
Accelerated derivative-free spectral residual method for nonlinear

systems of equations∗

E. G. Birgin† J. L. Gardenghi‡ D. S. Marcondes§ J. M. Mart́ınez¶

April 26, 2021

Abstract

Spectral residual methods are powerful tools for solving nonlinear systems of equations without deriva-
tives. In a recent paper, it was shown that an acceleration technique based on the Sequential Secant Method
can greatly improve its efficiency and robustness. In the present work, an R implementation of the method
is presented. Numerical experiments with a widely used test bed compares the presented approach with its
plain (i.e. non-accelerated) version that makes part of the R package BB. Additional numerical experiments
compare the proposed method with NITSOL, a state-of-the-art solver for nonlinear systems. The compar-
ison shows that the acceleration process greatly improves the robustness of its counterpart included in the
existent R package. As a by-product, an interface is provided between R and the consolidated CUTEst
collection, which contains over a thousand nonlinear programming problems of all types and represents a
standard for evaluating the performance of optimization methods.

Key words: nonlinear systems, derivative-free, sequential residual methods, sequential secant approach,
acceleration, numerical experiments.

1 Introduction

Solving nonlinear systems of equations is an ubiquitous problem that appears in a wide range of applied fields
such as Physics, Chemistry, Engineering, and Statistics, just to name a few. Moreover, many times, equations
are computed using black-box codes and derivatives are not available. Thus, derivative-free solution methods
are in order.

Given F : Rn → Rn, we consider the problem of finding x ∈ Rn such that

F (x) = 0, (1)

without making use of derivatives. Observing that (1) is equivalent to x = x−σF (x), for any σ > 0, Sequential
Residual Methods (namely SANE and DF-SANE) based on the iteration xk+1 = xk − σkF (xk), where

σk =
‖sk−1‖2

(yk−1)T sk−1
, sk−1 = xk − xk−1, and yk−1 = F (xk)− F (xk−1),

were introduced in [14] and [13]. These methods were inspired by the Barzilai-Borwein step of minimization
methods; see [2, 17, 18]. Although very popular, in part due to its simplicity, these methods may suffer from slow

∗This work was supported by FAPESP (grants 2013/07375-0, 2016/01860-1, and 2018/24293-0) and CNPq (grants 302538/2019-4
and 302682/2019-8).
†Department of Computer Science, Institute of Mathematics and Statistics, University of São Paulo, Rua do Matão, 1010,

Cidade Universitária, 05508-090, São Paulo, SP, Brazil. e-mail: egbirgin@ime.usp.br
‡Faculty UnB Gama, University of Braśılia, Área Especial de Indústria Projeção A, Setor Leste, Gama, 72444-240, Braśılia, DF.

e-mail: john.gardenghi@unb.br.
§Department of Applied Mathematics, Institute of Mathematics and Statistics, University of São Paulo, Rua do Matão, 1010,

Cidade Universitária, 05508-090, São Paulo, SP, Brazil. e-mail: diaulas@ime.usp.br.
¶Department of Applied Mathematics, Institute of Mathematics, Statistics, and Scientific Computing (IMECC), State University

of Campinas, 13083-859 Campinas SP, Brazil. e-mail: martinez@ime.unicamp.br.

1

convergence. On the other hand, their simple and fast iterations made them an adequate choice to provide a
global convergent framework to the Sequential Secant approach [1, 22]. This choice was explored in [3], where the
Accelerated DF-SANE method was introduced. Numerical experiments in [3] shown that Accelerated DF-SANE
compares favorably to the classical truncated Newton approach implemented in the package NITSOL [16], when
applied to large-scale problems coming from the discretization of partial differential equations.

In the present work, an R [20] implementation of Accelerated DF-SANE is introduced. Numerical ex-
periments in [3] are complemented with numerical experiments using the widely-used testing environment for
optimization CUTEst [11]. Problems in the CUTEst collection are given in SIF (Standard Input Format;
see [9, Chapters 2 and 7]) and a decoder named SifDec translates the problem into Fortran routines. Therefore,
in order to be able to use the CUTEst collection, an interface with the R language is required. Such interface
is introduced in the present work; and the authors hope that its dissemination in the R community could help
in testing and assessing the performance of optimization methods developed in R. Classical sets of problems,
like the ones introduced in [15] and [12, 19], are included in the CUTEst collection. In addition to the com-
parison with NITSOL, a comparison with the DF-SANE method implemented within the BB package [21]
implemented in R is also provided.

The rest of this work is organized as follows. The Accelerated DF-SANE method and its convergence
theoretical results are condensed in Section 2. The R implementation of the method and its usage are described
in Section 3. Numerical results are reported in Section 4. Conclusions are given in the last section.

2 Accelerated DF-SANE

In this section, the Accelerated DF-SANE method introduced in [3] and its theoretical convergence results are
summarized. Roughly speaking, Accelerated DF-SANE performs a nonmonotone line search along the direction
of the residue. As a result of a double backtracking, at each iteration k, a trial point xk+1

trial is first computed.
Before deciding whether this trial point will be the next iterate xk+1 or not (as it would be the case in the plain
DF-SANE in which acceleration is not performed), an accelerated point xk+1

accel is computed. Following sequential

secant ideas, xk+1
accel is given by xk+1

accel = xk−SkY
†
k F (xk), where p > 1 is a given parameter, k = max{0, k−p+1},

sj = xj+1 − xj for j = k, . . . , k − 1,

yj = F (xj+1)− F (xj) for j = k, . . . , k − 1,

sk = xk+1
trial − xk,

yk = F (xk+1
trial)− F (xk),

Sk = (sk, . . . , sk−1, sk),

Yk = (yk, . . . , yk−1, yk),

and Y †k is the Moore-Penrose pseudoinverse of Yk. Then, if ‖F (xk+1
accel)‖22 < ‖F (xk+1

trial)‖22, the methods defines

xk+1 = xk+1
accel; while xk+1 = xk+1

trial in the other case. In practice, xk+1
accel is computed by first finding the minimum

norm least-squares solution ν̄ of the linear system Ykν = F (xk+1
trial) and then defining xk+1

accel = xx+1
trial − Skν̄. The

minimum-norm least-squares solution ν̄ is computed with a complete orthogonalization of Yk. The key point
is that matrix Yk corresponds to remove one column and add one column to matrix Yk−1, keeping the cost of
each iteration low; see [3, §5.4] for details. The whole Accelerated DF-SANE method is given in the algorithm
that follows.

