
Noname manuscript No.
(will be inserted by the editor)

On the solution of linearly constrained optimization
problems by means of barrier algorithms

E. G. Birgin* · J. L. Gardenghi ·
J. M. Mart́ınez · S. A. Santos

Received: date / Accepted: date

Abstract Many practical problems require the solution of large-scale con-
strained optimization problems for which preserving feasibility is a key issue
and the evaluation of the objective function is very expensive. In these cases it
is mandatory to start with a feasible approximation of the solution, the obten-
tion of which should not require objective function evaluations. The necessity
of solving this type of problems motivated us to revisit the classical barrier
approach for nonlinear optimization, providing a careful implementation of a
modern version of this method. This is the main objective of the present pa-
per. For completeness, we provide global convergence results and comparative
numerical experiments with one of the state-of-the-art interior-point solvers
for continuous optimization.

Keywords linearly constrained optimization · feasible barrier methods ·
convergence · numerical experiments.

Mathematics Subject Classification (2010) 49M37 · 65K05 · 90C30 ·
90C51.

This work has been partially supported by FAPESP (Grants 2012/05725-0, 2013/07375-0,
and 2018/24293-0) and CNPq (Grants 302915/2016-8, 302538/2019-4, and 302682/2019-8).

*Corresponding author.

E. G. Birgin (orcid: 0000-0002-7466-7663)
Department of Computer Science, Institute of Mathematics and Statistics, University of São
Paulo, São Paulo, SP, Brazil.
E-mail: egbirgin@ime.usp.br

J. L. Gardenghi (orcid: 0000-0003-4443-8090)
Faculty UnB Gama, University of Braśılia, Braśılia, DF, Brazil.
E-mail: john.gardenghi@unb.br

J. M. Mart́ınez (orcid: 0000-0003-3331-368X), S. A. Santos (orcid: 0000-0002-6250-0137)
Department of Applied Mathematics, Institute of Mathematics, Statistics, and Scientific
Computing, University of Campinas, Campinas, SP, Brazil.
E-mail: {martinez | sandra}@ime.unicamp.br

2 E. G. Birgin* et al.

1 Introduction

Algorithms for solving continuous constrained optimization problems are iter-
ative. Very frequently a feasible initial point is not available so that we must
start with an approximation x0 that is neither feasible nor optimal. Most
algorithms compute successive iterations trying to achieve feasibility and opti-
mality more or less simultaneously or, at least, without giving priority for one
feature over another. Moreover, optimization algorithms usually compute both
the objective function and the constraints (almost) at every iteration. When
the objective function is very expensive and the evaluation of constraints is
cheap this may be a poor strategy. On the one hand, many times, what users
really need is a feasible point with a reasonable objective function value. On
the other hand, finding a feasible point may demand a non-negligible number
of iterations that could become very expensive if we are forced to evaluate the
objective function simultaneously with the constraints.

These observations lead us to prefer algorithms that start at a feasible
point and preserve feasibility at every iteration. Classical barrier methods, in-
troduced by Frisch [?] and Fiacco and McCormick [?], are among the most at-
tractive alternatives for solving constrained optimization problems with those
characteristics.

In this paper, we address the case in which the constraints are linear.
Namely, the problem considered here will be:

Minimize f(x) subject to Ax = b and ` ≤ x ≤ u, (1)

where x ∈ Rn, f : Rn → R is twice continuously differentiable, A ∈ Rm×n
`, u ∈ (R ∪ {−∞,+∞})n, and m < n. Let F = {x ∈ Rn | Ax = b and ` ≤ x ≤
u} be the feasible set for problem (1) and

F0 = {x ∈ Rn | Ax = b and ` < x < u} (2)

be the set of points that strictly satisfy the box constraints of (1), called the
relative interior of F . If an initial feasible approximation is not available we as-
sume that such approximation may be obtained at low cost by a suitable Linear
Programming solver or an specific method for solving affine feasibility prob-
lems. Moreover, we assume that, by means of an appropriate pre-processing
scheme, we purify the matrix A in order to have linear independent rows.

Pioneered by Frisch [?] for convex problems, and further analyzed by Fi-
acco and McCormick [?] for general nonlinear programming problems, interior-
point methods had a revival with the work of Karmarkar [?] within the linear
programming context, specially after the equivalence with logarithmic barrier
methods has been established by Gill et al. [?]. The renewed interest in loga-
rithm barrier methods for the general nonlinear programming problem led to
the development of the Ipopt algorithm, proposed by Wächter and Biegler [?]
in 2006. This is one of the state-of-the-art solvers used nowadays in theoretical
and practical problems.

The barrier method described in this work starts with an interior approx-
imation such that ` < x0 < u and Ax0 = b. Given an interior feasible xk,

Linearly constrained optimization 3

the new iterate xk+1 is computed using matrix decompositions and manip-
ulations by means of which instability due to extreme barrier parameters is
avoided as much as possible and, additionally, possible sparsity is preserved.
At each iteration, a linear system of equations is solved by means of which one
computes new primal and dual approximate solutions. This system approx-
imates KKT conditions for the minimization of a quadratic approximation
of the function subject to the linear constraints, except for the fact that the
primal n × n matrix, which represents the Hessian of the Lagrangian, might
need to be modified in order to preserve positive definiteness onto the null-
space of A. In other implementations of primal-dual methods (see, for example
[?]), an additional (primal) modification may be demanded to ensure that a
solution of the KKT system exists. This modification is not needed at all in
our approach due to the pre-processing scheme that guarantees full-rank of
the matrix A. In linear constrained optimization, the primal modification may
cause a temporary loss of feasibility of the next iterate, a feature that we want
to avoid completely due to the characteristics of the problems that we have
in mind, as stated above. We will show that the resulting method is glob-
ally convergent under mild assumptions, preserving feasibility of constraints
along the iterations, therefore guaranteeing a feasible solution at the end of
the optimization process. The proposed method has been implemented, and a
comparative numerical study with Ipopt is provided.

Ipopt is a method for solving optimization problems with constraints of
the form h(x) = 0, ` ≤ x ≤ u, where the function h is, in general, nonlinear.
In the case in which h(x) ≡ Ax − b, assuming that the iterate xk is feasible
and interior (that is, Axk = b and ` < xk < u), the Ipopt basic iteration
may be described as follows. Assume that µ > 0 is a barrier parameter and
that B(x, µ) is the corresponding logarithmic barrier function, which is well
defined whenever ` < x < u and goes to infinity when x tends to the boundary.
Consider the Newton iteration corresponding to the nonlinear system defined
by the optimality conditions for the minimization of f(x) + B(x, µ) subject
to Ax = b. This leads to a linear system of equations whose matrix may not
satisfy desired inertia conditions. In order to correct this inertia, the whole
diagonal of the matrix may be modified. The solution of the corrected linear
system leads to a trial point that may violate both the (interiority with respect
to the) bound constraints ` ≤ x ≤ u and the linear constraints Ax = b. This is
because, after correction, the search direction may not belong to the null-space
of A. The lack of interiority with respect to the bound constraints is fixed by
means of a restriction of the step size. This is not the case of the infeasibility
with respect to Ax = b, which is fixed using the same restoration procedure
that is used in the nonlinear case. The acceptance of the trial point obeys
to a filter criterion that combines a measure of infeasibility and the objective
function value. The main differences with respect to the method presented in
this paper are: (i) The inertia correction does not involve the modification of
whole matrix’s diagonal, as we assume that A is full-row rank, a feature that is
guaranteed by a pre-processing scheme. As a consequence, feasibility is always

4 E. G. Birgin* et al.

preserved and restoration is never necessary; (ii) The acceptance of the trial
point is related to sufficient descent for the merit function f(x) +B(x, µ).

The rest of this work is organized as follows. Section 2 introduces the pro-
posed barrier method. Section 3 presents its theoretical convergence results.
Section 4 shows implementation details and exhibits numerical experiments.
Conclusions are given in the last section.

