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Abstract

In many engineering applications it is necessary to minimize smooth functions plus
penalty (or regularization) terms that violate smoothness and convexity. Specific algorithms
for this type of problems are available in recent literature. Here a smooth reformulation is
analyzed and equivalence with the original problem is proved both from the point of view
of global and local optimization. Moreover, for the cases in which the objective function
is much more expensive than the constraints, model-intensive algorithms, accompanied by
their convergence and complexity theories, are introduced. Finally, numerical experiments
are presented.

Key words: Constrained non-Lipschitz nonsmooth optimization, complexity analysis, op-
timality conditions.

1 Introduction

We are concerned with mathematical problems in which the objective is to find a point x ∈ X
such that

F (D(x), E(x)) = 0. (1)

In general, X is a subset of a finite-dimensional space. Constrained and unconstrained mini-
mization problems may be formulated in this way, with D(x) and E(x) representing objective
functions and constraints. Problems of the form (1) are almost always solved by means of iter-
ative methods. This means that, given an approximation xk to a solution, the approximation
xk+1 is obtained by solving

MF,xk(MD,xk(x),ME,xk(x)) = 0, (2)
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where MF,xk , MD,xk , and ME,xk are models of F , D, and E built using knowledge available at

xk. For example, if we deal with the constrained optimization problem

Minimize f(x) subject to g(x) ≤ 0, (3)

we may identify, say, f with D, g with E and F with the difference between f(x) and the mini-
mum for each feasible point x, in such a way that problem (2) may consist on the minimization
of the quadratic Taylor approximation of f (perhaps plus a Lagrangian term) subject to the lin-
earization of the constraints. This is, essentially, the idea of Sequential Quadratic Programming
methods [29].

In many cases, the arguments of F involve a function that is difficult to evaluate (D(x)) and
a function that is easy to evaluate (E(x)). In these cases, the computer work associated with
the solution of (2) may be overwhelmingly dominated by the evaluation of D(xk) (including,
possibly, its derivatives). Moreover, even

MF,xk(MD,xk(x), E(x)) = 0 (4)

and
F (MD,xk(x), E(x)) = 0 (5)

may be solvable with a computational cost essentially equal to the cost of computing D(xk).
For example, in the constrained optimization problem, the evaluation of the objective function
could involve a huge collection of data whereas the constraints may be easy to evaluate. In
this case, it is probably convenient to employ an iterative scheme based on (5) by means of
which we solve, at each iteration, a powerful model of the objective function subject to the true
constraints. This is the point of view of [26], where the complexity of a general scheme for
constrained optimization based on high-order models of the objective function is analyzed.

The objective of this paper is to exploit the modelling idea (5) with respect to the minimiza-
tion of nonconvexly regularized problems. The equivalence of this problem with a constraint
optimization problem in which the objective function is generally much more expensive than
the constraints will be exploited and it will be proved that, for some Taylor-like models with
mild assumptions, the resulting method enjoys theoretical convergence and complexity proper-
ties that suggest a good computational behavior. Some illustrative examples will be shown that
tend to corroborate this hypothesis.

Given C ⊂ Rn, continuously differentiable functions f : Rn → R and g : Rn → Rd, a penalty
function π : R → R+ such that π(t) = 0 if t ≤ 0, and a regularization parameter σ > 0, we
consider the constrained optimization problem given by

Minimize f(x) + σ
∑d

j=1 π(gj(x))

subject to x ∈ C.
(6)

Problem (6) may arise in the process of solving problem

Minimize f(x) subject to g(x) ≤ 0, x ∈ C (7)

by means of penalization with respect to the constraints g(x) ≤ 0. In this case, we expect that
a solution to (7) should emerge when σ is sufficiently large or, at least, when σ → ∞ (see, for
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example, [29]). Many times, the objective function of (6) is smooth and π′(0) = 0. However, we
are especially interested in the case in which π′(0) > 0 and, above all, in the case in which π′(0)
does not exist and limt→0+ π

′(t) =∞.
For several reasons, solutions to (6) for different values of σ may be meaningful independently

of its connection with (7). In fact, many times, the solution to (6) when σ →∞ is not relevant
and the fulfillment of all the constraints gj(x) ≤ 0 is not desirable or, perhaps, impossible.
Instead, the ideal asymptotic problem that one wishes to solve is, roughly speaking,

Minimize f(x) subject to x ∈ C (8)

with the compromise that the number of indices j such that gj(x) > 0 should be small. For
example, a typical portfolio problem could require the minimization of the expected loss f(x)
subject to standard constraints x ∈ C and the additional requirement that the number of scenar-
ios under which shortfall occurs should be as small as possible [12]. We expect to achieve this
objective employing penalty functions that are concave for t ≥ 0 and such that limt→0+ π

′(t) > 0.
The case in which C is polyhedral and π(t) = tq if t ≥ 0, with q ∈ (0, 1), has been considered

in [5, 24]. The problem

Minimize f(x) + σ
n∑
j=1

|xj |q subject to x ∈ C, (9)

called Lq-regularized optimization problem, has been object of many studies starting from
Tikhonov [30] and the enormous literature on inverse problems. The case q = 2 corresponds to
the most classical regularization, intented to handle problems in which the mere minimization
of f(x) onto C is very ill-conditioned and, so, its exact solution is, frequently, meaningless. The
case q = 1 preserves the possible convexity of f(x) and has been shown to induce sparse reg-
ularized minimizers of f(x) (see [13]). With q < 1 possible convexity of the objective function
is lost but the tendency to find sparse solutions x is even more emphatic. Writing gj(x) = xj
and gn+j(x) = −xj for j = 1, . . . , n and defining π(t) = tq for all t ≥ 0, problem (9) takes the
form (6); so (9) is a particular case of the problem studied in this paper. Practical applications
of problems of the form (6) include machine learning [18], information theory [20], image restora-
tion [5], signal processing [4], variable selection [19] and others. Interesting examples were given
in [24, Appx.1].

The rest of this paper is organized as follows. In Section 2, we introduce a smooth refor-
mulation of (6) and we prove its equivalence with the original problem. In Section 3, we derive
optimality conditions using the reformulation. In Section 4, we introduce a model-intensive al-
gorithm for solving the problem and we prove its convergence and complexity. In Section 5, we
introduce a specific algorithm for the case in which the constraints are linear. In Section 6, we
present numerical experiments. Finally, in Section 7, we state conclusions and lines for future
research.

Notation. ‖ · ‖ denotes an arbitrary norm. R+ denotes the set of nonnegative elements of R.
The i-th component of a vector v is denoted vi or [v]i. If v ∈ Rn is a vector with components
vi, v+ is the vector with components max{0, vi}, i = 1, . . . , n.
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2 Reformulation

A smooth reformulation of problem (6) will be introduced in this section. The penalty functions
employed in this work will be required to satisfy the assumptions below.

