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Abstract

Augmented Lagrangian methods with convergence to second-order stationary points in
which any constraint can be penalized or carried out to the subproblems are considered in
this work. The resolution of each subproblem can be done by any numerical algorithm able
to return approximate second-order stationary points. The developed global convergence
theory is stronger than the ones known for current algorithms with convergence to second-
order points in the sense that, besides the flexibility introduced by the general lower-level
approach, it includes a loose requirement for the resolution of subproblems. The proposed
approach relies on a weak constraint qualification, that allows Lagrange multipliers to be
unbounded at the solution. It is also shown that second-order resolution of subproblems
increases the chances of finding a feasible point, in the sense that limit points are second-
order stationary for the problem of minimizing the squared infeasibility. The applicability of
the proposed method is illustrated in numerical examples with ball-constrained subproblems.

Key words: Augmented Lagrangian methods, nonlinear programming, second-order sta-
tionary points, algorithms.

1 Introduction

Algorithms for nonlinear optimization use to be iterative. A simplified model is solved at each
iteration with the goal of building a sequence of iterates converging to a solution of the original
problem. Usually, the more strict one solves the subproblems, the better is the quality of the
solution found. If one requires subproblems to be solved up to first-order stationarity, under
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reasonable assumptions, the final solution is also first-order stationary. In this paper, our goal
is to increase the quality of the final solution by obtaining second-order stationary points of
the subproblems. With this purpose, we develop an Augmented Lagrangian algorithm with
general lower-level constraints assuming that subproblems can be approximately solved up to
second-order. A general global convergence theory that allows any constraint to be penalized
(upper-level constraints) or to be kept in the subproblems (lower-level constraints) is developed.

Theoretically, the division into lower- and upper-level constraints can be done arbitrarily [23].
However, many practical motivations exist that drive the separation of the constraint into those
two sets. The Augmented Lagrangian iterates are feasible, or approximately feasible, with re-
spect to the lower-level constraints; while the upper-level constraints are, in general, satisfied
only in the limit. It may be the case, depending on the application, that the objective function
is meaningless when the lower-level constraints are violated; so they must be satisfied at all
iterations. In [24], lower-level constraints are called non-relaxable; while upper-level constraints
are called relaxable constraints. An extreme case is when the objective function is not defined
outside the lower-level constraints. In practice, the choice of lower- and upper-level constraints
is strongly based on the possibility of solving subproblems with lower-level constraints. It may
also depend on convenience if, for instance, in a particular application, some well established and
tuned solver exists and an additional constraint the solver is not capable to deal with must be
considered. In this situation, it would be natural to adopt an Augmented Lagrangian algorithm
penalizing the new constraint and using the well established solver for solving the subproblems.
Two particular examples of this situation follow. The first one is the important problem of
minimizing a matrix function subject to an orthogonality constraint. Fast tailored algorithms
exist for this problem; but they can not be easily generalized when additional constraints are
present. (See [33] and references therein for details.) A second example is bi-level optimization
(see, for example, [32]), where one wants to minimize an objective function under the constraint
that some variables are a solution to an optimization problem parameterized by the other vari-
ables. When additional standard constraints are present, they are natural candidates to be
upper-level constraints; since there are efficient algorithms for bi-level optimization problems
without additional constraints.

First- and second-order Augmented Lagrangian methods in which the lower-level constraints
are bound constraints were introduced in [5] and [6], respectively. More recently, an Augmented
Lagrangian method that keeps equality constraints at the lower-level set and penalizes the
remaining constraints (including the bound constraints) was presented in [19]. This motivated
us to further develop the global convergence theory of Augmented Lagrangian methods with
arbitrary constraints at the lower-level set.

In first-order optimization methods, the Karush-Kuhn-Tucker (KKT) conditions are the
standard first-order stationarity concept. In the second-order case, the situation is not straight-
forward. In theory, many second-order optimality conditions can be derived, with or without
the presence of constraint qualifications and with distinct properties. Conditions may rely on
(i) generalized multipliers associated with the objective function (also called Fritz John mul-
tipliers [27, Thm. 3.50]), (ii) the whole set of Lagrange multipliers, (iii) only one Lagrange
multiplier [51, 15, 3], (iv) the critical cone, or (v) the critical subspace (weak critical cone).
See [16] for a discussion and more details on second-order optimality conditions.

The second-order condition that will be considered in the present work is the weak second-
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order condition (WSOC). It states that the Hessian of the Lagrangian at a KKT point is positive
semidefinite on the subspace orthogonal to the gradients of active constraints. Several reasons
lead us to consider this second-order condition. Usually, algorithms build a single approximation
of a Lagrange multiplier and not the whole set of Lagrange multipliers. Hence, conditions
depending on the whole set of Lagrange multipliers may be hard to check in practice. We also
do not consider Fritz John multipliers, since algorithms for solving subproblems usually treat
objective function and constraints in different manners, in a way that a multiplier associated with
the objective function is not present. Finally, checking the positive semidefiniteness of a matrix
over a subspace is a relatively easy task. In contrast, checking the positive semidefiniteness of
a matrix on a pointed cone is an NP-hard problem [50]. These considerations make WSOC a
natural second-order condition whose approximate satisfaction may be considered as stopping
criterion for practical algorithms. Other than that, up to the authors knowledge, no algorithm
with global convergence to points satisfying a stronger second-order stationarity concept is
known. Moreover, the discussion in [36], where a very simple algorithm is shown to converge to
a point that violates a strong optimality condition, suggests that such algorithms may not exist.

Second-order methods for constrained optimization have been devised in [6, 34, 14, 35, 49].
The Augmented Lagrangian algorithm proposed in this work differs from those methods in at
least two aspects – it has the flexibility introduced by the general lower-level approach and its
global convergence theory relies on weak assumptions. In particular, previous results are based
on the Mangasarian-Fromowitz constraint qualification, which is equivalent to the boundedness
of Lagrange multipliers; while in this work global convergence is guaranteed even when the
solution has unbounded Lagrange multipliers. When the algorithm converges to an infeasible
point, it is shown that the limit point is second-order stationary for the problem of minimizing
an infeasibility measure, which also enhances previous results. Since subproblems are not solved
exactly, the presented analysis relies on a perturbation of the second-order optimality conditions
defined in [8].

The rest of this work is organized as follows. Section 2 describes the Augmented Lagrangian
framework and gives some basic definitions. Section 3 presents the global convergence results.
A discussion and numerical illustrative examples are given in Section 4. Section 5 gives some
conclusions.

Notation. We denote by Rn the n-dimensional Euclidean space. By Rn+ we denote the set of
elements of Rn for which each component is non-negative. The notation max{0, a} represents
the maximum between a ∈ R and 0. If a ∈ Rn, max{0, a} is to be taken componentwise. The
symbol ‖ · ‖ stands for the Euclidean norm and ‖ · ‖∞ stands for the supremum norm. Given
a set-valued mapping F : Rs ⇒ R`, the sequential Painlevé-Kuratowski outer limit of F(z) as
z → z∗ is denoted by

lim sup
z→z∗

F(z) = {w∗ ∈ R` : ∃ (zk, wk)→ (z∗, w∗) with wk ∈ F(zk)}.