Notation. If v = (v1, . . . , vn)T ∈ Rn, diag(v) denotes the n × n diagonal
matrix whose diagonal entries are given by v1, . . . , vn. If K = {k1, k2, . . . } ⊆ N
with kj < kj+1 for all j then we denote K ⊂

∞
N.

2 Proposed barrier method

Let us consider the problem

Minimizeϕµ(x) subject to Ax = b, (3)

where

ϕµ(x)
def
= f(x)− µ

∑
i∈I`

log(xi − `i)− µ
∑
i∈Iu

log(ui − xi), (4)

µ is a positive parameter, I`
def
= {i : `i 6= −∞}, and Iu

def
= {i : ui 6= +∞}. The

Lagrange conditions for (3) are given by

∇f(x) +ATλ− µL†e+ µU†e = 0
Ax− b = 0,

(5)

being e the n-dimensional vector of all ones, the diagonal matrices L and U
defined componentwise by

Li,i =

{
xi − `i, if i ∈ I`

0, otherwise
and Ui,i =

{
ui − xi, if i ∈ Iu

0, otherwise,
(6)

with pseudo-inverses L† and U† given by

L†i,i =


1

xi − `i
, if i ∈ I`

0, otherwise
and U†i,i =


1

ui − xi
, if i ∈ Iu

0, otherwise.

Defining

[z`]i = µL†i,i and [zu]i = µU†i,i, (7)

we have

LZ`e− µe = 0
UZue− µe = 0,

Linearly constrained optimization 5

where Z` = diag(z`) and Zu = diag(zu); and, putting all together into (5), we
obtain

∇f(x) +ATλ− z` + zu = 0 (8a)

Ax− b = 0 (8b)

Lz` − µe = 0 (8c)

Uzu − µe = 0. (8d)

A natural approach for finding x∗ that approximately solves (3) consists
in obtaining (x∗, λ∗, z∗` , z

∗
u) approximately satisfying (8). In practice, we do

not use the definition (7) of z` and zu, but we indeed find an approximate
solution to (8). Since ϕ in (3) is not defined for x 6∈ (`, u) and goes to infinity
as any component of x gets closer to ` or u, necessarily ` < x∗ < u. This fact,
equations (8c) and (8d), and the positivity of µ imply that [z∗`]i ≥ 0, for all
i ∈ I` and [z∗u]i ≥ 0, for all i ∈ Iu. Therefore, z∗` and z∗u are µ-approximations
to the Lagrange multipliers in the KKT conditions of problem (1).

These ideas give support to a method for solving problem (1) that consists
in solving a sequence of subproblems of the form (3) by driving to zero the
so-called barrier parameter µk, positive for all k. Denoting the outer iterations
by the index k, an approximate solution to (8) is computed by an iterative
process indexed by j, the inner iterations.

To describe an inner iteration of the method, suppose we have
(xk,j , λk,j , zk,j` , zk,ju), with j ≥ 0, xk,j ∈ F0, and positive vectors zk,j` and zk,ju .

We consider a line search method to compute (xk,j+1, λk,j+1, zk,j+1
` , zk,j+1

u)

such that xk,j+1 ∈ F0, [zk,j+1
`]i > 0 for each i ∈ I`, and [zk,j+1

u]i > 0 for
each i ∈ Iu. For defining the (j + 1)-th inner approximation, a search direc-

tion (dk,jx , dk,jλ , dk,jz` , d
k,j
zu) must be computed, with dk,jx a descent direction for

ϕµk(·) from xk,j , and a step size αk,j satisfying a sufficient decrease condition.

The Newton’s direction to system (8) from (xk,j , λk,j , zk,j` , zk,ju) is the so-
lution to the (3n+m)-dimensional linear system given by


∇2f(xk,j) AT −I I

A 0 0 0

Z`k,j 0 Lk,j 0

−Zuk,j 0 0 Uk,j



dk,jx

dk,jλ
dk,jz`
dk,jzu

 = −


∇f(xk,j) +ATλk,j − zk,j` + zk,ju

0

Lk,jz
k,j
` − µke

Uk,jz
k,j
u − µke

 ,

(9)
the well-known primal-dual system [?]. From the last two blocks of (9), we get

dk,jz` = −zk,j` + µkL
†
k,je− L

†
k,jZ

`
k,jd

k,j
x and (10a)

dk,jzu = −zk,ju + µkU
†
k,je+ U†k,jZ

u
k,jd

k,j
x . (10b)

6 E. G. Birgin* et al.

Using (10) into the first two blocks of (9), we obtain the (n+m)-dimensional
linear system(

Hk,j A
T

A 0

)(
dk,jx

dk,jλ

)
= −

(
∇f(xk,j) +ATλk,j − µkL†k,je+ µkU

†
k,je

0

)
, (11)

where Hk,j = ∇2f(xk,j) + L†k,jZ
`
k,j + U†k,jZ

u
k,j . From [?, Thm.16.3], we have

that

inertia

(
Hk,j A

T

A 0

)
= inertia(WTHk,jW) + (m,m, 0), (12)

whereW ∈ Rn×(n−m) is a matrix whose columns form a basis to the kernel of A
and inertia(M) is a triple that denotes the number of positive, negative, and
null eigenvalues of the square symmetric matrix M , respectively. Therefore,
the matrix of the linear system (11) is nonsingular if Hk,j is nonsingular in
the kernel of A. Furthermore, we have the following result.

Lemma 1 Consider the linear system (11). If the matrix Hk,j is positive def-
inite in the kernel of A and the component dk,jx of the solution is nonzero, then
dk,jx is a descent direction for ϕµk(·) from xk,j.

Proof The first block of equations in system (11) implies that

Hk,jd
k,j
x +AT dk,jλ = −∇f(xk,j)−ATλk,j + µkL

†
k,je− µkU

†
k,je. (13)

Since ∇ϕµk(xk,j) = ∇f(xk,j)− µkL†k,je+ µkU
†
k,je, from (13),

Hk,jd
k,j
x +AT dλ = −∇ϕµk(xk,j)−ATλk,j . (14)

The second block of equations in (11) implies that dk,jx is in the kernel of A.
So, pre-multiplying (14) by −(dk,jx)T ,

∇ϕµk(xk,j)T dk,jx = −(dk,jx)THk,jd
k,j
x . (15)

Thus, if Hk,j is positive definite in the kernel of A, then (dk,jx)THk,jd
k,j
x > 0

whenever dk,jx 6= 0, which, together with (15), imply that dk,jx is a descent
direction for ϕµk(·) from xk,j . ut

To ensure that (i) the solution of (11) exists and (ii) dk,jx is a descent
direction for ϕµk(·) from xk,j , relation (12) and Lemma 1 indicate that we
need

inertia

(
Hk,j A

T

A 0

)
= (n,m, 0).

According with (12), this can be accomplished by guaranteeing that Hk,j is
positive definite in the kernel of A. For this reason, if the inertia of the matrix
of the system (11) is not equal to (n,m, 0), we search for a scalar ξk,j > 0 such
that the inertia of the matrix(

Hk,j + ξk,jI A
T

A 0

)

Linearly constrained optimization 7

is (n,m, 0) and then solve the following perturbed version of the system (11)(
Hk,j + ξk,jI A

T

A 0

)(
dk,jx
dk,jλ

)
= −

(
∇ϕµk(xk,j) +ATλk,j

0

)
. (16)

The subproblem iterates are stated as

xk,j+1 = xk,j + αk,jd
k,j
x , (17a)

λk,j+1 = λk,j + dk,jλ , (17b)

z̄k,j+1
` = zk,j` + αz`k,jd

k,j
z`
, (17c)

z̄k,j+1
u = zk,ju + αzuk,jd

k,j
zu , (17d)

in which αk,j , α
z`
k,j , α

zu
k,j ∈ (0, 1] determine the step sizes. Since ` < xk,j < u,

[zk,j`]i > 0 for each i ∈ I`, and [zk,ju]i > 0 for each i ∈ Iu, we need to preserve
these properties in the new iterate. Following [?], we use a fraction-to-the-
boundary parameter τk = max{τmin, 1 − µk}, with τmin ∈ (0, 1). Moreover,

we define the sets Dk,j−
def
= {i : [dk,jx]i < 0} and Dk,j+

def
= {i : [dk,jx]i > 0}, and

compute

α`k,j = max
i∈I`∩Dk,j−

{α ∈ (0, 1] : (xk,ji + α[dk,jx]i)− `i ≥ (1− τk)(xk,ji − `i)},

αuk,j = max
i∈Iu∩Dk,j+

{α ∈ (0, 1] : ui − (xk,ji + α[dk,jx]i) ≥ (1− τk)(ui − xk,ji)},

αz`k,j = max
i∈I`∩Dk,j+

{α ∈ (0, 1] : [zk,j`]i + α[dk,jz`]i ≥ (1− τk)[zk,j`]i},

αzuk,j = max
i∈Iu∩Dk,j−

{α ∈ (0, 1] : [zk,ju]i + α[dk,jzu]i ≥ (1− τk)[zk,ju]i}.