Assumption A1. π is continuous, concave, strictly increasing for t ≥ 0. Moreover, π′(t) exists
and is continuous for all t > 0.

Assumption A2. The restriction of π to R+ admits an inverse π−1 : R+ → R+, the derivative
(π−1)′(t) exists for all t > 0, and the right-derivative (π−1)′(0)+ also exists.

Assumptions A1 and A2 are satisfied by penalty functions in practical applications such as
ridge regression [21], smoothly clipped absolute deviation penalization (SCAD) [19], minimax
concave penalties (MCP) [31], fraction penalty optimization [28], log-penalty minimization [13],
and many others. Note that Assumptions A1 and A2 do not require limt→0+ π

′(t) =∞, although
this property will be interesting for the purpose of minimizing the number of indices j such that
gj(x) > 0.

The possible lack of smoothness of (6) is due to the non-smoothness of π(t) when t = 0.
Therefore, standard methods based on gradient information for solving (6) may be inappropriate.
In order to avoid this inconvenient, several approaches were proposed. Among them, we can
mention smoothing approximation methods [5, 16, 24], iterative reweighted algorithms [25, 23,
17], and interior point methods [6, 22]. Our proposal, based on a smooth reformulation has the
advantage that standard well established algorithms for constrained optimization based on first-
order or higher-order derivative information on the derivatives may be used. This is possible
thanks to the fact that the function π−1 : R+ → R+ is continuously differentiable.

Problem (6) is obviously equivalent to

Minimize f(x) + σ
d∑
j=1

yj subject to yj = π(gj(x)) for j = 1, . . . , d and x ∈ C. (10)

If yj > π(gj(x)), taking ȳj = π(gj(x)), we obtain that f(x) + σ
∑d

j=1 ȳj ≤ f(x) + σ
∑d

j=1 yj .
Therefore (10) is equivalent to

Minimize f(x) + σ

d∑
j=1

yj subject to yj ≥ π(gj(x)) for j = 1, . . . , d and x ∈ C. (11)

As π(t) = 0 if t < 0, (11) is equivalent to

Minimize f(x) + σ

d∑
j=1

yj subject to yj ≥ 0, yj ≥ π(gj(x)) for j = 1, . . . , d and x ∈ C. (12)

If yj ≥ 0 and yj ≥ π(gj(x)), since both yj and π(gj(x)) belong to R+ and the inverse of π onto
R+ is increasing, we obtain that π−1(yj) ≥ gj(x). Reciprocally, if π−1(yj) ≥ gj(x) and yj ≥ 0
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we obtain that yj ≥ π(gj(x)) or gj(x) ≤ 0 in which case yj ≥ π(gj(x)) also holds. Therefore,
(12) is equivalent to

Minimize Φ(x, y) := f(x) + σ
∑d

j=1 yj
subject to x ∈ C,

gj(x)− π−1(yj) ≤ 0 for j = 1, . . . , d,
y ≥ 0.

(13)

The theorem below shows that a solution to the original problem (6) can be found by solving
its smooth reformulation (13). (The reciprocal is also true, as shown in the following theorem.)

Theorem 2.1. Suppose that (x∗, y∗) is a local (global) minimizer of (13). Then, y∗j = π(gj(x
∗))

for all j = 1, . . . , d and x∗ is a local (global) minimizer of (6). Reciprocally, if x∗ is a local (global)
minimizer of (6) and y∗j = π(gj(x

∗) for all i = 1, . . . , d, then (x∗, y∗) is a local (global) minimizer
of (13).

Proof. Suppose that (x∗, y∗) is a local minimizer of (13). If y∗j > π(gj(x
∗) and y∗j > yj ≥

π(gj(x
∗)), we have that π−1(y∗j ) > π−1(yj) ≥ gj(x∗). Therefore, if yi = y∗i for all i 6= j, we have

that (x∗, y) is a feasible point of (13) and Φ(x∗, y) < Φ(x∗, y∗). Therefore (x∗, y∗) would not be
a local minimizer of (13). This implies that, necessarily, y∗j = π(gj(x

∗) for all j = 1, . . . , d.

Let ε > 0 be such that for all (x, y) such that x ∈ C, y ≥ 0, gj(x) ≤ π−1(yj), j = 1, . . . , d,

‖x−x∗‖ ≤ ε and ‖y−y∗‖∞ ≤ ε, we have that f(x)+σ
∑d

j=1 yj ≥ f(x∗)+σ
∑d

j=1 y
∗
j . By the first

part of the proof, y∗j = π(gj(x
∗)), therefore, f(x) + σ

∑d
j=1 yj ≥ f(x∗) + σ

∑d
j=1 π(gj(x

∗)). Let
ε1 ∈ (0, ε] be such that ‖x−x∗‖ ≤ ε1 implies that |π(gj(x))−π(gj(x

∗))| ≤ ε for all j = 1, . . . , d.

Then, if ‖x−x∗‖ ≤ ε1, f(x)+σ
∑d

j=1 π(gj(x)) ≥ f(x∗)+σ
∑d

j=1 π(gj(x
∗)). This implies that x∗

is a local minimizer of (6).
Reciprocally, suppose that x∗ is a local minimizer of (6). Therefore, there exists ε > 0 such

that for all x ∈ C such that ‖x− x∗‖ ≤ ε, f(x∗) + σ
∑d

j=1 π(gj(x
∗)) ≤ f(x) + σ

∑d
j=1 π(gj(x)).

Therefore, f(x∗) + σ
∑d

j=1 y
∗
j ≤ f(x) + σ

∑d
j=1 π(gj(x)) for all x ∈ C such that ‖x − x∗‖ ≤ ε.

Thus, f(x∗) + σ
∑d

j=1 y
∗
j ≤ f(x) + σ

∑d
j=1 yj for all x ∈ C such that ‖x− x∗‖ ≤ ε if yj ≥ 0 and

yj ≥ π(gj(x)) for all j = 1, . . . , d. But, due to the increasing property of π−1 onto R+, yj ≥ 0

and yj ≥ π(gj(x)) is equivalent to yj ≥ 0 and π−1(yj) ≥ gj(x). Therefore, f(x∗) + σ
∑d

j=1 y
∗
j

is less than or equal to f(x) + σ
∑d

j=1 yj for all (x, y) satisfying x ∈ C, ‖x − x∗‖ ≤ ε, and the
constraints of (13).

The equivalence proof with respect global minimizers is similar.