Algorithm 2.1: Accelerated DF-SANE

Input. Let γ ∈ (0, 1), 0 < σmin < σmax <∞, 0 < τmin < τmax < 1, positive integers M and p, a sequence {ηk}
such that ηk > 0 for all k ∈ N and limk→∞ ηk = 0, and x0 ∈ Rn be given. Set k ← 0.

Step 1. If F (xk) = 0, then terminate the execution of the algorithm.

Step 2. Choose σk such that |σk| ∈ [σmin, σmax] and vk ∈ Rn such that ‖vk‖ = ‖F (xk)‖. Compute

f̄k = max{f(xk), . . . , f(xmax{0,k−M+1})}. (2)

2

Step 2.1. Set α+ ← 1 and α− ← 1.

Step 2.2. Set d← −σkvk and α← α+. Consider

f(xk + αd) ≤ f̄k + ηk − γα2f(xk). (3)

If (3) holds, then define dk = d and αk = α and go to Step 3.

Step 2.3. Set d← σkv
k and α← α−. If (3) holds, then define dk = d and αk = α and go to Step 3.

Step 2.4. Choose αnew
+ ∈ [τminα+, τmaxα+] and αnew

− ∈ [τminα−, τmaxα−], set α+ ← αnew
+ , α− ← αnew

− ,
and go to Step 2.2.

Step 3. Define xk+1
trial = xk + αkd

k.

Step 4. Define xk+1
accel = xk − SkY

†
k F (xk), where k = max{0, k − p+ 1},

sj = xj+1 − xj for j = k, . . . , k − 1,

yj = F (xj+1)− F (xj) for j = k, . . . , k − 1,

sk = xk+1
trial − xk,

yk = F (xk+1
trial)− F (xk),

Sk = (sk, . . . , sk−1, sk),

Yk = (yk, . . . , yk−1, yk),

and Y †k is the Moore-Penrose pseudoinverse of Yk.

Step 5. Choose xk+1 ∈
{
xk+1
trial, x

k+1
accel

}
such that

‖F (xk+1)‖ = min
{
‖F (xk+1

trial)‖, ‖F (xk+1
accel)‖

}
.

Step 6. Set k ← k + 1, and go to Step 1.

In practice, at Step 1, given ε > 0, the stopping criterion ‖F (xk)‖ = 0 is replaced with

‖F (xk)‖2 ≤ ε. (4)

(Criterion ‖F (xk)‖ = 0 in the algorithm is necessary so we can state theoretical asymptotic properties of an
infinite sequence generated by the algorithm.) At Step 2, the spectral choice for σk (see [2, 17, 18, 4, 5, 6, 7])
corresponds to

σspg
k =

(xk − xk−1)T (xk − xk−1)

(xk − xk−1)T (F (xk)− F (xk−1)
.

Following [13], if |σspg
k | ∈ [σmin,min{1, σmax}], then we take σk = σspg

k ; otherwise, we take σk = max{σmin,min{‖xk‖2/‖vk‖2, σmax}}.
Still at Step 2, the residual choice for the search direction corresponds to vk = F (xk). At Step 2.4, we
compute αnew

+ as the minimizer of the univariate quadratic q(α) that interpolates q(0) = f(xk), q(α+) =
f(xk − α+σkF (xk)), and q′(0) = −σkF (xk)T∇f(xk) = −σkF (xk)TJ(xk)F (xk). Following [13], since we con-
sider J(xk) unavailable, we consider J(xk) = I. Thus,

αnew
+ = max

{
τminα+,min

{
α2
+f(xk)

f(xk − α+σkF (xk)) + (2α+ − 1)f(xk)
, τmaxα+

}}
.

Analogously,

αnew
− = max

{
τminα−,min

{
α2
−f(xk)

f(xk + α−σkF (xk)) + (2α− − 1)f(xk)
, τmaxα−

}}
.

Theoretical results of Algorithm 2.1 are given in [3, §3 and §4]. Briefly, limit points of sequences generated
by the algorithm are solutions of the nonlinear system or the gradient of the corresponding sum of squares is
null. Moreover, under suitable assumptions, the convergence to solutions is superlinear.

3

3 Usage of the R implementation

We implemented Algorithm 2.1 in R language as a subroutine named dfsaneacc. Codes are freely available
at https://github.com/johngardenghi/dfsaneacc and at the Journal web page accompanying the present
work. In this section, we describe how to use dfsaneacc to solve a nonlinear system coded in R and how to
solve a nonlinear system from the CUTEst collection.

The calling sequence of dfsaneacc is given by

R> dfsaneacc(x, evalr, nhlim, epsf, maxit, iprint, ...)

where

x: is an n-dimensional array containing the initial guess.

evalr: is the subroutine that computes F at a point x. This subroutine must have the calling sequence

evalr <- function(x, ...) {}

where ... represents the additional arguments of dfsaneacc. The subroutine must return F evaluated
at x.

nhlim: corresponds to p+1, where p ≥ 1 is the integer that says how many previous iterates must be considered
in the Sequential Secant acceleration at Step 4. The “default” value is p = 5, so nhlim=6; but having a
problem at hand, it is recommendable to try different values.

epsf: corresponds to the stopping tolerance ε in (4).

maxit: represents the maximum number of iterations. It default value is maxit=+∞.

iprint: determines the level of the details in the output of the routine – iprint=−1 means no output,
iprint=0 means basic information at every iteration, iprint=1 adds additional information related
to the backtracking strategy (Step 2), and iprint=2 adds information related to the computation of the
acceleration step (Step 4). Its default value is iprint=−1.

