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Abstract

In [E. G. Birgin, R. Castillo and J. M. Mart́ınez, Computational Optimization and Applications
31, pp. 31–55, 2005], a general class of safeguarded augmented Lagrangian methods is introduced
which includes a large number of different methods from the literature. Besides a numerical com-
parison including 65 different methods, primal-dual global convergence to a KKT point is shown
under a (strong) regularity condition. In the present work, we generalize this framework by consid-
ering also classical/non-safeguarded Lagrange multipliers updates. This is done in order to give a
rigorous theoretical study to the so-called hyperbolic augmented Lagrangian method, which is not
safeguarded, while also including the classical Powell-Hestenes-Rockafellar augmented Lagrangian
method. Our results are based on a weak regularity condition which does not require boundedness
of the set of Lagrange multipliers. Somewhat surprisingly, in non-safeguarded methods, we show
that the penalty parameter may be kept constant at every iteration even in the lack of convexity
assumptions. Numerical experiments with all the problems in the Netlib and CUTEst collections
are reported to compare and discuss the different approaches.

Key words: Nonlinear optimization, augmented Lagrangian methods, convergence, numerical ex-
periments.
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1 Introduction

Augmented Lagrangian methods are powerful tools for solving constrained non-convex optimiza-
tion problems. The popular Algencan implementation [1, 2, 20, 21] considers the Powell-Hestenes-
Rockafellar augmented Lagrangian function where the approximate Lagrange multipliers lie in a com-
pact box (safeguarding strategy) with the goal of defining well-conditioned subproblems. This provides
a strong and well studied global convergence theory similar to the one of the external penalty method.
In particular, all limit points of the primal sequence are stationary to the problem of minimizing the
squared infeasibility. Therefore, the algorithm tends to find feasible limit points whenever they exist.
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When the limit point is feasible, a rich theory of sequential optimality conditions [5, 15, 11, 10, 3, 4]
and constraint qualifications [9, 7, 8] is available in order to quantify its strong global convergence
properties. However, in the actual implementation, the safeguarding box is taken to be of the order
of 1/ϵmach, where ϵmach ≈ 10−16 is the machine precision. Therefore the safeguarding strategy is
almost never employed. This suggests that understanding the global convergence theory of the non-
safeguarded/classical augmented Lagrangian algorithm may help in explaining the practical behavior
of Algencan.

In [13], a framework of safeguarded augmented Lagrangian methods was introduced, which includes
a large number of different augmented Lagrangian methods. In this paper we focus on two types
of augmented Lagrangian functions, depending on the way the Lagrange multipliers updates are
computed, with the goal of building a broader class of augmented Lagrangian methods, including
both the safeguarded algorithm and the classical one. We focus mainly on two variants of augmented
Lagrangian methods: the Powell-Hestenes-Rockafellar function (additive Lagrange multiplier update),
including both safeguarded and non-safeguarded variants, and the hyperbolic function (multiplicative
update) since this algorithm is not covered in the framework of [13], and no global convergence result
is available for this method.

When considering a non-safeguarded method, either with an additive or multiplicative Lagrange
multiplier update, several differences appear with respect to the corresponding safeguarded method.
It is not the case that a stationary point for an infeasibility measure is always computed without
additional assumptions. Therefore, we must employ a so-called “extended” constraint qualification,
which is defined for infeasible points. The constraint qualification must then be strong enough in
order to ensure boundedness of the dual sequence, implying primal feasibility. Somewhat surprisingly,
the constraint qualification we found for this purpose (which we call strong-quasinormality) is strictly
stronger than the quasinormality condition employed in the safeguarded method. It is also the case
that we can only prove results when the primal iterate converges; that is, if the primal iterate has
more than one limit point, we can not state that they are stationary under reasonable assumptions.
Despite these drawbacks, the surprising positive effect of considering non-safeguarded updates is that
the penalty parameter does not need to increase to infinity.

We run numerical experiments with a strict and a loose safeguarding box and with different penalty
parameter updates using the Netlib collection of linear programming problems and the CUTEst col-
lection of nonlinear programming problems, where we attest the superior performance of using a large
safeguarding box. In particular, a small safeguarding box is associated with a larger penalty param-
eter. The strategy of keeping a constant penalty parameter was less efficient than the other ones.
However, surprisingly, a primal-dual iterate satisfying the Karush-Kuhn-Tucker conditions is found
more frequently. This suggests that the actual strategy of updating the penalty parameter in Algencan
is perhaps too aggressive, and a more controlled update should be considered in future studies.

The rest of this paper is organized as follows. A general augmented Lagrangian framework and
its global convergence theory is introduced in Section 2. Particular cases are analyzed in Section 3.
Numerical experiments are described and discussed in Section 4. The last section provides conclusions
and lines for future research.

Notation. If ℓ, u ∈ Rn, we denote by [ℓ, u] the box {x ∈ Rn | ℓ ≤ x ≤ u}. We denote by P[ℓ,u](·) the
projection operator onto [ℓ, u]. We use ∥ · ∥ and ∥ · ∥∞ to denote the Euclidean and infinity norms,
respectively. We use (·)+ = max{0, ·} to denote the projection onto the non-negative reals R+ and if
v ∈ Rr, v+ denotes the vector with components (vi)+ for i = 1, . . . , r.
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2 A general augmented Lagrangian algorithm

We consider the nonlinear programming problem with inequality constraints as follows

Minimize f(x) subject to g(x) ≤ 0, (1)

where f : Rn → R and g : Rn → Rp are continuously differentiable functions with g := (g1, . . . , gp).
Equality constraints can also be considered under well known adaptations, however we deal only with
inequalities to keep the presentation clearer. In our numerical experiments we will assume that explicit
bound constraints for each variable are available, which we also omit here. The Karush/Kuhn-Tucker
(KKT) conditions for problem (1) are satisfied at a primal-dual pair (x, µ) ∈ Rn × Rp when the
following conditions are satisfied

∇L(x;µ) = 0, (2)

µi = 0 if gi(x) < 0, i = 1, . . . , p, (3)

g(x) ≤ 0 and µ ≥ 0, (4)

where the Lagrangian function is given by x 7→ L(x;µ) := f(x)+µT g(x) and µ ∈ Rp are the Lagrange
multipliers associated with x. Under a constraint qualification, the existence of Lagrange multipliers
satisfying the KKT conditions is necessary for the optimality of x.

In order to define our general class of augmented Lagrangian methods, let us assume that a so-
called augmented Lagrangian function x 7→ L(x; µ̄, ρ) ∈ R is given, where µ̄ ∈ Rp are Lagrange
multipliers subproblem parameters and ρ > 0 is the penalty parameter for the current iteration. A
primal-dual iterate (x, µ) is then obtained by approximately minimizing the augmented Lagrangian
function and applying an update formula µ = ϕ(x, µ̄, ρ) ∈ Rp, where the function ϕ is also given in
advance (which depends on the choice of L). The subproblem parameters µ̄ and ρ are then updated,
if needed, in order to drive the primal-dual iterates to a KKT pair for the original problem.