3 Optimality conditions

Assume that
C = {x ∈ Rn | H(x) = 0 and G(x) ≤ 0}, (14)

where H : Rn → RnH and G : Rn → RnG are continuosly differentiable. If a local minimizer
(x∗, y∗) of (13) satisfies a constraint qualification then the KKT conditions hold at (x∗, y∗).
By Theorem 2.1, if x∗ is a local minimizer of (6), y∗ = π(gj(x

∗)) for all i = 1, . . . , d, and a
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constraint qualification for (13) is fulfilled, the KKT conditions are satisfied too. The KKT
conditions for (13) obviously involve both x∗ and y∗. Since y is merely an auxiliary variable, it
is interesting to derive KKT-like conditions in which only the primal variables x∗ are involved.
This is the objective of Theorem 3.1 below, which, in turn, generalizes [15, Corollary 2.2] and [24]
using straightforward optimization arguments.

Theorem 3.1. Let x∗ be a local minimizer of (6) and assume that π satisfies Assumptions A1
and A2. Define

I(x∗) := {j | gj(x∗) < 0}, J(x∗) := {j | gj(x∗) = 0}, and K(x∗) := {j | gj(x∗) > 0}. (15)

Then, x∗ is a local minimizer of the problem

Minimize f(x) + σ
∑

j∈K(x∗)

π(gj(x)) subject to x ∈ C and gj(x) ≤ 0 ∀j ∈ J(x∗). (16)

Moreover, if C is defined by H(x) = 0 and G(x) ≤ 0, where H : Rn → RnH and G : Rn → RnG

are continuously differentiable, and the system of equalities and inequalities

H(x) = 0, G(x) ≤ 0, gj(x) ≤ 0, ∀j ∈ J(x∗) (17)

satisfies a constraint qualification at x∗ then we have that x∗ satisfies the KKT conditions of
problem (16).

Proof. Let y∗ ≥ 0 be such that (x∗, y∗) is a local minimizer of (13). By Theorem 2.1, y∗j =
π(gj(x

∗)) for all j = 1, . . . , d. If j ∈ I(x∗), we have that gj(x) < 0 for all x in a neighborhood
of x∗. Moreover, y∗j = 0 in this case. Therefore, (x∗, y∗) is a local minimizer of

Minimize f(x) + σ
∑

j /∈I(x∗)

yj subject to x ∈ C, yj ≥ π(gj(x)) and yj ≥ 0 ∀j /∈ I(x∗).

So, (x∗, y∗) is a local minimizer of

Minimize f(x) + σ
∑

j /∈I(x∗)

yj subject to x ∈ C, yj = π(gj(x)) and yj ≥ 0 ∀j /∈ I(x∗).

If j ∈ K(x∗), we have that gj(x) > 0 in a neighborhood of x∗ and π(gj(x)) is continuous and
differentiable on that neighborhood. Therefore, x∗ is a local minimizer of the locally smooth
problem given by

Minimize f(x) + σ

 ∑
j∈J(x∗)

yj +
∑

j∈K(x∗)

π(gj(x))


subject to x ∈ C, yj = π(gj(x)) and yj ≥ 0 ∀j ∈ J(x∗).

Since gj(x
∗) ≤ 0 for all j ∈ J(x∗), x∗ is also a local minimizer of

Minimize f(x) + σ

 ∑
j∈J(x∗)

yj +
∑

j∈K(x∗)

π(gj(x))


6



subject to x ∈ C, gj(x) ≤ 0, yj = π(gj(x)) and yj ≥ 0 ∀j ∈ J(x∗).

Moreover, since y∗j = 0 for all j ∈ J(x∗), x∗ is a local minimizer of

Minimize f(x)+σ
∑

j∈K(x∗)

π(gj(x)) subject to x ∈ C, gj(x) ≤ 0, yj = π(gj(x)) and yj ≥ 0 ∀j ∈ J(x∗).

Clearly, the variables yj for j ∈ J(x∗) play no role in this problem, so x∗ is a local minimizer of

Minimize f(x) + σ
∑

j∈K(x∗)

π(gj(x)) subject to x ∈ C and gj(x) ≤ 0 ∀j ∈ J(x∗).

Then, if the constraints that define C together with the constraints gj(x) ≤ 0, j ∈ J(x∗), satisfy
a constraint qualification at x∗, the KKT conditions of (16) hold at x∗. This completes the
proof.

Observe that (16) is a constrained optimization problem of the form

Minimize fobj(w) subject to hE(w) = 0 and hI(w) ≤ 0, (18)

where fobj : Rn → R, hE : Rn → RnE , and hI : Rn → RnI are continuosly differentiable. It
is well known that, independently of constraint qualifications, every local minimizer w∗ of (18)
satisfies the Approximate KKT (AKKT) optimality condition [2, 7], which means that, given
εsol > 0, εkkt > 0, εfeas > 0, and εcomp > 0, there exist w ∈ Rn, λ ∈ RnE , and µ ∈ RnI

+ such that
‖w − w∗‖ ≤ εsol,

‖hE(w)‖∞ ≤ εfeas, ‖hI(w)+‖∞ ≤ εfeas, (19)

µj ≤ εcomp for all j such that [hI(w)]j < −εfeas, (20)

and
‖∇fobj(w) +∇hE(w)λ+∇hI(w)µ‖ ≤ εkkt. (21)

If w ∈ Rn is such that there exist λ ∈ RnE and µ ∈ RnI
+ fulfilling (19), (20), and (21), we say

that w is an (εfeas/εcomp/εkkt)-AKKT point of (18).
Applying the AKKT definition to (16) we obtain the following result, independently of

constraint qualifications.

Theorem 3.2. Let x∗ be a local minimizer of (6) and assume that π satisfies Assumptions A1
and A2. Let C be defined by H(x) = 0 and G(x) ≤ 0, where H : Rn → RnH and G : Rn → RnG

are continuously differentiable. Assume that εsol > 0, εkkt > 0, εfeas > 0, and εcomp > 0 are
arbitrary. Then, there exist x ∈ Rn, λH ∈ RnH, µG ∈ RnG

+ , and µj ∈ R+ for all j such that
gj(x

∗) = 0 such that
‖x− x∗‖ ≤ εsol,

‖H(x)‖ ≤ εfeas, ‖G(x)+‖ ≤ εfeas,

gj(x) ≤ εfeas for all j such that gj(x
∗) = 0,∥∥∥∥∥∥∇f(x) + σ

∑
gj(x∗)>0

π′(gj(x))∇gj(x) +∇H(x)λH +∇G(x)µG +
∑

gj(x∗)=0

µj∇gj(x)

∥∥∥∥∥∥ ≤ εkkt,
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[µG]j ≤ εcomp for all j such that Gj(x) < −εfeas,

and
µj ≤ εcomp for all j such that gj(x) < −εfeas.

Proof. By Theorem 3.1, x∗ is a local minimizer of (16). Then, the thesis follows from (19), (20),
and (21).