Notwithstanding, whenever dk,jx is small enough, we take αz`k,j = αzuk,j = 1,
in order to not impair the global convergence of the method. A backtracking
must be done to obtain αk,j ∈ (0, αmax

k,j], with αmax
k,j = min{α`k,j , αuk,j}, such

that the sufficient decrease condition

ϕµk(xk,j + αk,jd
k,j
x) ≤ ϕµk(xk,j) + γαk,j∇ϕµk(xk,j)T dk,jx

is satisfied, for some γ ∈ (0, 1).

Last, but not the least, we have to ensure that zk,j+1
` and zk,j+1

u approx-

imately maintain the relationship with xk,j+1 established in (7). These equa-
tions guarantee that the northwest matrix in system (11) is an approximation
to the Hessian of the log-barrier function (4). Therefore, we consider

[zk,j+1
`]i =


max

{
min

{
[z̄k,j+1

`]i, κz

(
µk

xk,j+1
i − `i

)}
,

1

κz

(
µk

xk,j+1
i − `i

)}
, if i ∈ I`

0, otherwise

and

[zk,j+1
u]i =


max

{
min

{
[z̄k,j+1

u]i, κz

(
µk

ui − xk,j+1
i

)}
,

1

κz

(
µk

ui − xk,j+1
i

)}
, if i ∈ Iu

0, otherwise,

8 E. G. Birgin* et al.

for i = 1, . . . , n and a constant κz ≥ 1. Hence,

[zk,j+1
`]i ∈

[
1

κz

(
µk

xk,j+1
i − `i

)
, κz

(
µk

xk,j+1
i − `i

)]
, for i ∈ I` and

[zk,j+1
u]i ∈

[
1

κz

(
µk

ui − xk,j+1
i

)
, κz

(
µk

ui − xk,j+1
i

)]
, for i ∈ Iu,

which means that (7) will be satisfied with precision κz. (See [?].)

We consider that a point (xk,j , λk,j , zk,j` , zk,ju) is an approximate solution
to subproblem (3) whenever

Eµk(xk,j , λk,j , zk,j` , zk,ju) ≤ κεµk, (18)

where

Eµ(x, λ, z`, zu)
def
=

∥∥∥∥∥∥
∇f(x) +ATλ− z` + zu

Lz` − µe
Uzu − µe

∥∥∥∥∥∥
∞

, (19)

and κε > 0. Thus, (18) implies that equations (8a), (8c), and (8d) are approx-
imately satisfied, and by the definition of the method, Axk,j = b, so that (8b)

holds. Therefore, (xk,j , λk,j , zk,j` , zk,ju) approximately satisfies the optimality
conditions (8) of subproblem (3).

After a subproblem is approximately solved, we compute a new barrier
parameter

µk+1 = min
{
κµµk, µ

θµ
k

}
,

where κµ ∈ (0, 1) and θµ ∈ (1, 2). With such an update, the barrier parameter
may converge superlinearly to zero.

Algorithms 1, 2, and 3 below summarize the proposed method. Algorithm 1
corresponds to the outer algorithm; while Algorithm 2 corresponds to the
inner algorithm, that is used by Algorithm 1 for solving the subproblems.
Algorithm 3, taken from [?, p.36] and reproduced here for completeness, cor-
responds to the intertia correction procedure.

Algorithm 1: Feasible Interior-Point Method - Outer Iterations

Input. Let x0 ∈ F0, λ0 ∈ Rm, z0` ∈ Rn, and z0u ∈ Rn such that [z0`]i > 0 for i ∈
I` and [z0`]i = 0 otherwise, and [z0u]i > 0 for i ∈ Iu and [z0u]i = 0 otherwise,
A ∈ Rm×n a full row-rank matrix, and µ0 > 0; constants εtol > 0, κε > 0,
κµ ∈ (0, 1), θµ ∈ (1, 2), γ ∈ (0, 1), τmin > 0, and κz ≥ 1. Initialize k ← 0.

Step 1.1. If

E0(xk, λk, zk` , z
k
u) ≤ εtol (20)

then stop and return (xk, λk, zk` , z
k
u).

Linearly constrained optimization 9

Step 1.2. Starting from xk, λk, zk` , and zku and using Algorithm 2, compute
xk+1, λk+1, zk+1

` , and zk+1
u such that

Eµk(xk+1, λk+1, zk+1
` , zk+1

u) ≤ κεµk.

Step 1.3. Compute µk+1 = min{κµµk, µ
θµ
k }.

Step 1.4. Let k ← k + 1 and go to Step 1.1.

Algorithm 2: Feasible Interior-Point Method - Inner Iterations

Input. Let xk,0 ∈ F0, λk,0 ∈ Rm, zk,0` ∈ Rn, and zk,0u ∈ Rn such that [zk,0`]i > 0

for i ∈ I` and [zk,0`]i = 0 otherwise, and [zk,0u]i > 0 for i ∈ Iu and [zk,0u]i = 0
otherwise, A ∈ Rm×n a full row-rank matrix, and µk > 0; constants κε > 0,
γ ∈ (0, 1), τmin > 0, and κz ≥ 1. Initialize j ← 0.

Step 2.1. If
Eµk(xk,j , λk,j , zk,j` , zk,ju) ≤ κεµk,

then stop and return (xk,j , λk,j , zk,j` , zk,ju).

Step 2.2. Using Algorithm 3, compute ξk,j ≥ 0 such that inertia(Mk,j) =
(n,m, 0), where

Mk,j =

(
∇2f(xk,j) + L†k,jZ

L
k,j + U†k,jZ

U
k,j + ξk,jI AT

A 0

)
. (21)

Step 2.3. Compute dk,jx and dk,jλ as the solution to the linear system

Mk,j

(
dk,jx

dk,jλ

)
= −

(
∇ϕµk(xk,j) +ATλk,j

0

)
. (22)

Step 2.4. Compute
dk,jz` = −zk,j` + µkL

†
k,je− L

†
k,jZ

L
k,jd

k,j
x and

dk,jzu = −zk,ju + µkU
†
k,je+ U†k,jZ

U
k,jd

k,j
x .

Step 2.5. Compute τk = max{τmin, 1− µk},

α`k,j = max
i∈I`∩Dk,j−

{α ∈ (0, 1] : ([xk,j]i + α[dk,jx]i)− `i ≥ (1− τk)([xk,j]i − `i)},

αuk,j = max
i∈Iu∩Dk,j+

{α ∈ (0, 1] : ui − ([xk,j]i + α[dk,jx]i) ≥ (1− τk)(ui − [xk,j]i)},

and αmax
k,j = min{α`k,j , αuk,j}. If both[

dk,jx
]
i
≤ µk

[zk,j`]i
, for all i ∈ I` ∩ Dk,j+ and[

dk,jx
]
i
≥ − µk

[zk,ju]i
, for all i ∈ Iu ∩ Dk,j− ,

(23)

10 E. G. Birgin* et al.

then αz`k,j = αzuk,j = 1, otherwise,

αz`k,j = max
i∈I`∩Dk,j+

{α ∈ (0, 1] : [zk,j`]i + α[dk,jz`]i ≥ (1− τk)[zk,j`]i} and

αzuk,j = max
i∈Iu∩Dk,j−

{α ∈ (0, 1] : [zk,ju]i + α[dk,jzu]i ≥ (1− τk)[zk,ju]i}.