We say that F is outer semicontinuous at z∗ if lim supz→z∗ F(z) ⊆ F(z∗).
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2 Augmented Lagrangian framework

Consider the optimization problem

Minimize f(x) subject to x ∈ ΩL ∩ ΩU , (OP)

where ΩU = {x ∈ Rn | H(x) = 0, G(x) ≤ 0} and ΩL = {x ∈ Rn | h(x) = 0, g(x) ≤ 0}. We
assume that f : Rn → R, h : Rn → Rm, g : Rn → Rp, H : Rn → Rm̄ and G : Rn → Rp̄ are twice
continuously differentiable.

Constraints in ΩU are the so-called upper-level constraints and they will be penalized with
the use of the Powell-Hestenes-Rockafellar (PHR) Augmented Lagrangian function [53, 39, 55]
defined by

x 7→ L(x, v̄, ū; ρ) = f(x) +
ρ

2

(∥∥∥∥H(x) +
v̄

ρ

∥∥∥∥2

+

∥∥∥∥max

{
0, G(x) +

ū

ρ

}∥∥∥∥2
)
.

The main algorithm consists in a sequence of approximate minimizations of the Augmented La-
grangian L(x, v̄, ū; ρ) over the set ΩL followed by an update of the multipliers v̄ ∈ Rm̄ and ū ∈ Rp̄+
and the penalty parameter ρ > 0. This means that the penalty parameter ρ and the Lagrange
multipliers approximations v̄ and ū drive the feasibility with respect to ΩU ; while the feasibility
of the lower-level constraints ΩL is kept in each iteration. Each approximate minimization of
L(x, v̄, ū; ρ) is called an outer iteration. For updating the multipliers approximations, we adopt
the classical first-order update [53, 39, 17] but, following [4, 5, 6], we consider a safeguarded
multiplier estimate laying in a compact box. To update the penalty parameter ρ, we consider
a slight generalization of the update in [4, 5, 6] (see also [23]). We continue to describe the
Augmented Lagrangian framework.

Algorithm 2.1. Augmented Lagrangian framework [4, 5, 23].

Let vmin < vmax, umax > 0, γ > 1, τ ∈ [0, 1), v̄1 ∈ [vmin, vmax]m̄, and ū1 ∈ [0, umax]p̄ be given.
Initialize k ← 1.

Step 1. Find and approximate solution xk to

Minimize L(x, v̄k, ūk; ρk) subject to x ∈ ΩL. (1)

Step 2. Define
vk = v̄k + ρkH(xk) and uk = max{0, ūk + ρkG(xk)}

and compute v̄k+1 ∈ [vmin, vmax]m̄ and ūk+1 ∈ [0, umax]p̄ (typically, as the projections of vk and
uk onto the corresponding safeguarded boxes).

Step 3. Set

V k = max
{
G(xk),−ūk/ρk

}
.

If k = 1 or
max{‖H(xk)‖∞, ‖V k‖∞} ≤ τ max{‖H(xk−1)‖∞‖V k−1‖∞}
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then choose ρk+1 satisfying ρk+1 ≥ ρk. Otherwise, choose ρk+1 such that ρk+1 ≥ γρk.

Step 4. Set k ← k + 1 and go to Step 1.

The measure V k is a joint measure of feasibility (with respect to the inequality constraints)
and complementarity. Thus, max{‖H(xk)‖∞, ‖V k‖∞} measures the failure of the feasibility and
the complementarity at the iterate xk. Clearly, max{‖H(xk)‖∞, ‖V k‖∞} = 0 if, and only if,
H(xk) = 0, G(xk) ≤ 0, and (ūk)TG(xk) = 0. In order to control the growth of the penalty
parameter ρk, it is increased when the joint measure of feasibility and complementarity is not
sufficiently reduced. Safeguarded Lagrange multipliers approximations are considered in order
to obtain convergence to a global minimizer when subproblems are globally solved. See [5] or [23]
for further details on this framework.

In order to formulate precisely our general Augmented Lagrangian framework, we must
clarify what is meant by an approximate solution to subproblem (1). For a first-order Augmented
Lagrangian method, this means that xk is an εk-KKT point, for a given sequence of tolerances
εk → 0+, as defined below. Let us consider subproblem (1) with a general objective function, that
is, let us consider the general optimization problem with a continuously differentiable objective
function F : Rn → R given by

Minimize F (x) subject to h(x) = 0 and g(x) ≤ 0. (GOP)

Definition 2.1. (ε-KKT) Given ε ≥ 0, we say that x ∈ Rn is an ε-KKT point for the problem
(GOP) if there exist λ ∈ Rm and µ ∈ Rp+ such that

‖h(x)‖ ≤ ε, ‖max{0, g(x)}‖ ≤ ε, (2)∥∥∥∥∥∇F (x) +
m∑
i=1

λi∇hi(x) +

p∑
i=1

µi∇gi(x)

∥∥∥∥∥ ≤ ε, (3)

µi = 0 whenever gi(x) < −ε, i = 1, . . . , p. (4)

Note that ε-KKT for ε = 0 is equivalent to the KKT conditions and that (2), (3), and (4) are
perturbed measures of feasibility, optimality, and complementarity, respectively. An important
property of ε-KKT points is that, given a local minimizer x∗ of (GOP), for every ε > 0, there
exists a point xε ∈ Rn with ‖x∗−xε‖ < ε such that xε is an ε-KKT point. That is, even though
x∗ may not be a KKT point, due, for instance, to the failure of a constraint qualification, it can
be arbitrarily approximated by ε-KKT points. This motivates the following definition. See [7].

Definition 2.2. (Approximate-KKT [7]) We say that x∗ ∈ Rn is an Approximate-KKT (AKKT)
point for the problem (GOP) if there exist sequences εk → 0+ and xk → x∗ such that xk is εk-
KKT for all k. Equivalently, a feasible point x∗ is an AKKT point if there exist sequences
xk → x∗, {λk} ⊂ Rm, and {µk} ⊂ Rp+ such that

∇F (xk) +
m∑
i=1

λki∇hi(xk) +
∑

i∈A(x∗)

µki∇gi(xk)→ 0,

where A(x∗) = {i ∈ {1, . . . , p} | gi(x∗) = 0}.
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Theorem 2.1. ([7]) If x∗ is a local minimizer then x∗ is an AKKT point.

Thus, the AKKT condition is a true optimality condition independently of the validity of
any constraint qualification. Theorem 2.1 justifies the stopping criterion based on the KKT
condition which is used in several optimization methods for solving constrained optimization
problems, i.e. stopping when finding an ε-KKT point for a given ε > 0 small enough. A local
minimizer may not be a KKT point but we can always find a point sufficiently close to the local
minimizer satisfying approximately the KKT condition, which makes it reasonable to accept it
as possible solution.

The global convergence theory of the first-order version of Algorithm 2.1 is based on the
optimality condition AKKT as described below.

Theorem 2.2. ([5]) Let εk → 0+ be a sequence of tolerances. Assume that {xk} is a sequence
generated by Algorithm 2.1 and that, at Step 1, xk is computed as an εk-KKT point for prob-
lem (1), that is, for every k, (2–4) hold with x = xk, ε = εk, and F (x) = L(x, v̄k, ūk; ρk). Then,
every limit point x∗ of {xk} is an AKKT point of the infeasibility optimization problem

Minimize ‖H(x)‖2 + ‖max{0, G(x)}‖2 subject to x ∈ ΩL. (IOP)

Theorem 2.3. ([5]) Assume that {xk} is a sequence generated by Algorithm 2.1 as in Theo-
rem 2.2. Then, every feasible limit point x∗ ∈ ΩL∩ΩU of {xk} is an AKKT point of the original
optimization problem (OP).