4 Model-Intensive algorithms

As we mentioned in Section 2, problem (13) can be solved using standard methods for smooth
constrained optimization. In many applications, the cost of evaluating f(x) exceeds, by far,
the cost of evaluating the constraints. For these situations “model intensive” (MI) methods are
recommendable. At each iteration of such an algorithm, a model of the objective function is built
and this model is minimized using the original constraints (instead of their linear approximations
as in SQP and other popular approaches). The idea is to exploit the model as much as possible
so that, hopefully, it will not be necessary to evaluate the expensive function many times.

The most popular model for an arbitrary sufficiently smooth function f : Rn → R comes
from considering its p-th Taylor approximation

Tp(x̄, x) :=

p∑
j=1

1

j!

(
(x− x̄1)

∂

∂x1
+ · · ·+ (x− x̄n)

∂

∂xn

)j
f(x̄), (22)

so that
f(x) = f(x̄) + Tp(x̄, x) + o(‖x− x̄‖p+1). (23)

Observe that T1(x̄, x) = ∇f(x̄)T (x− x̄) and T2(x̄, x) = ∇f(x̄)T (x− x̄)+ 1
2(x− x̄)T∇2f(x̄)(x− x̄).

Consequently, the model for f(x) + σ
∑d

j=1 yj will be f(x̄) + Tp(x̄, x) + σ
∑d

j=1 yj .

In this section Mx̄,ȳ(x, y) will be a model of Φ(x, y)−Φ(x̄, ȳ) for all x̄, x ∈ Rn and ȳ, y ∈ Rd.
Therefore, Φ(x, y) ≈ Φ(x̄, ȳ) +Mx̄,ȳ(x, y). Let us define, for all δ ≥ 0,

Cδ = {x ∈ Rn | ‖H(x)‖∞ ≤ δ and ‖G(x)+‖∞ ≤ δ}, (24)

Dδ = {(x, y) ∈ Rn × Rd | x ∈ Cδ, y ≥ 0, and gj(x)− π−1(yj) ≤ δ, j = 1, . . . , d}, (25)

and D = D0. The following algorithm is similar to Algorithm 3.1 of [11].

Algorithm 4.1. Assume that p ∈ {1, 2, 3, . . . }, η > 0, α > 0, ρmin > 0, τ2 ≥ τ1 > 1, θ > 0, and
(x0, y0) ∈ Dη/4 are given with y0

j = π(gj(x
0)), j = 1, . . . , d. Initialize k ← 0.

Step 1. Set ρ← 0.

Step 2. Compute xtrial ∈ Rn and ytrial ∈ Rd such that

(xtrial, ytrial) ∈ Dηk with ηk = η

(
k + 1

k + 2

)
(26)

and
Mxk,yk(xtrial, ytrial) + ρ‖(xtrial − xk, ytrial − yk)‖p+1 ≤ 0. (27)
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Step 3. Test the condition

Φ(xtrial, ytrial) ≤ Φ(xk, yk)− α‖(xtrial − xk, ytrial − yk)‖p+1. (28)

If (28) holds, accept the trial point (xtrial, ytrial), define ρk = ρ, xk+1 = xtrial, yk+1 = ytrial,
set k ← k + 1, and go to Step 1. Otherwise, update ρ ← max{ρmin, τρ} with τ ∈ [τ1, τ2],
and go to Step 2.

Under the model-intensive strategy, conditions (26) and (27) may be obtained by solving the
subproblem

Minimize Mxk,yk(x, y) + ρ‖(x− xk, y − yk)‖p+1 subject to (x, y) ∈ D, (29)

with rather high precision, since we assume that the cost of evaluating the model is negligible
with respect to the cost of evaluating f . Note that the feasibility required at xtrial is looser than
the precision with which xk satisfies those constraints. Therefore, it is plausible to require the
fulfillment of (26) and (27) by means of a standard constrained optimization algorithm. This
means that, although conditions (27) and (28) are trivially satisfied by xtrial = xk and ytrial = yk,
it is reasonable to expect that a nontrivial solution with decrease of Φ could be obtained with
non-null increments.

Complexity results for Algorithm 4.1 are presented below. Before that, the standard assum-
tions (see, for example, [10, 14]) are given.

Assumption A3. For all (xk, yk) generated by Algorithm 4.1, we have that

∇Φ(xk, yk) = ∇Mxk,yk(x, y)|(x,y)=(xk,yk).

Assumption A4. There exists L1 > 0 such that, for every (xk, yk) calculated by Algorithm 4.1
and for every (xtrial, ytrial) satisfying (27), we have that

Φ(xtrial, ytrial) ≤ Φ(xk, yk) +Mxk,yk(xtrial, ytrial) + L1‖(x− xtrial, y − ytrial)‖p+1.

Assumption A4 is valid if M is obtained using the p-th Taylor approximation and the deriva-
tives of order p of f are Lipschitz continuous. See [3, 10, 14].

Assumption A5. There exists L2 > 0 such that, for every xk, yk, xk+1, and yk+1 obtained by
Algorithm 4.1, we have that

‖∇x,yΦ(xk+1, yk+1)−∇x,yMxk,yk(xk+1, yk+1)‖ ≤ L2‖(xk+1 − xk, yk+1 − yk)‖p.

As in the case of Assumption A4, Assumption A5 also holds if we use Taylor p-th approxi-
mations for computing M and the p-th order derivatives of f are Lipschitz-continuous.

Assumption A6 below says that (29) must be approximately solved. Before stating this
assumption let us recall that, assuming that ‖(x − xk, y − yk)‖p+1 is continuosly differentiable
with respect to (x, y), (29) is a constrained optimization problem of the form (18).
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Assumption A6. We say that this assumption holds at iteration k of Algorithm 4.1 if the
function ‖(x−xk, y−yk)‖p+1 is continuosly differentiable with respect to (x, y) and (xtrial, ytrial)
is an (εfeas/εcomp/εkkt)-AKKT point of (29) with εfeas = ηk, εcomp = η, and εkkt = θ‖(xtrial −
xk, ytrial − yk)‖p.

Theorem 4.1. Assume that the sequence {(xk, yk)} is generated by Algorithm 4.1, Φtarget ∈ R,
ε > 0, and L = max{L1, L2}. Define

K(x0, y0,Φtarget, α, p, L, τ2, θ) =

(Φ(x0, y0)− Φtarget

)( αp/(p+1)ε

L+ τ2 (L+ α) (p+ 1) + θ

)−(p+1)/p
 .

(30)
Suppose that Assumptions A3, A4, A5, and A6 hold for all

k ≤ K(x0, y0,Φtarget, α, p, L, τ2, θ).

Then, the number of iterations k such that

Φ(xk+1, yk+1) > Φtarget

and (xk+1, yk+1) is not an (ηk/η/ε)-AKKT point of (13) is bounded above by K(x0, y0,Φtarget, α, p, L, τ2, θ).
Moreover, the number of functional evaluations per iteration is bounded above by⌊

logτ1

(
τ2(L+ α)

ρmin

)⌋
+ 1.