As an example, consider the Exponential Function 2 from [14, p.596] given by F (x) = (F1(x), . . . , Fn(x))
T

,
where

F1(x) = ex1 − 1

Fi(x) =
i

10
(ex1 + xi−1 − 1) for i = 2, . . . , n,

with the initial guess x0 = (1
n2 , . . . ,

1
n2)T . The first step is to code it in R as follows:

R> expfun2 <- function(x) {

+ n <- length(x)

+ f <- rep(NA, n)

+ f[1] <- exp(x[1]) - 1.0

+ f[2:n] <- (2:n)/10.0 * (exp(x[2:n]) + x[1:n-1] - 1)

+ f

+ }

Then, we set the dimension n and the initial point x0 and call dfsaneacc as follows:

R> n <- 3

R> x0 <- rep(1/n^2, n)

R> ret <- dfsaneacc(x=x0, evalr=expfun2, nhlim=6, epsf=1.0e-6*sqrt(n),

+ iprint=0)

obtaining the result below:

4

https://github.com/johngardenghi/dfsaneacc

Iter: 0 f = 0.02060606

Iter: 1 f = 0.001215612

Iter: 2 f = 4.68925e-05

Iter: 3 f = 4.654419e-08

Iter: 4 f = 1.135198e-11

Iter: 5 f = 9.154603e-16

success!

$x

[,1]

[1,] -3.582692e-11

[2,] -7.222425e-08

[3,] -1.638214e-08

$res

[1] -3.582690e-11 -1.445201e-08 -2.658192e-08

$normF

[1] 9.154603e-16

$iter

[1] 5

$fcnt

[1] 11

$istop

[1] 0

where

x: is the approximation to a solution x∗.

res: corresponds to F (x∗).

normF: corresponds to f(x∗) = ‖F (x∗)‖22.

iter: is the number of iterations.

fcnt: is the number of calls to evalr, i.e. the number of functional evaluations.

istop: is the exit code, where istop=0 means that x∗ satisfies (4), i.e. ‖F (x∗)‖2 ≤ ε, and istop=1 means
that the maximum allowed number of iterations was reached.

In the rest of this section, we show how to solve a nonlinear system from the CUTEst collection. CUTEst
can be downloaded from https://github.com/ralna/CUTEst. It is assumed that CUTEst is installed, in
particular SifDec, and that there is a folder with all problems in SIF format.

The first step is to choose a problem and run SifDec that, based on the problem’s SIF file, generates a
Fortran routine to evaluate, in this case, function F . It should be mentioned that problems in the CUTEst
collection are general nonlinear optimization problems of the form

Minimize Φ(x) subject to h(x) = 0, `g ≤ g(x) ≤ ug, ` ≤ x ≤ u, (5)

where Φ : Rn → R is the objective function, h : Rn → RmE represents mE equality constraints, g : Rn → RmI

represents mI two-side inequality constraints, `g, ug ∈ RmI , and `, u ∈ Rn represent bounds on the variables.
(Some components of `g and ` can be −∞ as well as some components of ug and u can be equal to +∞.) Thus, a
nonlinear system of equations corresponds to a problem of the form (5) with constant or null objective function,
equality constraints only, and n = mE ; and, in the context of the present work, we define F (x) ≡ h(x). Once

5

https://github.com/ralna/CUTEst

the Fortran codes have been generated, a dynamic library must be built and loaded in R. The wrapper (written
in R) uses this library to call, using the .Call tool, a C subroutine from an existent C interface of CUTEst,
that calls the generated Fortran subroutine. In fact, CUTEst is mainly coded in Fortran and calling a Fortran
subroutine using the tool .Fortran would be the natural choice. However, numerical experiments shown that
the combination of .Call with the existent C interface of CUTEst is faster.

The wrapper consists in five routines named cutest init, cutest end, cutest getn, cutest getx0, and
cutest evalr. Routine cutest init receives as parameter the name of a problem and executes all initialization
tasks described in the previous paragraph. Routine cutest end has no parameters and it cleans the environment
by freeing the memory allocated in the call to cutest init. The other three routines are self-explanatory. So,
for example, a problem named Booth can be solved simply by typing:

R> cutest_init(’BOOTH’)

R> n <- cutest_getn()

R> x0 <- cutest_getx0()

R> ret <- dfsaneacc(x=x0, evalr=cutest_evalr, nhlim=6, epsf=1.0e-6*sqrt(n),

+ iprint=0)

R> cutest_end()

The output follows:

Iter: 0 f = 74

Iter: 1 f = 3.544615

Iter: 2 f = 9.860761e-31

success!

$x

[,1]

[1,] 1

[2,] 3

$res

[1] -8.881784e-16 -4.440892e-16

$normF

[1] 9.860761e-31

$iter

[1] 2

$fcnt

[1] 7

$istop

[1] 0

There are environment variables that must be set to indicate where CUTEst was installed, which is the
folder that contains the SIF files of the problems, and which Fortran compiler and compiling options must be
used. A README file with detailed instructions accompanies the distribution of Accelerated DF-SANE and
the CUTEst interface with R.

4 Numerical experiments

In this section, we show the performance of Algorithm 2.1 by putting it in perspective in relation to the DF-
SANE algorithm of the BB package [21] and the well-known NITSOL method [16]. For that, we consider
all 70 nonlinear systems of the CUTEst collection [11] with their default dimensions and their default initial
points.

6

In this work, we implemented Algorithm 2.1 in R; while a Fortran implementation, available at https:

//www.ime.usp.br/~egbirgin/sources/accelerated-df-sane/, was given in [3]. The state-of-the-art solver
NITSOL is available in Fortran in https://users.wpi.edu/~walker/NITSOL/. A Fortran version of DF-
SANE is available under request to the authors of [13]; while an R implementation of DF-SANE is available
as part of the BB package [21]. Problems of the CUTEst collection are written in SIF (Standard Input
Format); and a tool named SifDec (SIF Decoder) generates Fortran routines to evaluate the objective function,
in addition to constraints and their derivatives when desired. So, an interface between R and CUTEst was
implemented in order to test DF-SANE and Accelerated DF-SANE (both in R) with the problems of the
CUTEst collection. Fortran codes were compiled with the GFortran compiler of GCC (version 9.3.0). R codes
were run in version 4.0.2. Tests were conducted on a computer with an Intel Core i7 7500 processor and 12 GB
of RAM memory, running Linux (Ubuntu 20.10).