In order to measure the strength of the optimality condition AKKT, it can be compared with
classical optimality conditions based on constraint qualifications. This can be achieved with the
following result.

Definition 2.3. (CCP [11]) We say that the Cone Continuity Property (CCP) with respect
to the constraints of problem (GOP) holds at a feasible point x∗ when the set-valued mapping
x 7→ K(x) is outer semicontinuous at x∗, that is, lim supx→x∗ K(x) ⊆ K(x∗), where

K(x) =


m∑
i=1

λi∇hi(x) +
∑

i∈A(x∗)

µi∇gi(x) | µ ∈ Rp+, λ ∈ Rm
 .

Theorem 2.4. ([11]) The Cone Continuity Property holds at x∗ with respect to the constraints
of problem (GOP) if, and only if, for every objective function F (x) in (GOP) such that x∗ is
AKKT, x∗ is also a KKT point.

In particular, assuming x∗ satisfies CCP with respect to the constraints in ΩL and with
respect to ΩL ∩ ΩU , allows us to rewrite Theorem 2.2 and 2.3 obtaining true KKT points and,
therefore, these results can be compared with other results that rely on a constraint qualification.
Note that Theorems 2.1 and 2.4 imply that CCP is a constraint qualification and that CCP is
weaker than most of the other constraint qualifications used to analyze global convergence of
algorithms. It is strictly weaker than CPG [10], CRSC [10], (R)CPLD [9, 54], (R)CRCQ [48, 40],
MFCQ [43], and LICQ [18]. For details, see [11] and the references therein.

The next section is devoted to developing an analogous second-order global convergence
theory for the Augmented Lagrangian method with general lower-level constraints when sub-
problems are approximately solved up to second-order.
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3 A second-order Augmented Lagrangian

In this section, we consider that, at Step 1 of Algorithm 2.1, the approximate solution xk is
obtained taking into account second-order information. To be precise, let us consider again
subproblem (1) with a general objective function given in (GOP).

For λ ∈ Rm and µ ∈ Rp+, let us consider the Lagrangian function x 7→ `(x, λ, µ) associated
with (GOP) given by

`(x, λ, µ) = F (x) +

m∑
i=1

λihi(x) +

p∑
i=1

µigi(x).

We recall that WSOC holds at a feasible point x∗ for the problem (GOP) if there exists
Lagrange multipliers (λ, µ) ∈ Rm × Rp+ with µi = 0 whenever gi(x

∗) < 0 such that

∇F (x∗) +
m∑
i=1

λi∇hi(x∗) +
∑

i∈A(x∗)

µi∇gi(x∗) = 0 (5)

and, in addition, for each d in the critical subspace

S = {d ∈ Rn | ∇hi(x∗)Td = 0, i = 1, . . . ,m, and ∇gi(x∗)Td = 0, i ∈ A(x∗)},

we have that

dT

∇2F (x∗) +
m∑
i=1

λi∇2hi(x
∗) +

∑
i∈A(x∗)

µi∇2gi(x
∗)

 d ≥ 0. (6)

Similarly to the KKT condition, which may fail to hold at a local minimizer without the
presence of a constraint qualification, the second-order condition WSOC holds at a local mini-
mizer under some constraint qualification. Not all constraint qualifications serve this purpose,
for instance, we can consider LICQ but not MFCQ. See [16] for more details on WSOC. Based
on this notion of second-order stationarity, a second order version of AKKT (called AKKT2)
was presented in [8]. Its definition is given below.

Definition 3.1. (AKKT2 [8]) We say that the feasible point x∗ ∈ Rn fulfills AKKT2 with respect
to (GOP) if there exist sequences xk → x∗, {λk} ⊂ Rm, {µk} ⊂ Rp+, {θk} ⊂ Rm+ , {ηk} ⊂ Rp+,
and δk → 0+, with µki = 0 and ηki = 0 whenever gi(x

∗) < 0, such that

∇`(xk, λk, µk) = ∇F (xk) +

m∑
i=1

λki∇hi(xk) +
∑

i∈A(x∗)

µki∇gi(xk)→ 0 (7)

and

∇2`(xk, λk, µk) +
m∑
i=1

θki∇h(xk)∇h(xk)T +
∑

i∈A(x∗)

ηki∇g(xk)∇g(xk)T + δkI (8)

is positive semidefinite for all k, where I is the identity matrix.
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In [8], it was proved that AKKT2 is an optimality condition, that is, when x∗ is a local
minimizer, there must exist sequences given by Definition 3.1, even if WSOC fails at x∗. Thus,
AKKT2 justifies a practical stopping criterion based on the approximate fulfillment of WSOC.
In this section, we prove global convergence results for Algorithm 2.1 based on the optimality
condition AKKT2.

In order to measure the strength of AKKT2, we recall the definition of the second-order
cone-continuity property (CCP2) from [8].

Definition 3.2. (CCP2 [8]) We say that CCP2 holds at a feasible point x∗ with respect to the
problem (GOP) when the set-valued mapping x 7→ K2(x) is outer semicontinuous at x∗, i.e.
lim supx→x∗ K2(x) ⊆ K2(x∗), where K2(x) is the cone given by

⋃
(λ, µ) ∈ Rm × Rp

+
µi = 0, i 6∈ A(x∗)


(
−
∑m

i=1 λi∇hi(x)−
∑

i∈A(x∗) µi∇gi(x), H
)

such that

dT
(
H +

∑m
i=1 λi∇2hi(x) +

∑
i∈A(x∗) µi∇2gi(x)

)
d ≥ 0 for all d ∈ S(x, x∗)


(9)

and

S(x, x∗) =
{
d ∈ Rn | ∇hi(x)Td = 0, i = 1, . . . ,m, and ∇gi(x)Td = 0, i ∈ A(x∗)

}
(10)

is the perturbed critical subspace around the point x∗.

The cone K2(x∗) allow us to rewrite WSOC in a geometrical way. In fact, a feasible point x∗

satisfies WSOC if, and only if, there exists (λ, µ) ∈ Rm × Rp+ with µi = 0 whenever gi(x
∗) < 0,

such that ∇`(x∗, λ, µ) = 0 and ∇2`(x∗, λ, µ) is positive semidefinite over the critical subspace
S(x∗, x∗) = S, which can be equivalently stated, shortly, as (∇F (x∗),∇2F (x∗)) ∈ K2(x∗). The
following theorem states precisely the strength of AKKT2.

Theorem 3.1. ([8]) CCP2 holds at x∗ with respect to the constraints of problem (GOP) if,
and only if, for all objective functions F (x) in (GOP) such that x∗ is AKKT2, x∗ also satisfies
WSOC.

In [8], it was proved that CCP2 is strictly weaker than the joint condition MFCQ+WCR,
CRCQ [40], and RCRCQ [48] and that it can be used in the global convergence analysis of the
second-order algorithms defined in [6, 12, 35]. In particular, in view of Theorem 3.1, global con-
vergence results under AKKT2 can be restated in terms of the usual WSOC under CCP2. This
means that even when MFCQ fails, and hence the solution does not have bounded multipliers,
a classical global convergence result is still available.

