
Third-order derivatives of the Moré, Garbow, and Hillstrom
test set problems∗

E. G. Birgin† J. L. Gardenghi† J. M. Martínez‡ S. A. Santos‡

April 1, 2018.

Abstract

The development of Fortran routines for computing third-order derivatives of the prob-
lems proposed by J. J. Moré, B. S. Garbow, and K. E. Hillstrom (ACM Trans. Math. Softw.
7, 14–41, 136–140, 1981) is reported in this work. For this, we have prepared a Fortran
module for computing the function values, besides first-, second- and third-order derivatives
for all the 35 problems presented by the authors of the original paper. We also provide the
routines for unconstrained optimization including third-order derivatives. This will allow
novel analysis on optimization for algorithms that possibly use third-order derivatives of the
objective function.

Key words: Optimization test problems, third-order derivatives subroutines.

1 Introduction

The interest in high-order optimization methods re-emerged in the last few years. In [5] the
authors proposed a high-order regularization method for unconstrained minimization that uses
derivatives up to order p ≥ 1 of the objective function (see also [7]). A trust-region algorithm that
applies to convexly-constrained problems and uses derivatives up to order p ≥ 1 was introduced
in [6]. A method that uses high-order derivatives to escape from saddle point in non-convex
optimization was considered in [1]. This state of facts encouraged us to implement third-order
derivatives of the classical Moré, Garbow, and Hillstrom test set [8]. In particular, we were
interested in implementing and testing a practical version [4] of the method proposed in [5] that
makes use of third-order derivatives. Making third-order derivatives available also opens doors
to implement and test other methods that may appear in literature.

In 1981, Moré, Garbow, and Hillstrom [8] proposed a well-known test set with 35 problems.
Each problem is defined by m > 0 functions f1, f2, . . . , fm such that fi : Rn → R, i = 1, . . . ,m.
∗This work has been partially supported by FAPESP (grants 2013/03447-6, 2013/05475-7, 2013/07375-

0, 2013/23494-9, 2016/01860-1, and 2017/03504-0) and CNPq (grants 309517/2014-1, 303750/2014-6, and
302915/2016-8).
†Department of Computer Science, Institute of Mathematics and Statistics, University of São Paulo, Rua do

Matão, 1010, Cidade Universitária, 05508-090, São Paulo, SP, Brazil. e-mail: {egbirgin | john}@ime.usp.br
‡Department of Applied Mathematics, Institute of Mathematics, Statistics, and Scientific Computing, Univer-

sity of Campinas, Campinas, SP, Brazil. e-mail: {martinez | sandra}@ime.unicamp.br

1

Problems are divided into three categories: (a) 14 systems of nonlinear equations, cases where
m = n and one searches for x∗ such that fi(x∗) = 0, i = 1, 2, . . . ,m; (b) 18 nonlinear least-squares
problems, cases where m ≥ n and one is interested in solving the problem

Minimize
x∈Rn

f(x) =

m∑
i=1

f2i (x) (1)

by exploring its particular structure; and (c) 18 unconstrained minimization problems, where
one is interested in solving (1) just by applying a general unconstrained optimization solver.

For each problem, the original package [9] provided Fortran 77 code to compute the objective
function and its first-order derivatives. In 1994, Averbukh, Figueroa, and Schlick [2, 3] made
available Fortran 77 code for computing second-order derivatives of the 18 problems in the
unconstrained minimization category. Although the problems are divided into three different
categories, one can view the whole set of 35 problems as unconstrained minimization problems
by considering the form (1). For this reason, in this work, we provide (a) second-order derivatives
for the 17 problems that were not considered in [2, 3] and (b) third-order derivatives for all the 35
problems from the test set. The code for computing the objective functions, as well as their first-,
second-, and third-order derivatives, was implemented using modern Fortran. Details about the
implementation and the package usage are given in the next section.

2 Package subroutines

The present section briefly describes a modern Fortran package with routines that compute the
objective function, first-, second-, and third-order derivatives of the 35 problems firstly coded
in [9]. Table 1 displays, for each problem, its name, the default values for n andm adopted in this
work, the restrictions on n and m for problems with variable dimensions, and, for compatibility
with the subroutines for the unconstrained minimization category provided in [9], the number of
the problem within this category.

The package includes three modules mgh_sp, mgh_dp, and mgh_qp that contain the subroutines
described below in single, double, and quad precisions, respectively. Those should be the adopted
precisions for the real parameters of the subroutines. The subroutines included in the package
have the following prototypes:

subroutine mgh_set_problem(nprob,flag),
subroutine mgh_set_dims(n,m,flag),
subroutine mgh_get_dims(n,m),
subroutine mgh_get_x0(x0,factor),
subroutine mgh_get_name(name),
subroutine mgh_evalf(x,f,flag),
subroutine mgh_evalg(x,g,flag),
subroutine mgh_evalh(x,h,flag),
subroutine mgh_evalt(x,t,flag).

2

Table 1: Description of the 35 problems from [8].