Regarding the DF-SANE method [13] that is available as part of the BB package [21], a few considerations
are in order. First of all, in the numerical experiments, we considered function dfsane from package BB version
2019.10-1. In the BB package, there is a routine named BBsolve that is a wrapper for dfsane. BBsolve calls
dfsane repeatedly with different algorithm parameters aiming to find a solution to the problem at hand. Since
this strategy can be used in connection with any method, aiming a fair comparison, in the present work we
report the results obtained with a single run of dfsane with its default parameters. This means that the
strategies described in [21, §2.4] are not being considered. On the other hand, dfsane improves the original
DF-SANE method introduced in [13] in several ways; see [21, §2.3]. Among the improvements, there is one that
is particularly relevant in the context of the present work: when the plain DF-SANE method fails by lack of
progress, dfsane launches an alternative method – it runs L-BFGS-B for the minimization of f(x) = ‖F (x)‖22.
L-BFGS-B [8] is a limited-memory quasi-Newton method for bound-constrained minimization. In some way,
it could be said that this modification aims to mitigate the slow convergence of DF-SANE. In contrast to the
approach presented in the present paper, this device is triggered only once slow convergence has been detected;
while in the present work, acceleration is done at every iteration. Anyway, it is worth noticing that, by comparing
the method being introduced in the present work with dfsane from the BB package, a comparison is being
done with an improved version of the original DF-SANE introduced in [13].

From now on, we refer to the DF-SANE of the BB package simply as DF-SANE; while we refer to Al-
gorithm 2.1 as “Accelerated DF-SANE”. NITSOL includes three main iterative solvers for linear systems:
GMRES, BiCGSTAB, and TFQMR. Numerical experiments showed that, on the considered set of problems,
using GMRES presents the best performance among the three options. So, from now on, we refer to NITSOL
as “NITSOL (GMRES)”. All default parameters of DF-SANE and NITSOL (GMRES) were considered. For
the Accelerated DF-SANE, following [3], we considered γ = 10−4, τmin = 0.1, τmax = 0.5, M = 10, σmin =

√
ε,

σmax = 1/
√
ε, ηk = 2−k min{ 12‖F (x0)‖,

√
‖F (x0)‖}, where ε ≈ 10−16 is the machine precision, and p = 5. To

promote a fair comparison, in all three methods, the common stopping criterion (4) with ε = 10−6
√
n, was con-

sidered. In addition, each method has its own alternative stopping criteria, mainly related to lack of progress;
and a CPU time limit of 3 minutes per method/problem was also imposed in the numerical experiments.

Table 1 shows the result of DF-SANE and Accelerated DF-SANE (recall that both methods are coded in R).
In the table, the first two columns show the problem name and the number of variables and equations. Then,
for each method, the table reports the value of ‖F (x)‖2 at the final iterate (column ‖F (x∗)‖2), the number of
iterations (column #iter), the number of functional evaluations (column #feval), and the CPU time in seconds
(column time). In column ‖F (x∗)‖2, figures in red are the ones that do not satisfy (4). It is worth noticing that
in all cases in which the final iterate of DF-SANE does not satisfy (4), DF-SANE stops by “lack of progress”
(flag equal to 5). When the same happens with Accelerated DF-SANE, since no stopping criterion due to
lack of progress was implemented, it stops by reaching the CPU time limit. The table shows that Accelerated
DF-SANE satisfied the stopping criterion (4) related to success in 44 out of the 70 considered problems; while
DF-SANE did the same in 32 problems. Moreover, there were 30 problems that were solved by both methods,
14 problems that were solved by Accelerated DF-SANE only, and 2 problems that were solved by DF-SANE
only. These figures show that the acceleration step improves the robustness of DF-SANE.

Problem n
Accelerated DF-SANE DF-SANE

‖F (x∗)‖ # iter # feval time ‖F (x∗)‖ # iter # feval time

BOOTH 2 9.9E−16 2 7 0.005065 2.4E−07 7 8 0.004709
CLUSTER 2 8.3E−07 23 108 0.007488 2.4E−07 40 42 0.005575

7

https://www.ime.usp.br/~egbirgin/sources/accelerated-df-sane/
https://www.ime.usp.br/~egbirgin/sources/accelerated-df-sane/
https://users.wpi.edu/~walker/NITSOL/