We turn now to the issue of developing an alternative definition of AKKT2 that relies on ε
perturbations of the second-order stationarity notion WSOC and that can be checked without
the knowledge of the limit point x∗. This would allow us to provide a tolerance for the solvability
of the subproblems at Step 1 of Algorithm 2.1 that guarantees that limit points of a sequence
generated by the algorithm satisfy AKKT2.

Lemma 3.1 ([17, 31]). Let P be a symmetric n × n matrix and a1, . . . , ar ∈ Rn. Define the
linear subspace C = {d ∈ Rn | aTi d = 0, i = 1, . . . , r}. Suppose that vTPv > 0 for all v ∈ C.
Then, there exist positive scalars ci, i = 1, . . . , r, such that P +

∑r
i=1 ciaia

T
i is positive definite.

8



Now, we provide an equivalent definition of AKKT2 based on ε perturbations. This equiva-
lence can be used as stopping criterion for constrained optimization algorithms.

Theorem 3.2. A point x∗ satisfies AKKT2 for problem (GOP) if, and only if, there are se-
quences xk → x∗, {λk} ⊂ Rm, {µk} ⊂ Rp+, and εk → 0+ such that

‖h(xk)‖ ≤ εk, ‖max{0, g(xk)}‖ ≤ εk, (11)

‖∇`(xk, λk, µk)‖ =

∥∥∥∥∥∇F (xk) +
m∑
i=1

λki∇hi(xk) +

p∑
i=1

µki∇gi(xk)

∥∥∥∥∥ ≤ εk, (12)

µki = 0 whenever gi(x
k) < −εk, (13)

and
dT∇2`(xk, λk, µk)d ≥ −εk‖d‖2, (14)

for all d ∈ Sk, where Sk is the subspace given by

Sk =

{
d ∈ Rn

∣∣∣∣∣ ∇hi(x
k)Td = 0, i = 1, . . . ,m, and

∇gi(xk)Td = 0, i = 1, . . . , p such that gi(x
k) ≥ −εk

}
. (15)

Proof: Let x∗ be an AKKT2 point and let {xk}, {λk}, {µk}, {θk}, {ηk}, and {δk} be the
sequences given by Definition 3.1. Define

εk = max
{
δk, ‖h(xk)‖, ‖max{0, g(xk)}‖, ‖∇`(xk, λk, µk)‖, {−gi(xk), i ∈ A(x∗)}

}
.

Clearly, we have that εk → 0+ and (11) and (12) hold. (13) also holds. In fact, if gi0(xk) < −εk,
or, equivalently, −gi0(xk) > εk ≥ max{i∈A(x∗)}{−gi(xk)}, then, gi0(x∗) < 0. Thus, µki0 = 0

by the definition of the sequence {µk}. Let us note that for k large enough, Sk = S(xk, x∗).
This comes from the fact that gi(x

∗) = 0 if, and only if, gi(x
k) ≥ −εk for k large enough. The

implication gi(x
k) < −εk ⇒ gi(x

∗) < 0 has already been proved; while the converse is a simple
consequence of the continuity of gi and εk → 0+. Note that S(xk, x∗) ⊆ Sk holds eventually
for any sequence εk → 0+; while the reciprocal inclusion is a consequence of this particular
definition of εk. For k large enough, let d ∈ Sk = S(xk, x∗). Using (8) and the definition of
S(xk, x∗) we get dT∇2`(xk, λk, µk)d ≥ −δk‖d‖2 ≥ −εk‖d‖2 and (14) holds.

Now let us assume that x∗ is such that there are sequences xk → x∗, {λk} ⊂ Rm, {µk} ⊂ Rp+,
and εk → 0+ such that (11–14) hold. The continuity of h and g together with (11) imply that x∗

is feasible. Also, if gi(x
∗) < 0, eventually, gi(x

k) < −εk for k large enough. Hence, (12) and (13)
imply (7). From (14), for k large enough, the matrix Pk = ∇2`(xk, λk, µk)+(εk+ 1

k )I is positive
definite on the subspace Sk ⊇ S(xk, x∗). Hence, defining δk = εk + 1

k → 0+, Lemma 3.1 with
matrix Pk and the subspace S(xk, x∗) implies the existence of θki , i = 1, . . . ,m, and ηki , i ∈ A(x∗),
such that (8) holds. 2

Note that a stronger equivalence can be proved without using the same tolerance εk in all
equations (11–14), as long as all the considered tolerances go to zero. Hence, Theorem 3.2
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suggests the following stopping criterion for methods solving constrained optimization problems
with convergence to second-order stationary points.

Given tolerances εfeas > 0, εopt > 0, εcompl > 0, and εcurv > 0 for feasibility, optimality,
complementarity, and curvature, respectively, accept xk as an approximation to a solution when

‖h(xk)‖ ≤ εfeas, ‖max{0, g(xk)}‖ ≤ εfeas, (16)

‖∇`(xk, λk, µk)‖ ≤ εopt, (17)

µki = 0 whenever gi(x
k) < −εcompl, (18)

and
dT∇2`(xk, λk, µk)d ≥ −εcurv‖d‖2, (19)

for all d ∈ Rn with ∇hi(xk)Td = 0, i = 1, . . . ,m, and ∇gi(xk)Td = 0 whenever gi(x
k) ≥

−εcompl. A verification of (19) can be done under mild computational cost, for instance, comput-
ing the smallest eigenvalue of the reduced matrix ∇2`(xk, λk, µk) in the corresponding subspace.
Similarly to the first-order case, when (11–14) hold for some λk ∈ Rm and µk ∈ Rp+, we say that
xk is εk-KKT2 for problem (GOP). Note that when x is ε-KKT2 with ε = 0, x satisfies WSOC.

In order to prove our second-order global convergence results based on AKKT2, a natural
way is to assume that subproblem (1) is approximately solved up to second-order, that is, xk

is εk-KKT2 with εk → 0+. This is reasonable since it can be expected that algorithms with
convergence to second-order stationary points will generate AKKT2 limit points, see [8]. But
there is a minor issue about the possible lack of second-order differentiability of the objective
function F (x) = L(x, v̄k, ūk; ρk) of subproblems (1). The problem here is that max{0, Gi(x) +
ūki /ρk}2 may not be two times differentiable at points x where Gi(x) + ūki /ρk = 0. To precisely
formulate our results, let us consider the general subproblem (GOP) where the objective function
F (x) is of the PHR form, that is,

F (x) = f0(x) +
1

2

r∑
i=1

max{0, fi(x)}2,

where fi : Rn → R are twice continuously differentiable for i = 0, 1, . . . , r. Following [6, Prop. 1],
we can see that the matrix

∇2Fε(x) = ∇2f0(x) +
r∑
i=1

max{0, fi(x)}∇2fi(x) +
∑

fi(x)≥−ε

∇fi(x)∇fi(x)T , ε ≥ 0, (20)

can play the role of a Hessian matrix of F in its Taylor expansion. In particular, second-order
optimality conditions for the minimization of F (x) with constraints can be formulated as if F (x)
were twice continuously differentiable using ∇2Fε(x) instead of the Hessian of F (x). Clearly,
when F is twice continuously differentiable, ∇2F = ∇2F0. The optimality condition presented
depends on ε ≥ 0 and is more stringent the closest ε is to zero.