Problem number and name
Default

dimensions
Dimensions’
restrictions

Number of the
problem within the

unconstrained
minimization categoryn m n m

1 Rosenbrock 2 2 2 2 –
2 Freudstein and Roth 2 2 2 2 –
3 Powell badly scaled 2 2 2 2 4
4 Brown badly scaled 2 3 2 3 10
5 Beale 2 3 2 3 16
6 Jennrich and Sampson 2 10 2 ≥ n –
7 Helical valley 3 3 3 3 1
8 Bard 3 15 3 15 –
9 Gaussian 3 15 3 15 3
10 Meyer 3 16 3 16 –
11 Gulf research and development 3 99 3 [n, 100] 12
12 Box three-dimensional 3 10 3 ≥ n 5
13 Powell singular 4 4 4 4 –
14 Wood 4 6 4 6 17
15 Kowalik and Osborne 4 11 4 11 –
16 Brown and Dennis 4 20 4 ≥ n 11
17 Osborne 1 5 33 5 33 –
18 Biggs EXP6 6 13 6 ≥ n 2
19 Osborne 2 11 65 11 65 –
20 Watson 6 31 [2, 31] 31 7
21 Extended Rosenbrock 10 10 even n 14
22 Extended Powell singular 12 12 multiple of 4 n 15
23 Penalty I 4 5 variable n+ 1 8
24 Penalty II 4 8 variable 2n 9
25 Variably dimensioned 10 12 variable n+ 2 6
26 Trigonometric 10 10 variable n 13
27 Brown almost-linear 40 40 variable n –
28 Discrete boundary value 10 10 variable n –
29 Discrete integral equation 10 10 variable n –
30 Broyden tridiagonal 10 10 variable n –
31 Broyden banded 10 10 variable n –
32 Linear - full rank 10 10 variable ≥ n –
33 Linear - rank 1 10 10 variable ≥ n –

34 Linear – rank 1 with zero
columns and rows 10 10 variable ≥ n –

35 Chebyquad 8 8 variable ≥ n 18

3

As its name indicates, subroutine mgh_set_problem must be called in first place to set the
problem to be solved. In this subroutine, nprob is an input integer parameter that corresponds
to the problem number; while flag is an output integer parameter that is set to a non-null
value if nprob is not a valid problem number (between 1 and 35). When mgh_set_problem is
called, dimensions n and m are set with their default values (listed in Table 1.) Subroutine
mgh_get_dims, that has n and m as integer output parameters, can be used to obtain the values
of n and m. Both parameters are optional. Subroutine mgh_set_dims can be used to modify the
values of n and/or m. In this subroutine, n and m are optional integer input parameters; while
flag is an integer output parameter that is set to a non-null value if the values of n and/or m
do not obey the restrictions listed in Table 1. If, on return, flag is non-null then the values of
n and m remain unaltered. Subroutine mgh_get_name has name as a character(len=60) output
parameter and, as its name indicates, returns the problem name as listed in Table 1. Subroutine
mgh_get_x0 returns the initial point, scaled by factor. In this subroutine, x0 is an output real
n-dimensional array parameter; while factor is an optional real input parameter. Subroutines
mgh_evalf, mgh_evalg, mgh_evalh, and mgh_evalt compute the objective function and its first-,
second-, and third-order derivatives, respectively. In the four subroutines, x is an input real n-
dimensional array and flag is an integer output parameter that is set to a non-null value if some
failure occurred with the computation. Moreover, f, g, h, and t are all real output parameters
such that f is a scalar, g is an n-dimensional array, h is an (n × n)-dimensional array, and t is
an (n× n× n)-dimensional array. On output, f contains f(x), g contains ∇f(x), h contains the
upper triangle of the Hessian H = ∇2f(x) (i.e. elements H(i, j) with i ≤ j), and t contains
the upper portion of the third-order derivative T = ∇3f(x) (i.e. elements T (i, j, k) such that
i ≤ j ≤ k), respectively. The remaining entrances of h and t remain unaltered.

In addition to the subroutines described above, aiming to preserve compatibility with the
traditional routines of Algorithm 566, we provide a wrapper that implements the routines

subroutine initpt(n,x,nprob,factor),
subroutine objfcn(n,x,f,nprob),
subroutine grdfcn(n,x,g,nprob),
subroutine hesfcn(n,x,hesd,hesl,nprob),
subroutine trdfcn(n,x,td,tl,nprob).

Subroutines initpt, objfcn, and grdfcn were first implemented in [9]. For a given problem
nprob in the unconstrained minimization category (with nprob between 1 and 18 and according
to the last column of Table 1), they return the initial point scaled by factor, the objective
function, and its gradient, respectively. Subroutine hesfcn, first implemented in [2, 3], computes
the Hessian matrix of the objective function. In the present work, we introduce the subroutine
trdfcn that computes the third-order derivative tensor. When using these routines, the value
of n may be the default value or any value satisfying the constraints, as displayed in Table 1.
If n takes its default value, m takes its default value as well; otherwise, m is set satisfying the
constraints in the table.

