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Abstract

This paper presents active-set methods for minimizing nonconvex, twice continuously differ-
entiable functions subject to bound constraints. Within the faces of the feasible set, we employ
descent methods with Armijo line search, utilizing approximated Newton directions obtained
through the Minimum Residual (MINRES) method. To escape the faces, we investigate the use
of the Spectral Projected Gradient (SPG) method and a tailored variant of the Cubic Regular-
ization of Newton’s method for bound-constrained problems. We provide theoretical guarantees,
demonstrating that when the objective function has a Lipschitz continuous gradient, the SPG-
based method requires no more than O(ne=2) oracle calls to find e-approximate stationary points.
Furthermore, if the objective function also has a Lipschitz continuous Hessian, we show that the
method based on cubic regularization requires no more than O (n|log,(€)|e~%/2) oracle calls to
achieve the same goal. Numerical experiments are conducted to compare the proposed methods
with existing active-set methods, highlighting the potential benefits of using MINRES instead of
the Conjugate Gradient (CG) method for approximating Newton directions.

1 Introduction

The optimization problem entails finding a solution that satisfies given constraints while minimizing
a specified objective function. This type of problem has far-reaching applications in various fields,
including psychology, medicine, economics, engineering, physics, and biology, to name a few. In this
work, we focus on cases where the functions that define the feasible region and the objective function
are continuous and differentiable. Among existing methods for addressing such problems, augmented
Lagrangian methods warrant special attention. Consider a simple problem with no constraints or
straightforward constraints, for which we have an efficient solution method. Now, suppose that we
want to introduce an additional constraint, rendering our initial method inapplicable. A natural
approach would be to transform this new constraint into a penalty that increases the value of the
objective function when the constraint is violated. This concept gives rise to penalty methods [20],
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which involve solving a sequence of subproblems that minimize the penalized function subject to
simple constraints. We could utilize our initial efficient method to solve these subproblems. However,
penalty methods rely on a penalty parameter that tends to increase with each iteration. If this
parameter becomes too large, the subproblems become ill-conditioned and difficult [40, Ch.17]. To
address this issue, augmented Lagrangian methods [42], 30, 43] penalize shifted constraints [7, Ch.4],
aiming to achieve the same results as penalty methods but with better-conditioned subproblems.

The authors of this paper are dedicated to developing and implementing robust and efficient
augmented Lagrangian methods, encompassing both theoretical advancements and the provision of
free software. Recent studies [34], 35, B6] have highlighted the theoretical properties and practical
performance of Newtonian methods for unconstrained minimization, which leverage the minimal
residual method (MINRES) [41] to solve linear Newtonian systems. These methods utilize the Hes-
sian matrix of the objective function to compute Hessian vector products without performing matrix
factorizations. In practice, large problems with dense Hessians are scarce, as they typically exhibit
some structure. However, subproblems in augmented Lagrangian methods may have dense Hessians
or Hessians with dense factorizations, as the Hessian of an augmented Lagrangian function combines
the Hessian of the objective function and the Jacobians and Hessians of the constraints. In this
context, it is intriguing to explore the method proposed in [36] for solving augmented Lagrangian
subproblems. Specifically, our objective is to evaluate this method for solving subproblems in Algen-
can [I, 2] [7, 9], a particular implementation of augmented Lagrangian methods. Since Algencan’s
subproblems involve bound constraints, our initial objective is to extend the method proposed in [36]
to accommodate minimization with bound constraints. This objective is the main focus of the present
work.

The development of methods for minimization with bound constraints is a vibrant and dynamic
field. During the past three decades, numerous methods have been devised [3, 5] [6], [14], 16}, 17, 18],
22, 23| 241, 25, 28], 29], 311, [33], 39, [45, [38]. A comprehensive numerical comparison of freely available
software packages was presented in [4].

The extension proposed here builds on the methods introduced in [36] and follows the active
set paradigm. Specifically, we propose two distinct extensions of the Newton-MR method from [36]
for minimization with bound constraints. In [36], the method achieves a worst-case complexity of
O(e73/?) to find a point z such that |V f(z)|| < € when minimizing f(z) over z € R™. Our first
proposed extension, which introduces greater flexibility in algorithmic choices, takes no more than
O(ne=2) calls to the oracle to find a point z such that ||Po(z — Vf(z)) — z| < € when applied to
the problem of minimizing f(x) subject to x € Q, where Q = {z € R" | £ <z < u} with £,u € R".
The second extension takes no more than O(n|logy(e)|e~3/2) calls to the oracle to achieve the same
goal. Numerical experiments demonstrate that the first option is more robust and efficient compared
to the second, using both unconstrained and bound-constrained minimization problems from the
CUTEst collection [27]. Additional experiments also show that the first version outperforms the
method currently used by Algencan to solve augmented Lagrangian subproblems, particularly when
second derivatives are available but matrix factorizations are not.

The remainder of this paper is organized as follows. The two Newton-MR-based methods for
bound-constrained minimization and their theoretical properties are described in Section [2l Numeri-
cal experiments are presented and analyzed in Section [3] Conclusions and directions for future work
are presented in the final section.



2 Problem definition and new methods

Consider the problem
Minimize f(x) subject to x € €, (1)

where Q@ = {z e R" : £ <z <wu}, with ¢; < w; fori = 1,...,n, and f : R®" — R being a twice
continuously differentiable function. Specifically, let us assume that:

Al. Vf:R" — R" is Lg-Lipschitz continuous.
A2. f(-)is bounded from below by fioy-

Given , let us define the following subsets of {1,...,n}:

Ao(z) = {jef{l,...,n} : z; ={;},
Ai(z) = {jed{l,...,n} : z; =u;},
Alx) = Ag(z)U A (z),

I(z) = {1,...,n}\ A(z).

The face to which x € Q) belongs is the set
Flx)={z€Q : zi=¢;ifi € Ag(x), zi = u; if i € A1(x), {; < z; < u; otherwise} .
The reduced gradient of f at x with respect to €2 is defined by
Vaof(z) =z — Polz — Vf(z)),

where Pqo(-) is the projection operator onto 2. Let VL f(x) € R" be the vector defined by

0, otherwise.

Considering the enumeration Z(z) = {i1,...,ij7(z)}, with i; < ij11 for j = 1,...,|Z(z)| — 1 when
|Z(x)| > 2, let us define

Q(ZE) = [eil eiml)‘] c RNXII(:UH’

where e; denotes the i-th vector of the canonical basis of R™. In what follows, we will consider the
function f, : RF@I| 5 R given by
fa(y) = (= + Q(x)y). (2)

We have

Vi(y) =Q@)'Viz+Q(z)y) and V3fi(y) = Q) V2 f(z+ Q(z)y)Q(x),

and so

Vfe(0) = Q(z)"Vf(x) and V?f,(0) = Q(z)"V*f(2)Q(x). (3)



2.1 Method that employs SPG for leaving faces

Our first method (Algorithm 1) is inspired by Algorithm 4.1 in [8]. In its kth iteration, we check
whether the norm of the gradient in the current face, |VEf(z*)||, is greater than or equal to a
multiple of the norm of the reduced gradient, ||V f(z¥)||. If this condition holds, then x**! is
computed using Algorithm 2, which performs one iteration of a descent method on fx(-), where
the descent direction is obtained by MINRES. Otherwise, 2¥*1 is computed by Algorithm 3, which
applies a monotone iteration of the Spectral Projected Gradient method to the minimization of f( )
in €.

Algorithm 1. Based on Algorithm 4.1 in [§]
Step 0. Given 2° € Q, ¢ > 0,0 € (0,1], p€ (0,1), m €N, a3 > 1> ay > 0, set k := 0.
Step 1. If [Vaf(«")| < e, STOP.

Step 2. If ||V f(2%)|| = 6] Vaf(z)]], find ¥ by applying Algorithm 2. Otherwise, find 2%
by applying Algorithm 3.

Step 3. Set k:=k + 1 and go to Step 1.

Within faces, we apply Algorithm 2, which is a descent method with Armijo line search and
extrapolation. To obtain the search direction, we first compute an approximate solution d’f to the
minimum residual problem associated with the Newton system. This solution is then corrected to
produce a direction d* satisfying

12|l < ar|V £ (0)]] and (¥ fu(0), ") < —aa||V £, (0)]?

as we will see in Lemma 2.1.

Algorithm 2. Descent Method with Armijo Line Search
Inputs: 2 € Q, p€ (0,1), a1 > 1> as >0, m € N,
Step 1. Using MINRES, compute an approximate solution d’f of the subproblem
min_||V2 £ (0)s + V £ (0) 3.

SERIT(F)]
Define
where . "

1, if [|dy | < a1[[V fox (0)],
= 0
& 7@1“sz1€< )H, otherwise, (5)
7]

and then set

d* = fad§ + (1= ) (=V £,4(0)) (6)




where

L, if (Vfur(0),d5) < —az||V£,x(0)],

1
a2 otherwise. (7)

B2 = )
(V£,k(0),d5)
<1 MR/AOIE

Step 2.