We will say that x∗ is an AKKT2 point for problem (GOP) with the PHR objective function
F (x) when there are appropriate sequences such that (11–14) hold with ∇2F (xk) replaced by
∇2Fεk(xk), or, equivalently, when (7–8) hold with ∇2F (xk) replaced by

∇2f0(xk) +
r∑
i=1

max{0, fi(xk)}∇2fi(x
k) +

∑
{i | fi(x∗)≥0}

∇fi(xk)∇fi(xk)T .
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It is easy to see from the proof of Theorem 3.3 in [8] that AKKT2 for PHR functions in
the way that we have defined is an optimality condition. Also, Theorem 3.1 still holds for PHR
functions, where ∇2F (x) in the definition of WSOC is replaced by ∇2F0(x).

In the following theorem we prove that limit points of the second-order Augmented La-
grangian algorithm are second-order stationary points for the problem of minimizing the squared
infeasibility measure, which is a PHR function. This extends previous results where only first-
order conditions were obtained in [6] for the particular case of a compact box at the lower-level.

Theorem 3.3. Assume that εk → 0+ is a sequence of given tolerances and that {xk} is a
sequence generated by Algorithm 2.1 in such a way that, at Step 1, xk is εk-KKT2 for subprob-
lem (1), i.e. (11–14) hold with F (x) = L(x, v̄k, ūk; ρk) and ∇2F (xk) = ∇2Fεk(xk). Then, every
limit point x∗ of {xk} is an AKKT2 point for the infeasibility optimization problem

Minimize ‖H(x)‖2 + ‖max{0, G(x)}‖2 subject to x ∈ ΩL. (IOP)

Proof: Assume without loss of generality that xk → x∗. From (11), we get x∗ ∈ ΩL. Now, we
will examine two cases depending on whether the sequence {ρk} is bounded or not.

If {ρk} is bounded, Step 3 of Algorithm 2.1 ensures that max{‖H(xk)‖∞, ‖V k‖∞} → 0.
Hence H(xk)→ 0 and V k = max{G(xk),−ūk/ρk} → 0. Thus, H(x∗) = 0, G(x∗) ≤ 0, and x∗ is
a global minimizer of (IOP), in particular, an AKKT2 point.

Now, we consider the case in which the sequence {ρk} is unbounded. By some calculations
and using the notation ∇2L(xk, v̄k, ūk; ρk) = ∇2Lεk(xk, v̄k, ūk; ρk), we get

∇L(xk, v̄k, ūk; ρk) = ∇f(xk) +
m̄∑
i=1

(v̄ki +ρkHi(x
k))∇Hi(x

k) +

p̄∑
i=1

max{0, ūki +ρkGi(x
k)}∇Gi(xk)

and
∇2L(xk, v̄k, ūk; ρk) = ∇2f(xk) +

∑m̄
i=1(v̄ki + ρkHi(x

k))∇2Hi(x
k)+∑p̄

i=1 max{0, ūki + ρkGi(x
k)}∇2Gi(x

k)+∑m̄
i=1 ρk∇Hi(x

k)∇Hi(x
k)T+∑

{i | ūki +ρkGi(xk)≥−εk} ρk∇Gi(x
k)∇Gi(xk)T .

Substituting ∇L(xk, v̄k, ūk; ρk) and ∇2L(xk, v̄k, ūk; ρk) in (12) and (14), we get

‖Lk‖ ≤ εk (21)

and
dTMkd ≥ −εk‖d‖2 for all d ∈ Sk, (22)

where

Sk = {d ∈ Rn | ∇hi(xk)Td = 0, i = 1, . . . ,m, and ∇gi(xk)Td = 0 whenever gi(x
k) ≥ −εk},

Lk = ∇f(xk) +
∑m̄

i=1(v̄ki + ρkHi(x
k))∇Hi(x

k) +
∑p̄

i=1 max{0, ūki + ρkGi(x
k)}∇Gi(xk)+∑m

i=1 λ
k
i∇hi(xk) +

∑p
i=1 µ

k
i∇gi(xk),

Mk = ∇2f(xk) +
∑m̄

i=1(v̄ki + ρkHi(x
k))∇2Hi(x

k)+∑p̄
i=1 max{0, ūki + ρkGi(x

k)}∇2Gi(x
k) +

∑m̄
i=1 ρk∇Hi(x

k)∇Hi(x
k)T+∑

{i | ūki +ρkGi(xk)≥−εk} ρk∇Gi(x
k)∇Gi(xk)T +

∑m
i=1 λ

k
i∇2hi(x

k) +
∑p

i=1 µ
k
i∇2gi(x

k).
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Now, we proceed by dividing (21) and (22) by ρk. Noting that ρ−1
k (∇f(xk),∇2f(xk), v̄k, ūk, εk)

vanishes in the limit, given that {ρk} is unbounded and {v̄k} and {ūk} are bounded by Step 2
of Algorithm 2.1, we get∥∥∥∥∥

m̄∑
i=1

Hi(x
k)∇Hi(x

k) +

p̄∑
i=1

max{0, Gi(xk)}∇Gi(xk) +
m∑
i=1

λki
ρk
∇hi(xk) +

p∑
i=1

µki
ρk
∇gi(xk)

∥∥∥∥∥ ≤ ε′k
and

dT
(∑m̄

i=1Hi(x
k)∇2Hi(x

k) +
∑p̄

i=1 max{0, Gi(xk)}∇2Gi(x
k)+∑m̄

i=1∇Hi(x
k)∇Hi(x

k)T +
∑
{i | ūki +ρkGi(xk)≥−εk}∇Gi(x

k)∇Gi(xk)T+∑m
i=1

λki
ρk
∇2hi(x

k) +
∑p

i=1
µki
ρk
∇2gi(x

k)
)
d ≥ −ε′′k‖d‖2 for all d ∈ Sk,

(23)

for some ε′k → 0+ and ε′′k → 0+. Since, on the one hand, if Gi(x
∗) < 0 then we have that

max{0, Gi(xk)} = 0 and that ūki + ρkGi(x
k) < −εk for sufficiently large k, and, on the other

hand, ∇Gi(xk)∇Gi(xk)T is positive semidefinite, we can replace

p̄∑
i=1

max{0, Gi(xk)}∇2Gi(x
k) and

∑
{i | ūki +ρkGi(xk)≥−εk}

∇Gi(xk)∇Gi(xk)T

by ∑
{i | Gi(x∗)≥0}

max{0, Gi(xk)}∇2Gi(x
k) and

∑
{i | Gi(x∗)≥0}

∇Gi(xk)∇Gi(xk)T

in (23), respectively, yielding that x∗ is an AKKT2 point of (IOP). 2

Now, it remains to prove the relationship between the sequence of iterates given by Algo-
rithm 2.1 and the original problem (OP). The next theorem makes the precise statement.

Theorem 3.4. Let {xk} be a sequence generated by Algorithm 2.1 as in Theorem 3.3. Then,
every feasible limit point x∗ ∈ ΩL∩ΩU of {xk} is an AKKT2 point of the original problem (OP).