The main characteristic of any augmented Lagrangian function L(x; µ̄, ρ) and the companion La-
grange multiplier update formula ϕ(x, µ̄, ρ) is the relationship between the gradient of the augmented
Lagrangian function with the gradient of the Lagrangian as follows:

∇L(x; µ̄, ρ) = ∇L(x;ϕ(x, µ̄, ρ)), (5)

which we will assume to hold throughout the paper. For instance, the Powell-Hestenes-Rockafellar
(PHR) augmented Lagrangian function is defined as x 7→ L(x; µ̄, ρ) := f(x)+ ρ

2

∥∥(g(x) + µ̄/ρ)+
∥∥2 with

ϕi(x, µ̄, ρ) := (µ̄i + ρgi(x))+, i = 1, . . . , p. It is easy to verify that (5) holds in this case. This property
hints to the idea that unconstrained minimization of L would be enough in order to achieve (2) for a
suitable updated Lagrange multiplier approximation. Some additional conditions are needed in order
to drive this iterative procedure to a KKT pair satisfying (2–4). We are ready to state the general
algorithm:

Algorithm 2.1: General augmented Lagrangian algorithm.

Step 0. (Initialization) Take εk → 0+. Set k ← 1, µ̄1 ∈ Rp and ρ1 > 0.

Step 1. (Solve subproblem) Compute xk ∈ Rn such that ∥∇L(xk; µ̄k, ρk)∥ ≤ εk.

Step 2. (Estimate multipliers) Compute µk := ϕ(xk, µ̄k, ρk).

Step 3. (Update subproblem parameters) Compute µ̄k+1 ∈ Rp and ρk+1 ≥ ρ1.
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Step 4. (Continue) Set k ← k + 1 and go to Step 1.

When implementing Algorithm 2.1, one must consider a strategy for updating the Lagrange mul-
tiplier parameter µ̄k and the penalty parameter ρk. A common approach for updating the penalty pa-
rameter is to increase it when feasibility and complementarity are not significantly improved. Namely,
we may consider the particular computation of ρk+1 in Step 3 as follows:

Step 3’. (Update penalty parameter) Given algorithmic parameters τ ∈ [0, 1) and γ > 1, set Vk :=
∥g(xk)+∥∞ and Ck := max{|µki gi(xk)|, i = 1, . . . , p}. If k = 1 or

max{Vk, Ck} ≤ τ max{Vk−1, Ck−1},

set ρk+1 = ρk. Otherwise, set ρk+1 = γρk.

Under this strategy, it is clear that when the sequence {ρk}k∈N is bounded, independently of any
additional assumption, one must have ∇L(xk;µk)→ 0 (from Step 1) and g(xk)+ → 0 and µki gi(x

k)→
0, i = 1, . . . , p, from Step 3’.

Finally, we must specify how the Lagrange multiplier subproblem parameter µ̄k+1 can be computed.
Although our general results rely on assumptions which are independent of this choice, the particular
examples we consider admit two possible updates of this parameter. The safeguarded update is defined
when {µ̄k}k∈N is chosen as an arbitrary bounded sequence, while the classical/standard update is given
by µ̄k+1 := µk. Somewhat surprisingly, the global convergence properties of these two variants are not
the same (see [27]) as we shall discuss next. In [13], a general framework of augmented Lagrangian
functions was presented, however they only considered safeguarded methods, where {µ̄k} is bounded,
disregarding the classical choice. Our framework will be general enough to include all safeguarded
methods studied in [13] but also other augmented Lagrangian methods that cannot be safeguarded at
all. In particular, our framework does not need any assumption on the sequence {µ̄k} or the sequence
of penalty parameters {ρk}. We start with the assumption that the augmented Lagrangian function
must comply.

Assumption A0 For all µ̄ ∈ Rp and ρ > 0, the function x 7→ L(x; µ̄, ρ) is continuously differentiable
and there exists a function ϕ(x, µ̄, ρ) ∈ Rp such that ∇L(x; µ̄, ρ) = ∇L(x;ϕ(x, µ̄, ρ)) for all x ∈ Rn,
µ̄ ∈ Rp, and ρ > 0.

Now, let {xk}k∈N be a sequence generated by our general augmented Lagrangian algorithm and

let us take K ⊆ N an infinite set such that xk
k∈K→ x∗, for some x∗ ∈ Rn. We assume the following:

Assumption A1 lim inf
k∈K

ϕ(xk, µ̄k, ρk) ≥ 0.

Assumption A2 For all i = 1, . . . , p, if gi(x
∗) < 0 then ϕi(x

k, µ̄k, ρk)
k∈K→ 0.

Assumption A3 If {ϕ(xk, µ̄k, ρk)}k∈K is bounded then g(x∗) ≤ 0.

Assumption A4 For any infinite subset K0 ⊆ K, if {ϕi(xk, µ̄k, ρk)}k∈K0 → +∞ for some i =
1, . . . , p, then there exists infinitely many indexes ℓ ∈ K such that gi(x

ℓ) > 0.
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Assumptions A0-A3 are slight generalizations of the ones considered in [13] to include safeguarded
and classical algorithms. Under these assumptions, it easy to show that under the so-called Extended-
MFCQ condition1, all limit points of {xk}k∈N are KKT points of the original problem and the corre-
sponding dual sequence is bounded with the limit points corresponding to Lagrange multipliers. This
is essentialy what is done in [13].

Notice that the result concerns the limit points of the sequence {xk}k∈N without proving its
convergence or boundedness, not even its existence. In practice, however, this can be circumvented
by considering an additional compact box constraint to the original problem, which are passed as
constraints to the augmented Lagrangian subproblems without hindering its convergence properties
(see [13] for details). In this manner, the solution to the subproblem is guaranteed to exist and to lie
within a compact set (in particular, a limit point must exist).

Since µk = ϕ(xk, µ̄k, ρk), it is easy to see that under Assumptions A0-A3, boundedness of {µk}k∈K
is enough to show that all its limit points are Lagrange multipliers associated with the limit point
x∗, which then must be feasible. The Extended-MFCQ condition gives a standard way of bounding
this sequence. By including the additional Assumption A4, we are able to obtain boundedness of
the sequence {µk}k∈K under a slightly weaker constraint qualification related with the quasinormality
condition [26].

Definition 2.1 We say that x∗ ∈ Rn (not necessaritly feasible) satisfies the strong-quasinormality

condition when there is no non-zero α ∈ Rm, α ≥ 0, together with sequences yi,k
k∈N→ x∗ such that∑p

i=1 αi∇gi(x∗) = 0 with gi(y
i,k) > 0 for all k whenever αi > 0, i = 1, . . . , p.