Step 2.1. If 2% + Q(a%)d* € F(a*), set ap = 1 and go to Step 3.

Step 2.2. If f(Po(z" + Q(2F)d¥)) < ( ), then using at most m oracle calls, find
okl € 9F (2%) such that f(zF!) < (PQ(SU + Q(2*)d*)) and STOP.

Step 2.3. Compute tma = max{t € (0,1] : 2¥ +tQ(z")d" € Q}. If fir(tmaxd®) <
f.+(0), using at most m oracle calls, find x¥*! € 9F (z*) such that f(z**!) < fok (tmaxd®)
and STOP. Otherwise, set oy = tmax-

Step 3. Find the smallest nonnegative integer ¢ such that
For((0.5) % 0d®) < f,(0) + p(0.5) % o (V £ (0), d¥). (8)

Step 4. If £, > 0, define oFH = 2% 1+ (0.5)%apQ(2F)d*. Otherwise, using at most m oracle
calls, find 2%+ € F(2%) such that f(a**1) < fox(aod”).

As a leaving-face algorithm, we use a monotone variant of the Spectral Projected Gradient (SPG)
method, which applies Armijo line search with the search direction defined as

1
v = Py <mk - Sngf(:L‘k)> — zk,
)\k

)\spg )\spg ]

where A\}P® is the projection of the Barzilai-Borwein stepsize onto the interval [AJ0%  A°P&

Algorithm 3. SPG (Algorithm 4.3 in [9])
Inputs: 2% € Q, p € (0,1), \ibsc > AP8 > 0.

min

Step 1. Choose )\Zpg € [)\Spg /\ffl’i(] and compute v* as the solution to

min’

\sPg
min V. f(z") v+ 22— |v|2.
vEQ\{xk} 2

Step 2. Find the smallest nonnegative integer j; such that
Fa® + (0.5)0°) < f(a) + p(0.5)7(V f(a), 0"). (9)

Step 3. Set 2**t! = zF 4 (0.5)7* k.

Let us begin our analysis by focusing on the properties of Algorithm 2. Our first lemma establishes
the descent properties of the search direction d¥.

Lemma 2.1. Let d* be defined by ([6]) and (@ Then
¥ < ar||[ V£ (0)  and  (Vf,4(0),d") < —az||V £, (0)[|*. (10)



Proof. By and , we have
Id5]| < a1[[V £, (O)]]- (11)

Let us now analyse d* defined by (EI) and . If | (Vf,.(0),d5) < —as||V f,x(0)||? | then by we
have By = 1. Thus, in view of , we obtain

¥ = ll5]) < |V £ (@) and (V£ (0),d" ) = (Vf,(0),d5 ) < ~aa]| V£ (0)

that is holds. Suppose that | (V f,x(0),d5) > —as|[V f,x(0)[|? | Then

<Vf:1:k (0)7 dk>
IV £ (0)2

1+ >1—a9 >0,

and so, by ,

1—CL2

(V£ 1k(0),d5) <1
zk 72
(H /O >
Consequently, it follows from @ and that
"]l < Balld5 ]| + (1 = B[V £, ()] < ar [V £ (0)]]-

In addition, we also have
(VI (0).d5) = B2 (Vou(0),d5) = (1= B)I|V £, (0
(1 a2) (V£,4(0), d) - (1 + A - - a2>> 19 £, (0)]1
Vf,k(0),d5
<1 + <|szk<o>||2>>
—az (Vf(0),d5) — az||V £, (0)]”
Vf,x(0),d5
(1 + gD (o>|2>>
—az (|[V.for (0)[* + (V£ (0)

0<B=

,d5)) 2
= IV £ (0)]
IV £ (0)]12 + (V£ (0),d3))
= —a|[V L (0)].
Therefore, also holds in this case. ]

Combining Lemma 2.1 and the Lipschitz continuity of V f(-) (assumption A1), the next lemma
provides a positive lower bound for stepsizes that do not satisfy the Armijo condition.

Lemma 2.2. Suppose that A1 holds. Given o > 0, if

For(ad®) > f,6(0) + pa(V f,(0), d*) (12)
then 21— p)
— p)az
a > 7Lga% (13)



Proof. Using the definition of f () in , we see that inequality is equivalent to
pa(V £,4(0),d") + f(a*) < f (2 + aQ(a*)d) . (14)

Notice that Q(z*)TQ(z*) = Id. Thus, by assumption Al we also have

F et +aQEhd) < Fa) +a Vi, QM) + 2o Q")
= SM) + @ QU V(b d) + ZLa? P
= S(aM) +a |(VFr(0),d) + adt|? (15)

Combining and , it follows that

PV 1e(0), %) < (V£ (0), %) + Lo

Therefore, by Lemma [2.1] we conclude that

2(1-p) ( (V£(0),d%) _ 2(1 - p)as
L, ( TEE )Z L

o >

O]

k41 is computed by Algorithm 2, then the objective function

I

In view of Lemmas 2.1 and 2.2, if x
decreases by at least a multiple ||V f(z*)

k+1

Lemma 2.3. Suppose that A1 holds. Then, whenever x is computed by Step 4 of Algorithm 2,

we have )
1— 2
f(a*) = f(a**1) = pmin {a2,<f2“2} |[Vhs@Eh)| (16)
Lgay
Moreover, the number of evaluations of f(-) necessary to guarantee the fulfillment of @ is bounded
from above by

. [1 (1—=pag
10g2 (mln{TW})‘ . (17)
Proof. First, let us show that
1—
(0.5)*ay > min {ao, (pgaz} . (18)
Lyay

If ¢, = 0, then is clearly true. Thus, let us assume that £, > 0. In this case, by the definition
of ¢, it follows that

Fur ((0.5)%*1@0&) > £.1(0) 4 p(0.5) " Lag (V £, (0), d*).

Thus, by Lemma [2.1] we have

2(1 = p)ag

2 9

(0.5)% Loy >
Lgay



which implies that also holds when ¢; > 0. Now, let us refine the lower bound in . In
view of Steps 2.1 and 2.3 of Algorithm 2, we have ‘ao =loray=tmax <1 ‘ The latter occurs

only if fr(tmaxd®) > f,x(0). In particular, this means that inequality holds for o = tmax-
Consequently, by Lemma [2.2] in this case we must have

2(1 = p)asg
Q) =tlmax > ———>5—.
Therefore, in any case, we have
. 2(1 — a9
aOZmln{l,(Lgap%)}. (19)
Combining and , we obtain
, (1—pag
(0.5)%* g > min {1, L (20)

Now, from Steps 3 and 4 of Algorithm 2, we obtain
@) = J@Y = p(0.5) % a (—(V 1, (0),d"))
> p(0.5)%agaz||V £, (0)]|?
_ p(0.5)€kaoa2HQ(:L‘I“)TVf(mk)HQ

(0.5 aoas [V 72|

> pmin{l, (11;2%@} as HVéf(:Uk)HQ

v

that is, is true. Finally, notice that the number of evaluations of f(-) performed at Step 3 of
Algorithm 2 is equal to ¢, 4+ 1. From , we have

. [1 (1—p)az
0.5)%1L > (0.5)% Ty > S A
(0.5) > (0.5)"* " ag > min ST

Then, taking the logarithm on both sides, it follows that

. [1 (1=pag
1 - —" .
o2 <mm { 2" 2L4a] }> ‘

If 2%*1 is computed by Algorithm 3, then the objective function decreases by at least a constant
multiple of |V f(z*)|2.

Lemma 2.4. (Theorem 4.2 in [9]) Suppose that A1 holds. Then, whenever 1 is computed by
Algorithm 3, we have

b +1<

O]

) = faty > PL220) gy {)\Spg Armin }2 [vareh) (21)

8L, min? e
Moreover, the number of evaluations of f(-) necessary to guarantee the fulfillment of @ is bounded

from above by
1 —2p) P8
log, <min{1,(4£>mm}>'+l. (22)
g




Let {xk} k>0 Pe a sequence generated by Algorithm 1. Denote by

T(e) = inf {k €N : [Vof(@")]| < e}, (23)

the first hitting time to the set of e-approximate stationary points of f(-) with respect to €, and
consider the sets

Sr(e)-1 = {k €{0,...,T(e) — 1} : ¥ is computed in Step 4 of Algorithm 2 or by Algorithm 3}

Ur(e—1 = {k: €{0,...,T(e) — 1} : 2F*1 is computed in Step 2.2 or Step 2.3 of Algorithm 2} .

The next theorem establishes that T'(€) < O (ne~?), that is, Algorithm 1 needs no more than O(ne?)
iterations to find e-approximate stationary points.