Proof: As usual, there is no loss of generality if we assume that {xk} converges to x∗ ∈ ΩL∩ΩU .
Following the proof of Theorem 3.3, we get that (21) and (22) hold, where Lk and Mk are defined
as in the proof of Theorem 3.3.

Set vk = v̄k + ρkH(xk) and uk = max{0, ūk + ρkG(xk)} ≥ 0. Now, we will prove that
uki = 0 whenever Gi(x

∗) < 0. We have two cases depending on whether the sequence of penalty
parameters {ρk} is bounded or not.

If {ρk} is bounded then Step 3 of the algorithm implies that V k = max{G(xk),−ūk/ρk} → 0.
Hence, if Gi0(x∗) < 0, for some i0, we have that ūki0 → 0 and ūki0 + ρkGi0(xk) < −εk for k large

enough. Thus, for every i such that Gi(x
∗) < 0, we get uki = 0. If {ρk} is unbounded, we also

have ūki + ρkGi(x
k) < −εk for k large enough whenever Gi(x

∗) < 0. From both cases, we get
that if Gi(x

∗) < 0 then uki = 0 for k large enough.
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Since for k large enough, uki = 0, ūki + ρkGi(x
k) < −εk whenever Gi(x

∗) < 0, and µki = 0 if
gi(x

∗) < 0, we can write Lk and Mk as follows:

Lk = ∇f(xk) +
∑m̄

i=1 v
k
i∇Hi(x

k) +
∑
{i | Gi(x∗)=0} u

k
i∇Gi(xk)+∑m

i=1 λ
k
i∇hi(xk) +

∑
{i | gi(x∗)=0} µ

k
i∇gi(xk),

Mk = ∇2f(xk) +
∑m̄

i=1 v
k
i∇2Hi(x

k) +
∑
{i | Gi(x∗)=0} u

k
i∇2Gi(x

k)+∑m
i=1 λ

k
i∇2hi(x

k) +
∑
{i | gi(x∗)=0} µ

k
i∇2gi(x

k)+∑m̄
i=1 ρk∇Hi(x

k)∇Hi(x
k)T +

∑
{i | Gi(x∗)=0} ρk∇Gi(xk)∇Gi(xk)T .

Furthermore, by (21) and (22), we obtain that Lk → 0 and dTMkd ≥ −εk‖d‖ for all d ∈ Sk,
where Sk is the subspace given in (15). To end the proof, consider the subspace Wk defined as

Wk =

{
d ∈ Rn

∣∣∣∣ ∇Hi(x
k)Td = 0, i = 1, . . . , m̄,∇Gi(xk)Td = 0 whenever Gi(x

∗) = 0,
∇hi(xk)Td = 0, i = 1, . . . ,m, and ∇gi(xk)Td = 0, whenever gi(x

∗) = 0

}
.

Clearly, gi(x
k) ≥ −εk for all k sufficiently large imply gi(x

∗) = 0. Thus, Wk ⊆ Sk. Then, the
matrix Pk = Mk + (εk + 1

k )I is positive definite on Wk. We get the desired result applying
Lemma 3.1 for the matrix Pk and the subspace Wk. 2

As a consequence of Theorems 3.1, 3.3, and 3.4 we obtain the following result.

Corollary 3.1. Let {xk} be a sequence generated by Algorithm 2.1 in such a way that, at Step 1,
we require that xk is εk-KKT2 for εk → 0+. Let x∗ be a limit point of {xk}.

1. If x∗ satisfies CCP2 for the infeasibility optimization problem (IOP) then x∗ satisfies
WSOC with respect to (IOP).

2. If x∗ is feasible and satisfies CCP2 for the original problem (OP) then x∗ satisfies WSOC
with respect to (OP).

Corollary 3.1 allows us to obtain a second-order stationarity result even if in a solution the
set of Lagrange multipliers is unbounded, that is, MFCQ fails. Furthermore, since RCRCQ
implies CCP2, the theory developed above guarantees convergence to second-order stationary
points when all the constraints are given by affine functions.

In comparison with the global convergence results presented for the Augmented Lagrangian
method introduced in [6], the following improvements apply: (a) a weaker constraint qualification
is employed, (b) lower-level constraints can be arbitrary, (c) subproblems can be solved slightly
more loosely, and (d) a second-order stationarity result also holds for the infeasibility problem.

The requirements employed in this work for an approximate solution to the subproblems are
slightly weaker than the ones required in [6, Thm. 2], where the particular case of a compact
box in the lower-level is considered. The condition described in [6] for solving the subprob-
lems corresponds to replacing the set Sk by the larger one {d ∈ Rn | ∇hi(xk)Td = 0, i =
1, . . . ,m, and ∇gi(xk)Td = 0 whenever gi(x

k) ≥ 0}, that requires more from the subproblem
solver. However, it should be noted that one could modify the definition of AKKT2 by re-
placing the range of the last sum in (8) from A(x∗) = {i ∈ {1, . . . , p} | gi(x∗) = 0} to the
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smaller index set {i ∈ {1, . . . , p} | gi(xk) ≥ 0}, arriving to a stronger optimality condition. The
condition considered in [6] to accept xk as an approximate subproblem’s solution is precisely
the εk-perturbation of this modified AKKT2 condition (analogous to the εk-perturbation of the
AKKT2 considered in Theorem 3.2). The fact that this is an optimality condition follows from
the proof of [8, Thm. 3.3]. The point is that it is not the case that feasible limit points of
the Augmented Lagrangian method fulfill this stronger optimality condition, independently of
the requirements made to consider xk an approximate solution to the kth subproblem. This
makes the formulation being introduced in the present work more natural, in the sense that
the (weaker) criterion used for the resolution of the subproblems coincides with the optimality
condition present in the global convergence theorem.

Similarly, with respect to the definition of AKKT2 for objective functions of the PHR form,
we note that although the optimality condition is stronger replacing ∇2F (xk) by ∇2F0(xk), it is
required less from an approximate solution to a subproblems by using ∇2Fεk(xk), which makes
it easier to the subproblem solver to stop and it is also compatible with the AKKT2 definition
for PHR functions.

In order to get a stronger global convergence theory, we can impose a slightly stronger
condition to accept xk as an approximate solution to the kth subproblem, as well as an addi-
tional smoothness assumption on the upper-level constraints. In [13], it has been suggested to
replace (4) in the definition of ε-KKT by the stronger condition given by

|λihi(x)| < ε, i = 1, . . . ,m, and |µigi(x)| < ε, i = 1, . . . , p. (24)

When (2), (3), and (24) hold for some λ ∈ Rm and µ ∈ Rp+, x is called an ε-CAKKT point,
where the letter C stands for “complementarity”. A limit of ε-CAKKT points with ε → 0+ is
called a CAKKT point. In [13], it was proved that CAKKT is an optimality condition and that
feasible limit points of a general lower-level Augmented Lagrangian are CAKKT points of the
original problem, given that an additional smoothness assumption on the upper-level constraints
is satisfied. In order to obtain those results, it was also assumed that each xk is an εk-KKT
point and that the lower-level constraints are simple in the sense that Lagrange multipliers
approximations associated with them can be assumed to be bounded.