Definition 2.1 is strictly weaker than Extended-MFCQ, since while Extended-MFCQ forbids the
existence of any α, Definition 2.1 forbids the existence of only some particular α’s (the ones that admit
sequences {yi,k}k∈N with some properties related to α). To see that the implication is strict, take for
instance the one-dimensional constraint set defined by the single inequality constraint g(x) := −x2 ≤ 0
at x∗ = 0. Extended-MFCQ does not hold given that ∇g(x∗) = 0 thus α∇g(x∗) = 0 for α = 1.
However, since g(x) := −x2 is such that g(x) ≤ 0 for all x, there can not exist a sequence yk → x∗

such that g(yk) > 0 for all k. That is, strong-quasinormality holds. We present next the global
convergence properties of our proposed framework.

Theorem 2.1 Let {xk}k∈N be a sequence generated by Algorithm 2.1. Let K ⊆ N be any infinite

subset such that xk
k∈K→ x∗ for some x∗ ∈ Rn that satisfies strong-quasinormality and suppose that

Assumptions A0–A4 are satisfied. Then, {µk}k∈K is bounded and, in particular, x∗ is feasible and
satisfies the KKT conditions where any limit point of {µk}k∈K is a Lagrange multiplier associated
with x∗.

Proof: By Steps 1 and 2 of the algorithm, together with Assumption A0, we have that∇L(xk;µk)→ 0,
that is,

∇f(xk) +
p∑

i=1

µki∇gi(xk)→ 0.

By Assumption A2 and the continuity of the gradients, we may restrict the sum to i : gi(x
∗) ≥ 0.

Assume {µk}k∈K is not bounded and take a subsequence K0 ⊆ K such that ∥µk∥ k∈K0→ +∞ and

1The point x∗ ∈ Rn satisfies Extended-MFCQ when there is no 0 ̸= α ≥ 0 such that
∑

i:gi(x∗)≥0 αi∇gi(x
∗) = 0. When

x∗ is feasible, this is known as the Mangasarian-Fromovitz Constraint Qualification (MFCQ). Notice that Extended-
MFCQ always holds when the feasible set satisfies Slater’s condition.
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µk

∥µk∥
k∈K0→ α with 0 ̸= α ≥ 0 and we conclude that∑

i:gi(x∗)≥0

αi∇gi(x∗) = 0.

In addition, for every i such that αi > 0, we must have from the definition of α that µki
k∈K0→ +∞.

Therefore, from Assumption A4, we may define a sequence yi,ℓ = xℓ for infinitely many ℓ ∈ K such
that gi(x

ℓ) > 0. The existence of such sequences together with α contradicts the definition of strong-
quasinormality. Therefore {µk}k∈K is bounded and by Assumption A3, x∗ is feasible. Considering
Assumption A1, it is clear that any limit point of {µk}k∈K satisfies conditions (2-4) for x = x∗. □

3 Particular augmented Lagrangian methods

In this section we show some classes of augmented Lagrangian methods that fit our framework.

3.1 Powel-Hestenes-Rockafellar augmented Lagrangian

Let us consider the PHR augmented Lagrangian function

L1(x; µ̄, ρ) := f(x) +
ρ

2

∥∥∥∥(g(x) + µ̄

ρ

)
+

∥∥∥∥2 ,
where ϕ(x, µ̄, ρ) := (µ̄+ρg(x))+ satisfies Assumption A0. Let us consider two versions of the algorithm:
the safeguarded one where {µ̄k}k∈N is an arbitrary bounded sequence and the classical one where
µ̄k := µk−1 for all k > 1.

Theorem 3.1 Let {xk}k∈N be a sequence generated by Algorithm 2.1 with L = L1 and {µ̄k}k∈N is an

arbitrary bounded sequence with ρk → +∞. For any infinite subset K ⊆ N such that xk
k∈K→ x∗ for

some limit point x∗ ∈ Rn, Assumptions A0–A4 are satisfied.

Proof: We consider µk = (µ̄k + ρkg(x
k))+. Since µk ≥ 0, Assumption A1 follows. Now if gi(x

∗) < 0,

then ρkgi(x
k)

k∈K→ −∞ from the continuity of gi(·) and the fact that ρk → +∞. It follows from the
boundedness of {µ̄k}k∈N that µki = 0 for all sufficiently large k ∈ K. Thus Assumption A2 follows.

Similarly, if gi(x
∗) > 0, one has ρkgi(x

k)
k∈K→ +∞ and thus µki

k∈K→ +∞ which gives Assumption A3.

To see that Assumption A4 follows, suppose that for some infinite subset K0 ⊆ K one has µki
k∈K0→ +∞.

Therefore, ρkgi(x
k)

k∈K0→ +∞ and hence gi(x
k) > 0 for all k ∈ K0 large enough. □

Notice that in the proof of Theorem 3.1 we where able to find a single sequence yk := yi,k with
gi(y

k) > 0 for all i such that αi > 0. That is, boundedness of the dual sequences generated by the
safeguarded PHR augmented Lagrangian method is valid under weaker assumptions. See [6] for more
details.

Theorem 3.2 Let {xk}k∈N be a sequence generated by Algorithm 2.1 with L = L1 and µ̄k := µk−1

for all k > 1. Assume that xk
k∈N→ x∗ for some limit point x∗ ∈ Rn. Then Assumptions A0–A4 are

satisfied with K = N.

6



Proof: Take µk = (µk−1+ρkg(x
k))+ ≥ 0, k > 1, and Assumption A1 follows. If gi(x

∗) < 0, we have for
some c > 0 that ρkgi(x

k) < −c < 0 for sufficiently large k. Thus 0 ≤ µki ≤ µ
k−1
i for all sufficiently large

k with µki < µk−1
i − c if µki > 0. Therefore it must be the case that µki = 0 for all sufficiently large k.

This gives Assumption A2. The proof for Assumption A3 follows similarly since when gi(x
∗) > 0 we

must have ρkgi(x
k) > c > 0 for some c > 0 and all sufficiently large k; then µki ≥ µk−1

i + c holds for

all sufficiently large k and µki → +∞. For Assumption A4, assume that µki
k∈K0→ +∞ for some infinite

subset K0 ⊆ N. Then, there must exist infinite subsets Ki ⊆ N such that µki > µk−1
i for all k ∈ Ki,

since otherwise µki ≤ µk−1
i for all sufficiently large k, which cannot occur. Therefore, for k ∈ Ki it

holds that µki = µk−1
i + ρkgi(x

k) > µk−1
i , which implies that gi(x

k) > 0 for all k ∈ Ki. Thus defining
yi,k = xk for k ∈ Ki proves Assumption A4. □

Notice that the classical algorithm requires the assumption that the whole sequence {xk}k∈N
converges, while the safeguarded algorithm may consider any limit point of the sequence. This phe-
nomenon has been first observed in [27]. Notice also that the classical algorithm does not require
ρk → +∞ while this is needed in the safeguarded version.