Theorem 2.5. Suppose that A1-A2 hold, and let {:rk}:g be generated by Algorithm 1. Then

0y _
T(e) <1+ (n+1) <f(“” )m f1°W> 2, (24)
where ) )
) 1- fa 1-2 ) spe AP
k1 = min {pa292 p=p) I, ) < a12> , p(SLgp) min {)\nfli, Smrg;gi} } . (25)

Proof. IfT'(¢) < 1, then is clearly true. Thus, suppose that T'(¢) > 2 and let k € {0,...,T(e) — 1}.
By the definition of T'(¢) we have

IVaf@h)ll > e (26)
If
|Var@h| = o1vare®) (27)

then, by Step 2 of Algorithm 1, the next iterate 2**! is computed by Algorithm 2. Spec1ﬁcally, if
zF*t1 is obtained from Step 4 of Algorithm 2|, it follows from Lemma . . . and that

Sl L

)
2
1
Lo Vs
>  pmin {ag, (Lw,%} 02

> /<c162. (28)

fa) = fa™h)

v

pmin{ag,

On the other hand, if | 2**! is computed by Algorithm 3|, it follows from Lemma and
that

1-2p) . APS ) 2
f(mk) — f(z:kH) > 7[)( 5L P) min {)\fflgn, )\églgn } €2 > kel (29)
g max

9



In view of (28) and , for any k € Sp()—1 we have

F(a¥) — f@) > me.

In addition, for any k € Up(—,, we have f(xF+1) < f(2%). Thus, by Al,

F@) = fiow = @)= f(279) = 30 f@*) - ft)

v
=
8
E
~
|
~
—~
8
B
+
=
SN— o

kEST(e)—l
2 ‘ST(E)—1|K’1627
which implies that
f 330 - flow —
Srig-il < (=) 2 (30)

Notice that if k € Up(_1, then z*T1 € OF(z¥t1), and so |Z(a*™)| < |Z(2¥)| — 1. Consequently,
there can be at most n consecutive iterations of Algorithm 1 with z**! being computed by Step 2.3
of Algorithm 2. In the worst-case, each iteration in Sp()_; would be followed by n consecutive
iterations in Up()—1. Therefore,

Ur(e)-1] < n|Sr(e)-1l- (31)
Finally, combining and , we conclude that

0y _
T(€) = [Sre)-1] + Ur@—1| < (1 +n) (W) 2.

which means that also holds when T'(¢) > 2. O

Remark 2.6. If k € Sp()_1 then it follows from Lemmas cmd that the number of evaluations

of f(+) at the k-th iteration is bounded from above by
. 1 (1—plas . (1- QP))‘frIﬁ
10g2 (mln {2, (ﬂj‘wa)% }) 10g2 <mln {1, T .

Additionally, there will be one gradient computation and one Hessian computation. On the other
hand, if k € Up—1, then at the k-th iteration there will be one gradient computation, one Hessian
computation and, at most, m + 1 function evaluations. In summary, each iteration of Algorithm 1

requires at most
. [1 (1=pag ) (1—2p)AP
log, (mm {2, 72Lga% }> log, <m1n {1, o L, o

calls to the oracle. Then, in view of Theorem Algorithm 1 needs no more than O (ne_z) calls to
the oracle to find x* such that |V f(x*)| < e.

9

(m+3)+max{

)

(m+5)+max{

10



2.2 Method that employs cubic regularization for leaving faces

In what follows, we consider a method that uses an adaptation of the Newton MINRES method [36]
within the faces, while it employes the Cubic Regularization of the Newton’s method [§] to leave the
faces. Regarding the MINRES method for approximately solving

. H 2
min [|Hs + g3,
we use Algorithm 1 from [36], which is called by:
s, Deype| = MINRES (H, g,7).

Denote the residual by r = —(Hs+g). In view of Lemmas 11-13 in [36], we have the following cases:
o If Diype = ‘SOL’ then

(9,8) + (Hs,s) <0, (32)
(Hs,s) >0, (Hr,r)>0, (33)

and
[Hr| < nllHs]|. (34)

e If Diype = ‘NPC’ then

(g.r) = ~IIrl, (35)

and
(Hr,r) < 0. (36)

Algorithm 4 follows a structure similar to that of Algorithm 1, but with some important differ-
ences. In addition to using different methods within faces and for leaving faces, a key distinction is
the switching mechanism between these methods. Specifically, whenever Newton-MR neither pro-
duces a functional decrease of order O(e*?) nor returns a point on the boundary of the face that
results in a simple decrease of the objective function, we switch to the Cubic Regularization method
for the next iterate, which is guaranteed to produce a functional decrease of O(e%/2).

Algorithm 4. Based on Algorithm 4.1 in [§]
Step 0. Given 2° € Q, ¢ >0, 0,7 € (0,1], 7 € (0,1], p€ (0,1/2), m € N, a; > 1 > az > 0, and
=0.

M,a,v>0,set ng >n, My =M, o9 =0 and k :
Step 1. If [ Vaf(«")| <, STOP.
Step 2. If o, € {0,2} and || VL f(z")|| > 6]|[Vaf(z¥)|, call Algorithm 5 as
(‘rk+17 Ok+1, T’k+1) = NewtonMR (‘rk7 Py Ny 7, T, M, A1, a2) )
and set M1 = Mj. Otherwise, call Algorithm 6 as
(xk'H, Mk+1) = CubicRegularization (mk, My, M, a,w) ,

and set o1 = 0 and ngr1 = M.
Step 3. Set k:=k + 1 and go to Step 1.

In what follows, we describe in detail the Newton-MR, algorithm.

11



Algorithm 5. (2" 0y 1, m11) = NewtonMR(z*, p, m, m, 7, m, a1, az)
Inputs: z¥ € Q, p € (0,1/2), n € [n,1], n € (0,1], 7 € (0,1], m €N, a1 > 1 > ay > 0.
Step 1. Call Algorithm 1 from [36] (MINRES) as

[5¥, D8 o] = MINRES (V2£,0(0), V £,1.(0), 1c) , (37)
and set
¥ = = (V2 £, (0)s" + V £, (0)). (38)
Define . N
k _ S 5 lf Dtype = ‘SOL’
di = { ¥, i Df, = ‘NPC’ . (39)
Set 2 E gk 2 k .k
1’ if D]tcype — ‘SoL’ and mln{<v fmk(g)glvd1>’ <v fT"(kO);ﬂ ) T >} < M
[ |l [[*]]
FLE =\ 1, if Dk, = “NPC? and [[V2 £ ()| < mel| V2 £, (0)5%]) “40)
0, otherwise.
and define
s if Flag = 0,
Mhet1 = { max {7 ng,n}, if Flag=1. (41)
If Flag = 0, define d* = d’f. Otherwise, define
d = Bydf, (42)
where _ "
1, if [|d7]| < a1[|V f2x (0)]],
pr= 7a1\|Vfik(0)||7 otherwise, (43)
17|
and then set
d* = Badh + (1 = Ba) (= V £,x(0)), (44)
where
1, if <vka(0>7d§> < _GQHfok(O)”27
1—as
= , otherwise. 45
B2 o (57 (0).25) (45)
IV £, (0)]?
Step 2.

Step 2.1. If ¥ + Q(a*)d* € F(aF), set ap = 1 and go to Step 3.

Step 2.2. If f(Pq(2* 4+ Q(2%)d*)) < f,.x(0), using at most m oracle calls, find z*+1 € 9F (a*)
such that f(zF*1) < f(Pq(z* + Q(2*)d")), set o441 = 2 and STOP.

12




Step 2.3. Compute tmax = max {t € (0,1] : 2 +tQ(z%)d* € Q}. If for (tmaxd”) < for(0), us-
ing at most m oracle calls, find z*¥*1 € F(2*) such that f(z**1) < for(tmaxd®), set opp1 = 2
and STOP. Otherwise, set o9 = tmax-

Step 3. Find the smallest nonnegative integer ¢ such that
For((0.5) % aigd®) < f,:(0) + p(0.5) % g (V f,4(0), d*). (46)

Step 4. If £}, > 0, define 2**! = zF 4 (0.5)* apQ(x*)d", set o341 = Flag and STOP.

Step 5. If Flag = 1, using at most m oracle calls, find z*t! € F(2*) such that f(zF+1) <
for(od®). If 2F+1 € 9F (2%), set op41 = 2. Otherwise, set o441 = 1. Then STOP.

Step 6. Find the smallest nonnegative integer j; such that

"+ 200Q(2*)d" € @ and  for(27apd®) < £,x(0) + p (27) ag(V f,x(0), d¥) (47)
holds with j = j, and does not hold with j = j; + 1.
Step 6.1. If 2* + 2xHagQ(2*)dF € Q, define x4 = xp + 27 aQ(2¥)d*, o411 = 0 and STOP.

Step 6.2. Compute tmax = max {t € (0,1] : 2* +tQ(a*)d" € Q}. If for (tmaxd®) > f,x(0), de-
fine w311 = o + 2% aQ(2*)d*, op11 = 0 and STOP.