CUBENE 2 4.0E−13 9 20 0.005451 1.0E−06 24 26 0.005079
DENSCHNCNE 2 2.3E−11 10 23 0.005626 1.4E−07 16 17 0.005019
DENSCHNFNE 2 2.7E−07 7 23 0.005479 2.5E−07 27 40 0.005340
FREURONE 2 1.5E−08 16 55 0.006213 1.1E+01 103 123 0.007488
GOTTFR 2 1.3E−07 23 67 0.006572 2.6E−02 24196 154606 2.629654
HIMMELBA 2 0.0E+00 2 7 0.005166 1.3E−07 7 8 0.004738
HIMMELBC 2 8.4E−08 5 13 0.005269 7.0E−07 10 11 0.004874
HIMMELBD 2 2.4E+00 211279 5989534 180.000000 2.4E+00 188 211 0.009555
HS8 2 4.4E−08 5 13 0.005335 2.1E−07 14 15 0.004822
HYPCIR 2 8.7E−10 6 14 0.005353 1.2E−06 13 14 0.004824
POWELLBS 2 2.3E−03 225728 4561326 180.000000 8.4E−07 106 367 0.010667
POWELLSQ 2 3.9E+00 317171 779427 180.000000 9.8E−03 665188 6522441 101.318056
PRICE3NE 2 3.9E−10 7 19 0.005414 9.0E−07 15 16 0.004841
PRICE4NE 2 1.3E−10 10 27 0.005625 2.0E−08 37 39 0.005394
RSNBRNE 2 4.4E−16 56 204 0.009382 3.7E−07 428 564 0.018345
SINVALNE 2 4.9E−15 16 77 0.006542 2.1E+00 5063 52078 0.846892
WAYSEA1NE 2 1.3E−10 12 36 0.005866 1.0E−06 785 3466 0.065970
WAYSEA2NE 2 8.4E−07 481 2179 0.052801 3.4E+01 714039 12109386 180.004208
DENSCHNDNE 3 2.1E−07 26 62 0.006747 1.1E−06 83 86 0.006548
DENSCHNENE 3 9.6E−11 6 16 0.005380 9.8E−01 107 112 0.007418
HATFLDF 3 1.4E−08 26 78 0.006926 9.6E−07 586 907 0.024690
HATFLDFLNE 3 8.0E−03 216456 5660213 180.000000 8.2E−03 170 251 0.010048
HELIXNE 3 2.8E−09 13 35 0.005898 3.1E+01 102 574 0.013981
HIMMELBE 3 1.2E−15 9 21 0.005566 2.1E+00 127 128 0.007795
RECIPE 3 2.9E−07 58 355 0.012444 1.4E−06 56 57 0.005821
ZANGWIL3 3 1.4E−14 3 11 0.005174 1.3E−08 25 27 0.005093
POWELLSE 4 7.3E−07 24 70 0.006980 1.5E+01 101 240 0.009092
POWERSUMNE 4 4.6E−03 2761 64429 180.000000 2.0E−02 411 485 0.017388
HEART6 6 7.2E−07 245873 3845345 67.912296 1.9E+01 116 476 0.013026
HEART8 8 2.2E−06 54602 823267 14.860346 1.3E+01 101 332 0.010646
COOLHANS 9 1.5E−06 10 45 0.006065 3.5E−02 120 124 0.007696
MOREBVNE 10 1.6E−06 37 219 0.009777 3.0E−06 73 76 0.006361
OSCIPANE 10 1.0E+00 54 707 180.000000 1.0E+00 100 113 0.007410
TRIGON1NE 10 1.9E−06 13 29 0.005877 1.7E−06 30 33 0.005321
INTEQNE 12 9.2E−07 3 7 0.005143 1.2E−06 5 6 0.004616
HATFLDG 25 5.0E−06 13389 211286 4.406962 5.0E+00 102 189 0.008855
HYDCAR6 29 2.3E−02 206865 4255024 180.000000 2.5E+01 102 430 0.014045
METHANB8 31 3.9E−03 198664 4495087 180.000000 9.9E−01 102 109 0.007866
METHANL8 31 1.6E−01 173606 3542099 180.000000 6.5E+01 101 490 0.015252
HYDCAR20 99 2.3E−01 170393 3142121 180.000000 3.6E+01 101 335 0.016278
LUKSAN21 100 8.9E−06 48 441 0.016229 6.7E−06 69 88 0.006922
MANCINONE 100 5.9E−07 5 17 0.022032 5.2E−06 7 8 0.012426
QINGNE 100 4.8E−06 21 45 0.006954 4.5E−06 30 36 0.005532
ARGTRIG 200 1.2E−05 57 199 0.030535 1.2E−05 80 87 0.014297
BROWNALE 200 1.0E−05 9 25 0.007390 1.2E−07 15 16 0.005847
CHANDHEU 500 1.4E−05 18 99 0.273017 2.2E−05 95 104 0.286036
10FOLDTR 1000 9.3E+06 8222 245098 180.000000 1.8E+05 183 1167 0.845994
KSS 1000 9.3E−06 5 17 0.028989 7.5E−06 9 12 0.021450
MSQRTA 1024 6.1E+01 24241 454743 180.000000 8.6E+01 129 585 0.227472
MSQRTB 1024 5.7E+01 26216 450488 180.000000 8.6E+01 123 615 0.239714
EIGENAU 2550 1.7E+02 5138 103264 180.000000 1.8E+02 118 563 0.987960
EIGENB 2550 9.8E+00 6918 102189 180.000000 9.9E+00 856 7459 12.716400
EIGENC 2652 1.0E+02 4916 97087 180.000000 1.0E+02 112 545 1.014087
NONMSQRTNE 4900 2.4E+02 3252 43571 180.000000 2.2E+02 7353 47727 180.023645
BROYDN3D 5000 5.3E−05 12 25 0.025578 1.7E−05 16 17 0.010604
BROYDNBD 5000 1.0E+00 31283 472515 180.000000 3.6E+01 124 327 0.132678
BRYBNDNE 5000 1.0E+00 31192 471278 180.000000 3.6E+01 124 327 0.132835
NONDIANE 5000 1.4E+00 33386 716126 180.000000 6.4E+02 102 483 0.129502
SBRYBNDNE 5000 2.7E+02 18630 377758 180.000000 2.6E+02 319 897 0.356915
SROSENBRNE 5000 3.1E−09 9 34 0.020881 5.7E−08 23 25 0.012307
SSBRYBNDNE 5000 1.8E+02 23551 354751 180.000000 1.3E+02 302 1192 0.460639
TQUARTICNE 5000 8.7E−01 53163 550903 180.000000 8.9E−01 790 3991 0.853161
OSCIGRNE 100000 1.8E−04 28 66 1.013625 2.0E−04 24 25 0.196684
CYCLIC3 100002 6.8E−01 1921 27552 180.000000 2.3E−04 11410 11765 83.093461
YATP1CNE 123200 2.6E−07 14 41 1.443373 8.4E+03 103 865 20.785781
YATP1NE 123200 2.6E−07 14 41 1.445582 8.4E+03 103 865 20.736302
YATP2CNE 123200 3.1E+04 606 8821 180.000000 7.2E+04 114 830 16.063343
YATP2SQ 123200 4.3E+04 723 8917 180.000000 4.5E+04 104 115 2.406395

8

Table 1: Detailed results of the application of Accelerated DF-SANE and DF-SANE to the 70 considered problems from the
CUTEst collection.

Figure 1 compares the methods’ efficiencies using performance profiles [10]. In a performance profile, for
i ∈M = {Accelerated DF-SANE,DF-SANE},

Γi(τ) =
{j ∈ {1, . . . , nP } | tij ≤ τ minm∈M{tmj}}

nP
,

where #S denotes the cardinality of set S, nP = 70 is the number of problems being considered, and tij is a
measure of the performance of method i when applied to problem j. If method i was not able to solve problem j,
then we set tij = +∞. With these definitions, Γi(1) is the fraction of problems in which method i was the
fastest method to find a solution; while Γi(τ) for τ sufficiently large is the fraction of problems that method i
was able to solve, independently of the required effort. Another possibility, once the robustness of the methods
being compared has been established, is to restrict the set of problems in a performance profile to the set of
problems that were solved by both methods (nP = 30 in this case); so tij < +∞ for all i and j. With these
definitions, the performance profile does not reflect the robustness of the methods any more (Γi(τ) = 1 for a
sufficiently large τ for all i ∈M) and it is focused on the methods’ efficiency. (Γi(1) still represents the fraction
of problems in which method i was the fastest method to find a solution.) This was the choice in Figure 1,
in which the number of functional evaluations and the CPU time were used as performance measures. Both
graphics show the methods have very similar efficiencies. It is worth noticing that CPU times smaller than
0.01 seconds are considered as being 0.01 and that approximately 90% of the CPU times, associated with the
problems that both methods solve, are smaller than 0.1 seconds.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 4 16 64

Γ
(τ

)

τ

Function evaluations (log2 scale)

Accelerated DF-SANE (Γ(1) = 0.46)
DF-SANE (Γ(1) = 0.56)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 4 8

Γ
(τ

)

τ

Time (log2 scale)

Accelerated DF-SANE (Γ(1) = 0.73)
DF-SANE (Γ(1) = 0.86)

Figure 1: Performance profiles of Accelerated DF-SANE and DF-SANE considering the 30 problems from the
CUTEst collection in which both methods found a solution.