The algorithm described in Theorem 3.1 has received much attention in recent years because of
its interesting numerical and theoretical results. See for example [20]. In particular, it can be proved
that every limit point x∗ is such that ∇F (x∗) = 0, where F (x) := ∥(g(x))+∥2. This suggests that the
limit point tends to be feasible without any additional assumption. In particular, if an infeasible x∗

has this property, the Extended MFCQ condition is necessarily violated at x∗. This gives a feasibility
result without necessarily assuming Extended-MFCQ. It is not clear whether the algorithm described
in Theorem 3.2 has a similar property without relying on an infeasible constraint qualification.

However, the safeguarded algorithm may behave poorly when the true Lagrange multiplier is
outside the safeguarding box. To see this, consider the one-dimensional problem of minimizing −x
subject to αx ≤ 0, with a parameter α > 0. Given an initial penalty parameter ρ > 0 and a
Lagrange multiplier subproblem parameter µ̄ > 0, the exact solution to minimize L1(x; µ̄, ρ) := −x+
ρmax{0, αx+ µ̄/ρ}2 is x = (1− µ̄α)/(ρα2) with an approximate Lagrange multiplier µ = max{0, µ̄+
ραx} = 1/α. This means that the correct Lagrange multiplier 1/α is found in a single iteration. Using
µ̄ = 1/α in the next iteration returns x = 0 as the solution of the subproblem, which is the solution
of the original problem. However, if a safeguarding strategy is used and α is chosen sufficiently small
so that 1/α is outside the safeguarding box, one is forced to choose µ̄ bounded away from 1/α, which
makes the algorithm generate a sequence of primal approximations that converges to zero only when
ρ→ +∞.

3.2 Hyperbolic augmented Lagrangian function

We now consider the so-called hyperbolic augmented Lagrangian function defined as

L2(x; µ̄, ρ) = f(x) +

p∑
i=1

(
µ̄igi(x) +

√
µ̄2i gi(x)

2 +
1

ρ2

)
.

By computing derivatives we arrive at the Lagrange multipliers update ϕi(x, µ̄, ρ) := µ̄ih(ρµ̄igi(x)),
i = 1, . . . ,m where h(t) := 1+ t/

√
1 + t2, t ∈ R is an increasing bijection h : R→ (0, 2) with h(0) = 1.

When 1/ρ2 is replaced by zero, the term inside the sum reduces to the exact penalty function
2µ̄imax{0, gi(x)} studied in [38]. Therefore 1/ρ2 behaves as a smoothing parameter and µ̄ as a
penalty parameter. This idea was first exploited in [35] and later in [36] in an augmented Lagrangian
framework. See also [37]. The case of convex objective function and constraints was recently analyzed
in [29] while an analysis for the non-convex case appeared in [28], where they assumed boundedness
of the penalty parameter computed similarly to Step 3’.
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A first observation is that a safeguarded variation of this method is not available, since if {µ̄k}
is bounded, the same holds true for the sequence {µk}. Therefore, Assumption A3 fails. Thus, we
consider only the classical version µ̄ki = µk−1

i , k > 1, and µ̄1 > 0.

Theorem 3.3 Let {xk}k∈N be a sequence generated by Algorithm 2.1 with L = L2 and µ̄k := µk−1

for all k > 1 with µ̄1 > 0. Assume that xk
k∈N→ x∗ for some limit point x∗ ∈ Rn. Then Assumption

A0-A4 are satisfied with K = N.

Proof: Let µki = µk−1
i h(ρkµ

k−1
i gi(x

k)) with µ0i = µ̄1i > 0, i = 1, . . . , p. Assumption A1 follows
from µ0 > 0 and h(t) > 0 for all t ∈ R. To prove Assumption A2, suppose gi(x

∗) < 0. From the
continuity of gi(·), there is a constant c > 0 such that gi(x

k) < −c for all k sufficiently large. In
particular, 0 < µk+1

i < µki for all sufficiently large k and the sequence is decreasing. Thus, it must
converge. Suppose that µki ≥ ε for all sufficiently large k and some ε > 0. Using that h is increas-
ing, we have h(ρkµ

k−1
i gi(x

k)) < h(−ρ1εc) < 1 for all sufficiently large k. Therefore, it holds that
0 < µki < µk−1

i h(−ρ1εc) for all sufficiently large k, which implies that µki → 0. This gives a contra-
diction and Assumption A2 is valid. The proof that Assumption A3 holds follows similarly. Suppose
gi(x

∗) > 0 and take c > 0 such that gi(x
k) > c for all k ≥ k0. Therefore µk−1

i < µki holds for all

k ≥ k0 and h(ρkµ
k−1
i gi(x

k)) > h(ρ1µ
k0
i c) > 1 with µki > µk−1

i h(ρ1µ
k0
i c) for all k ≥ k0. In particular,

µki → +∞. In order to show Assumption A4 notice that when µki
k∈K0→ +∞, we must have µki > µk−1

i

for all k in some infinite subset Ki ⊆ N. Then, h(ρkµ
k−1
i gi(x

k)) > 1 for all k ∈ Ki, which implies
gi(x

k) > 0 for all k ∈ Ki. □

Notice that the analysis above (Theorem 3.3) generalizes to any augmented Lagrangian function
such that ϕi(x; µ̄, ρ) = µ̄ihi(ψ(x, µ̄, ρ)) with an increasing function hi : R→ R such that hi(ψ(·)) < 1 if
gi(x) < 0 and hi(ψ(·)) > 1 if gi(x) > 0. This is the case of the Exponential augmented Lagrangian [25,
30, 34, 23, 33] and the Log-sigmoid [32] function.

4 Numerical Experiments

Algencan [1, 2, 20, 21] is a nonlinear programming software that implements Algorithm 2.1 with
the PHR augmented Lagrangian function and the safeguarded update of Lagrange multipliers. The
penalty parameter is updated as suggested in Step 3’. Equality constraints are also considered and
inequality constraints in (1) that correspond to bound constraints on the variables are not penalized
and are preserved as constraints of the subproblems. This means that the problems that can be solved
by Algencan are of the form

Minimize f(x) subject to h(x) = 0, g(x) ≤ 0, and ℓ ≤ x ≤ u, (6)

where f : Rn → R , h : Rn → Rm, and g : Rn → Rp are continuously differentiable with h :=
(h1, . . . , hm), g := (g1, . . . , gp), ℓ, u ∈ Rn, ℓi < ui, i = 1, . . . , n. The PHR augmented Lagrangian
function associated with problem (6) is given by

L1(x; λ̄, µ̄, ρ) := f(x) +
ρ

2

(∥∥∥∥h(x) + λ̄

ρ

∥∥∥∥2 + ∥∥∥∥(g(x) + µ̄

ρ

)
+

∥∥∥∥2
)
,

where the update formula for equality constraints multipliers are λnewi := λ̄i + ρhi(x), i = 1, . . . ,m,
and, for inequality constraints, µnewi := max{0, µ̄i + ρgi(x)}, i = 1, . . . , p. Therefore, the augmented
Lagrangian subproblems are of the form: minimize L1(x; λ̄, µ̄, ρ) subject to ℓ ≤ x ≤ u. Subproblems
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are solved using Gencan [12, 16], an active set method for bound-constrained minimization that uses
spectral projected gradient [18, 19] directions to leave the faces and a variety of Newtonian methods
within the faces, depending on whether first- and/or second-order derivatives of the functions defining
the problem are available. For a comparison of software for bound constrained minimization see [14].