Step 6.3. Using at most m oracle calls, find 2**! € 9F(z¥) such that f(z**1) < fur (tmaxd®),
and set op41 = 2.

In Step 1 of Algorithm 5, the variable Flag characterizes the quality of the search direction d’f
obtained via MINRES. As it will be established in Lemmas 2.9, 2.12 and 2.13, when Flag = 0, we
can obtain a functional decrease of O(e%/2) along the search direction d¥, which is then chosen as the
search direction d*. On the other hand, when Flag = 1, the descent properties of d'f are less clear.
In this case, we modify d¥ by the same procedure used in Algorithm 2, which produces a direction d*
along which a functional decrease of O(e?) is guaranteed (Lemma 2.9). In Step 2, we check whether
a unity step along d”* results in a point that remains within the face F(z*). If it does, we proceed to
Step 3, where a suitable stepsize is determined using an Armijo line-search starting from ag = 1. If
not, we attempt to find a point on the boundary of the face that results in at least a simple decrease
in the objective function, in which case we set o;11 = 2. If this fails, we move to Step 3 and begin
the Armijo line-search with the stepsize ay = tmax, corresponding to the point along d* that lies on
the boundary of F(z*). If the Armijo condition is not satisfied with the stepsize a, we define z**!
as the resulting point and set o141 = Flag, stopping at Step 4. In contrast, if the Armijo condition
is satisfied with «g, we attempt to obtain a larger functional decrease using extrapolationﬂ The
result is a point z**! that either:

e belongs to the boundary of the current face and produces at least a simple decrease in the
objective function, where we set o341 = 2 (Steps 5 and 6.3); or

LA precise way to implement the extrapolation procedure is described in Section 3.

13



e produces a functional decrease of O(¢%/2), in which case we set oj41 = 0 (Steps 6.1 and 6.2).

Finally, it is worth noticing that when Q@ = R™ and f(-) is p-strongly convex, Algorithm 5 with
Nk = n = p essentially reduces to Algorithm 4 in [36], as we will have Flag = 0 and Steps 2.2, 2.3,
5, 6.2, and 6.3 will be unnecessary.

Let us now present the Cubic Regularization Method for bound-constrained minimization pro-
posed in [§]. For that, given x € R", we define T5(z, -) : R® — R by

Ty(a, ) = (VI (@), ) + 5 (V2 ()5, ).

Algorithm 6. (z**!, M;.,,) = CubicRegularization (l‘k, My, M,a,'y)
Inputs: 2* € Q, and constants M, > M > 0, a,~ > 0.
Step 1. Set £ := 0.

Step 2. Compute an approximate solution s of the subproblem

mingern  To(x,s) + (2°My)]|s|?,

s.t. oF+s5eQ,

such that

Ty(a®, s") + (2°My)|[s°IP < 0
and

Vo [Ttz = o) + a0 e = o) < st
r=xk+st

Step 3. If

F@®) = f@* + %) > alls'|?, (48)

set £, = £, and go to Step 4. Otherwise, set £ := £+ 1 and go to Step 2.
Step 4. Define zFt! = 2F + s% and My +1 = max {24’“*1M;€, M}

In addition to Al and A2, in what follows we will consider the following assumption:
A3. V2f :R" = R" " is Lp-Lipschitz continuous.

We begin our analysis by examining the properties of Algorithm 5. The next two lemmas provide
positive lower bounds for stepsizes that do not satisfy the Armijo condition.

Lemma 2.7. Suppose that A1 and A3 hold and let the pair (¥, 0}) be generated by Algorithm 4 such
that o, = 0 and |VLf(2®)|| > 0|Vaf(z®)||. In addition, suppose that Df,,, = ‘SOL’ and Flag = 0.

ype
Given a € (0,1], if

for(ad®) > f,1(0) + pa(V f,x(0),d"), (49)
then
3(1—2p)n 2(1—p)n
a > max{ Lald] I, } . (50)
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Proof. Since o = 0 and ||[VLf(2%)|| > 0||Vaf(z¥)]|, it follows from Step 2 of Algorithm 4 that
Algorithm 5 is called. Then, as ijype = ‘SOL’ and Flag = 0, it follows from Step 2.1 of Algorithm 5
and definition that d* = d} = s*. Consequently, by , Flag = 0 and (40)), we have

(Vfr(0),d%) + (V2 [ (0)d", d¥) <0, (51)

and
(V2 (0)d", d) > myel|d¥||? > || d¥|. (52)

It follows from A3, , , , and that
for(ad®) = f(a" + aQ(a")d")
2
< M) + oV, QM) + S (T QM QM) + E ¥ Q)P

= 1)+ 0lQEIT ). ) + QN TV QU )+ ELad

2
L
= £ (0) + V£ (0),d) + T (V2L (0)dF, d¥) + o
L
< Lo (0) + a(VE(0),d) + SV L (00", d) + <o (53)
Now, combining , and , we get

(1= p)a(V2 [ (0)d*, d*)

IN

(1= p)a (~(V £ (0),")
pOé<fok (0)7 dk> - Oé<szk (0)7 dk)
f:ck (adk) - f:ck (O) - OZ<fok (0)7 dk>

«a L
3 (V2 (0)d*,d¥) + Lo ¥

IN A

Thus,
1 L
<2 - p) o2 (00, ) < Z a7t

and so, by ,

. (54)
Ly ||d¥| [|d*||? Ly ||d¥|

On the other hand, by Al and , we have
for(ad®) = f@* + aQ(a")d")
< G0+ (VIR QUM + a7 |Qat)a P

. \/3(1—2@ (V2 £ (0", ) \/3(1—2p)77

L
= f@") + Q@MY f(z*), d") + 79012||dk||2
L
= [or(0) + &V f(0), d%) + ZFa?|ld"| . (55)
Combining (55)) and (49), we obtain

p0 (Y £ (0).d) < (£, (0),d) + 0%,
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which together with and gives

2(1 - V f,x(0), d* 2(1 - 2f e (0)dk, d*) _ 2(1—
o> 228 (LTLOEY) 20 D) (PLO®S
Ly [ld* | Ly [ld* | Ly
Finally, from and we see that is true. O
Lemma 2.8. Suppose that A1 and A3 hold and let the pair (¥, 0}) be generated by Algorithm 4 such
that o), = 0 and ||VLf(2®)|| > 0||Vaf(2®)||. In addition, suppose that Dlzype = ‘NPC’ and Flag = 0.
Given a € (0,1], if
then
6(1—p) 2(1-p)
a > max , . 58
{ Laldl L, %)

Proof. Since o = 0 and ||[VLf(2%)|| > 0||Vaf(z¥)|], it follows from Step 2 of Algorithm 4 that
Algorithm 5 is called. Then, as ijype = ‘NPC’ and Flag = 0, it follows from Step 2.1 of Algorithm 5

and definition that d* = d]f = r*. Consequently, by and we have

(Vf,(0),d*) = || d"||? (59)
and
(V2 £ (0)d*, d¥) < 0. (60)
It follows from A3, (2), (3) and that
furlad®) = f(@* +aQ(")d") (61)
< fa)+ (V) Q) + & (TR EH)QER Q) + Lot Q)
= @)+ alQEH TS ). ) + S QYR )QU ) ) + Eat
= @)+ (VL (0. + S (T2 O, ) +
< L0+ AV e (0), d) + a3t . (62)

6
Combining and , it follows that

P09 (), %) < (¥ £u(0), %) + 2ol P

Thus, by ,
2 61— p) (={V/1(0),d") _ 6(1-p)

Ly||d*|?3 ~ Lylla*|”
which implies that
6(1—p)
a> | = 63
Ll (03
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On the other hand, by A1, () and (@) we also have
for(ad®) = f(a* + aQ(aF)d")
< T + oY), QUN)d) + K02 Q) P
= J(aN) +al@ETV (), d4) + Lol
= 1)+ (VA (0),d) + a7 (64)

Then, combining and , it follows that

A

PO £ (0), &) < a{V £,0(0), d) + 2o 4|2

Therefore, by , we get

21— p)(=(V £ (0),d")) _ 2(1-p)
a > = = . (65)
L@ L,
In view of (63]) and (65)), we conclude that (58] is true. O

In view of Lemmas 2.7 and 2.8, we can now derive lower bounds for the functional decrease
f(xF) — f(2*+1) that occurs when ka is computed in Step 4 of Algorithm 5.

Lemma 2.9. Suppose that A1 and A3 hold. Then, whenever x*T' is computed at Step 4 of Algo-
rithm 5, we have

o-0) ()" | p(ah) 2, if Flag =1,
3/2 .
Fa) = ) > 4 e ()7 22V, if Flag=0 and Dy, = “SOL°,  (66)
@ 3/2 in IVLf ()32, if Flag=0 and D’,fype = ‘NPC’.