In subroutine initpt, n and nprob are input integer parameters; while factor is an input
real scalar and x is an output real n-dimensional array. On output, x contains the initial point
scaled by factor. In subroutines objfcn, gradfcn, hesfcn, and trdfcn, n, x, and nprob are
input parameters, n and nprob being integers, and x being a real n-dimensional array. On the

4

other hand, f, g, hesd, hesl, td, and tl are all real output parameters. objfcn returns f(x)
in the scalar f. gradfcn returns ∇f(x) in the n-dimensional array g. In hesfcn, hesd is an
n-dimensional array; while hesl is an nh-dimensional array with nh = n(n − 1)/2. On output,
hesd contains the diagonal of the Hessian H; while hesl contains the upper triangle of H in
column-major order. This means that for any i < j, element H(i, j) is located at position
(j−1)(j−2)/2+ i of hesl. In trdfcn, td is an n-dimensional array and tl is an nt-dimensional
array with

nt =
(n− 1)

6

[
(n− 2)(n− 3) + 9(n− 2) + 12

]
.

On output, td contains the diagonal of the third-order derivative T , i.e. elements T (i, j, k) with
i = j = k; while tl containts the upper triangle of T (i.e. elements T (i, j, k) with i ≤ j ≤ k and
not all identical) in column-major order. This means that for any triplet (i, j, k) with i ≤ j ≤ k,
not all identical, element T (i, j, k) is located at position p of td with

p =
k − 2

6

[
(k − 3)(k − 4) + 9(k − 3) + 12

]
+
j(j − 1)

2
+ i.

3 Driver

We follow Averbukh, Figueroa, and Schlick [3] and provide a driver program in which we test the
derivatives up to third order of the 35 problems using a Taylor expansion of f around a point
xc ∈ Rn. For this, given ε > 0 and y a random vector in Rn, we consider the Taylor expansion

f(xc + εy) = f(xc) +
3∑

j=1

1

j!
Pj(xc, εy) +R(xc + εy),

where, for x, s ∈ Rn, Pj(x, s) is the homogeneous polynomial of degree j defined by

Pj(x, s) =

(
s1

∂

∂x1
+ . . .+ sn

∂

∂xn

)j

f(x)

and the remainder term R(xc + εy) is O(ε4). The test consists in computing the Taylor approx-
imation

f(xc + εky) = f(xc) +

3∑
j=1

1

j!
Pj(xc, εky)

for ε0 = 1/2 and εk+1 = εk/2 for k = 1, 2, If all the derivatives are correct, the ratio

R(xc + εky)

R(xc + εk+1y)
=

O(ε4k)
1
16O(ε4k)

= 16 (2)

should be observable. In practice, if R(xc + εky) is relatively small, when k goes to infinity, the
ratio (2) (a) tends to 2 if no derivatives are correct, (b) tends to 4 if only first-order derivatives
are correct, (c) tends to 8 if only first- and second-order derivatives are correct, and (d) tends to
16 if all derivatives are correct. Other cases may include convergence to unity when the error is
too large when compared to y.

5

References

[1] A. Anandkumar and R. Ge. Efficient approaches for escaping high-order saddle points in
nonconvex optimization. 2016. Avaliable online at arXiv:1602.05908.

[2] V. Z. Averbukh, S. Figueroa, and T. Schlick. HESFCN - A FORTRAN package of Hes-
sian subroutines for testing unconstrained optimization software. Technical report, Courant
Institute of Mathematical Sciences, New York University, 1992.

[3] V. Z. Averbukh, S. Figueroa, and T. Schlick. Remark on algorithm 566. ACM Transactions
on Mathematical Software, 20(3):282–285, 1994.

[4] E. G. Bigin, J. L. Gardenghi, J. M. Martínez, and S. A. Santos. On the use of third-order
models with fourth-order regularization for unconstrained optimization. Submitted.

[5] E. G. Birgin, J. L. Gardenghi, J. M. Martínez, S. A. Santos, and Ph. L. Toint. Worst-case
evaluation complexity for unconstrained nonlinear optimization using high-order regularized
models. Mathematical Programming, 163(1):359–368, 2017.

[6] C. Cartis, N. I. M. Gould, and Ph. L. Toint. Second-order optimality and beyond: Charac-
terization and evaluation complexity in convexly constrained nonlinear optimization. Foun-
dations of Computational Mathematics. To appear (DOI: 10.1007/s10208-017-9363-y).

[7] C. Cartis, N. I. M. Gould, and Ph. L. Toint. Improved second-order evaluation complexity for
unconstrained nonlinear optimization using high-order regularized models. 2017. Avaliable
online at arXiv:1708.04044.

[8] J. J. Moré, B. S. Garbow, and K. E. Hillstrom. Testing unconstrained optimization software.
ACM Transactions on Mathematical Software, 7(1):17–41, 1981.

[9] J. J. Moré, Burton S. Garbow, and Kenneth E. Hillstrom. Algorithm 566: FORTRAN
Subroutines for Testing Unconstrained Optimization Software. ACM Transactions on Math-
ematical Software, 7(1):136–140, 1981.

6

https://arxiv.org/abs/1602.05908
http://www.doi.org/10.1007/s10208-017-9363-y
https://arxiv.org/abs/1708.04044

	Introduction
	Package subroutines
	Driver