In this section we report numerical experiments with algorithms corresponding to small modi-
fications of Algencan. In particular, we consider Algencan 4.0.0 [21], which uses second order in-
formation. Given tolerances εopt > 0, εfeas > 0, and εcompl > 0 for optimality, feasibility, and
complementarity, respectively, the stopping criterion associated with success is satisfied by a triplet
(xk, λk, µk) ∈ Rn × Rm × Rp when∥∥∥P[ℓ,u]

(
xk −

[
∇f(xk) +∇h(xk)λk +∇g(xk)µk

])
− xk

∥∥∥
∞
≤ εopt, (7)

max{∥h(xk)∥∞, ∥g(xk)+∥∞} ≤ εfeas, (8)

min{−gi(xk), µki } ≤ εcompl for i = 1, . . . , p. (9)

Conditions (7–9) correspond to the approximate satisfaction of (2–4), suitably extended to consider
equality and bound constraints, where complementarity (3) is measured with the min function. (The
condition µk ≥ 0 is satisfied by the definition of Algorithm 2.1.) There are other stopping criteria
related to maximum number of outer iterations, too large penalty parameter, consecutive failures to
satisfy the stopping criteria established for the subproblems, convergence to an infeasible point that
is stationary of an infeasibility measure. For more details see [20, 21].

Based on previous experience, in the experiments we considered τ = 0.5 and γ = 10 in Step 3’.
The initial penalty parameter ρ1 is as determined by Algencan (see [20, p.153, Eq.(12.1)] for details)
and εk = max{εopt,

√
εopt/10

k−1} for all k ≥ 1. For the stopping criterion (7–9), we considered
εopt = εfeas = εcompl = 10−8.

Algencan implements, as a complement to Algorithm 2.1, two alternative strategies. One of them,
often referred to as acceleration, consists in trying to solve a KKT system with Newton’s method
between the augmented Lagrangian iterations. The strategy aims at a mix between improving the
efficiency and the robustness of Algencan. The second strategy is applied in the case where the
augmented Lagrangian method stops at an infeasible point. When that happens, everything that was
done is discarded and the sum of the squared infeasibilities is minimized in an attempt to find at least
a feasible point of the original problem. For details of these two strategies, see [20] and [21]. We call
the version of Algencan that includes these two strategies as the default version of Algencan.

In Section 4.1, we compare three variants of Algorithm 2.1 with the PHR augmented Lagrangian
function. The considered variants are:

Variant 1: Algencan without the two additional strategies. In this version, the Lagrange multipliers
safeguards are given by λmin = −1/ν and λmax = µmax = 1/ν, where ν = ϵmach and ϵmach ≈ 10−16

is the machine precision, and the penalty parameter is updated as in Step 3’. If λk ∈ [λmin, λmax]
and µk ∈ [0, µmax] then we define λ̄k+1 = λk and µ̄k+1 = µk. Otherwise, following [21], we define
λ̄k+1 = 0 and µ̄k+1 = 0.

Variant 2: This variant is as variant 1 but with λmin = λmax = µmax = 0, i.e. it corresponds to a
external penalty approach.

Variant 3: This variant is as variant 1 but with non-safeguarded Lagrange multipliers and ρk = 1
for all k ≥ 1.

Variants form 1 to 3 fit within the framework of Algorithm 2.1. The default version of Algencan is
included in the comparison as a reference. In Section 4.2, we compare the best between variants 1
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to 3 versus Algorithm 2.1 with the hyperbolic augmented Lagrangian function. In the latter case,
Lagrange multipliers are not safeguarded and the penalty parameter is updated as suggested in Step 3’.

(Additional experiments with variations of variant 1 in which ν ∈ {ϵ1/2mach, ϵ
1/4
mach, ϵ

1/8
mach} were performed,

with only slightly significant findings. Consistent with the results for variants 1 and 2, as we will show
shortly, the lower the safeguard, the worse the results.)

Algencan and its variants are implemented in Fortran 90. All tests reported below were conducted
on a computer with a 5.1 GHz Intel Core i9-12900K processor and 128GB 32000MHz DDR4 RAM
memory, running Ubuntu 22.04.3 LTS. Codes were compiled by the GNU Fortran compiler of GCC
(version 11.4.0) with the -O3 optimization directive enabled.

4.1 Comparison of variants 1–3 of Algorithm 2.1.

The comparison of the variants of Algorithm 2.1 using the PHR augmented Lagrangian function was
done by considering two problem sets: all 98 linear programming problems from the Netlib collection
and all 740 nonlinear programming problems from the CUTEst collection [24]. In both sets, the default
dimensions were considered. Table 1 shows the quartiles of the number of variables and number of
constraints (excluding boundary constraints) for the two problem sets considered. (The table also
includes the data for the subset of 234 nonlinear programming problems from the CUTEst collection
that have only inequality constraints. This subset will be used in subsequent experiments.) The given
initial points were considered. The Lagrange multipliers were initialized with zero. We set a limit of
10 minutes of CPU time for each method/problem.

Netlib (all 98 linear programming problems)

min q1 q2 q3 max avg

Number of variables 32 319.75 1,130 2,681.80 22,275 2,462.40
Number of constraints 24 220.75 479.50 986.25 16,675 993.90

CUTEst (all 740 nonlinear programming problems)

min q1 q2 q3 max avg

Number of variables 1 6 343 5,994 250,997 6,319.25
Number of constraints 1 4 303.50 3,844 270,595 5,349.22

CUTEst (all 234 nonlinear programming problems with inequalities only)

min q1 q2 q3 max avg

Number of variables 1 3 6 230.75 50,000 1,571.70
Number of constraints 1 2 7.50 1,002 25,000 1,225.50

Table 1: Data of the 98 linear programming problems from the Netlib collection, the 740 nonlinear
programming problems from the CUTEst collection, and the 234 nonlinear programming problems
with only inequality constraints from the CUTEst collection considered in the numerical experiments
of the present work.

4.1.1 Netlib problems

Complete tables with all the data about the four methods applied to the 98 problems can be found
here: www.ime.usp.br/~egbirgin/. The first relevant data is the distribution of the stopping criteria.
Table 2 shows this distribution. In the table,
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• SC0 means that the method stopped by having found an iterate of augmented Lagrangians
satisfying criterion (7–9);

• SC1 applies only to the default version of Algencan and means that it found a point satisfying
criterion (7–9) as a result of the acceleration strategy;

• SC2 means that the method failed for three consecutive iterations to satisfy the stopping crite-
rion of the subproblems;

• SC3 means that the maximum number of iterations was reached (50 for the default version of
Algencan and variants 1 and 2 and 50,000 for variant 3);

• SC4 means that the penalty parameter became too large (larger than 1e+20);
• SC5 only applies to the default version of Algencan and means that the augmented Lagrangian
iterations stopped with SC2 or SC3, everything was discarded, and an attempt was made to find
a feasible point using the strategy of minimizing a measure of infeasibility;

• SC9 means that the CPU time limit (10 minutes) was reached.