2
n

Moreover, the number of evaluations of f(-) required to guarantee the fulfilment of (@) 1s bounded
from above by
[ —p)n (1-pla
1
082 (mln{ 2Ly 7 2Lgaf

Proof. Since z**! is computed by Step 4 of Algorithm 5, it follows that ¢;, > 0, and so
Fur((0.5)% Lagd®) > f..(0) + p(0.5)*Lag(V f,.(0), d¥). (67)

Let us analyse separately the possible cases.

Case 1: Flag = 1.
By Step 1 of Algorithm 5, d* is defined by -. Consequently, by Lemma 2.1 we have

1d¥| < a1]|[V £ (0)]|  and  (V f,.(0),d") < —as||V £, (0)]%. (68)
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Then, by Al, Lemma 2.2 also applies to d*. In particular, it follows from that

2(1 = pag
Lgai

Now, combining , , the second inequality in , and , we obtain
F@®) = f@ ) = £(0) = £ ((0.5) % apd®)

p(0.5) %0 (—(V £,(0),d"))

£05) apas [V £, (0)]

(1—p) (a2’ 2
=2 () vt

p(L—=p) (a2\* Or 40k
2 () vhrale

(0.5)&“_1010 >

AVARN V]

Y
)

v

that is, holds in this case.
Case 2: Flag =0 and D’;’ype = ‘SOL’.
In this case, it follows from and Lemma 2.7 that

- 3(1=2p)n 2(1—p)n
0.5)% Loy > max , .
(08 e { Lald| I,

In addition, by , —, and n > 7, we also have
(Vf(0),d") + (V2 f (0)d*, d¥) <0,
(V21,5 (0}, d¥) > ||,
(V2 for (0)rF, %) = %,

and
V2 £ ()% || < | V2 £ (0) ¥

Combining , , and , it follows that

F@®) = f@*N) = F(0) = for((0.5)%agd")
p(0.5)% a0 (~( £,(0),d"))
£05)% ag(V2£4 (0)d", d¥)

np [3(1—2p)n
> [ 1
2 Ly ||d*||

I N A e
2o (0), Ry Y a0 < e '

v

v

On the other hand, by we have

k||2

k
I * =

18

(69)

(70)



Then, dividing both sides by ||7*|| and using and Al we get

V2 £ (0 rk
I < ”mf)” < V21 ()] < V2L ()] < Lolld¥ ]l

Thus,

IVFr (O < 1V Far(0) + V2o (0)s™ || + V2 £ (0)s"|

= [+ 192 fo (0)d"|
< 2Lg|ld".

Combining and , it follows that

K k1 np [3(1=2p)n ||V f,:(0)]*>
f(@®) = f@a™*h) > 9 Ly ||dF| (2L,)3/2

3/2
p (N 3(L=20) o1 ey i3/2
> 2 (L S
= 95/2 <Lg> Ly IVaf(@@®)|*~,

that is, holds in this case.
Case 3: Flag = 0 and nype = ‘NPC’.

In this case, it follows from and Lemma 2.8 that

(0.5)% Loy > max{ 61 —p) 201=p) } .

Lylld¥||” Ly
In addition, by and we have

(Vfr(0),d") = —[|d"|1?,

and

V2 £ (0)d¥|| > nil| V2 £ (0)s™ || = 1 V2 £,k (0)s"].
Combining , , and , it follows that

F@®) = fETY = f(0) = £ ((0.5) % apd®)
(0-5)% (—(V 12 (0),d7)
= £(0.5)"% ao|d"|]?

> / Hdk |3/2

v
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On the other hand, by and Al, we have

IV L) < [V £x(0) + ¥ + [|7¥]
= IV £ (0) = (V[ (0) + V2 £ (0)s) || + [|7* |
V2 £, (0)s* | + |1d¥||
V2f . (0)dF

+ "]

- [(5) e

Combining and , it follows that

IV2 £ O 11"
U

) ]

+1
p 6(1—p) o1 MOVEE
2[<Lg>+1]3/2\/ I Vo f(@)|l

o

v

that is, also holds in this case.

To conclude, notice that the number of evaluations of f(-) performed at Step 3 of Algorithm 5 is
equal to ¢ + 1. Since oy € (0, 1], it follows from , and that

A (L=p) (1-plaz (1-p)
O+l £, +1 ( p)n p)az
(0.5) > (0.5)% " ap > mln{ oL, ' 2L,a 2L, |

Then, taking the logarithm on both sides and using the fact that n € (0, 1], we obtain
[ —p)n (1—play

1 .

o8z <II1111 { 2Ly 7 2Lga3

The lemma below provides an upper bound on the maximum stepsize that satisfies the Armijo
condition when the direction d” is certified with Flag = 0. This result will be used in the sequel to
derive an upper bound on the number of function evaluations required in the extrapolation procedure
in Step 6 of Algorithm 5.

I +1<

O]

Lemma 2.10. Suppose that A1-A3 hold and let =¥ be an iterate generated by Algorithm 4 such that
IVEf(@R)|| > 0| Vaf(a®)|. Suppose that d* is computed by Algorithm 5 and that Flag = 0. Given
a >0, if |Vaf(zh)| > e and

For(ad®) < £ (0) + pa(V £,x(0), d"), (82)
then
maxd 2 (22) [(2) 117V (7@ = fion
L) o »

20



Proof. If D’Eype = ‘S0L’, then it follows from , , and that

F@) = fiow = fa(0) = far(ad®) = pa (~(V£,(0),d"))
pa (V2 (0)d*, %) > pan|d* |

PN 2 _ P (N I kN2
Sl O =5 (1) alThse)]

Pl 2 kyj2
5 (1) o Ivar)]

P92<77> 2
> = (L) Ea.
2 \L,

2 (%) (£@) = fiow)
a <
which means that holds in this case.
Now, suppose that nype = ‘NPC’. Then, by , and we have

pa 2
VO]
(%)
= P IVRIENIP 2 —?Vaf ()

() +1] (%) +1]

pb* 2

AVARNAYS

v

Y

Thus,

6_2,

f(xo)_flow Z PaHdkHZZ

> ﬁe .
(%) +1]
Therefore,
2
[(22) +1] (F°) = fiow)
a < 6_2,
pt?
which means that also holds in this case. O

The next lemma gives an upper bound of O (|logsy(€)|) for the number of evaluations of f(-)
required by the extrapolation procedure in Step 6 of Algorithm 5.

Lemma 2.11. Suppose that assumptions A1-A3 hold, and that z**1 is computed in Step 6 of Al-
gorithm 5. Then, the number of evaluations of f(-) required to guarantee the fulfilment of 18

bounded from above by
wa{ (%) [(%) + 1] 06~ fiow)

1 + log, pE e . (84)
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Proof. The execution of Step 6 of Algorithm 5 implies that f,x(cgd®) < f,x(0). Therefore, ag = 1.
Indeed, if we had ag = tmax < 1, then we would have had fi(tmaxd®) < f,x(0), and the method
would have stopped at Step 2.3, which was not the case. Notice that the number of evaluations
of f(-) required to fulfill is equal to j, + 1. Since zF*! is computed by Algorithm 5, we
must have had |[VLf(z%)| > 0||Vaf(2¥)|, and ||Vaf(2*)|| > e. Moreover, by design, we also have
f(zF) < f(2°). Then, the definition of ji, ag = 1, and Lemma imply that

2
wa{ (%) [(%) +1)} 06 - i)
-2
2 € “.
and so, taking the logarithm, we conclude that j;+1 is bounded from above by the number in (84)). [

20k = 2y < (85)

The following two lemmas establish lower bounds of O (|| V5 f(2*)||3/2) for the functional decrease
f(zF) — f(2*+1) obtained when x**! is computed in Steps 6.1 and 6.2 of Algorithm 5.

Lemma 2.12. Suppose that A1 and A3 hold. Then, whenever x*+1 is computed in Step 6.1 of

Algorithm 5, we have
/3(1—2p) . ¢ )
25/2 ( g) (LHp ||vl |3/2 lfDJnype = SUL )

f@*) = ) > (86)

6(1 .
Lg 3/2 LHp ”v ’3/2 ZfDIZype = ‘NPC”.