Let us consider now the generalization of CAKKT to second-order given in [38]. We say that
x ∈ Rn is an ε-CAKKT2 point if, for some λ ∈ Rm, µ ∈ Rp+, θ ∈ Rm+ , and η ∈ Rp+, conditions
(2), (3), and (24) hold together with

∇2`(x, λ, µ) +
m∑
i=1

θi∇h(x)∇h(x)T +

p∑
i=1

ηi∇g(x)∇g(x)T + εI (25)

being positive semidefinite and

|θihi(x)2| < ε, i = 1, . . . ,m, and |ηigi(x)2| < ε, i = 1, . . . , p. (26)

A limit of ε-CAKKT2 points with ε → 0+ is called a CAKKT2 point. In [38] it was proved
that CAKKT2 is an optimality condition strictly stronger than CAKKT and AKKT2 together.
Let us present now the global convergence result of Algorithm 2.1 when subproblems are solved
obtaining, at each iteration, εk-CAKKT or εk-CAKKT2 points with εk → 0+, under the same
additional smoothness property on the upper-level constraints needed in the first-order case.
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Theorem 3.5. Assume that εk → 0+ is a sequence of given tolerances and that {xk} is a
sequence generated by Algorithm 2.1 where, at Step 1, xk is εk-CAKKT2 (or εk-CAKKT) for
subproblem (1), with F (x) = L(x, v̄k, ūk; ρk) and ∇2F (xk) = ∇2Fεk(xk). Then, any limit point
x∗ of {xk} is a CAKKT2 point (or CAKKT point, respectively) for the infeasibility optimization
problem (IOP). If, in addition, we assume (the generalized  Lojasiewicz inequality that says) that
there exist δ > 0 and a function ϕ : B(x∗, δ) → R with ϕ(x) → 0 as x → x∗ such that for all
x ∈ B(x∗, δ),

|Φ(x)− Φ(x∗)| ≤ ϕ(x)‖∇Φ(x)‖,

where Φ(x) = ‖H(x)‖2 + ‖max{0, G(x)}‖2, then, when x∗ is feasible for the original prob-
lem (OP), x∗ is a CAKKT2 point (or CAKKT point, respectively) of the original problem (OP).

Proof: For the lower-level constraints, the additional property follows easily from the additional
requirements (24) and (26) for the subproblems. When x∗ is feasible, under the generalized
 Lojasiewicz inequality, we can follow the proof of [13, Thm. 5.1] to see that ρkHi(x

k)2 → 0,
i = 1, . . . , m̄, ρkGi(x

k)2 → 0, i = 1, . . . , p̄, vkiHi(x
k) → 0, i = 1, . . . , m̄, and ukiGi(x

k) → 0,
i = 1, . . . , p̄. Now, defining θki = ρk, i = 1, . . . , m̄, and ηki = ρk if ūki + ρkGi(x

k) ≥ −εk, ηki = 0
otherwise, we can see that θkiHi(x

k)2 → 0, i = 1, . . . , m̄, and ηki Gi(x
k)2 → 0, i = 1, . . . , p̄, as in

the proof of [38, Thm. 3.1]. 2

4 Discussion and illustrative numerical examples

In many practical constrained optimization problems the constraints can be divided in two
classes: the ones that may be satisfied only at the end of the optimization process and the ones
that should be satisfied at every stage of it. The reason for that is that the fulfillment of the
first type of constraints is not mandatory, for many different reasons; while the fulfillment of
the second ones cannot be avoided, for example, because they involve definitions of variables.
Intermediate results in which the first constraints are not fully satisfied may be useful in practice
just because the second ones are. In those cases it is not sensible to deal with the constraints
in identical ways which means that, in the terminology of Augmented Lagrangian methods,
the mandatory constraints should be permanently included in the so called lower-level set, or
classified as subproblem constraints. See [23]. Therefore, at each subproblem of the Augmented
Lagrangian method one should solve a subproblem in which the only constraints are those of
the second class.

The family of Augmented Lagrangian methods introduced in the present work possesses
two desirable features at the same time – convergence to second-order stationary points and
general constraints in the so-called lower-level set. In the present section, we illustrate with
numerical examples the possible advantages of both features. However, it should be noted
that the implementation of this kind of method is limited by the existence of a method able
to tackle the subproblems. Candidates should exhibit convergence to second-order stationary
points and should be able to deal with the lower-level constraints by preserving feasibility of
the iterates. While, on the one hand, feasible second-order methods for bound-constrained
minimization exist (see, for example, [6]); on the other hand, feasible second-order methods
with arbitrary constraints are rare. In the present section, we focus on situations in which the
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lower-level constraints are given by Euclidean balls and, therefore, subproblems can be solved
by the trust-region method introduced in [44, 45].

4.1 Avoiding convergence to global maximizers

Regarding the convergence to second-order stationary points, it is not easy to exhibit numerical
experiments in which a method with convergence to second-order stationary points finds better
quality solutions (feasible points with smaller objective function value) than those found by a
method with convergence to first-order stationary points. A recent numerical experiment pre-
sented in [22], considering all the 87 unconstrained problems of the CUTEst collection [37] with
available second-order derivatives, illustrates this fact. In this experiment it was observed that
every time a first-order stopping criterion was satisfied, a second-order stopping criterion was
satisfied as well at the same time. The consequence of this was that the first- and second-order
methods being compared obtained equivalent results in all the problems in which both satisfied
a stopping criterion related to success (independently of being a first- or a second-order stopping
criterion). Ad hoc problems in which a first-order method converges to a global maximizer were
presented in [6] and [22], but this behavior is hardly observed in massive numerical experiments.
A similar example follows.

Consider the problem

Minimize x subject to x+ y2 = 0 and x2 + y2 ≤ 1.

It has a global maximizer at x = y = 0 and global minimizers at x = (1 −
√

5)/2 and

y = ±
√

(
√

5− 1)/2. Algencan [5] (see also [23]) is a well-established implementation of an

Augmented Lagrangian method that keeps the bound constraints as lower-level constraints (and
penalizes any other type of constraint) and solves the subproblems with a variety of methods for
bound-constrained minimizations, all of them with convergence to first-order stationary points.
When Algencan is applied to the problem above starting from (2, 0)T , due to the problem’s
symmetry with respect to the the x-axis, it converges to the global maximizer (x, y)T = (0, 0)T

(with λ1 = −1 and µ1 = 0). Consider now the possibility of applying an Augmented Lagrangian
method that keeps x2 + y2 ≤ 1 as a lower-level constraint and finds second-order stationary
points of the subproblems. The subproblem at the kth iteration is of the form

Minimize x+
ρk
2

(
x+ y2

)2
subject to x2 + y2 ≤ 1,

where, with the simple purpose of simplifying the presentation, we consider v̄k1 = 0 for all
k (assuming that parameters v̄min and v̄max are such that 0 ∈ [v̄min, v̄max]). Figure 1 shows
a sequence of approximate second-order stationary points for the subproblems, for increasing
values of ρk, that converges to one of the global minimizers.

