 51, pp. 407–445, 2004.

[8] P. Chandra, P. Mehta, and D. Tirupati, Permutation flow shop scheduling with earliness and
tardiness penalties, International Journal of Production Research 47, pp. 5591–5610, 2009.

[9] S. Dempe, Foundations of Bilevel Programming, Kluwer Academic Publishers, The Nether-
lands, 2002.

[10] M. Feldmann and D. Biskup, Single-machine scheduling for minimizing earliness and tardiness
penalties by meta-heuristics approaches, Computers & Industrial Engineering 44, pp. 307–323,
2003.

[11] V. Fernandez-Viagas and J. M. Framinan, A beam-search-based constructive heuristic for the
PFSP to minimise total flowtime, Computers & Operations Research 81, pp. 167–177, 2017.

[12] V. Gordon, J. Proth, and C. Chu, A survey of the state-of-the-art of common due date as-
signment and scheduling research, European Journal of Operational Research 139, pp. 1–25,
2002.

[13] N. G. Hall, W. Kubiak, and S. P. Sethi, Earliness-tardiness scheduling problems II: Deviation of
completion times about a restrictive common due date, Operations Research 39, pp. 847–856,
1991.

29

[14] N. Hosseini and R. Tavakkoli-Moghaddam, Two meta-heuristics for solving a new two-machine
flowshop scheduling problem with the learning effect and dynamic arrivals, The International
Journal of Advanced Manufacturing Technology 65, pp. 771–786, 2013.

[15] M. C. Işler, B. Toklu, and V. Çelik, Scheduling in a two-machine flow-shop for earli-
ness/tardiness under learning effect, The International Journal of Advanced Manufacturing
Technology 61, pp. 1129–1137, 2012.

[16] Y. D. Kim, Minimizing total tardiness in permutation flowshops, European Journal of Opera-
tional Research 85, pp. 541–555, 1985.

[17] A. S. Manne, On the job-shop scheduling problem, Operations Research 8, pp. 219–223, 1960.

[18] K. Miettinen, Nonlinear Multiobjective Optimization, Kluwer Academic Publishers, Boston,
London, Dordrecht, 1998.

[19] V. Lauff and F. Werner, On the complexity and some properties of multi-stage scheduling
problems with earliness and tardiness penalties, Computers & Operations Research 31, pp.
317–345, 2004.

[20] V. Lauff and F. Werner, Scheduling with common due date, earliness and tardiness penalties
for multimachine problems: a survey, Mathematical and Computer Modelling 40, pp. 637–655,
2004.

[21] V. Lauff and F. Werner, Heuristics for two-machine flow shop problems with earliness and
tardiness penalties, International Journal of Operations and Quantitative Management 10,
pp. 125–144, 2004.

[22] G.-C. Lee, Y.-D. Kim, and S.-W. Choi, Bottleneck-focused scheduling for a hybrid flowshop,
International Journal of Production Research 42, pp. 165–181, 2004.

[23] G. Mainieri and D. P. Ronconi, New heuristics for total tardiness minimization in a flexible
flowshop, Optimization Letters 7, pp. 665–684, 2013.

[24] A. Mishra and D. Shrivastava, A TLBO and a Jaya heuristics for permutation flow shop
scheduling to minimize the sum of inventory holding and batch delay costs, Computers &
Industrial Engineering 124, pp. 509–522, 2018.

[25] P. S. Ow and T. E. Morton, Filtered beam search in scheduling, International Journal of
Production Research 26, pp. 35–62, 1988.

[26] M. Pinedo, Scheduling: theory, algorithms, and systems, third edition, Springer, New York,
NY, 2008.

[27] D. P. Ronconi and E. G. Birgin, Mixed-integer programming models for flowshop scheduling
problems minimizing the total earliness and tardiness, in Just-in-Time Systems, R. Z. Ŕıos-
Mercado and Y. A. Ŕıos-Soĺıs (Eds.), Springer Series on Optimization and its Applications
60, 2012, pp. 91–105.

30

[28] D. P. Ronconi and L. R. S. Henriques, Some heuristic algorithms for total tardiness minimiza-
tion in a flowshop with blocking, Omega 37, pp. 272–281, 2009.

[29] I. Sabuncuoglu and M. Bayiz, Job shop scheduling with beam search, European Journal of
Operational Research 118, pp. 390–412, 1999.

[30] C. S. Sakuraba, D. P. Ronconi, and F. Sourd, Scheduling in a two-machine flowshop for
the minimization of the mean absolute deviation from a common due date, Computers &
Operations Research 36, pp. 60–72, 2009.

[31] H. Sarper, Minimizing the sum of absolute deviations about a common due date for the two-
machine flow shop problem, Applied Mathematical Modelling 19, pp. 153–161, 1995.

[32] T. Sen and S. K. Gupta, A state-of-art survey of scheduling research involving due dates,
Omega 12, pp. 63–76, 1984.

[33] W. Shi-Jin, Z. Bing-Hai, and X. Li-Feng, A filtered-beam-search-based heuristic algorithm for
flexible job-shop scheduling problem, International Journal of Production Research 46, pp.
3027–3058, 2008.

[34] K. Sörensen, Metaheuristics – the metaphor exposed, International Transactions in Opera-
tional Research 22, pp. 3–18, 2015.

[35] X. Y. Sun, X. N. Geng, J. B. Wang, and F. Liu, Convex resource allocation scheduling in the
no-wait flowshop with common flow allowance and learning effect, International Journal of
Production Research 57, pp. 1873–1891, 2019.

[36] C. S. Sung and J. I. Min, Scheduling in a two-machine flowshop with batch processing ma-
chine(s) for earliness/tardiness measure under a common due date, European Journal of Op-
erational Research 131, pp. 95–106, 2001.

[37] E. Taillard, Benchmarks for basic scheduling problems, European Journal of Operational Re-
search 64, pp. 278–285, 1993.

[38] W. K. Yeung, C. Oguz, and T. C. E. Cheng, Two-stage flowshop earliness and tardiness
machine scheduling involving a common due window, International Journal of Production
Economics 90, pp. 421–434, 2004.

[39] M. M. Yenisey and B. Yagmahan, Multi-objective permutation flow shop scheduling problem:
Literature review, classification and current trends, Omega 45, pp. 119–135, 2014.

31