Step 2.6. Let α← αmax
k,j . While

ϕµk(xk,j + αdk,jx) > ϕµk(xk,j) + γα∇ϕµk(xk,j)T dk,jx (24)

set α← 1
2α. Then, set αk,j ← α.

Step 2.7. Compute xk,j+1 = xk,j + αk,jd
k,j
x and λk,j+1 = λk,j + dk,jλ .

Step 2.8. Compute z̄k,j+1
` = zk,j` + αz`k,jd

k,j
z`

, z̄k,j+1
u = zk,ju + αzuk,jd

k,j
zu ,

[zk,j+1
`]i = max

{
min

{
[z̄k,j+1

`]i, κz

(
µk

[xk,j+1]i − `i

)}
,

1

κz

(
µk

[xk,j+1]i − `i

)}
,

for i ∈ I`, and

[zk,j+1
u]i = max

{
min

{
[z̄k,j+1

u]i, κz

(
µk

ui − [xk,j+1]i

)}
,

1

κz

(
µk

ui − [xk,j+1]i

)}
,

for i ∈ Iu.

Step 2.9. Set j ← j + 1 and go to Step 2.1.

Algorithm 3: Inertia correction

Input. Constants 0 < ξmin < ξmax; 0 < κ−ξ < 1 < κ+ξ < κ̄+ξ ; ξini > 0, and the
prior correction ξk,j−1 (ξk,j−1 = 0 if k = j = 0).

Step 3.1. ξk,j ← 0.

Step 3.2. If the inertia of the linear system (16) is (n,m, 0), set ξk+1,−1 = ξk,j
and stop.

Step 3.3. If ξk,j−1 = 0, then ξk,j ← ξini, else ξk,j ← max{ξmin, κ
−
ξ ξk,j−1}.

Step 3.4. If the inertia of the linear system (16) is (n,m, 0), set ξk+1,−1 = ξk,j
and stop.

Step 3.5. If ξk,j−1 = 0, then ξk,j ← κ̄+ξ ξk,j , else ξk,j ← κ+ξ ξk,j .

Step 3.6. If ξk,j > ξmax, then stop, because it was not possible to compute
a value for ξk,j . Else, go to Step 3.4.

Linearly constrained optimization 11

3 Global convergence

The convergence theory of the proposed method is given in this section. We
first present well definiteness results for Algorithm 2.

Lemma 2 In Step 2.2 of Algorithm 2, there exists ξk,j ≥ 0 large enough such
that inertia(Mk,j) = (n,m, 0), with Mk,j defined in (21).

Proof Let H̃ξk,j = ∇2f(xk,j) + L†k,jZ
L
k,j + U†k,jZ

U
k,j + ξk,jI and W ∈ Rn×n−m

a matrix whose columns form a basis to the kernel of A. Notice that, if H̃ξk,j

is positive definite, then WT H̃ξk,jW is also positive definite. Thus, on the

one hand, if H̃0 is positive definite, then WT H̃0W is positive definite as well,
which together with (12) imply that inertia(Mk,j) = (n,m, 0) for ξk,j = 0.

On the other hand, if H̃0 is not positive definite, let λ1 ≤ λ2 ≤ . . . ≤ λn be
the eigenvalues of the matrix H̃0, with λ1 ≤ 0. Therefore, the eigenvalues of
H̃|λ1|+ε, for ε > 0, are

ε ≤ λ2 + |λ1|+ ε ≤ . . . ≤ λn + |λ1|+ ε,

which implies that H̃|λ1|+ε is positive definite and, consequently, so it is

WT H̃|λ1|+εW . Hence, (12) yields inertia(Mk,j) = (n,m, 0) for ξk,j ≥ |λ1|+ ε.
ut

Next we show that, as long as xk,j is not stationary for problem (3), it is
always possible to compute an adequate search direction in Algorithm 2.

Lemma 3 In Step 2.3 of Algorithm 2, it is possible to compute the search
directions dk,jx and dk,jλ . Moreover, if dk,jx 6= 0, then dk,jx is a descent direction
for ϕµk(·) from xk,j. So, Step 2.6 finishes in a finite number of iterations.

Proof From Lemma 2, it is possible to find ξk,j such that
inertia(Mk,j) = (n,m, 0). Therefore, Mk,j is a nonsingular matrix, and the
linear system in Step 2.3 has a unique solution. Notice that, if dk,jx = 0 and

dk,jλ = 0, the right-hand side of the linear system (22) yields the pair (xk,j , λk,j)

to be primal-dual stationary for problem (3). In case dk,jx = 0 but dk,jλ 6= 0,

also from (22) we obtain the primal-dual stationary pair (xk,j , λk,j + dk,jλ) =
(xk,j , λk+1,j) for problem (3). Now, from Lemma 1, since inertia(Mk,j) =
(n,m, 0), we have that, whenever a direction dk,jx 6= 0 is computed, it will be
of descent for ϕµk(·) from xk,j . So, there exists αk,j such that the sufficient
decrease condition at Step 2.6 is verified. ut

Lemmas 2 and 3 show that Algorithm 2 is well defined. The well definiteness
of Algorithm 1 is subject to the global convergence of Algorithm 2, and this is
established in the sequel. By global convergence, we mean that we analyze the
properties of the infinite sequence generated by the method that emerges when
the stopping criterion at Step 2.1 is removed from Algorithm 2. With some
abuse of notation, we refer to this sequence as the infinite sequence generated

12 E. G. Birgin* et al.

by Algorithm 2. Analyzing the properties of this infinite sequence, we prove
that the stopping criterion at Step 2.1 of Algorithm 2 is satisfied in finite
time. Based on ideas from [?], we present a global convergence analysis for the
proposed algorithm, but in a more detailed fashion, and strongly connected
with the structure of problem (1). The global convergence results rest upon
the following assumptions.

Assumption 1 The set F0, defined in (2), is nonempty.

Assumption 2 The objective function f of problem (1) is continuous and at
least twice continuously differentiable.

Assumption 3 The sequence {xk,j} generated by Algorithm 2 is bounded, for
all k.

Assumption 4 The matrices H̄k,j = Hk,j + ξk,jI satisfy dT H̄k,jd ≥ σ‖d‖2,
for all d ∈ Rn, d 6= 0, such that Ad = 0, for some σ > 0 and for all k and j.

Although Assumption 3 is a conjecture about the sequence generated by
the method, which we have no control at a first glance, this is implicitly assured
when (i) box constraints exist for every variable, i.e. when −∞ < `i ≤ ui <
+∞, for i = 1, . . . , n, or (ii) when the level set {x ∈ F | f(x) ≤ f(x0)} is
bounded, where x0 ∈ F0. Assumption 4 establishes that the matrices {H̄k,j}
must be uniformly positive definite in the kernel of matrix A. Compared with
other requirements, as in the work by Chen and Goldfarb [?, Condition (C-5)],
our hypothesis is slightly weaker, since Lemma 2 guarantees the attainment
of a scalar ξk,j in Step 2.2 of Algorithm 2 which properly adjusts the inertia
of the matrix of the system (22) . Thus, Assumption 4 may be accomplished
by the numerical nature of the inertia correction method used.

Lemma 4 Suppose that Assumptions 1, 2 and 3 hold and consider that the se-
quence generated by Algorithm 2 is {xk,j+1, λk,j+1, zk,j+1

` , zk,j+1
u }. Then, there

exists δ > 0 such that

I. for all j ∈ {0, 1, 2, . . .}, it holds

(a) `i + δ ≤ xk,j+1
i , for all i ∈ I` and

(b) xk,j+1
i ≤ ui − δ, for all i ∈ Iu;

II. for all j ∈ {0, 1, 2, . . .}, it holds

(a) [zk,j+1
`]i ∈

µk
δ

[
1

κz
, κz

]
, for all i ∈ I` and

(b) [zk,j+1
u]i ∈

µk
δ

[
1

κz
, κz

]
, for all i ∈ Iu.