Proof. The desired result follows as in [11, Thm.3.1].

Theorem 4.2. Suppose that Assumptions A3, A4, and A5 hold, and the function ‖(x− xk, y−
yk)‖p+1 is continuosly differentiable with respect to (x, y). Assume, moreover, that for all k =
0, 1, 2, . . . and εfeas > 0, εcomp > 0, and εkkt > 0, we are able to compute, using a suitable
algorithm, an (εfeas/εcomp/εkkt)-AKKT point of (29) such that (27) holds. Then, there are two
possibilities:

1. Assumption A6 holds for all k ≤ K(x0, y0,Φtarget, α, p, L, τ2, θ).

2. There exists k ≤ K(x0, y0,Φtarget, α, p, L, τ2, θ) such that (xk, yk) is an AKKT point of (13).

Proof. Assume that (xk,`, yk,`) is a sequence generated by an algorithm that, when applied to
the problem

Minimize Mxk,yk(x, y) + ρ‖(x− xk, y − yk)‖p+1 subject to (x, y) ∈ Dηk−1
, (31)

satisfies the hypotheses of the theorem. By construction, (xk, yk) ∈ Dηk−1
. Therefore the

minimum of Mxk,yk(x, y) + ρ‖(x − xk, y − yk)‖p+1 onto Dηk−1
is non-positive, as well as the

minimum of Mxk,yk(x, y) + ρ‖(x− xk, y − yk)‖p+1 onto Dηk .
By the fulfillment of the AKKT optimality conditions, we have two possibilities:
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1. There exists an iterate (xk,`, yk,`) which is an (εfeas/εcomp/εkkt)-AKKT point of (29) with
εfeas = ηk, εcomp = η, and εkkt = θ‖(xk,` − xk, yk,` − yk)‖p.

2. There exist infinitely many iterates (xk,`, yk,`) that are (εfeas/εcomp/εkkt)-AKKT points
of (29) with εfeas = 1/` < ηk, εcomp = 1/` < η, and εkkt = 1/` but

θ‖(xk,` − xk, yk,` − xk)‖ < 1/`. (32)

In the first case we can choose xtrial = xk,` and ytrial = yk,`, satisfying Assumption A6 and (27).
In the second case, (32) implies that

lim
`→∞

(xk,`, yk,`) = (xk, yk).

Therefore (xk, yk) satisfies the AKKT optimality condition for (31). Since the first derivatives
of Φ(x, y) at (xk, yk) coincide with the first derivatives of the objective function of (31), it turns
out that (xk, yk) was an AKKT point for (31). In other words, Assumption A6 did not hold
because (xk, yk) already was an approximate solution of the original problem. This completes
the proof.

Theorems 4.1 and 4.2 say that after at most the number of iterations given by (30) one finds
an iterate that satisfies the constraints of (13) with tolerance η such that the objective function
value is smaller than or equal to Φtarget; or, alternatively, we find an iterate that satisfies KKT
conditions with tolerance η for feasibility, tolerance η for complementarity, and tolerance ε for
optimality. The conclusion of these theorems is that, ultimately, Assumption A6 is not necessary
since, if it holds for all k ≤ K(x0, y0,Φtarget, α, p, L, τ2, θ), it guarantees that an approximate
solution is found for some k ≤ K(x0, y0,Φtarget, α, p, L, τ2, θ). But, if Assumption A6 does not
hold for some k ≤ K(x0, y0,Φtarget, α, p, L, τ2, θ), the iterate xk is an approximate solution. This
is stated in the following Corollary.

Corollary 4.3. Suppose that the hypotheses of Theorem 4.2 hold. Then, one of the following
statements is true:

1. There exists k ≤ K(x0, y0,Φtarget, α, p, L, τ2, θ), such that

Φ(xk+1, yk+1) ≤ Φtarget

and (xk+1, yk+1) is (ηk/η/ε)-AKKT point of (13).

2. There exists k ≤ K(x0, y0,Φtarget, α, p, L, τ2, θ) such that (xk, yk) is an AKKT point of (13).

5 Linearly-constrained problems

In this section, we consider the case in which G(x), H(x), and gj(x), j = 1, . . . , d, are affine
functions. Thus, their first derivatives are constant. Consequently, we denote

AG = G′(x), AH = H ′(x), aTj = g′j(x), j = 1, . . . , d,
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for all x ∈ Rn. Therefore, for all x̄ ∈ Rn,

G(x) = AG(x− x̄) +G(x̄), H(x) = AH(x− x̄) +H(x̄), gj(x) = aTj (x− x̄) + gj(x̄), j = 1, . . . , d.

The constraints H(x) = 0 and G(x) ≤ 0 are now linear but the constraints gj(x)− π−1(yj) ≤ 0
of (13) are not, due to the nonlinearity of π−1. Therefore, the set C is a polytope but the set D0,
defined by (24) and (25) is not.

Of course, we may use Algorithm 4.1 for solving (13) in this case, but the presence of linearity
suggests that linear constraints could be satisfied exactly at the solution of each subproblem; and
that subproblems might be tackled by a linear-constraints optimization method. For achieving
this improvement, the nonlinear constraints gj(x) − π−1(yj) ≤ 0 must be linearized. This
amounts to replace, at each subproblem, each constraint gj(x)− π−1(yj) ≤ 0 with

gj(x)− [π−1(ykj ) + (π−1)′(yk)(yj − ykj )] ≤ 0. (33)

By the convexity of the function π−1, the fulfillment of (33) implies that gj(x)−π−1(yj) ≤ 0.
Therefore, the feasible set defined by H(x) = 0, G(x) ≤ 0, and (33) for j = 1, . . . , d is contained
in D0.

Algorithm 5.1. This algorithm is identical to Algorithm 4.1 except that condition (26) is
replaced by

(xtrial, ytrial) ∈ C and gj(x)− [π−1(ykj ) + (π−1)′(ykj )(yj − ykj )] ≤ 0, j = 1, . . . d. (34)

Of course, the parameter η is not necessary anymore since we assume that linear constraints
can be satisfied exactly using well-established constrained optimization methods.

Assumptions A3, A4, and A5 stand exactly in the same way as in Section 4. However,
Assumption A6 needs to be replaced in order to take into account that now the subproblem has
only linear constraints and that d constraints are linear approximations of the true ones.

Assumption A7. At each iteration k of Algorithm 5.1, the function ‖(x − xk, y − yk)‖p+1 is
continuosly differentiable with respect to (x, y) and (xk+1, yk+1) satisfies the KKT conditions for
the linearly constrained problem that consists of minimizing Mxk,yk(x, y)+ρ‖(x−xk, y−yk)‖p+1

subject to H(x) = 0, G(x) ≤ 0, and gj(x)− [π−1(ykj ) + (π−1)′(yk)(yj − ykj )] ≤ 0, j = 1, . . . , d.