The highlight of the comparison is that variant 3 found the largest number of points that approximately
satisfy the KKT conditions. This variant found 52, while variant 2 found none and variant 1 found 24.
The default version of Algencan found 47. (There were 22 iterates of augmented Lagrangians and 25
points resulting from the acceleration process. Of these 25, in 18 cases the method stopped. In the
other 7, it continued iterating, until reaching the CPU time limit, to see if it could find something
better). This shows that the other variants, including the default version of Algencan, may be suffering
from poorly scaled or ill-conditioned subproblems because the penalty parameter has been increased
too much in cases where it was not necessary. The extreme case was the case of variant 2, external
penalty, which was not able to find a single point satisfying conditions (7–9). Figure 1 shows this
is in fact related to having increased too much the penalty parameter, thus making the subproblems
more ill-conditioned, badly scaled and difficult to solve. The figure shows that the default version of
Algencan and variant 1 ended up with approximately the same penalty parameters, while in variant 2
the values were approximately seven orders of magnitude higher. The ill-conditioning of the Hessian
of the external penalty function for large values of ρ is didactically explained in [31, Ch.17]. The
interpretation of augmented Lagrangians as a method that penalizes shifted constraints, thus avoiding
the need to increase the penalty parameter too much, can be found in [20, Ch.4].

We now analyze what happens to variant 1 in the 52 problems in which variant 3 found a point
satisfying the KKT conditions with the prescribed tolerance. Those 52 problems include 21 of the 24
problems in which variant 1 found a KKT point as well. In 20 of those 21 problems, the two variants
find the same multipliers, whose norm in almost all cases does not exceed 103. In these same problems,
the largest penalty parameter of variant 1 is of the order of 103. Let us now analyze the 31 problems
in which variant 3 found a KKT point but variant 1 did not. In 4 of these problems, the multipliers
of variant 1 exceed 106 and the penalty parameter exceeds 1015. That is, it appears that the method
is diverging or converging to a solution with unbounded multipliers. In the remaining problems,
variant 1 converged to a triplet (x, λ, µ) very close to the one to which variant 3 converged, but did
not satisfy the KKT conditions. These are all cases where a slightly large multiplier, between 103

and 105, prevented the method from satisfying the stopping criterion of the subproblems, preventing
it from obtaining a norm of the gradient of the Lagrangian smaller than εopt = 10−8. (Points satisfy
feasibility and complementarity with the required tolerance but the norm of the Lagrangian is between
10−4 and 10−8.)

To continue with the analysis of the methods, we mention that the default version of Algencan and
variants 1, 2 and 3 found feasible points (with precision εfeas = 10−8) in 81, 78, 72 and 64 problems,
respectively. Out of the total of 98 problems, there are 83 problems in which at least one of the
methods found a feasible point. Table 3 compares the function values found by each method. In the
table we consider that, for a given problem, a function value fi found by method Mi is acceptable as
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equivalent to the best value found if

fi ≤ fmin + ftolmax{1, |fmin|},

where fmin = min{f1, f2, f3, f4}. The table shows that the default version of Algencan is the one that
finds the largest number of best values of the objective function, regardless of the ftol value considered,
followed closely by variant 1. Variants 2 and 3 find less objective function values accepted as equivalent
to the best, either because the objective function values are worse or because they do not even find a
feasible point.

SC0 SC1 SC2 SC3 SC4 SC5 SC9

Default Algencan 22 18 38 0 0 10 10
Variant 1 24 – 53 0 10 – 11
Variant 2 0 – 70 0 17 – 11
Variant 3 52 – 11 17 – – 18

Table 2: Distribution of the stopping criteria of the default version of Algencan and variants 1, 2 and 3
when applied to the 98 problems of the Netlib collection.
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Figure 1: Distribution of the value of the penalty parameter ρ of the last subproblem solved in each
of the 98 problems of the Netlib collection for each of the four methods considered. In fact, variant 3
does not appear in the graph because ρ is always equal to one.

To finish the comparison between the methods, we compare their efficiency using performance
profiles [22]. In the comparison, we used ftol = 0.1 and used CPU time as the performance met-
ric. Figure 2 shows the performance profiles of the four methods. In the figure, for i ∈ M :=
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ftol
0.1 10−2 10−3 10−4 10−5 10−6 10−7 10−8

Default Algencan 80 79 77 76 76 76 75 67
Variant 1 78 77 76 75 75 75 74 66
Variant 2 70 69 68 66 66 66 66 66
Variant 3 64 64 64 64 64 64 64 59

Table 3: Number of problems, out of a total of 83 in which at least one of the methods found a feasible
point, in which each method found a feasible point with a function value considered equivalent to the
best value found, with tolerance ftol. This table refers to the case in which the four methods are
applied to the 98 problems in the Netlib collection.

{default Algencan, variant 1, variant 2, variant 3},

Γi(κ) =
|{j ∈ {1, . . . , q} | tij ≤ κmins∈M{tsj}}|

q
,

where q = 98 is the number of problems considered and tij is the CPU time required by method i when
applied to problem j. If when method j is applied to problem i, the method does not find a feasible
point or the value of the objective function is not considered equivalent to the best (with tolerance
ftol), then we consider tij = +∞. Γi(1) says the proportion of problems in which method i was the
fastest to find a functional value considered equivalent to the best found. Γi(2) says the proportion
of problems in which method i used at most twice the time of the fastest method to find a functional
value considered equivalent to the best found. The default version of Algencan is the most robust, but
loses in efficiency for variant 1, which is the most efficient. This makes clear the role of the Newton-
KKT acceleration in the default version of Algencan: it slightly improves its robustness at the price of
deteriorating its efficiency. Variant 2 (external penalty) is the least efficient and the third (out of four)
in robustness. This shows that in fact variant 2 is finding feasible points with objective function values
considered equivalent to the best. It is just being considered inefficient because the poor scaling and
ill-conditioning of the subproblems is preventing it from satisfying the stopping criterion associated
with success. (When stopping by other criteria, the time consumed increases). Variant 3 (ρk = 1
for all k) manages to be quite efficient, but is the least robust. That is, when keeping the penalty
parameter fixed works, it is efficient, but in many cases it does not work.

The conclusion of this set of experiments is that the default version of Algencan and variant 1,
which corresponds to Algencan without the two additional strategies, already correspond to the most
efficient and robust choices among the options considered. Still, some effort could be made to review
the way in which the penalty parameter is increased, to avoid increasing it unnecessarily. See [17] for
an augmented Lagrangian method with a non-monotonically increasing penalty parameter.