Proof To show (I), suppose, by contradiction, that there exist an infinite set
J ⊂
∞

N, and ı̂ ∈ I` such that

lim
j∈J

xk,j+1
ı̂ = `ı̂. (25)

Linearly constrained optimization 13

By Step 2.1 of Algorithm 2, Eµk(xk,j+1, λk,j+1, zk,j+1
` , zk,j+1

u) > κεµk, and by
the line search of Step 2.6 of Algorithm 2,

ϕµk(xk,j+1) ≤ ϕµk(xk,j) + γαk,j−1∇ϕµk(xk,j)T dk,jx . (26)

Assumptions 2 and 3 imply that the sequences {f(xk,j+1)}, {xk,j+1
i − `i}, for

all i ∈ I`, and {ui − xk,j+1
i }, for all i ∈ Iu, are bounded. Thus, by (25) and

by the definition of the function ϕµ(·) in (4),

lim
j∈J

ϕµk(xk,j+1) = +∞,

which contradicts (26). An analogous reasoning applies in case there exist an

infinite set J ⊂
∞

N, and ı̂ ∈ Iu such that {xk,j+1
ı̂ }j∈J → uı̂.

Part (II) follows directly from the computations within Step 2.8 of Algo-
rithm 2. ut

In the following, auxiliary results ascertain the boundedness of the se-
quences generated by Algorithm 2, in preparation to the global convergence
theorem.

Lemma 5 Suppose Assumptions 2 and 3 hold. Then, the sequence {H̄k,j}
generated by Algorithm 2 is bounded.

Proof Assumptions 2 and 3 imply that the sequence {∇2f(xk,j)} generated
by Algorithm 2 is bounded. Furthermore, Assumption 3 and Lemma 4(I) im-

ply that the sequence {L†k,j , U
†
k,j} generated by Algorithm 2 is bounded. In

addition, Lemma 4(II) implies that the sequence {ZLk,j , ZUk,j} generated by Al-
gorithm 2 is bounded. Finally, according with Lemma 2, ξk,j ≥ |λ1|+ε is large
enough to correct the inertia of matrix Mk,j , which gives an implicit upper
bound in ξk,j . Putting all these facts together, the result follows. ut

Lemma 6 Suppose that Assumptions 1, 2, and 3 hold. Then, the sequence
{dk,jx , λk,j+1, zk,j+1

` , zk,j+1
u } generated by Algorithm 2 is bounded.

Proof According with Lemma 4(II), the sequence {zk,j+1
` , zk,j+1

u } is bounded.
In order to get a contradiction, suppose there exists an infinite set J ⊂

∞
N such

that
lim
j∈J
‖(dk,jx , λk,j + dk,jλ)‖ = +∞. (27)

Assumptions 2 and 3 and Lemma 4(I) imply that the sequence

{∇ϕµk(xk,j)}j∈J = {∇f(xk,j)− µkL†k,je+ µkU
†
k,je}j∈J

is bounded. This fact, together with Lemmas 4(II) and 5, assure the existence
of an infinite set Ĵ ⊂

∞
J such that

lim
j∈Ĵ
∇ϕµk(xk,j) = ∇ϕµk(xk,∗), (28)

14 E. G. Birgin* et al.

lim
j∈Ĵ

(zk,j` , zk,ju) = (zk,∗` , zk,∗u), and

lim
j∈Ĵ

H̄k,j = H̄k,∗. (29)

Using (21), we can rewrite the system (16) in order to get

Mk,j

(
dk,jx

λk,j + dk,jλ

)
= −

(
∇ϕµk(xk,j)

0

)
, (30)

recalling that (29) implies that limj∈Ĵ Mk,j = Mk,∗.

By (28), we have that the right-hand side of the system (30) is bounded
for j ∈ Ĵ . Besides that, Step 2.2 of Algorithm 2 guarantees that Mk,j will be
nonsingular for all j. Thus, from (30), it follows that

lim
j∈Ĵ

(
dk,j

λk,j + dk,jλ

)
= lim
j∈Ĵ
−M−1k,j

(
∇ϕµk(xk,j)

0

)
= −M−1k,∗

(
∇ϕµk(xk,∗)

0

)
,

contradicting (27). ut

Lemma 7 Consider that Assumptions 1, 2, 3, and 4 hold. Then, the sequence
{dk,jx } generated by Algorithm 2 goes to zero as j tends to infinity.

Proof Lemma 6 implies that the sequence {dk,jx } is bounded, therefore it ad-
mits some convergent subsequence. Let us consider, by contradiction, that
there exists an infinite subset J ⊂

∞
N such that

lim
j∈J

dk,jx = dk,∗x 6= 0. (31)

Lemma 5, Assumption 3, and Lemma 6 imply that there exists an infinite set
Ĵ ⊂
∞
J such that

lim
j∈Ĵ

H̄k,j = H̄k,∗ and lim
j∈Ĵ

(xk,j , λk,j , zk,j` , zk,ju) = (xk,∗, λk,∗, zk,∗` , zk,∗u).

Pre-multiplying the first block of equations from the system (16) by dk,jx ,
which, by the second block of equations from the system (16), belongs to the
kernel of A, we have that

(dk,jx)T H̄k,jd
k,j
x = −(dk,jx)T∇ϕµk(xk,j)

≥ σ‖dk,jx ‖2, by Assumption 4.

Thus,

∇ϕµk(xk,j)T dk,jx ≤ −σ‖dk,jx ‖2. (32)

Taking the limit in (32) for j ∈ Ĵ , it follows that

∇ϕµk(xk,∗)T dk,∗x ≤ −σ‖dk,∗x ‖2. (33)

Linearly constrained optimization 15

By Lemma 4(I), we have that `i+ δ ≤ xk,ji , for all i ∈ I` and xk,ji ≤ ui− δ, for

all i ∈ Iu, with δ > 0. Taking the limit for j ∈ Ĵ , it follows that `i < xk,∗i , for

all i ∈ I` and xk,∗i < ui, for all i ∈ Iu. Therefore, there exists α̂ ∈ (0, 1] such
that, for all α ∈ (0, α̂],

`i < xk,∗i +α[dk,∗x]i, for all i ∈ I` and xk,∗i +α[dk,∗x]i < ui, for all i ∈ Iu. (34)

Since dk,∗x 6= 0 and (33) implies that ∇ϕµk(xk,∗)T dk,∗x < 0, then there exists
α̃ ∈ (0, α̂] such that, for all α ∈ (0, α̃], (34) holds and

ϕµk(xk,∗ + αdk,∗x) ≤ ϕµk(xk,∗) + γ̄α∇ϕµk(xk,∗)T dk,∗x

is verified, with γ̄ ∈ (γ, 1). Notice that this is a sufficient decrease condition,
which ensures the existence of α̃. Nonetheless, this is a more rigorous condition
than the one required in Step 2.6 of Algorithm 2, given that γ̄ > γ. Since
ϕµ(·) is a continuously differentiable function, from the strict fulfillment of
the bound constraints (34), and the fact that dk,∗x is a descent direction from
xk,∗, according with (33), we can define

ρ∗ = min {ρ ∈ {0, 1, 2, . . .}}

such that

αk,∗
def
= α̃

(
1

2

)ρ∗
≤ αk,j

and

ϕµk(xk,j + αk,∗d
k,j
x) ≤ ϕµk(xk,j) + γαk,∗∇ϕµk(xk,j)T dk,jx , (35)

for all j ∈ Ĵ , j large enough. Then,

ϕµk(xk,j+1) ≤ ϕµk(xk,j) + γαk,j∇ϕµk(xk,j)T dk,jx
≤ ϕµk(xk,j)− γαk,jσ‖dk,jx ‖2, by (32)

≤ ϕµk(xk,j)− 1
2γαk,jσ‖d

k,∗
x ‖2, by (31)

≤ ϕµk(xk,j)− 1
2γαk,∗σ‖d

k,∗
x ‖2, for j large enough,

which implies that

lim
j∈Ĵ

ϕµk(xk,j) = −∞,

contradicting Assumptions 2 and 3. ut

Theorem 1 establishes the global convergence result for Algorithm 2.