Assumption A7 is plausible because every minimizer of linearly constrained optimization
problems satisfy KKT conditions.

According to Assumption A7 the increment (xk+1, yk+1) at each iteration of Algorithm 5.1
must satisfy the following conditions:

∇x
[
Mxk,yk(xk+1, yk+1) + ρ‖(xk+1 − xk, yk+1 − yk)‖p+1

]
+ATHλ+ATGµ+

d∑
j=1

ajβj = 0, (35)

ρ
∂

∂yj
‖(xk+1 − xk, yk+1 − yk)‖p+1 + σj − (π−1)′(yk+1

j )βj − γj = 0, j = 1, . . . , d, (36)

H(xk+1) = 0, (37)
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G(xk+1) ≤ 0, (38)

gj(x
k+1)−

[
π−1(ykj ) + (π−1)′(yk)(yk+1

j − ykj )
]
≤ 0, j = 1, . . . , d, (39)

βj = 0 whenever gj(x
k+1)− [π−1(ykj ) + (π−1)′(yk)(yk+1

j − ykj )] < 0, (40)

yk+1 ≥ 0, (41)

µj = 0 for all j such that G(xk+1)j < 0, (42)

γj = 0 for all j such that yk+1
j > 0, (43)

µ, β, γ ≥ 0. (44)

Recall that (x, y) satisfies the KKT conditions of (13) if conditions (35)–(44) hold with (x, y)
replacing (xk+1, yk+1), except that (35) and (36) must be replaced by

∇f(x) +ATHλ+ATGµ+
d∑
j=1

ajβj = 0 (45)

and
σj − (π−1)′(yj)βj − γj = 0, j = 1, . . . , d, (46)

whereas (39) and (40) must be replaced by

gj(x)− π−1(yj) ≤ 0 (47)

and
βj = 0 whenever gj(x)− π−1(yj) < 0. (48)

Therefore, the question is whether (36)–(44) implies some relaxed version of (45)–(48) for
x = xk+1 and y = yk+1.

As in [11, Lemma 3.2], by Assumption A4, it follows that the values of ρ used at each
subproblem of Algorithm 5.1 are bounded. By Assumption A5, (35) implies that

‖∇f(xk+1) +ATHλ+ATGµ+
d∑
j=1

ajβj‖ ≤ O(‖(xk+1 − xk, yk+1 − yk)‖p). (49)

By the limitation of ρ and the fact that | ∂∂yj ‖(x−x
k, y−yk)‖p+1| ≤ O(‖(xk+1−xk, yk+1−yk)‖p),

(36) implies that

|σj − (π−1)′(yk+1
j )βj − γj | ≤ O(‖(xk+1 − xk, yk+1 − yk)‖p), j = 1, . . . , d. (50)

By (39) and the convexity of π−1, we have that (47) holds with x = xk+1 and y = yk+1. Thus,

gj(x
k+1)− π−1(yk+1

j ) ≤ 0, j = 1, . . . , d. (51)

For proving approximate complementarity we need a new assumption regarding the replace-
ment of π−1 with its linear approximation.
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Assumption A8. There exists cπ > 0 such that, for all z, y ≥ 0,

|π−1(y)−
[
π−1(z) + (π−1)′(z)(z − y)

]
| ≤ cπ|y − z|2.

By Assumption A8, we have that gj(x
k+1) − π−1(yk+1

j ) < −cπ|yk+1
j − ykj |2 implies that

gj(x
k+1)− [π−1(ykj ) + (π−1)′(yk)(yk+1

j − ykj )] < 0; so, by (40), βj = 0.

Theorem 5.1. Suppose that Assumptions A3, A4, A5, A7, and A8 hold, L = max{L1, L2}, the
sequence {(xk, yk)} is generated by Algorithm 5.1, Φtarget ∈ R, and ε > 0. Then, the number of
iterations k such that

Φ(xk+1, yk+1) > Φtarget

and (xk+1, yk+1) is not an (ηk/η/ε)-AKKT point of (13) is not greater than((Φ(x0, y0)− Φtarget)
)( αp/(p+1)ε

L+ τ2 (L+ α) (p+ 1) + θ

)−(p+1)/p
 . (52)

Moreover, the number of functional evaluations per iteration is bounded above by⌊
logτ1

(
τ2(L+ α)

ρmin

)⌋
+ 1.

Proof. As in [11, Lemma 3.1], we obtain that

lim
k→∞

‖xk+1 − xk‖ = lim
k→∞

‖yk+1 − yk‖ = 0.

As in [11, Lemma 3.1], we prove that the sequence of penalty parameters is bounded.
By the arguments presented above, we have that, for all k, there exist λ = λk ∈ RnH ,

µ = µk ∈ RnG
+ , β = βk ∈ Rd+, and γ = γk ∈ Rd+ such that

‖∇f(xk+1, yk+1) +ATHλ+ATGµ+
d∑
j=1

ajβj‖ ≤ O(‖(xk+1, yk+1)− (xk, yk)‖p), (53)

σj − (π−1)′(yk+1
j )βj − γj = 0, j = 1, . . . , d, (54)

H(xk+1) = 0, (55)

G(xk+1) ≤ 0, (56)

gj(x
k+1)− π−1(yk+1

j ) ≤ 0, j = 1, . . . , d, (57)

βj = 0 whenever gj(x
k+1)− π−1(yk+1

j ) < −cπ|yk+1
j − ykj |2, (58)

yk+1 ≥ 0, (59)

µj = 0 for all j such that G(xk+1)j < 0, (60)

γj = 0 for all j such that yk+1
j > 0, (61)
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µ, β, γ ≥ 0. (62)

By the sufficient descent condition and (53), there exists c∇ > 0 such that, for all k,

Φ(xk+1, yk+1) ≤ Φ(xk, yk)− c∇

∥∥∥∥∥∥∇f(xk+1, yk+1) +ATHλ+ATGµ+

d∑
j=1

ajβj

∥∥∥∥∥∥
p+1
p

. (63)

Therefore, given ε > 0, the number of iterations such that Φ(xk+1, yk+1) > Φtarget and∥∥∥∥∥∥∇f(xk+1, yk+1) +ATHλ+ATGµ+
d∑
j=1

ajβj

∥∥∥∥∥∥ > ε (64)

is, at most,

(Φ(x0, y0)− Φtarget)×O(ε
p+1
p ).

Given ξ > 0, by the descent condition (28), the number of iterations such that ‖(xk+1−xk, yk+1−
yk)‖p+1 > ξ cannot exceed the quantity (Φ(x0, y0) − Φtarget)/(αξ). Therefore, the number of
iterations such that ‖(xk+1−xk, yk+1−yk)‖2 > ξ2/(p+1) cannot exceed the quantity (Φ(x0, y0)−
Φtarget)/(αξ). Therefore, the number of iterations such that ‖(xk+1−xk, yk+1−yk)‖2 > ξ cannot

exceed the quantity (Φ(x0, y0)−Φtarget)/(αξ
p+1
2 ). Therefore, the number of iterations such that

cπ‖(xk+1 − xk, yk+1 − yk)‖2 > cπξ cannot exceed the quantity (Φ(x0, y0) − Φtarget)/(αξ
p+1
2 ).