In a second experiment, in order to put our method in perspective relatively to a method that represents the
state of the art in solving nonlinear systems, we compared Accelerated DF-SANE with NITSOL (GMRES).
Since NITSOL (GMRES) is coded in Fortran, we considered the Fortran version of Accelerated DF-SANE in
this comparison. Of course, we considered NITSOL (GMRES) without Jacobians. Table 2 and Figure 2 show
the results. As in Table 1, in column ‖F (x∗)‖2, figures in red are the ones that do not satisfy (4). In all cases
the final iterate of NITSOL (GMRES) does not satisfy (4), NITSOL (GMRES) stops by “too small step in
a line search” (flag equal to 6).

Figures in Table 2 show that both Accelerated DF-SANE and NITSOL (GMRES) solve 45 problems. There
are 41 problems that were solved by both methods, 4 problems that were solved by Accelerated DF-SANE only,
and 4 problems that were solved by NITSOL (GMRES) only. So, both methods appear to be equally robust.

As well as Figure 1, Figure 2 focuses on efficiency and, thus, it considers only the 41 problems in which
both, Accelerated DF-SANE and NITSOL (GMRES), found a solution. Figure 2(a) considers number of

9

functional evaluations as performance metric; while Figure 2(b) considers CPU time. Figure 2(a) shows that
NITSOL (GMRES) used less functional evaluations in 63% of the problems; while Accelerated DF-SANE used
less functional evaluations in 39% of the problems. (The sum of the percentages is slightly larger than 100%
because ties are counted twice.) The fact that the two curves reach 0.9 before τ = 10 means that in 90% of the
problems the number of function evaluations is of the same order. The Accelerated DF-SANE curve reaches
the value 1 for τ > 1000 due to only 3 problems. In the problems Recipe, Heart8 and Hatfldg, Accelerated
DF-SANE consumes approximately 14, 33 and 1790 times more function evaluations than NITSOL (GMRES).
On the other hand, the curve of NITSOL (GMRES) reaches the value 1 between τ = 10 and τ = 100 because
in the problem Waysea1ne NITSOL (GMRES) uses 41 times more function evaluations than Accelerated
DF-SANE.

The performance profile of the Figure 2(b) that considers CPU time as performance measure, shows a
similar scenario, contaminated by the fact of having a large proportion of small problems. The figure says that
NITSOL (GMRES) is the fastest method in 95% of the problems; while Accelerated DF-SANE is the fastest
method in 85% of the problems, i.e., there are a lot of ties. (As it can be observed in Table 2, approximately
90% of the CPU times associated with problems that are solved by both methods are smaller than 0.1 seconds;
and CPU times smaller than 0.01 seconds are considered ties.) The curve of NITSOL (GMRES) reaches 1
before τ = 2 because in no problem does NITSOL (GMRES) uses more than twice the time of Accelerated
DF-SANE. Accelerated DF-SANE also did not use more than twice the time of NITSOL in 37 out of the 41
problems. On the remaining 4 problems, Accelerated DF-SANE uses a little more than twice as much time on
Chandheu and Oscigrne (which is why the curve passes 0.95 before τ = 3) and on problems Heart8 and
Hatfldg it uses 21 and 23 times as much time.

Summing up, we conclude that, while both methods are equally robust, NITSOL (GMRES) is slightly more
efficient that Accelerated DF-SANE in the considered set of problems. On the other hand, it is worth noticing
that numerical experiments in [3] showed that Accelerated DF-SANE outperforms NITSOL (GMRES) to a
large extent on an important class of large-scale problems coming from the discretization of partial differential
equations. Of course, the opposite situation can also occur, which justifies the availability of both methods.

Problem n
Accelerated DF-SANE NITSOL (GMRES)