2

Proof. As z**t! is computed in Step 6.1, this means that [Flag = 0|; otherwise, the Algorithm 5

would have stopped at Step 5. Since ¥ + 2/++tlagQ(2%)d* € Q, it follows from the definition of ji,
that

Foe (25 agd®) > £ (0) + p27 Lo (V f,1(0), d¥). (87)
If nype = ‘SOL’ |, then it follows from Lemma 2.7 that
' 3(1—2p)n
20kt lag >
"7V Ll

Thus, by the same reasoning used in the proof of Lemma 2.9 (Case 2), we see that

32 [3(1-2
1) = 1@ > o (1) LI P

On the other hand, if ijype

= ‘NPC’ |, then it follows from and Lemma 2.8 that

6(1 —p)
Ly ||dk||

Thus, as in the proof of Lemma 2.9 (Case 3), it follows that

fl@®) = f@*t) > 3/2,/ P)L ()2,
2 + 1

22

2jk+1a0 >




Lemma 2.13. Suppose that Al and A3 hold. Then, whenever x*t1 is computed in Step 6.2 of
Algorithm 5, we have

3(1—2p) _ cemr s

w7 (7) U200\ L (k) |P/2, if Dy, = “SOL,
f@®) = @t = (s8)

6(1 , —

] ﬁ T SO |VL F(@M)P/2,  if Diype = “NPC.

n
Proof. As z**1 is computed in Step 6.2, this means that and

fwk (tmaxdk) > fIk (O) > ka (O) + ptmax<vfzk (O)a dk> (89)

Since
¥ + 20pQ(z")d* € @ and  2F + 29+ oy Q(2F)d* ¢ Q,

we also have 27-+1 g > tmax. Then, it follows from and Lemmas 2.7 and 2.8 that

3(1—2p) k
Lamap D

/ 6(1—p) koo _
W, lf Dtype = ‘NPC”.

Thus, by following the same reasoning in the proof of Lemma 2.9 (Cases 2 and 3), we conclude
that is true. O

type — ‘soL’,

2jk Qg > tmax >

As shown in the lemma below, if ¢! is computed by Algorithm 6, the objective function
decreases by at least a constant multiple of ||V f(z*)||3/2.

Lemma 2.14. Suppose that A1 and A3 hold. Then, whenever x*t1 is computed by Algorithm 6, we
have

IVafGD
k)= ) 2 a (AT DL (90)

Moreover, the number of evaluations of f(-) required to guarantee the fulfillment of @ s bounded

from above by
Ly+«
141 1 . 1
+ log, <max{ T }) (91)

Proof. Inequality follows from Lemma 3.4 in [8]. Regarding the upper bound , note that
Algorithm 6 requires ¢, + 1 evaluations of f(-). Thus, let us first show that

2% My, < max {My,2(Ly + a)}, (92)

where, by design, ¢ is the smallest nonnegative integer for which is satisfied. If ¢ = 0, then
2tk My, = M), and then clearly holds. Suppose that £, > 0. By Lemma 3.2 in [8], (48) is satisfied
whenever 2¢M;, > Ly + a. This means that we must have

28’“71Mk < Ly + «,
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because, otherwise, would had been satisfied by some £ with 0 < ¢ < £ — 1, contradicting the
definition of ¢;,. Therefore,

2k M = 2 (2‘%*1Mk) < 2(Ly + a) < max {M,2(Ly +a)},

concluding the proof of . Finally, from and M > M, it follows that ¢, + 1 is bounded from
above by the number in . O

Let {xk}k>0 be generated by Algorithm 4, and denote by T'(€) the first hitting time to the set of
e-approximate stationary points of f(-) with respect to Q, as in . Given j € {0,...,T(e) — 1},
consider the following sets:

SV = {ke{0,....5} : ok =0},
SP = {ke{0,....j} : o1 =1},
Uj = {kG{O,...,j} D Ok+1 :2}.

The next theorem establishes that T'(¢) < O (ne_3/2), i.e., Algorithm 4 needs no more than O (ne=3/2)
iterations to find e-approximate stationary points.

Theorem 2.15. Suppose that A1-A8 hold, and let {3:’“}253 be generated by Algorithm 4. Then

0y _
T(e) < (n+1)+2(n+1) <M> 32, (93)
K2
where
. po3/? 6(1—p) p0%2 (1 \** [3(1-2p) «
K9 = Iin 3/2 " o572 \ T, ’ 3/2
2 % + 1] Lm 2 Ly Lu Ly +6(Ly+a)+1]
(94)

Proof. If T'(e) < 1, then is true. Thus, suppose that T'(¢) > 2 and let k£ € {0,...,T(e) — 1}. By

we have
IVaf(@®)] > e (95)

If k e S}l()e)il, then oy, = 0. This means that 2**! was computed either by Algorithm 6, at Step 4
of Algorithm 5 with Flag = 0, or at Steps 6.1 or 6.2 of Algorithm 5. In either case, Lemmas 2.9,
2.12 and 2.13 together with imply that

F(@*) = @) = e, (96)
where k9 is defined in . Moreover, we have
fEYH) < f@h, £=0,...,T() 1. (97)
Thus, combining A2, and , it follows that

F@) = fiow 2 f@) = F@T) 2 30 k) - fa) 2 S | e,

1)
REST L),
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and so

K

‘Sél(l)_l‘ < <f(x0) ; flow) 6_3/2. (98)

On the other hand, if k& € 8(2()) then o341 = 1. Consequently, by Step 2 of Algorithm 4, z*+2 is

computed by Algorithm 6, and so o419 = 0. This means that every iteration in S:(FQ()G)_Q is followed

by one iteration in S ( ()) . Thus

850 o] < |8l
and so
‘S( ‘<1+‘8 . 1‘ (99)

Finally, if k& € Up()—1, then xF+1 is computed at Step 2.2, Step 2.3, or Step 6.3 of Algorithm 5.
This means that z**! € 0F(2*) and so |Z(z**1)| < |Z(2*)| — 1. Therefore, there can be at most
n consecutive iterations of Algorithm 4 with k& € Up)—;. In the worst case, each iteration in

8;1()6) U 87(,2()6)71 would be followed by n consecutive iterations in Up()_;. Then, we have

Uro | < nlskly v | =n(|si ]+ |5 ]) - (100)

Then, combining , and ((100)), we conclude that

T(e)—

T(0 = S0 [+ s8] + o
< ’S )1‘+1+‘S ‘+n<‘81) 1‘+‘5§2()5)_1D.
< (n+1)+2n+1) }STI& |
< (m+1)+2n+1) (W) a2

O]

Remark 2.16. In view of Lemmas 2.9 and 2.11, the computation of x*+1

no more than

by Algorithm 5 requires

m + 5 + max

log, (min{(lfp)n (1—p)a2}>‘7 o max{(%),[(%)Hf}(f(ﬁ)ffm) .

9L, ' 2Lgal 002 ‘

evaluations of f(-). On the other hand, by Lemma 2.14, the computation of x**1 by Algorithm 6

requires no more than
L+«
1+1 1
+ log, <max{ L })

evaluations of f(-). Additionally, each execution of Algorithm & or Algorithm 6 requires the evalu-
ation of one gradient and one Hessian of f(-). In summary, each iteration of Algorithm j requires
at most O (|logy(€)|) calls to the oracle. Therefore, it follows from Theorem 2.15 that Algorithm 5
takes no more than O (n|logy(e)|e=3/2) calls to the oracle to find an x* such that |V f(z*)|| < e.
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3 Numerical experiments

In this section, we present numerical results to evaluate the performance of the introduced algorithms.
Hereafter, we will call Algorithm P the algorithm comprising Algorithms 1, 2 and 3 and Algorithm T
the algorithm comprising Algorithms 4, 5 and 6. The letter P indicates the practical appeal of the
first one, with worst-case complexity O(ne~2), while the letter T indicates the theoretical concern
behind the development of the second algorithm, with worst-case complexity O(n|logy(e)|e%/?). For
both algorithms, we used as stop criterion |[Vof(2)|leo < € = 1078, Other stopping criteria related
to maximum iterations and lack of progress exist, which are identical in the two algorithms. We also
consider a CPU time limit of 10 minutes for each pair method/problem. In the following we describe
some implementation details.

We implemented Algorithms P and T and MINRES in Fortran 90. Codes are available for down-
load at http://www.ime.usp.br/~egbirgin/. The two methods were evaluated using all uncon-
strained and bound-constrained problems from the most updated version of the CUTest collection [27]
(version 2.4.0). There are 313 unconstrained problems and 162 bound-constrained problems in this
release, for a total of 475 problems. We considered all the problems with their default dimension and
the given starting point z°. The smallest problem has 1 variable, the largest problem has 192,627
variables, and the quartiles of the number of variables are Q1 = 4, Q2 = 50, and Q3 = 5,000. All
experiments were performed on a computer with a 5.2 GHz Intel Core 19-12900K and 5.1 GHz Intel
Core 19-12900K processor and 9 128 GB of 32000 MHz DDR4 RAM, running Ubuntu 23.04. The
codes were compiled by the GNU Fortran compiler GCC (version 12.3.0) with the -O3 optimization
directive enabled.