Therefore, the number of iterations such that cπ‖(xk+1−xk, yk+1−yk)‖2 > ξ cannot exceed the

quantity (Φ(x0, y0)− Φtarget)/(α(ξ/cπ)
p+1
2 ). Therefore, after at most

(Φ(x0, y0)− Φtarget)

α(ξ/cπ)
p+1
2

iterations, we have that all the iterates satisfy the approximate complementarity condition

βj = 0 whenever gj(x
k+1)− π−1(yk+1

j ) < −ξ

for all j = 1, . . . , d. This completes the proof.

6 Numerical experiments

In this section, we present numerical experiments with the penalty function π(·) =
√
·. In

Section 6.1, we aim to illustrate in which way the use of this penalty function promotes sparsity.
In Section 6.2, we consider all the minimization problems from the Moré-Garbow-Hillstrom
collection [27], penalized with the term π(·) =

√
·. Problems are solved in two different ways.

On the one hand, reformulated problems are solved with the nonlinear programming solver
Algencan [7, 1]. On the other hand, problems are solved with Algorithm 4.1. Experiments aim
to simulate the situation in which a model-intensive algorithm is used to solve a problem with
a costly objective function and a nonconvex regularization term.
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6.1 Numerical illustration

In this section, we present numerical experiments that illustrate in which way the use of the
penalty function π(·) =

√
· promotes sparsity. Three toy problems are reformulated and solved

with the general use nonlinear programming solver Algencan [7, 1] that applies to smooth prob-
lems.

Problem 1. Regularized gradient minimization

The continuous version of this problem is to find a function u : [0, 1] → R that solves the
problem

Minimize ‖∇u‖2 subject to

∫ 1

0
u(t)dt =

∫ 1

0
ū(t),

where ū(t) = 400 if t ∈ [0, 0.5] and ū(t) = 0, otherwise. In addition, we aim u to coincide with ū
in “as much as possible”. After discretization, the problem becomes

Minimize
1

2

99∑
i=2

(ui−1 − ui+1)2 subject to
100∑
i=1

ui =
100∑
i=1

ūi,

where ūi = 400 for i = 1, . . . , 50 and ūi = 0 for i = 51, . . . , 100, with the additional constraint
of having ui = ūi, for i = 1, . . . , 100, as many times as possible.

Solutions to the discretized version of the problem can be found by solving the reformulated
problem given by

Minimize 1
2

∑99
i=2(ui−1 − ui+1)2 + σ

∑100
i=1 yi

subject to
∑100

i=1 ui =
∑100

i=1 ūi

−y2
i ≤ ui − ūi ≤ y2

i , i = 1, . . . , 100

for different values of σ > 0. Note that the reformulation corresponds to penalizing π(|ui− ūi|),
i = 1, . . . , 100, with π(·) =

√
·. Figure 1 shows a graphical representation of solutions to prob-

lems with σ ∈ {0, 1, 2, 3, 4, 5, 10, 20, 30, 40, 50, 100}. Note that, the larger σ is, the larger the
number of constraints of the form ui = ūi being satisfied.

Problem 2. Two-dimensional dam

This problem is a two dimensional version of Problem 1. The discretized version of the
problem is given by

Minimize
1

2

29∑
i=2

19∑
j=2

(4uij − ui,j−1 − ui,j+1 − ui−1,j − ui+1,j)
2 subject to

30∑
i=1

20∑
j=1

uij =

30∑
i=1

20∑
j=1

ūij ,

where

uij =

{
400, if j ≤ 30

[
1
2 + 1

10 sin
(

2π
(
i−1

30−1

))]
0, otherwise,
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Figure 1: Graphical representation of solutions to Problem 1 for different values of σ.

with the additional constraint of having uij = ūij , for i = 1, . . . , 30 and j = 1, . . . , 20, as many
times as possible. Solutions to the problem can be found by solving the reformulated problem
given by

Minimize 1
2

∑99
i=2(ui−1 − ui+1)2 + σ

∑100
i=1 yi

subject to
∑100

i=1 ui =
∑30

i=1

∑20
j=1 ūij

−y2
ij ≤ uij − ūij ≤ y2

ij , i = 1, . . . , 30, j = 1, . . . , 20,

for different values of σ > 0. Note that the reformulation corresponds to penalizing π(|uij−ūij |),
i = 1, . . . , 30, j = 1, . . . , 20, with π(·) =

√
·. Figure 2 shows a graphical representation of so-

lutions to problems with σ ∈ {108, 107, . . . , 1, 10−1, . . . , 10−8}. Once again, the larger σ is, the
larger the number of constraints of the form uij = ūij being satisfied.

Problem 3. Mass transportation

Assume that in a rectangle of nx×ny pixels, to each pixel (i, j) there are associated functions
P (i, j) ≥ 0 and Q(i, j) ≥ 0 such that

nx∑
i=1

ny∑
j=1

P (i, j) =

nx∑
i=1

ny∑
j=1

Q(i, j).

P (i, j) represents white mass and Q(i, j) represents red mass. We goal is to find a function
u((i, j), (k, `)) ≥ 0 that represents the transportation of white mass from pixel (i, j) to pixel
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Figure 2: Graphical representation of solutions to Problem 2 for different values of σ.

(k, `). There is no transportation of red mass. The function of transported mass u must be such
that, at every pixel, the amount of white mass be equal to the amount of red mass. Therefore,
for every pixel (i, j) ∈ V , we must have that

Q(i, j) = P (i, j) +
∑

(k,`)∈V,(k,`)6=(i,j)

u((k, `), (i, j))− u((i, j), (k, `)),
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where V = {{1, 2, . . . , nx}×{1, 2, . . . , ny}}. With these constraints, the objective is to minimize
the number of non-null transports, i.e. to minimize the number of u((i, j), (k, `)), for (i, j) 6=
(k, `) ∈ V , that are positive.

The reformulated problem is given by

Minimize σ
∑

(i,j) 6=(k,`)∈V yijk`

subject to Q(i, j) = P (i, j) +
∑

(k,`)∈V,(k,`)6=(i,j) u((k, `), (i, j))− u((i, j), (k, `)), ∀(i, j) ∈ V

0 ≤ u((i, j), (k, `)) ≤ y2
ijk`, ∀(i, j) 6= (k, `) ∈ V.