‖F (x∗)‖ # iter # feval time ‖F (x∗)‖ # iter # feval time

BOOTH 2 9.9E−16 2 7 0.000014 4.6E−09 3 8 0.000039
CLUSTER 2 8.3E−07 23 108 0.000048 1.2E−09 9 25 0.000046
CUBENE 2 4.0E−13 9 20 0.000022 2.1E−10 38 108 0.000076
DENSCHNCNE 2 2.3E−11 10 23 0.000029 6.7E−07 6 15 0.000043
DENSCHNFNE 2 2.7E−07 7 23 0.000019 1.6E−13 5 16 0.000044
FREURONE 2 1.5E−08 16 55 0.000025 7.0E+00 16 112 0.000058
GOTTFR 2 1.3E−07 23 67 0.000031 3.6E−09 70 236 0.000133
HIMMELBA 2 0.0E+00 2 7 0.000013 2.5E−08 3 8 0.000042
HIMMELBC 2 8.4E−08 5 13 0.000018 1.1E−06 6 14 0.000041
HIMMELBD 2 2.4E+00 11577102 439522728 180.000000 2.4E+00 48 246 0.000164
HS8 2 4.4E−08 5 13 0.000018 2.4E−11 11 24 0.000045
HYPCIR 2 8.7E−10 6 14 0.000017 5.2E−07 5 13 0.000041
POWELLBS 2 1.4E−06 54229896 1259707609 152.775132 1.9E−06 231 692 0.000206
POWELLSQ 2 1.4E−00 13690098 34211713 180.000000 1.3E+00 37498 309809 0.044447
PRICE3NE 2 3.9E−10 7 19 0.000020 4.4E−10 7 20 0.000046
PRICE4NE 2 1.3E−10 10 27 0.000030 3.0E−09 10 27 0.000048
RSNBRNE 2 2.2E−16 56 204 0.000054 1.4E−06 55 161 0.000075
SINVALNE 2 4.9E−15 16 77 0.000040 1.9E−14 6 19 0.000042
WAYSEA1NE 2 1.3E−10 12 36 0.000023 3.4E−08 331 1485 0.000291
WAYSEA2NE 2 8.4E−07 481 2179 0.000401 1.3E−09 766 3751 0.000677
DENSCHNDNE 3 2.3E−07 26 62 0.000043 1.5E−06 22 71 0.000065
DENSCHNENE 3 9.6E−11 6 16 0.000032 1.5E−09 7 19 0.000046
HATFLDF 3 1.4E−08 26 78 0.000049 9.6E−07 71 233 0.000117
HATFLDFLNE 3 7.9E−03 11587628 252488903 180.000000 7.8E−03 372 2843 0.000672
HELIXNE 3 2.8E−09 13 35 0.000045 5.0E+01 0 14 0.000040
HIMMELBE 3 9.7E−16 9 21 0.000023 7.3E−09 2 9 0.000043
RECIPE 3 6.2E−07 72 403 0.000116 1.4E−06 10 28 0.000048
ZANGWIL3 3 1.4E−14 3 11 0.000015 5.2E−07 3 10 0.000045
POWELLSE 4 7.3E−07 24 70 0.000061 1.5E−06 13 61 0.000064
POWERSUMNE 4 1.2E−02 8695243 130633973 180.000000 1.6E−06 1417 7084 0.004665
HEART6 6 1.5E−06 124382 1818751 0.561869 2.7E−01 3854 28811 0.013372

10

HEART8 8 2.8E−06 181971 2866905 0.993949 2.2E−06 11360 86495 0.046512
COOLHANS 9 1.5E−06 10 45 0.000056 2.3E−06 7 22 0.000057
MOREBVNE 10 1.6E−06 37 219 0.000124 7.9E−08 4 33 0.000068
OSCIPANE 10 1.0E+00 8608149 322784536 180.000000 1.0E+00 2411 50650 0.022718
TRIGON1NE 10 1.9E−06 13 29 0.000063 2.5E−06 5 26 0.000069
INTEQNE 12 9.2E−07 3 7 0.000021 3.3E−07 4 10 0.000065
HATFLDG 25 5.0E−06 22708 356246 0.232828 7.8E−07 44 199 0.000263
HYDCAR6 29 5.0E−03 2661134 61551663 180.000000 3.3E−01 30 781 0.002596
METHANB8 31 1.2E−04 2577703 67500153 180.000000 1.4E−02 6 472 0.001542
METHANL8 31 4.4E−03 2764968 66380772 180.000000 6.1E−01 28 1052 0.003356
HYDCAR20 99 3.9E−02 917448 19172981 180.000000 9.2E+00 3 287 0.003190
LUKSAN21 100 8.9E−06 48 441 0.001177 6.1E−06 17 123 0.000562
MANCINONE 100 5.9E−07 5 17 0.009272 3.9E−06 4 11 0.005929
QINGNE 100 4.8E−06 21 45 0.000233 4.3E−06 10 35 0.000150
ARGTRIG 200 1.2E−05 57 199 0.016417 1.1E−05 5 86 0.007244
BROWNALE 200 1.0E−05 9 25 0.001325 3.1E−07 3 9 0.000512
CHANDHEU 500 1.4E−05 18 99 0.140877 1.5E−05 10 51 0.065100
10FOLDTR 1000 2.2E+07 9445 272830 180.000000 2.7E−05 54 6563 4.562871
KSS 1000 9.3E−06 5 17 0.023044 2.2E−08 6 13 0.017676
MSQRTA 1024 4.7E+01 68938 1137480 180.000000 5.5E+01 17 1351 0.210034
MSQRTB 1024 4.6E+01 61153 1138024 180.000000 5.9E+01 13 1964 0.306907
EIGENAU 2550 1.6E+02 12625 234607 180.000000 1.6E+02 17 850 0.768981
EIGENB 2550 9.6E+00 15297 234454 180.000000 9.8E+00 9 382 0.361665
EIGENC 2652 9.2E+01 14864 218919 180.000000 9.7E+01 33 2169 2.097641
NONMSQRTNE 4900 2.4E+02 5731 85005 180.000000 2.3E+02 23 915 1.804071
BROYDN3D 5000 5.3E−05 12 25 0.005502 2.8E−05 5 19 0.002987
BROYDNBD 5000 2.4E+00 58861 934685 180.000000 7.7E+00 11 607 0.176834
BRYBNDNE 5000 2.4E+00 57595 915686 180.000000 7.7E+00 11 607 0.176482
NONDIANE 5000 1.0E+00 83049 1603628 180.000000 6.1E+02 686 10094 1.873028
SBRYBNDNE 5000 2.5E+02 45364 906538 180.000000 2.7E+02 50 2935 0.918074
SROSENBRNE 5000 2.5E−09 9 34 0.004332 2.1E−08 4 11 0.001462
SSBRYBNDNE 5000 1.7E+02 50681 944507 180.000000 1.6E+02 128 9043 2.794424
TQUARTICNE 5000 8.3E−01 175237 1886434 180.000000 1.5E−07 2 6 0.000899
OSCIGRNE 100000 1.8E−04 28 66 0.461298 1.5E−04 7 34 0.158588
CYCLIC3 100002 6.2E−01 3011 53186 180.000000 1.7E−04 282 992 4.070610
YATP1CNE 123200 2.6E−07 14 41 0.889454 1.4E−04 17 48 0.970848
YATP1NE 123200 2.6E−07 14 41 0.891586 1.4E−04 17 48 0.974741
YATP2CNE 123200 3.1E+04 800 12314 180.000000 – – – 180.000000
YATP2SQ 123200 4.1E+04 791 12362 180.000000 – – – 180.000000

Table 2: Detailed results of the application of Accelerated DF-SANE (in Fortran) and NITSOL (GMRES) to the 70 considered
problems from the CUTEst collection.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 100 1000

Γ
(τ

)

τ

Function evaluations (log10 scale)

NITSOL (GMRES) (Γ(1) = 0.63)
Accelerated DF-SANE (Γ(1) = 0.39)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 4 16

Γ
(τ

)

τ

Time (log2 scale)

NITSOL (GMRES) (Γ(1) = 0.95)
Accelerated DF-SANE (Γ(1) = 0.85)

Figure 2: Performance profiles of Accelerated DF-SANE (in Fortran) and NITSOL (GMRES) considering
the 41 problems from the CUTEst collection in which both methods found a solution.