4.2 Avoiding the greediness phenomenon

Penalty and Augmented Lagrangian methods may be affected by the behavior of the objective
function outside the feasible region. If the objective function takes very low values at infeasible
points, iterates of the subproblem solver may be attracted by undesirable minimizers or they may
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Figure 1: Sequence {xk} of second-order stationary points of the kth subproblem for increasing
values of ρk. The whole sequence satisfies the lower-level constraint x2 + y2 ≤ 1. The infeasible
point x1 ≈ (−1, 0)T (with respect to the upper-level constraint x + y2 = 0) corresponds to a
small value of ρ1 = 0.1; while the final iterate ≈ ((1 −

√
5)/2,−((

√
5 − 1)/2)1/2)T corresponds

to ρk = 100 and it satisfies the penalized constraint with tolerance 10−8.

even diverge, especially at the first outer iterations, and overall convergence may fail to occur.
This phenomenon was named “greediness” in [29], where a Proximal Augmented Lagrangian
method was proposed as an alternative to overcome it. In [18, pp.418–419], it was suggested
as a remedy that an external penalty function with exponent bigger than 2 should be used;
while, in [20], an outer trust-region approach for the same purpose was introduced. None of
these alternatives is necessary if the greediness phenomenon is caused by the penalization of a
constraint that can be kept at the lower-level set.

Consider the problem

Minimize x5 subject to x2 ≤ 1 and x ≤ 0.

If the bound constraint is kept at the lower-level set and the ball constraint is penalized, as it is
the case in Algencan, subproblems are of the form

Minimize x5 +
ρk
2

(
x2 − 1

)2
subject to x ≤ 0.

Clearly, subproblems are unbounded from below for any value of ρk and, therefore, the Aug-
mented Lagrangians’ theory does not help to predict the practical behavior of the method in
this case. Even adding an artificial lower bound of the form −1020 ≤ x may not help to avoid
the greediness phenomenon. If x = −1020 is obtained as a solution to the first subproblem and,
as it is usual in practice, it is used as initial guess for solving the next subproblem, many outer
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iterations and increases of the penalty parameter will be needed to obtain a solution to the orig-
inal problem. Moreover, it is well-known that large penalty parameters promote ill-conditioned
subproblems, numerical issues, and, eventually, practical failure of the inner solver to satisfy the
subproblems’ stopping criterion. This is what happens with Algencan. On the other hand, if
the ball constraint can be kept as a lower-level constraint, subproblems are of the form

Minimize x5 +
ρk
2

max{0, x}2 subject to x2 ≤ 1

and, in this particular case, convergence to the global minimizer x = −1 is expected to occur at
the first outer iteration.

4.3 Dealing with functions that are undefined outside a given domain

Consider an objective function f : Rn → R that should be minimized within Ω1 ∩ Ω2 and such
that f or its derivatives are not well-defined outside Ω1. In this case, it appears to be no other
choice other than setting the lower-level set ΩL = Ω1 and the upper-level set ΩU = Ω2; i.e.
subproblems must consist on minimizing the Augmented Lagrangian that penalizes Ω2 subject
to Ω1. Three simple examples follow.

Example 1: In [25], a location problem was introduced. The problem consists in finding lo-
cations c0, c1, . . . , cN ∈ R2 such that

∑N
i=1 ‖c0 − ci‖2 is minimized subject to ci ∈ Ci ∩ Ωi for

i = 0, . . . , N , where Ci = {x ∈ R2 | ‖ci − c̄i‖ ≤ ri} for given constants c̄i ∈ R2 and ri ∈ R and
it is assumed that C0 ∩ Ci = ∅ for all i > 0. If all constraints are penalized, subproblems are
unconstrained and they are not differentiable if c0 = ci for some i > 0. This inconvenience is
avoided if constraints ci ∈ Ci for i = 0, . . . , N are kept as lower-level constraints.

Example 2: Similar examples occur when the potential energy function
∑

i 6=j 1/‖pi − pj‖2 is
minimized in order to obtain “well-distributed” points pi within a given region (see, for example,
[52], where this function was considered as an ingredient for solving packing problems). It may
be the case that keeping some constraints in the lower-level set avoids the regions where the
objective functions is not well-defined (pi = pj for some i 6= j).

Example 3: There exists a huge variety of packing problem. They basically consist in placing
items within a container without overlapping. One of the simplest packing problems consists in
maximizing the radius r of N identical circles that must be packed within a given container. On
the one hand, this simple geometrical problem has received the attention of several researchers
in the last decades (see [26] and the references therein). On the other hand, this problem is
an over-simplification of a packing problem that applies to building initial configurations for
molecular dynamics simulations [47, 46] (see also [23, p.165]).

Consider the problem of packing identical circles within the “ring-shape” region displayed
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in Figure 2. The problem can be modelled as

Maximize r

subject to (xi − xj)2 + (yi − yj)2 ≥ (2r)2 for i = 1, . . . , N, j = i+ 1, . . . , N,

x2
i + y2

i ≤ (Rout − r)2 for i = 1, . . . , N,

x2
i + y2

i ≥ (Rin + r)2 for i = 1, . . . , N,

The first constraint avoids the overlapping between the circles being packed; while the two
remaining constraints represent the fact that the items must be placed within the ring-shape
container with an inner circle of radius Rin and an outer circle of radius Rout. Constraint
x2
i + y2

i ≥ (Rin + r)2 may also be written as

log[(Rout − r)2 − (x2
i + y2

i )] ≤ c, (27)

where c = log[(Rout−r)2− (Rin +r)2]. This equivalent constraint is not well-defined if x2
i +y2

i ≤
(Rout − r)2 does not hold and, therefore, the latter constraint should be kept as a lower level
constraint. Of course, (27) is an unhappy modelling choice, but it illustrates a situation that
may occur in more complex real applications.

Figure 2: N = 10 identical circles of maximizing radius r ≈ 0.4586 packed within a ring-shape
container given by an inner circle with radius Rin = 0.7 and an outer circle with radius Rout = 2.

5 Conclusions

Typical implementations of Augmented Lagrangian methods consider subproblems with simple
constraints such as bound-constraints (as is the case of the well-known packages Algencan [5]
and Lancelot [30]) or linear constraints (see, for example, [21]). However, in a recent work [19],
the general lower-level theory of the first-order Augmented Lagrangian developed in [5] has been
exploited to take a radical change on the classical approach, by penalizing the box constraints
and keeping the equality constraints as subproblems’ constraints. Similarly to the interior point
approach, a Newtonian method applied to the KKT conditions of the subproblems has been
implemented, with numerical results comparable to the classical approach employed by Algen-
can. This state of facts motivated us to further develop the second-order theory of Augmented
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Lagrangian methods considered in [6] including general lower-level constraints and using modern
second-order optimality conditions [8, 38] associated with weak constraint qualifications.

Several recently-developed affordable algorithms for unconstrained optimization [1, 2, 6, 22,
28, 41] compute the least eigenvalue of the Hessian matrix at each iteration, and the corre-
sponding eigenvector when necessary, in order to improve the complexity of finding a first-order
stationary point, or to guarantee convergence to a second-order stationary point. This is par-
ticularly relevant in some machine and statistical learning problems [42], where a second-order
stationary point is a provably good substitute for an actual solution. Dealing with second-order
information is not straightforward in general constrained optimization, but an analogous case
would be when an algorithm computes directions of negative curvature in the kernel of the
Jacobian of active lower-level constraints. In this case, one should expect that a second-order
stopping criterion could be checked at a reasonable cost. This paper provided an Augmented
Lagrangian framework to deal with constraints in those cases. Our future research will focus
on developing an affordable second-order variant of the Newtonian Augmented Lagrangian with
equality-constrained subproblems developed in [19], exploiting directions of negative curvature
and the general theory developed in this paper.
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