4.1.2 Nonlinear programming problems from the CUTEst collection

In this section we report the same comparison between the same four methods of the previous section,
but now considering all 740 nonlinear programming problems from the CUTEst collection. Complete
tables with all the data about the four methods applied to these problems can be found here: www.

ime.usp.br/~egbirgin/. The default version of Algencan and variants 1, 2, and 3 found a point
satisfying (7–9) in 622, 507, 165, and 424 problems, respectively, while they found feasible points in
694, 679, 674, and 502, respectively. This means that in this set of problems, the default version of
Algencan was the one that found the largest number of points satisfying the KKT conditions (within
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Figure 2: Performance profile of the four methods analyzed, using CPU time as a performance metric,
on the 98 problems of the Netlib collection.

the prescribed tolerance) and the largest number of feasible points as well. The default version
of Algencan is closely followed by variant 1 in the number of feasible points, but has a significant
advantage (115 problems) in finding points that satisfy the KKT conditions within the prescribed
tolerance. Table 4 shows the distribution of the stopping criteria and Table 5 shows the comparison
of the objective function values in the 701 problems, out of a total of 740, in which at least one of
the methods found a feasible point. Table 5 shows that the ranking of the methods according to the
number of best function values found is: default Algencan and variants 1, 2 and 3 in this order. The
fact that the default version of Algencan is closely followed by variant 1 shows that having found
many more KKT points than variant 1 did not help it to find many more better function values. If
the criterion of comparison is to find more points satisfying, with the prescribed tolerance, the KKT
conditions, the default version of Algencan is a clear winner. If, on the other hand, the criterion is
to find a feasible point (within the prescribed tolerance) with the best objective function value, then
the default version of Algencan and variant 1 are almost tied, followed very closely by variant 2. Yet,
with all the effort made to find KKT points, the default version of Algencan is much less efficient, as
shown in Figure 4. The figure shows that variant 1 is more efficient and robust than variants 2 and
3, reinforcing that the choices were appropriate when the Algencan augmented Lagrangian algorithm
was determined. When we compare the default version of Algencan with variant 1, we once again
observe that the two additional Algencan strategies improve its robustness slightly in detriment of its
efficiency. Unlike what happened with the Netlib problems, the loss of efficiency seems to be more
significant in the CUTEst nonlinear programming problems, to the point that the default version of
Algencan is the least efficient method among the four methods considered. (Figure 3 shows that the
distribution of the penalty parameter value of the last subproblem solved by each method follows a
similar distribution to that already observed in the Netlib collection problems.)

As a curiosity, Figures 5 and 6 show the distribution of the norm of the multipliers in the problems

14



SC0 SC1 SC2 SC3 SC4 SC5 SC9

Default Algencan 99 494 77 0 6 43 21
Variant 1 509 – 165 0 53 – 13
Variant 2 165 – 504 0 58 – 13
Variant 3 426 – 23 180 – – 111

Table 4: Distribution of the stopping criteria of the default version of Algencan and variants 1, 2 and 3
when applied to the 740 nonlinear programming problems of the CUTEst collection.

ftol
0.1 10−2 10−3 10−4 10−5 10−6 10−7 10−8

Default Algencan 679 669 662 652 645 629 594 550
Variant 1 666 657 650 642 636 619 589 547
Variant 2 660 652 642 626 619 614 599 570
Variant 3 458 448 443 443 443 442 438 436

Table 5: Number of problems, out of a total of 701 in which at least one of the methods found a feasible
point, in which each method found a feasible point with a function value considered equivalent to the
best value found, with tolerance ftol. This table refers to the case in which the four methods are
applied to the 740 nonlinear programming problems in the CUTEst collection.
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Figure 3: Distribution of the value of the penalty parameter ρ of the last subproblem solved in each
of the 740 nonlinear programming problems of the CUTEst collection for each of the four methods
considered. In fact, variant 3 does not appear in the graph because ρ is always equal to one.
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Figure 4: Performance profile of the four methods analyzed, using CPU time as a performance metric,
on the 740 nonlinear programming problems of the CUTEst collection.

where the default version of Algencan and variant 1 found points satisfying the KKT conditions with
the required tolerance, respectively. The figures show both the norm of the multipliers at the point
satisfying the KKT conditions and the maximum norm over the augmented Lagrangian iterations.
The two figures show that, in the vast majority of problems in which a KKT point is encountered, the
norm of the multipliers does not exceed 105. Neither method finds a KKT point, with the required
tolerance, in which the norm of the multipliers is greater than 108. (In fact the default version of
Algencan finds a KKT point in only one problem in which the norm of the multipliers is of the order
of 109.) Figure 6 suggests that, if over the iterations of augmented Lagrangians the multipliers assume
values greater than at the KKT point found, that happens very rarely. Figure 5 shows that there
are 13 problems where the multipliers assume, over the iterations, values between 1014 and 1020.
However, none of the KKT points found have multipliers larger than 109. Therefore, in these cases,
the multipliers of the augmented Lagrangian iterations appear to be wrong, and the KKT point was
found probably by the acceleration strategy.

4.2 Comparison between PHR and hyperbolic augmented Lagrangians

In this section we compare variant 1 (which uses the PHR function of augmented Lagrangians, safe-
guards on the Lagrange multipliers and Step 3’ to update the penalty parameter) with what we will
refer to as variant 4. Variant 4 uses the hyperbolic function of augmented Lagrangians, no safeguards
for the Lagrange multipliers and Step 3’ to update the penalty parameter. All other things are iden-
tical in both variants. However, since the hyperbolic augmented Lagrangian can not modify an initial
Lagrange multiplier equal to zero, a different initial value must be used. In this method, the role of
the penalty parameter ρ is also a bit different, since it also plays the role of a smoothing parameter.
Therefore, based on preliminary experiments [28] and following the strategy considered in [13], we
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Figure 5: Distribution of the Lagrange multipliers sup-norm in the 622 problems of the CUTEst
collection (out of 740) in which the default version of Algencan found a point satisfying the KKT
conditions with the prescribed tolerance.

considered µ̄1i = c, i = 1, . . . , p, with c ∈ {1, 10, 100} and ρ1 ∈ {10−4, 10−2, 1}. We also considered
τ ∈ {0.1, 0.5, 0.9} and γ ∈ {2, 10} in Step 3’. The performance of the method was evaluated with
all 54 combinations of these four parameters. In this parameter calibration phase, we considered a
CPU time limit of 1 minute, which for any of the 54 parameter combinations affected less than 10%
of the problems.