11

A side note comparing the R and Fortran implementations of Accelerated DF-SANE is in order. Comparing
Tables 1 and 2, it can be seen that they deliver slightly different results in a few problems and deliver identical
results in 40 problems out of the 44 problems in which none of the versions stops by reaching the CPU time
limit. If we consider these 40 problems, in which both versions performed an identical number of iterations and
functional evaluations, the Fortran version uses, in average, around 10% of the CPU time required by the R
version of the method.

5 Conclusions

In [3], where it was shown that an acceleration scheme based on the Sequential Secant Method could improve
the performance of the derivative-free spectral residual method [13], numerical experiments with very large
problems coming from the discretization of partial differential equations were presented. In the considered
family of problems, Accelerated DF-SANE outperformed DF-SANE and NITSOL (GMRES) by a large extent.

In the present work, an R implementation of the method proposed in [3] was introduced. In addition,
numerical experiments considering all nonlinear systems of equations from the well-known CUTEst collection
were presented. Default dimensions of the problems were considered; and the collection includes small-, medium-
, and large-scale problems. Results shown that the proposed method is much more robust than the DF-SANE
method included in the R package BB [21]; while it is as robust and almost as efficient as the state-of-the-art
classical NITSOL (GMRES) method (coded in Fortran). Therefore, the proposed method appears as a useful
and robust alternative for solving nonlinear systems of equations without derivatives to the users of R language.

As a byproduct, an interface to test derivative-free nonlinear systems solvers developed in R with the widely-
used test problems from the CUTEst collection [11] was also provided.

References

[1] J. G. P. Barnes. An algorithm for solving nonlinear equations based on the secant method. The Computer
Journal, 8(1):66–72, 1965.

[2] J. Barzilai and J. M. Borwein. Two-point step size gradient methods. IMA Journal of Numerical Analysis,
8(1):141–148, 1988.

[3] E. G. Birgin and J. M. Mart́ınez. Secant acceleration of sequential residual methods for solving large-scale
nonlinear systems of equations. Technical Report arXiv:2012.13251v1, arXiv, 2021.

[4] E. G. Birgin, J. M. Mart́ınez, and M. Raydan. Nonmonotone spectral projected gradient methods on
convex sets. SIAM Journal on Optimization, 10(4):1196–1211, 2000.

[5] E. G. Birgin, J. M. Mart́ınez, and M. Raydan. Algorithm 813: Spg – software for convex-constrained
optimization. ACM Transactions on Mathematical Software, 27(3):340–349, 2001.

[6] E. G. Birgin, J. M. Mart́ınez, and M. Raydan. Spectral projected gradient methods. In C. A. Floudas and
P. M. Pardalos, editors, Encyclopedia of Optimization, pages 3652–3659. Springer US, Boston, MA, 2009.

[7] E. G. Birgin, J. M. Mart́ınez, and M. Raydan. Spectral projected gradient methods: Review and perspec-
tives. Journal of Statistical Software, 60(3), 2014.

[8] R. H. Byrd, P. Lu, and J. Nocedal. A limited memory algorithm for bound constrained optimization. SIAM
Journal on Scientific and Statistical Computing, 16(5):1190–1208, 1995.

[9] A. R. Conn, N. I. M. Gould, and Ph. L. Toint. Lancelot – A Fortran Package for Large-Scale Nonlinear
Optimization (Release A). Springer, Berlin, Heidelberg, 1992.

[10] E. D. Dolan and J. J. Moré. Benchmarking optimization software with performance profiles. Mathematical
Programming, 91(2):201–213, 2002.

12

[11] N. I. M. Gould, D. Orban, and Ph. L. Toint. CUTEst: a Constrained and Unconstrained Testing Envi-
ronment with safe threads for mathematical optimization. Computational Optimization and Applications,
60(3):545–557, 2015.

[12] W. Hock and K. Schittkowski. Test Examples for Nonlinear Programming Codes, volume 187 of Lecture
Notes in Economics and Mathematical Systems. Springer, Berlin, Heidelberg, 1981.

[13] W. La Cruz, J. M. Mart́ınez, and M. Raydan. Spectral residual method without gradient information for
solving large-scale nonlinear systems of equations. Mathematics of Computation, 75:1429–1448, 2006.

[14] W. La Cruz and M. Raydan. Nonmonotone spectral methods for large-scale nonlinear systems. Optimization
Methods and Software, 18(5):583–599, 2003.

[15] J. J. Moré, B. S. Garbow, and K. E. Hillstrom. Testing unconstrained optimization software. ACM
Transactions on Mathematical Software, 7(1):17–41, 1981.

[16] M. Pernice and H. F. Walker. NITSOL: a newton iterative solver for nonlinear systems. SIAM Journal
on Scientific Computing, 19(1):302–318, 1998.

[17] M. Raydan. On the barzilai and borwein choice of steplength for the gradient method. IMA Journal of
Numerical Analysis, 13(3):321–326, 1993.

[18] M. Raydan. The barzilai and borwein gradient method for the large scale unconstrained minimization
problem. SIAM Journal on Optimization, 7(1):26–33, 1997.

[19] K. Schittkowski. More Test Examples for Nonlinear Programming Codes, volume 282 of Lecture Notes in
Economics and Mathematical Systems. Springer, Berlin, Heidelberg, 1987.

[20] The R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical
Computing, Vienna, Austria, 2009.

[21] R. Varadhan and P. Gilbert. BB: An R package for solving a large system of nonlinear equations and
for optimizing a high-dimensional nonlinear objective function. Journal of Statistical Software, 32(4):1–26,
2009.

[22] P. Wolfe. The secant method for simultaneous nonlinear equations. Communications of ACM, 2(12):12–13,
1959.

13

	Introduction
	Accelerated DF-SANE
	Usage of the R implementation
	Numerical experiments
	Conclusions