Theorem 1 Suppose that Assumptions 1, 2, 3, and 4 hold. Then, any limit
point of the sequence {xk,j+αk,jd

k,j
x , λk,j+dk,jλ , zk,j` +αz`k,jd

k,j
z`
, zk,ju +αzuk,jd

k,j
zu }

generated by Algorithm 2 satisfies the first-order optimality conditions (8) for
problem (3).

16 E. G. Birgin* et al.

Proof Let (xk,∗, λk,∗, zk,∗` , zk,∗u) be any limit point of the sequence

{xk,j + αk,jd
k,j
x , λk,j + dk,jλ , zk,j` + αz`k,jd

k,j
z`
, zk,ju + αzuk,jd

k,j
zu },

namely the subsequence whose indexes belong to the infinite set J ⊂
∞

N. Taking

the limit in (16) for j ∈ J , by Lemma 7 we have that

ATλk,∗ = −∇ϕµk(xk,∗) = −∇f(xk,∗) + µkL
†
k,∗e− µkU

†
k,∗e.

In other words,

∇f(xk,∗) +ATλk,∗ − µkL†k,∗e+ µkU
†
k,∗e = 0. (36)

Lemma 7 implies that, for j ∈ J large enough, dk,jx will be small enough and,
for this reason, conditions (23) will be satisfied and αz`k,j = αzuk,j = 1. Therefore,
taking limits in (10) for j ∈ J and considering (17c) and (17d), we have that

zk,∗` = µkL
†
k,∗e e zk,∗u = µkU

†
k,∗e. (37)

Thus, (36) and (37) together imply that

∇f(xk,∗) +ATλk,∗ − zk,∗` + zk,∗u = 0

Lk,∗z
k,∗
` − µke = 0

Uk,∗z
k,∗
u − µke = 0.

(38)

Therefore, since Axk,∗ = b, (38) gives us that (8) holds in (xk,∗, λk,∗, zk,∗` , zk,∗u).
ut

Now, we are ready to show that Algorithm 1 is well defined. First, by
Assumption 1, it is always possible to find an initial point x0 ∈ F0. Thus, to
prove the well definiteness of Algorithm 1, it is enough to check that Step 1.2
is well defined, which is closely related to the well definiteness of Algorithm 2.
The next result completes the analysis.

Lemma 8 Consider that Assumptions 1, 2, 3, and 4 hold. Then, for all k,
it is possible to find (xk+1, λk+1, zk+1

` , zk+1
u) in finite time using Algorithm 2

such that

Eµk(xk+1, λk+1, zk+1
` , zk+1

u) ≤ κεµk.

Proof First, notice that µ0 > 0 and, from Step 1.3, µk > 0 for all k. Thus, we
have that κεµk > 0 for all k. On the other hand, for each k, Theorem 1 implies
that, as j tends to infinity, the sequence generated by Algorithm 2 converges
to a point (xk,∗, λk,∗, zk,∗` , zk,∗u) such that Eµk(xk,∗, λk,∗, zk,∗` , zk,∗u) = 0 (ac-
cording with (38)). Therefore, for j large enough, Algorithm 2 can find a point

(xk,j , λk,j , zk,j` , zk,ju) such that Eµk(xk,j , λk,j , zk,j` , zk,ju) ≤ κεµk. Consequently,

it is possible to find (xk+1, λk+1, zk+1
` , zk+1

u) = (xk,j , λk,j , zk,j` , zk,ju) in finite
time with Algorithm 2. ut

Linearly constrained optimization 17

With the previous results, we can establish the global convergence of Al-
gorithm 1. Once again, with some abuse of notation, we refer to the infinite
sequence generated by the method that emerges when the stopping criterion
(Step 1.1) is removed from Algorithm 1 as “the infinite sequence generated by
Algorithm 1”.

Theorem 2 Consider that Algorithm 1 generates an infinite sequence of it-
erates and that Assumptions 1, 2, 3, and 4 hold. If the sequence generated by
Algorithm 1 admits a limit point (x∗, λ∗, z∗` , z

∗
u), then

E0(x∗, λ∗, z∗` , z
∗
u) = 0, (39)

with Eµ(x, λ, z`, zu) defined in (19).

Proof Let K ⊂
∞

N be an infinite set such that

lim
k∈K

(xk+1, λk+1, zk+1
` , zk+1

u) = (x∗, λ∗, z∗` , z
∗
u). (40)

Suppose that (39) does not hold. Then,

‖∇f(x∗) +ATλ∗ − z∗` + z∗u‖∞ > 0 or (41a)

‖L∗Z`∗e‖∞ > 0 or (41b)

‖U∗Zu∗ e‖∞ > 0. (41c)

By Step 1.2 of Algorithm 1, we have that

Eµk(xk+1, λk+1, zk+1
` , zk+1

u) ≤ κεµk,

for all k, which means that

‖∇f(xk+1) +ATλk+1 − zk+1
` + zk+1

u ‖∞ ≤ κεµk and (42a)

‖Lk+1Z
`
k+1e− µke‖∞ ≤ κεµk and (42b)

‖Uk+1Z
u
k+1e− µke‖∞ ≤ κεµk, (42c)

for all k. Since K ⊂
∞

N, we have, by Step 1.3 of Algorithm 1, that

lim
k∈K

µk = 0. (43)

From (40), (41b), and (42b), for all k large enough, we have that

0 < ‖Lk+1Z
`
k+1e‖∞ − µk ≤ κεµk,

which yields 0 < µk(κε+1). It is a contradiction, since (43) holds. Analogously,
(40), (41c), and (42c) produce the same contradiction.

On the other hand, from (40), (41a), and (42a), for all k large enough,

0 < ‖∇f(xk+1) +ATλk+1 − zk+1
` + zk+1

u ‖∞ ≤ κεµk,

which implies that 0 < κεµk, being also in contradiction with (43). Therefore,
(41) cannot occur, implying that (39) holds. ut

18 E. G. Birgin* et al.

Theorem 2 assures that, given any sequence generated by Algorithm 1, if
such a sequence admits a limit point, then this point satisfies the set of equa-
tions in (8) with µ = 0. Consequently, this limit point also satisfies the KKT
conditions for the original problem (1), since z∗` and z∗u are nonnegative and,
by the definition of the method, they satisfy the complementarity relations
in (8c) and (8d) with µ = 0. Therefore, the next result is obtained.

Corollary 1 Suppose Algorithm 1 generates an infinite sequence of iterates
and that Assumptions 1, 2, 3, and 4 hold. If the sequence generated by Al-
gorithm 1 admits any limit point (x∗, λ∗, z∗` , z

∗
u), then this point satisfies the

KKT conditions for problem (1).

Additionally, the convex case yields the following result.

Corollary 2 Suppose Algorithm 1 generates an infinite sequence of iterates,
that Assumptions 1, 2, 3, and 4 hold, and that, in addition, the objective
function f is convex. If the sequence generated by Algorithm 1 admits any limit
point (x∗, λ∗, z∗` , z

∗
u), then this point is a global minimizer for problem (1).

Proof The proof follows from Corollary 1 and the fact that, in the convex case,
every KKT point is a global minimizer. (See [?].)

4 Implementation and numerical experiments

We now present numerical experiments to evaluate the performance of Algo-
rithms 1 and 2. We consider all the 200 problems from CUTEst collection [?]
with linear equality and box constraints. Table 1 displays the distribution of
the number of variables n and the number of constraints m in the considered
set of problems. It should be noted that, in all the problems, a constraint of
the form, `i ≤ xi ≤ ui with −1020 ≤ `i ≤ ui ≤ 1020 for i = 1, . . . , n is present;
this being a sufficient condition for the satisfaction of Assumption 3.

nmax mmax
problems with n ≥ ωnmax # problems with m ≥ ωmmax

ω = 0.1 ω = 0.01 ω = 0.001 ω = 0.1 ω = 0.01 ω = 0.001

251,001 250,498 55 123 147 6 100 132

Table 1 Distribution of the number of variables n and the number of constraints m in the
considered 200 problems from the CUTEst collection.