Since the hyperbolic augmented Lagrangian is defined for problems with only inequality con-
straints, we consider in the comparison all 234 nonlinear programming problems from the CUTEst
collection with only inequality constraints. (We leave aside the Netlib collection because only 2 of the
98 problems in this collection have only inequalities). Complete tables with all the data about the
two methods applied to these problems (including the 54 parameter combinations of variant 4) can be
found here: www.ime.usp.br/~egbirgin/. When choosing the best combination, we used as criterion
the number of times each method found a feasible point, with the prescribed tolerance, and an objec-
tive function value considered equivalent to the best, from among those found by variant 4 with the 54
parameter combinations, with tolerance ftol = 0.1. It is worth mentioning that the combinations that
included τ = 0.9 exhibited poorer performance, while all others had similar results. The combination
that corresponded to the best performance was µ̄1i = 100, i = 1, . . . , p, ρ1 = 10−2, τ = 0.1, and
γ = 2. We consider this version in the comparison that follows. For the comparison, variant 4 with
the selected choice of parameters was run once again, this time with a CPU time limit of 10 minutes.
Moreover, considering that in the parameter calibration phase variant 4 with the selected parameter
combination stopped several times by reaching the maximum number of iterations, we increased this
limit from 50 to 500. This different choice, in relation to variant 1, is justified considering that the
penalty parameter has different interpretations in the two variants and is updated using different
parameter values.
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Figure 6: Distribution of the Lagrange multipliers sup-norm in the 507 problems of the CUTEst
collection (out of 740) in which variant 1 found a point satisfying the KKT conditions with the
prescribed tolerance.

Variant 1 returned 176 points satisfying the KKT conditions with the prescribed tolerance, while
variant 4 found 102. Variant 1 found 226 feasible points with the prescribed tolerance, while variant 4
found 222. Table 6 shows the distribution of the stopping criteria of the two methods. Table 7 shows
the comparison of the objective function values in the 228 problems in which at least one of the
methods found a feasible point. The table shows that, regardless of the tolerance considered, variant 1
finds a larger number of better points. Figure 7 shows the distribution of the penalty parameters of the
last subproblems solved by each method. The figure shows, as well as Table 6, that in 43 problems the
penalty parameter of the last solved subproblem by variant 4 was of the order of 1e+20 and the method
ended up stopping precisely for that reason. In the remaining problems, the distribution of the final
ρ values is relatively similar to that of variant 1, with a larger concentration in slightly higher values.
This shows that variant 4 needs to increase the penalty parameter too much to get feasible points (in
fact it finds a reasonable number of feasible points). But the large penalty parameter prevents it from
satisfying the KKT conditions. When stopping by other reasons, it takes longer and turns out to be
considered inefficient in the present comparison. Figure 8 compares the efficiency of the two variants.
The performance profiles clearly show that variant 1 is much more efficient. These results corroborate
the results already reported in [13], where it was shown that an augmented Lagrangian method based
on the PHR augmented Lagrangian function was the most robust and efficient within a set of 65
methods based on different augmented Lagrangian functions, including the hyperbolic function.

5 Conclusions

The global convergence theory of Algencan is largely based on the strong properties of the safeguarded
PHR augmented Lagrangian method. However, since the safeguarding box is taken as the inverse of
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SC0 SC2 SC3 SC4 SC9

Variant 1 177 48 0 9 0
Variant 4 105 83 0 43 3

Table 6: Distribution of the stopping criteria of variants 1 and 4 when applied to the 234 nonlinear
programming problems of the CUTEst collection with only inequality constraints.

ftol
0.1 10−2 10−3 10−4 10−5 10−6 10−7 10−8

Variant 1 222 222 222 222 222 218 218 213
Variant 4 186 180 176 171 170 166 161 157

Table 7: Number of problems, out of a total of 227 in which at least one of the two methods found a
feasible point, in which each method found a feasible point with a function value considered equivalent
to the best value found, with tolerance ftol. This table refers to the case in which the two methods
are applied to the 234 nonlinear programming problems in the CUTEst collection with only inequality
constraints.
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Figure 7: Distribution of the value of the penalty parameter ρ of the last subproblem solved in each
of the 234 nonlinear programming problems of the CUTEst collection with only inequality constraints
for variants 1 and 4.

the machine precision (≈ 1016), the algorithm behaves most of the time as a non-safeguarded method.
It was generally believed that the two variants of the PHR augmented Lagrangian algorithm would
have very similar properties. In [27], it was shown that the non-safeguarding algorithm may have non-
stationary limit points, when the primal sequence is not convergent, while the safeguarded method
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Figure 8: Performance profile of variants 1 and 4, using CPU time as a performance metric, on the
234 nonlinear programming problems of the CUTEst collection with only inequality constraints.

states stationarity of every primal limit point. Other than that, no significant differences in terms of
the global convergence theory was expected.

In this paper we presented a global convergence theory of a class of non-safeguarded methods,
including additive and multiplicative Lagrange multipliers updates, where the differences with respect
to the class of safeguarded methods are noteworthy. In terms of feasibility results, limit points of
safeguarded methods are stationary for an infeasibility measure. This suggests that they tend to find
feasible points without additional assumptions. Therefore, it is customary to assume feasibility and
discuss only properties of the Lagrange multipliers. Even when the dual sequence is unbounded, one
may find suitable weak constraint qualifications in order to attest stationarity of the primal limit points.
The situation is drastically different for non-safeguarded methods. In this case, a result of stationarity
of an infeasibility measure is not readily available, therefore it is not reasonable to assume feasibility
of the limit point. It is then paramount to bound the dual sequence and guarantee feasibility in this
way. When feasibility is assumed, however, one may consider several weak constraint qualifications
to attest stationarity of the limit point, even when the dual sequence is unbounded, similarly to the
safeguarded approach.

Somewhat surprisingly, the constraint qualification needed to bound the dual sequence of non-
safeguarded methods is stronger than the one needed for safeguarded methods. This phenomenon
should inspire further studies concerning sequential optimality conditions and constraint qualifications
for the global convergence of non-safeguarded augmented Lagrangian algorithms. The positive side
of the non-safeguarded approach is that the penalty parameter may be kept bounded, which suggests
that more conservative penalty parameter updates should be considered in future numerical studies
of Algencan. Our numerical experiments suggest that a more conservative penalty parameter update
is linked with the capability of finding true Lagrange multipliers.

Our theoretical study of non-safeguarded methods is not restricted to the PHR augmented La-
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grangian, and no difference is found when other augmented Lagrangian functions are considered.
However, as already reported in [13], our numerical study also confirms the superiority of the PHR
augmented Lagrangian function on the inequality constrained problems from the CUTEst collection.
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[36] A. E. Xavier. Penalização hiperbólica. PhD thesis, COPPE-UFRJ, Rio de Janeiro, RJ, 1992.

[37] A. E. Xavier. Hyperbolic penalty: a new method for nonlinear programming with inequalities.
International Transactions in Operational Research, 8(6):659–671, 2001.

[38] W. I. Zangwill. Non-linear programming via penalty functions. Management Science, 13(5):344–
358, 1967.

23


	Introduction
	A general augmented Lagrangian algorithm
	Particular augmented Lagrangian methods
	Powel-Hestenes-Rockafellar augmented Lagrangian
	Hyperbolic augmented Lagrangian function

	Numerical Experiments
	Comparison of variants 1–3 of Algorithm 2.1.
	Netlib problems
	Nonlinear programming problems from the CUTEst collection

	Comparison between PHR and hyperbolic augmented Lagrangians

	Conclusions