It corresponds to penalize
√∑

(i,j)6=(k,`)∈V u((i, j), (k, `)), that represents the cost of the trans-

portation process; its concavity representing economy of scale (decreasing marginal cost of trans-
portation). Figure 3 illustrates solutions to a small instance of Problem 3 with σ = 0 and σ > 0.

Current state (P ) Desired state (Q)

j j
1 2 3 1 2 3

i

1 0.97 0.01 0.31 0.91 0.00 0.39
2 0.94 0.22 0.63 1.05 0.21 0.56
3 0.66 0.16 0.42 0.60 0.20 0.41
4 0.96 0.15 0.70 0.90 0.09 0.81

p1,1

p1,2

p1,3p2,1

p2,2

p2,3

p3,1

p3,2

p3,3 p4,1

p4,2

p4,3

p1,1

p1,2

p1,3p2,1

p2,2

p2,3

p3,1

p3,2

p3,3 p4,1

p4,2

p4,3

(a) σ = 0, 129 arcs (b) σ > 0, 11 arcs

Figure 3: Graphical representation of solutions to a small instance of Problem 3.

6.2 Numerical comparison

We implemented the model-intensive Algorithm 4.1 in Fortran. At Step 2, a pair (xtrial, ytrial)
satisfying (26) and (27) is computed by tackling problem

Minimize Mxk,yk(x, y) + ρ‖x− xk, y − yk‖p+1

subject to −y2
i ≤ xi ≤ y2

i for i = 1, . . . , n and y ≥ 0,
(65)

where

Mxk,yk(x, y) = Tp(x
k, x)− f(xk) +

n∑
i=1

[y − yk]i,
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with the help of Algencan [7, 1]. By definition, ηk ∈ [1
2η, η) for all k. Thus, in order to satisfy (26),

it is enough to ask to Algencan to stop at a point satisfying the constraints with precision εfeas

for any εfeas ≤ 1
2η. Algencan also requires tolerances εcompl and εopt for complementarity and

optimality measures, respectively. (See [8, §5.1] for details.) Since (27) is satisfied by (x, y) =
(0, 0), that is a feasible point of problem (65), in practice, it is expected to be always satisfied
at the final iterate of Algencan. In the numerical experiments, in Algorithm 4.1, we arbitrarily
set p ∈ {2, 3}, τ1 = τ2 = 100, ρmin = 10−8, α = 10−8, η = 10−6, and θ = 106; and, in Algencan,
εfeas = εcompl = εopt = 10−8. In order to guarantee the fulfillment of Assumption A6, Algencan
should had been modified to accept a tolerance εopt depending on its current iterate, i.e. not
a constant. Instead of doing that, we keep Algencan as it is and we observed in practice that
Assumption A6 would have been satisfied setting θ = 106, which justifies that choice.

In the numerical experiments, we considered the 18 unconstrained minimization problems
of the Moré-Garbow-Hillstrom collection [27], that consist in minimizing f(x), penalized with
the term σ

∑n
i=1 π(|xi|) with π(·) =

√
· and σ = 10−8. Note that, when applying Algorithm 4.1

with p = 3, evaluating Tp(x
k, x) requires the third-order derivatives of f , that were taken

from [9]. These problems were solved in two different ways. On the one hand, problems were
reformulated as in Section 6.1 and solved with Algencan. On the other hand, they were solved
with Algorithm 4.1 with p ∈ {2, 3}. The same stopping criterion was adopted in both cases,
namely, the approximate satisfaction of the optimality conditions given by

‖g(x)+‖∞ ≤ ε

‖PΩ

(
x−

[
∇f(x) +

∑p
j=1 µj∇gj(x)

])
− x‖∞ ≤ ε

maxj=1,...,p{min{−gj(x), µj}} ≤ ε

where p = 2n, gj(x, y) := xj−y2
j and gn+j(x, y) := −xj−y2

j for j = 1, . . . , n, PΩ is the projector

operator onto Ω, and Ω =
{

(x, y) ∈ R2n | y ≥ 0
}

, with ε = 10−6. Emulating the situation to
which Algorithm 4.1 is applicable, we considered the number of evaluations of f as performance
metric. Equivalent solutions were found with the two approaches in all the problems. Table 1
and Figure 4 show the results. Figures show that Algorithm 4.1 with p = 2 and p = 3 used, in
average 72% and 82% of the number of functional evaluations used by Algencan, respectively.
Algorithm 4.1 with p = 2 used a larger number of evaluations than Algencan in 2 problems, the
same number in 3 problems, and less evaluations in all the other 13 problems. The apparent
inferiority of Algorithm 4.1 with p = 3, with respect to the case with p = 2, can be attributed to
the (lack of) parameters tuning, since the arbitrary value of the (dimensional) sufficient decrease
parameter α = 10−8 in (28) has different meaning when p = 2 and p = 3.

7 Final remarks

In this work, we have introduced a smooth reformulation for constrained smooth problems with
nonsmooth regularizations. The reformulation is entirely equivalent to the original problem
both from the global as for the local point of view. Moreover, we were able to prove optimality
conditions in which auxiliary variables do not appear at all.

Our main interest relies now in the application of these techniques to real problems in which
the evaluation of the objective function is overwhelmingly more expensive than the evaluation
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Problem f(x∗)
Number of functional evaluations

Algencan Alg. 4.1 (2nd) Alg. 4.1 (3rd)

Helical valley 3.00e−05 39 13 9
Biggs EXP6 5.91e−05 211 41 47

Gaussian 3.00e−05 3 3 2
Powell badly scaled 2.00e−05 254 90 85

Box three-dimensional 3.00e−05 49 21 31
Variably dimensioned 1.00e−04 14 15 20

Watson 2.35e−03 13 13 22
Penalty I 6.23e−05 46 38 44
Penalty II 4.86e−05 74 124 9

Brown badly scaled 3.07e−03 487 21 44
Brown and Dennis 8.58e+04 8 9 15

Gulf research and development 2.98e−05 36 35 35
Trigonometric 1.28e−04 15 10 14

Extended Rosenbrock 9.97e−05 34 27 43
Extended Powell singular 1.20e−04 17 18 27

Beale 2.00e−05 28 9 12
Wood 4.00e−05 90 53 72

Chebyquad 3.60e−03 31 19 21

Table 1: Comparison of the performance of Algencan and Algorithm 4.1 with p ∈ {2, 3} when
applied to solving the Moré-Garbow-Hillstrom minimization problems with the penalty term
given by π(·) =

√
·.

of the constraints. This type of functions appear when PDE calculations are involved in the
objective function evaluation and when the objective function is related to some phenomenon
that takes place in real time. In this cases, model-intensive algorithms as the ones introduced
in this paper may be useful. So, it is interesting to show that, from the theoretical point of
view (convergence and complexity), these algorithms are well supported. Of course, smooth
reformulations are valuable in these cases because one may take advantage of well-established
constrained optimization software.
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