We implemented Algorithms 1, 2, and 3, referred as Lcmin from now on, in
Fortran 2008. The codes are freely available in the web1. Tests were conducted
in an Intel Core i7-8700 3.20GHz processor with 32 GB RAM, running Ubuntu

1 https://github.com/johngardenghi/lcmin.

https://github.com/johngardenghi/lcmin

Linearly constrained optimization 19

18.04.3 LTS operating system. Codes were compiled using the GNU Compiler
Collection version 7.4.0 with -O3 flag enabled.

In practice, we consider a scaled version of the stopping criterion (20) at
Step 1.1 of Algorithm 1 given by

Es0(xk, λk, zk` , z
k
u) ≤ εtol, (44)

where s = (sd, s`, su),

sd
def
= max

{
smax,

‖λ‖1+‖z`‖1+‖zu‖1
m+2n

}
/smax,

s`
def
= max

{
smax,

‖z`‖1
n

}
/smax,

su
def
= max

{
smax,

‖zu‖1
n

}
/smax,

smax ≥ 1 is a given constant, and

Esµ(x, λ, z`, zu)
def
= max

{
‖∇f(x)+ATλ−z`+zu‖∞

sd
, ‖LZ

`e−µe‖∞
s`

, ‖UZ
ue−µe‖∞
su

}
.

In theory, all iterates of Lcmin are feasible. However, in practice, numerical
errors may lead to some loss of feasibility. For this reason, once the stopping
criterion (44) has been satisfied, we check the value of ‖Axk−b‖∞. We consider
“the problem has been solved” (stopping criterion SC1) if

‖Ax− b‖∞ ≤ εfeas,

where εfeas > 0 is a given constant. If

‖Ax− b‖∞ ≤
√
εfeas,

we say that “an acceptable feasible point was obtained” (stopping criterion
SC2). Otherwise, we declare that “convergence to an infeasible point was ob-
tained” (stopping criterion SC3). In addition to (44), Lcmin also stops when-
ever

SC4: ‖xk,j‖∞ ≥ κx, where κx is a large positive given value;
SC5: k ≥ kmax, where kmax > 0 is given; or
SC6: µk ≤ εtol/10 and j ≥ jmax, where jmax > 0 is given.

In the experiments, following [?], we set µ0 = 0.1, εtol = 10−8, κε = 10,
κµ = 0.2, θµ = 1.5, γ = 10−4, τmin = 0.99, κz = 1010, κ−ξ = 1/3, κ+ξ = 8

e κ̄+ξ = 100, ξini = 10−4, ξmin = 10−20, ξmax = 1020, smax = 100,

εfeas = 10−8, κx = 1020, kmax = 50, and jmax = 200. Three implementation
features are in order. Routine HSL MA572 was used to solve the linear systems.
Matrix A of the constraints of problem (1) may not have full row rank as
required, and may even be such that m > n. Thus, routine HSL MC583 was
used to check whether (i) rank(A) = m; (ii); rank(A) < m and rank(A) =

2 http://www.hsl.rl.ac.uk/catalogue/hsl_ma57.html.
3 Available at http://www.hsl.rl.ac.uk/catalogue/mc58.html

http://www.hsl.rl.ac.uk/catalogue/hsl_ma57.html
http://www.hsl.rl.ac.uk/catalogue/mc58.html

20 E. G. Birgin* et al.

rank(A|b); or (iii) rank(A) < m and rank(A) 6= rank(A|b). In the first case,
A satisfies the full row-rank assumption and there is nothing to be done.
In the second case, constraints Ax = b are replaced by an equivalent set of
constraints Āx = b̄ in which Ā satisfies the full row-rank assumption (Ā is given
by routine MC58 and b̄ can be easily computed). In the third case, the problem
is infeasible and there is nothing to be done. (Infeasibility was detected in 6
out of the 200 problems at this pre-processing stage.) Finally, an interior point
x0 ∈ F0 is required to start Algorithm 1. For this reason, we tried to find such
a point using a phase 1 procedure, that consists in approximately solving the
feasibility problem

Ax = b plus `i + [δ`]i ≤ xi ≤ ui − [δu]i for i = 1, . . . , n, (45)

with
[δ`]i = min{κ1 max{1, |`i|}, κ2(ui − `i)},
[δu]i = min{κ1 max{1, |ui|}, κ2(ui − `i)},

for i = 1, . . . , n, κ1 > 0, and κ2 ∈ (0, 12). To approximately solve (45), we apply
Algencan [?,?] with the option Ignore-objective-function enabled. The
phase 1 procedure starts from the given initial point, making it somehow useful
in the computation of the initial interior point. (Infeasibility was detected in
phase 1 for only 1 problem out of the remaining 194 = 200− 6 problems.)

We have applied Ipopt [?], version 3.12.13, within the same computational
environment, also using the HSL MA57 routine for solving the linear systems,
taking into account the same time budget for each problem, and considering all
its default parameters, except for honor original bounds no. Such a param-
eter, which does not affect the overall performance of Ipopt, inhibits this solver
to project4 the final iterate onto the box defined by the bound constraints of
problem (1), allowing us to measure the violation of the bounds at the fi-
nal iterate. Additional experiments with Ipopt considering the default choice
honor original bounds yes were also carried on; the comparison showed re-
sults qualitatively similar to those reported below.

Detailed output of both methods for each one of the 200 problems, as well
as tables summarizing the results, with a CPU time budget of 10 minutes per
problem, can be viewed at the same repository the code is located5. Since the
methods under analysis have different stopping criteria, we consider that a
problem p ∈ {1, 2, . . . , 200} is solved by a method M ∈ {Ipopt,Lcmin} if

fpM ≤ f
p
min + ftol max{1, |fpmin|}, (46)

where fpmin = min{fpIpopt, f
p
Lcmin}, and ftol ∈ [0, 1],

‖Ax− b‖∞ ≤ εfeas, (47)

4 The bound constraints might be dynamically relaxed by Ipopt during the optimization
process [?, §3.5], starting from a relative relaxation factor whose initial value is 10−8.

5 https://github.com/johngardenghi/lcmin/tree/master/paper.

https://github.com/johngardenghi/lcmin/tree/master/paper

Linearly constrained optimization 21

with εfeas ≥ 0, and

max{‖(`− x)+‖∞, ‖(x− u)+‖∞} ≤ εbnd, (48)

with εbnd ≥ 0 and (·)+ = max{·, 0}.
We first take a close look at the feasibility of the final iterate found by

the methods. In Table 2, we show the number of problems in which each
method found a point satisfying (47) with εfeas = 10−8 and (48) with εbnd ∈
{10−1, 10−2, . . . , 10−16, 0}, no matter the objective function value. Since Lcmin
preserves feasibility during all the optimization process, the amount of prob-
lems whose bound constraints are satisfied does not depend on εbnd. On the
other hand, the number of problems whose bound constraints hold for Ipopt
varies according to the tolerance εbnd. The 26 = 200−174 failures in Lcmin cor-
respond to (i) 7 problems detected as being infeasible, 6 in the pre-processing
of the coefficients’ matrix A and 1 during phase 1; (ii) 7 problems in which
Lcmin generated a final iterate whose feasibility does not satisfy (47) with
εfeas = 10−8; and (iii) 12 problems in which Lcmin exceeded the 10 minutes
established as CPU time budget. When εbnd = 0.1, the 46 = 200 − 154 fail-
ures in Ipopt correspond to (i) 10 problems in which Ipopt generated a final
iterate that does not satisfy (47) with εfeas = 10−8; (ii) 13 problems in which
Ipopt exceeded the 10 minutes established as CPU time budget; and (iii) 23
problems to which Ipopt is not applicable because of the degree of freedom of
A in the constraints of the problem6. For other values of εbnd, the increasing
number of failures is due to the bound constraints violation at the final iterate.

log10(εbnd) εbnd

−1 −2 −3 −4 −5 −6 −7 −8 −9 −10 −11 −12 −13 −14 −15 −16 0

Ipopt 154 153 151 150 143 141 137 126 65 65 65 65 65 64 64 64 64
Lcmin 174 174 174 174 174 174 174 174 174 174 174 174 174 174 174 174 174

Table 2 Number of problems in which Ipopt and Lcmin found a point satisfying (47) with
εfeas = 10−8 and (48) with εbnd ∈ {10−1, 10−2, . . . , 10−16, 0}.