3.1 Implementation details

3.1.1 When MINRES encounters a non-positive curvature direction

When MINRES is used in Step 1 of Algorithms 2 and 5, it returns an approximate solution s*

plus D’t’“ype = ‘NPC’ or D]fype = ‘SOL’. The second case means that the Newtonian linear system
has been solved with the desired tolerance (which will be detailed later). If this happens, d’f in
Algorithms 2 and 5 gets the computed solution s®. On the other hand, D’gype = ‘NPC’ means
that MINRES found a non-positive curvature direction while solving the linear system. If this
happened when being called by Algorithm 5, d’f gets the residue of the linear system, i.e. d’f =
—(V2f,x(0)s* + V£,%(0)). In the implementation of Algorithm 2, we evaluated two possibilities for
the case where MINRES returns nype = ‘NPC’. The first is the one used in Algorithm 5, which is
to consider df = —(V2f,x(0)s* + V£,.x(0)). The second is to consider d¥ = s* if s¥ # 0, i.e. the
approximate solution itself, and d¥ = —V f,x(0) if s* = 0. (Note that s* = 0 only when MINRES
detects a non-positive curvature direction in its first iteration). Both options will be evaluated

numerically below.

3.1.2 Tolerance in solving Newtonian systems using MINRES

When MINRES is used in Step 1 of Algorithm 5, the required accuracy is dynamically determined
by nr > 1 = €, updated according to , where its initial value 7y and its update factor 7 € (0, 1)
are given parameters. In Algorithm 2, we use a dynamic tolerance €)' borrowed from [6], p.113]. For

kE =1 the tolerance is €} = €'\, where €/ > €}, = € is a given parameter, and the idea is that in

ini
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the last iteration the tolerance will be €y ",. To do this, at iteration k£ > 1 we use a tolerance whose

value varies linearly with log;o(||Vaf(z¥)])), i.e.,

AR — /1010810 (Ve f(@h)[?)+b, (101)

where R
1Ogll)(eemd/eini )

“ 7 Togyo(e/[Va f (z0)])

MR

and b= 210%10(6?5111{) - aloglO(HVQf(xO)HQ). (102)

3.1.3 Optional extrapolations

Algorithm P (Steps 2.2, 2.3, and 4 of Algorithm 2) and Algorithm T (Steps 2.2, 2.3, 5, and 6.3 of
Algorithm 5) attempt to improve the current point by extrapolation. These attempts are by definition
of limited effort, so they do not affect the order of the complexity of the algorithms. For this reason,
their practical influence on the performance of the methods must be determined numerically. The
extrapolation consists of

(1) set ug = 1;
(ii) while ug, < m and f(Po(z* + 2% aoQ(2*)d*)) < f(Po(z* + 2% 1apQ(z*)d")) set up = up + 1;

(iii) define z*+! = Pq(2F 4 2%~ 1aoQ(z%)d").

3.1.4 Backtracking, Barzilai-Borwein stepsize, and other details

In Step 3 of Algorithm 2, Step 2 of Algorithm 3 and Step 3 of Algorithm 5, in practice, we use
quadratic interpolation with safeguards to find a step t; > 0 such that the corresponding sufficient
descent condition holds. The description of the algorithms refers to a step that is a power of 2 just
to simplify the description. This change has no significance on the theoretical results.

In Algorithm 3, for k¥ > 1 and whenever (¥ — 2*")T(V f,4(0) — V f,x-1(0)) > 0, we compute

ko k—INT( .k _ k-1
P8 = max {x\i‘fﬁ’l, min { @ —(aa::k—l)i(V}xk(g)) — foxk)_1 )’ Als’rrl)gx}} .

In the other cases, \}"® € [X0%  AE] is arbitrary and we considered

k
AP = max {/\Spg min { max{l, Jl27]|oo} AP }} .

min? IVaf@*)le =™

In Algorithm 6, the approximate solution to the subproblem in Step 2 is calculated using the
projected gradient method [26], 32]. In addition, the representation of the regularization parameter
with the term 2¢M in the iteration ¢, where M > 0 is a parameter of Algorithm 6, is only a
simplification for the presentation of the algorithm. In practice, the regularization parameter is
represented by w. When ¢ = 0, we consider w = 0. In Step 3, if sufficient decent is not obtained,
together with the operation ¢ := ¢+ 1, we update w by making w := max{wmin, (w}, where wpyin > 0
and ¢ > 1 are parameters of the algorithm. In practice, we consider wpi, = 107% and ¢ = 10, which
are common values in regularized methods.
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3.2 Evaluation of Algorithm P and Algorithm T and their alternatives

This section compares different variants of Algorithms P and T, as well as the best variant of each
algorithm. When comparing two algorithms, we first compare their robustness. In this study, we
examine both unconstrained and bound-constrained problems. The algorithms we consider produce
feasible iterates. Thus, we associate the robustness of a method with the quality of its solutions, i.e.,
the value of the objective function of the solution it delivers. For a given problem, let f; and fy be
the functional value found by methods M; and Ms. Given a tolerance fi, > 0, we say that f; is
equivalent to the best value found if

fi < fmin + ftol max{l, ‘fmin|}

where foin = {f1, f2}, or if fi < —10712. If £; is equivalent to the best value found, we say that the
method M; was successful. Otherwise, we say that it failed. The greater the number of successes of
a method, the greater its robustness. We only analyze the efficiency of methods in problems where
the solutions computed by both methods are considered equivalent. We use CPU time as a measure
of efficiency and present the comparison of efficiency in the form of performance profiles [21].

Given fio1 > 0, let p be the number of problems in which methods M, ..., M, being compared
found equivalent solutions and let ¢;; be the CPU time of method M; when applied to problem j. In
a performance profile, the curve I';(7) associated with method M; is given by

_#li el pd [ty S Tminey, o{fs} 1)
p

Li(7)

for 7 > 1. The value of I';(1) corresponds to the proportion of problems in which method M; was
the fastest (including ties). Since only problems in which the methods find equivalent solutions are
considered, for all i there exists a finite value of 7 such that I';(7) = 1. Another option would be
to include problems in which the methods fail, considering t;; = 400 if the method M; failed on
problem j. In that case, for each i, there exists a finite 7 such that I';(7) is constant for all 7 > 7 and
the value of T';(7) can be understood as a measure of robustness of the method M;. In this work, we
evaluate the robustness first and restrict the performance profiles to evaluate the efficiency only.

3.2.1 Evaluation of alternatives in Algorithm P

In Algorithm P, we considered the standard values § = 0.1, p = 1074, a; = 108, ay = 10716,
APE — 10716, and A\ibex = 106 from the literature. See, for example, [6]. For the parameter m that
limits the effort of the optional extrapolations, we considered m € {0, 5,10, 15,20}. The case m =0
corresponds to no optional extrapolations at all. For the parameter €}y that determines the tolerance
for the solution of Newtonian linear systems, we considered e} € {107%,1072,1073,107%,¢}. Note
that when € = ), = € all Newtonian linear systems are solved to full precision.

The five options for values of m plus the five options for € and the two options for the choice
of direction d’f when MINRES detects a non-positive curvature direction (see Section ) leave
a total of fifty parameter combinations for Algorithm P. The best combination of parameters was
found by employing irace [37]. The irace package implements the Iterated Race method for the
automatic tuning of optimization algorithms, given a set of instances of an optimization problem.
We considered 20% of the 475 instances as a training set, selecting one in every five when ordered from
smallest to largest by the number of variables. When choosing the best combination of parameters,

we ignored the final value of the objective function and considered CPU time as a performance
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metric, considering a time of 10 minutes if the stopping criterion of a small projected continuous
gradient was not reached. The combination that was identified as the best by irace was m = 20,
Mt = 0.1 and taking df as the approximate solution s* (instead of the residue 7¥) when MINRES
detectes a non-positive curvature direction. The values of m and € coincide with values reported in
the literature for similar situations [6]. The choice of d¥ coincides with the results of the preliminary
experiments carried out to define Algorithm P.

It is important to discuss the sensitivity of the method in relation to its parameter and algorithmic
choice options. When comparing the m = 0 and m = 20 options, we see that the latter finds values
of f smaller than —10'? (suggesting that the objective function may be unbounded from below) in
three more problems (eight versus eleven) and finds better function values in twenty-nine problems
when considering tolerance f;o) = 0.1. The variant with m = 0 finds values of f equivalent to the best
one in 441 problems, while the variant with m = 20 does the same in 470 problems. Of the problems
in which the two variants found equivalent values of f with tolerance fi, = 0.1, the variant with
m = 0 is faster in 49% of the problems, while the variant with m = 20 is faster in 56%. In conclusion,
extrapolations increase the effectiveness of the method but have little impact on its average efficiency.
Now, examine the options for choosing a search direction when MINRES identifies a non-positive
curvature direction. The options are to use the approximate solution found by MINRES as the
search direction or to use the residue as the search direction. Both options identify eleven values of f
that are smaller than —10'2. However, the first option identifies 469 values of f that are considered
equivalent to the best, while the second option identifies 440. Considering problems in which both
options identify equivalent function values, the first option is faster in 58%, while the second option
is faster 45%. In summary, choosing the approximate solution of the linear system as the search
direction is a more robust and efficient option. This practical observation contrasts with the fact
that the second option guarantees a functional decrease of order (9(63/ 2). Regarding the tolerance
required to solve linear Newtonian systems, we highlight the difference between the more relaxed

option, € = 0.1, and the more stringent option, €}if = el = € = 1078, Surprisingly, the two

mi1
options produced very similar results. The two variants identified eleven cases in which f appears
to be unbounded below and found 470 and 464 better function values, respectively. Considering the
cases in which they identified equivalent function values, the former variant was faster in 54% of the
cases, while the latter variant was faster in 51% of the cases. In short, the two variants were very
similar, with a slight advantage in robustness and efficiency for the variant in which the Newtonian

systems are solved with increasing accuracy.

3.2.2 Evaluation of alternatives in Algorithm T

In Algorithm T we considered # = 0.1, n = 1078, p = 107%, o = 107%, and v = 1. For the
parameter m that limits the effort of the optional extrapolations, we considered m € {0, 5, 10, 15, 20}.
For the parameters 7y and 7 that determine the tolerance for the solution of Newtonian linear
systems, we considered 19 € {1071,1072,1073, 104,17} and 7 € {0.1,0.3,0.5,0.7,0.9}. We found the
best combination of parameters for Algorithm T by using irace the same way we used to calibrate
the parameters of Algorithm P. The best configuration returned by irace was m = 20, g = 7, and
7 =0.9. Note that since 179 = 17 means that the Newtonian linear systems are solved to full precision
by MINRES, the value of 7 has no effect in Algorithm T.

The influence of the extrapolations in Algorithm T was very similar to that already reported for
Algorithm P. On the other hand, the tolerance required in the solution of linear Newtonian systems
deserves special mention. Here, we consider the variants with 79 = 0.1 and 9y = n = ¢ = 1078,
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It is worth noting that when the Newton direction is computed with higher precision, there is a
higher chance of the search direction producing a functional descent 0(63/ 2).  Conversely, when
the Newton direction is computed with lower precision, there is a higher chance that the search
direction will guarantee only a functional descent of order O(e?). Consequently, Algorithm T is
forced to select a regularized Newton iteration as the next iteration (Algorithm 6). These iterations
are computationally expensive because they require approximately solving a regularized model to
compute the search direction. As a consequence, on the one hand, the variant with ny = 0.1 proved
to be more robust, finding 464 better function values against 426 of the other variant. On the other
hand, in the cases where the two variants found function values considered equivalent, the first one
was faster in 30% of the cases while the second one was faster in 70% of the cases. In other words, the
variant that solves linear Newtonian systems in a relaxed way makes more use of Newton iterations
with regularization. This method is considered more robust, though less efficient. Because efficiency
is prioritized when choosing parameters with irace, the variant with ng = n was selected.

3.2.3 Algorithm P versus Algorithm T

We end this section by comparing Algorithms P and T. Considering the 475 problems, Algorithms P
and T stopped at the CPU time limit in 26 and 38 problems, found a function value less than or
equal to —10'2 in 11 and 13 problems, and found a point with a gradient sup-norm less than or equal
to € in 400 and 338 problems, respectively. Regardless of this, considering all the 475 problems,
Table [1| shows the comparison of the function values found, and Figure [1| compares the efficiency of
Algorithms P and T in those problems where both found equivalent function values with fi, = 0.1.
The table shows that Algorithm P is substantially more robust than Algorithm T, since it finds a
significantly larger number of better solutions, regardless of the tolerance considered to determine
that functional values are equivalent. The figure shows that when both methods find equivalent
functional values, Algorithm P is substantially more efficient than Algorithm T.

ftol
01 102 1073 100* 10° 106 1007 10°%
Algorithm P 461 453 450 449 445 445 443 437
Algorithm T 389 375 365 357 354 354 351 349

Table 1: Number of solutions equivalent to the best solution found by Algorithms P and T, as a func-
tion of the tolerance fio; € {1071,1072,...,107%}, considering all the 475 unconstrained problems
and bound-constrained problems from the CUTest collection.

3.3 Comparision of Algorithm P and Gencan

In this section we compare Algorithm P with Gencan (included in Algencan 3.1.1 and freely available
at http://www.ime.usp.br/~tango/). Gencan is an active set method for bound-constrained min-
imization, introduced in [6]. Algencan [1l 2 [7, O], an augmented Lagrangian method for nonlinear
programming, uses Gencan to solve its subproblems. Gencan is an active set method whose general
framework is exactly the same as that described by Algorithm 1. That is, it uses exactly the same
criteria as Algorithm P to decide whether the next iteration should be within the current face or
whether the current face should be abandoned. If the current face should be abandoned, Gencan
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Figure 1: Performance profiles comparing the efficiency of Algorithms P and T on the 375 problems
where the two methods found equivalent objective function values with tolerance fi, = 0.1, taking
into account all the 475 unconstrained problems and bound-constrained problems from the CUTEst
collection.

also uses an SPG iteration as described in Algorithm 3. For iterations within a face, when matrix-
factorizations are not allowed, Gencan, like Algorithm P, uses truncated Newton with line search.
The difference is that Newtonian linear systems are solved with conjugate gradients. In conjugate
gradients, if Hessians are not available, the Hessian vector products are approximated by differences
of gradients. In the present work we are assuming that Hessians are available and, therefore, Gen-
can as well as Algorithms P and T use true Hessian vector products in conjugate gradients and
MINRES. Gencan’s truncated Newton inspired and shares with Algorithm 2 the way to calculate
the tolerance with which linear systems should be solved, what to do when a non-positive curvature
direction is detected, and how to decide whether to attempt extrapolations or not. That is, the only
relevant difference between Gencan and Algorithm P is that the former uses conjugate gradients and
the latter uses MINRES to solve Newtonian linear systems. It is important to mention that the
comparison presented in [4] ranked Gencan among the most efficient and robust methods for bound-
constrained minimization, in a comparison that included ASA-CG [28], Ipopt [44], Lancelot B [19],
L-BFGS-B [14], 45} 38], SPG [10} 111, 12| 13] and fmincon [15} [16].

We run Gencan with all its default parameters and the same stopping criterion already mentioned
for Algorithms P and T, ie., |[Vaf(z)|eo < € with € = 107®. Considering the 475 problems,
Algorithm P and Gencan stopped at the CPU time limit in 26 and 33 problems, found a function
value less than or equal to —10'2 in 11 and 12 problems, and found a point with a gradient sup-norm
less than or equal to € in 400 and 364 problems, respectively. Regardless of this, considering all the
475 problems, Table [2| shows the comparison of the function values found, and Figure [2| compares
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the efficiency of the two variants in those problems where both found equivalent function values with
ftol = 0.1. The table and the figure show that Algorithm P is slightly more robust and significantly
more efficient than Gencan. When we consider only the 313 unconstrained problems in the CUTEst
collection, the results are qualitatively equivalent to those shown in [36]. In that study, the Newton-
MR method, from which Algorithms P and T originated, was found to be more robust and efficient
than several variations of Newton’s method that use conjugate gradients to solve Newtonian linear
systems.

ftol
01 102 103 100* 10° 106 1007 10°%
Algorithm P 461 452 447 442 436 434 433 426
Gencan 448 446 438 432 429 425 424 418

Table 2: Number of solutions equivalent to the best solution found by Algorithm P and Gencan,
as a function of the tolerance fio; € {1071,1072,...,1078}, considering all the 475 unconstrained
problems and bound-constrained problems from the CUTest collection.
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Figure 2: Performance profiles comparing the efficiency of Algorithm P and Gencan on the 434
problems where the two methods found equivalent objective function values with tolerance fi, = 0.1,
taking into account all the 475 unconstrained problems and bound-constrained problems from the
CUTESst collection.
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4 Conclusion

Recent work has analyzed the practical and theoretical properties of the well-known MINRES method
for solving linear systems, particularly in the context of a truncated Newton method (Newton-MR)
for unconstrained minimization. In this paper, we extended the Newton-MR method in two distinct
ways. In one approach, we preserved the worst-case complexity of (9(6_3/ 2) exhibited by Newton-MR
for unconstrained minimization. In the other approach, inspired by Gencan and guided by numerical
evaluations of various alternatives, we developed an extension of Newton-MR for bound-constrained
minimization with worst-case complexity of O(e~2). Numerical experiments demonstrated that the
latter approach is more robust and efficient than the former, when considering both unconstrained
and bound-constrained problems from the CUTEst collection. A similar conclusion is reached when
only unconstrained problems are considered. On the one hand, it can be argued that worst-case
complexity does not always accurately reflect a method’s practical performance. On the other hand,
it is important to note that the method with lower complexity requires much stronger assumptions
than the method with higher complexity. These stronger assumptions are difficult to verify in
practice. The best of the two methods was also compared with Gencan, a method with similar
characteristics but that solves linear systems using conjugate gradients. The new method proved to
be more robust and efficient. As future work, it remains to be seen whether this advantage holds
when the method is used to solve subproblems in an augmented Lagrangian method. Another avenue
for future research would be to explore a different paradigm, such as nonlinear conjugate gradients,
to solve augmented Lagrangian subproblems.
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