Lcmin detected the problem is infeasible at phase 1 in 7 problems; and it
exceeded the CPU time limit of ten minutes in 13 problems. In the remain-
ing 180 problems, it stopped satisfying the stopping criteria SC1,SC2, . . . ,SC6
in 168, 6, 0, 0, 3, and 3 problems, respectively. As a consequence, it found a
feasible point (satisfying (47) with εfeas = 10−8 and (48) with εbnd = 0) in 174
out of the 200 considered problems. Considering these 174 problems, Lcmin
perfomed, in average, 6.35 outer iterations (being 51 the maximum) and 30.54
inner iterations (being 610 the maximum) per problem. In 132 out of the 174,

6 It means that, in problem (1), A has more rows than columns. Lcmin eliminates redun-
dant constraints, which makes A to have full row rank in most cases, except in those in
which the feasible set is empty. Ipopt does not start optimization in these cases, stopping
with the output Problem has too few degrees of freedom.

22 E. G. Birgin* et al.

the inertia of the matrix of coefficients of the linear system (16) was never cor-
rected, meaning that a single matrix factorization per iteration was performed.
In the remaining 42 problems, the average number of matrix factorizations per
iteration was 1.26.

Now, we are interested in those problems in which both Ipopt and Lcmin
converged to a point satisfying (47) with εfeas = 10−8 and (48) with εbnd = 0.
For this set, composed by 62 problems, Table 3 shows, for each solver, the
number of problems in which (46) holds with ftol ∈ {10−1, 10−2, . . . , 10−8, 0}.

log10(ftol) ftol

−1 −2 −3 −4 −5 −6 −7 −8 0

Ipopt 61 60 58 58 58 57 57 56 42
Lcmin 58 58 58 58 58 58 55 52 29

Table 3 Number of problems in which Ipopt and Lcmin found a point satisfying (47) with
εfeas = 10−8, (48) with εbnd = 0, and (46) with ftol ∈ {10−1, 10−2, . . . , 10−8, 0}.

We now consider, on the one hand, the set of 57 problems in which both
Lcmin and Ipopt found a final iterate satisfying (46) with ftol = 0.1, (47)
with εfeas = 10−8, and (48) with εbnd = 0. Figure 1 depicts, for these prob-
lems, the performance profiles [?] using as performance measure the number of
functional evaluations, the number of iterations, and the CPU time consumed
by each solver. Considering the remaining 143 = 200 − 57 problems, we have
that: (i) in 24 problems, none of the methods found a point satisfying (47) with
εfeas = 10−8 and (48) with εbnd = 0; (ii) in 2 problems, Ipopt found a point
satisfying (47) with εfeas = 10−8 and (48) with εbnd = 0; while Lcmin failed;
(iii) in 112 problems, Lcmin found a point satisfying (47) with εfeas = 10−8

and (48) with εbnd = 0; while Ipopt failed; (iv) in 5 problems both found a
point satisfying (47) with εfeas = 10−8 and (48) with εbnd = 0, but the ob-
jective functional value of one of them does not satisfy (46) with ftol = 0.1;
(v) regarding the 5 problems mentioned in (iv), the objective function found
by Ipopt was smaller than the objective functional value find by Lcmin in 4
problems; while the opposite situation ocurred in 1 problem.

5 Final remarks

In this work, a feasible line-search interior-point method for linearly con-
strained optimization has been described, implemented, and analyzed. The
global convergence theory is accompanied with numerical experiments, en-
compassing a classical test set from the literature. The performance of the
proposed algorithm was put into perspective with Ipopt, a current state-of-
the-art solver.

No winner emerged from the comparative results, what is somehow ex-
pected, since both methods have the interior-point strategy as the main prin-

Linearly constrained optimization 23

0

0.2

0.4

0.6

0.8

1

1 2.1 3.2 4.3 5.4 6.5

Γ
(τ

)

τ

Function evaluations

Lcmin (Γ (1) = 0.77)

Ipopt (Γ (1) = 0.75)
0

0.2

0.4

0.6

0.8

1

1 2 3 4 5

Γ
(τ

)

τ

Total iterations

Ipopt (Γ (1) = 0.84)

Lcmin (Γ (1) = 0.75)

(a) (b)

0

0.2

0.4

0.6

0.8

1

1 10 100 1000

Γ
(τ

)

τ (log10 scale)

Total time

Ipopt (Γ (1) = 0.94)

Lcmin (Γ (1) = 0.05)
0

0.2

0.4

0.6

0.8

1

1 5 9 13 17 21 25

Γ
(τ

)

τ

Optimization time

Lcmin (Γ (1) = 0.64)

Ipopt (Γ (1) = 0.36)

(c) (d)

Fig. 1 Performance profiles comparing (a) the number of functional evaluations, (b) the
number of iterations, and (c-d) the CPU time of Lcmin and Ipopt in the subset of 57
problems in which both solvers found iterates satisfying (46) with ftol = 0.1, (47) with
εfeas = 10−8, and (48) with εbnd = 0. In (d) the CPU time spent by Lcmin to find a
feasible initial point has been ignored.

ciple. Nevertheless, we point out that feasibility may be an issue: while the
general purpose solver Ipopt may relax bounds, Lcmin always guarantees a
feasible final iterate, except when numerical difficulties may occur, as in the 7
cases of failure of Lcmin in the numerical experiments, which evidences that
the problem is numerically difficult or even numerically infeasible. Therefore,
Lcmin is recommended for applications in which feasibility is a desired feature.

Acknowledgements The authors are thankful to the anonymous reviewers for providing
insightful suggestions which improved the presentation of this work.

References

1. Andreani, R., Birgin, E.G., Mart́ınez, J.M., Schuverdt, M.L.: On Augmented Lagrangian
methods with general lower-level constraints. SIAM Journal on Optimization 18(4),
1286–1309 (2008)

2. Birgin, E.G., Mart́ınez, J.M.: Practical Augmented Lagrangian Methods for Constrained
Optimization. Society for Industrial and Applied Mathematics, Philadelphia (2014)

3. Chen, L., Goldfarb, D.: Interior-point `2-penalty methods for nonlinear programming
with strong global convergence properties. Mathematical Programming 108(1), 1–36
(2006)

24 E. G. Birgin* et al.

4. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles.
Mathematical Programming 91(2), 201–213 (2002)

5. Fiacco, A.V., McCormick, G.P.: Nonlinear Programming: Sequential Unconstrained
Minimization Techniques. Wiley, New York (1968, Reprinted by SIAM Publications,
1990)

6. Frisch, K.R.: The logarithmic potential method of convex programming. Tech. rep.,
University Institute of Economics, Oslo, Norway (1955)

7. Gill, P.E., Murray, W., Saunders, M.A., Tomlin, J.A., Wright, M.H.: On projected
Newton barrier methods for linear programming and an equivalence to Karmarkar’s
projective method. Mathematical Programming 36(2), 183–209 (1986)

8. Gould, N.I.M., Orban, D., Toint, P.L.: CUTEst: a Constrained and Unconstrained Test-
ing Environment with safe threads for mathematical optimization. Computational Op-
timization and Applications 60(3), 545–557 (2015)

9. Karmarkar, N.: A new polynomial-time algorithm for linear programming. In: Proceed-
ings of the Sixteenth Annual ACM Symposium on Theory of Computing, STOC ’84,
pp. 302–311. ACM, New York, NY, USA (1984)

10. Nocedal, J., Wright, S.J.: Numerical Optimization, 2 edn. Springer, New York (2006)
11. Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search

algorithm for large-scale nonlinear programming. Mathematical Programming 106(1),
25–57 (2006)

	Introduction
	Proposed barrier method
	Global convergence
	Implementation and numerical experiments
	Final remarks

