
Active-set Newton-MR methods for nonconvex

optimization problems with bound constraints∗

Ernesto G. Birgin† Geovani N. Grapiglia‡ Diaulas S. Marcondes†

August 25th, 2025

Abstract

This paper presents active-set methods for minimizing nonconvex twice-continuously differ-
entiable functions subject to bound constraints. Within the faces of the feasible set, we employ
descent methods with Armijo line search, utilizing approximated Newton directions obtained
through the Minimum Residual (MINRES) method. To escape the faces, we investigate the use
of the Spectral Projected Gradient (SPG) method and a tailored variant of the Cubic Regular-
ization of Newton’s method for bound-constrained problems. We provide theoretical guarantees,
demonstrating that when the objective function has a Lipschitz continuous gradient, the SPG-
based method requires no more than O(nϵ−2) oracle calls to find ϵ-approximate stationary points,
where n is the problem dimension. Furthermore, if the objective function also has a Lipschitz
continuous Hessian, we show that the method based on cubic regularization requires no more
than O

(
n| log2(ϵ)|ϵ−3/2

)
oracle calls to achieve the same goal. We emphasize that, under certain

hypotheses, the method achieves O(ϵ3/2) descent within the faces without resorting to cubic regu-
larization. Numerical experiments are conducted to compare the proposed methods with existing
active-set methods, highlighting the potential benefits of using MINRES instead of the Conjugate
Gradient (CG) method for approximating Newton directions.

Keywords: Bound-constrained minimization, minimal residual method (MINRES), active-set
methods, complexity, numerical experiments.

1 Introduction

The optimization problem entails finding a solution that satisfies given constraints while minimizing
a specified objective function. This type of problem has far-reaching applications in various fields,
including psychology, medicine, economics, engineering, physics, and biology, to name a few. In this
work, we focus on cases where the functions that define the feasible region and the objective function
are continuous and differentiable. Among the methods developed to address such problems, aug-
mented Lagrangians deserve special attention. Of the existing implementations, Algencan [1, 5, 7] is

∗This work has been partially supported by the Brazilian agencies FAPESP (grants 2013/07375-0, 2022/05803-3,
2023/08706-1, and 2024/22384-0) and CNPq (grant 302073/2022-1).

†Institute of Mathematics and Statistics, University of São Paulo, Rua do Matão, 1010, Cidade Universitária,
05508-090, São Paulo, SP, Brazil (e-mail: egbirgin@ime.usp.br, diaulas@ime.usp.br).

‡Université Catholique de Louvain, ICTEAM/INMA, Avenue Georges Lemâıtre, 4-6/L4.05.01, B-1348, Louvain-la-
Neuve, Belgium (e-mail: geovani.grapiglia@uclouvain.be).

1

one of the most efficient and robust. It solves a sequence of bound-constrained problems using Gen-
can [4]. When Hessians are not available or available as an operator, Gencan computes approximate
Newtonian directions using conjugate gradients. Recent studies [12, 19, 20, 21] have highlighted the
theoretical properties and practical performance of Newtonian methods for unconstrained minimiza-
tion, which leverage the minimal residual method (MINRES) [24] to solve linear Newtonian systems.
Motivated by these results, and having in mind subproblems in augmented Lagrangian methods, in
this work, we propose Newton-MR methods for bound-constrained minimization.

The development of methods for minimization with bound constraints is a vibrant and dynamic
field. During the past decades, numerous methods have been devised; see, for example, [2, 4, 14,
16, 17, 18, 23] and the references therein. A comprehensive numerical comparison of freely available
software packages was presented in [3]. The methods proposed here follow the active set paradigm.
Specifically, we propose two distinct extensions of the Newton-MR method from [21] for minimization
with bound constraints. In [21], the method achieves a worst-case iteration complexity of O(ϵ−3/2)
to find a point x such that ∥∇f(x)∥ ≤ ϵ when minimizing f(x) over x ∈ Rn. Our first proposed
extension, which introduces greater flexibility in algorithmic choices, takes no more than O(nϵ−2)
calls to the oracle to find a point x such that ∥PΩ(x−∇f(x))− x∥ ≤ ϵ when applied to the problem
of minimizing f(x) subject to x ∈ Ω, where Ω is the feasible set defined by the bound constraints.
The second extension takes no more than O(n| log2(ϵ)|ϵ−3/2) calls to the oracle to achieve the same
goal. Numerical experiments demonstrate that the first option is more robust and efficient compared
to the second, using both unconstrained and bound-constrained minimization problems from the
CUTEst collection [15]. Additional experiments also show that the first version outperforms Gencan,
particularly when second derivatives are available but matrix factorizations are not.

The remainder of this paper is organized as follows. The two Newton-MR-based methods for
bound-constrained minimization and their theoretical properties are described in Section 2. Numeri-
cal experiments are presented and analyzed in Section 3. Conclusions and directions for future work
are presented in the final section.

2 Problem definition and new methods

Consider the problem
Minimize f(x) subject to x ∈ Ω,

where Ω = {x ∈ Rn : ℓ ≤ x ≤ u}, with ℓi < ui for i = 1, . . . , n, and f : Rn → R being a twice
continuously differentiable function. Specifically, let us assume that

A1. ∇f : Rn → Rn is Lg-Lipschitz continuous.
A2. f(·) is bounded from below by flow.

Denoting [n] := {1, . . . , n}, for any x ∈ Ω, define the sets A0(x) = {j ∈ [n] : xj = ℓj}, A1(x) =
{j ∈ [n] : xj = uj}, A(x) = A0(x) ∪ A1(x), and I(x) = {1, . . . , n} \ A(x). The face to which x ∈ Ω
belongs is the set

F(x) = {z ∈ Ω : zi = ℓi if i ∈ A0(x), zi = ui if i ∈ A1(x), ℓi < zi < ui otherwise} .

The reduced gradient of f at x with respect to Ω is defined by

∇Ωf(x) = x− PΩ(x−∇f(x)),

2

where PΩ(·) is the projection operator onto Ω. Let ∇I
Ωf(x) ∈ Rn be the vector defined by[

∇I
Ωf(x)

]
i
= [∇Ωf(x)]i, if i ∈ I(x), and

[
∇I

Ωf(x)
]
i
= 0, otherwise. Considering the enumera-

tion I(x) =
{
i1, . . . , i|I(x)|

}
, with ij < ij+1 for j = 1, . . . , |I(x)| − 1 when |I(x)| ≥ 2, let us define

Q(x) =
[
ei1 . . . ei|I(x)|

]
∈ Rn×|I(x)|, where ei denotes the i-th vector of the canonical basis of Rn. In

what follows, we will consider the function fx : R|I(x)| → R given by

fx(y) = f(x+Q(x)y). (1)

We have ∇fx(y) = Q(x)T∇f(x+Q(x)y) and ∇2fx(y) = Q(x)T∇2f(x+Q(x)y)Q(x), and so

∇fx(0) = Q(x)T∇f(x) and ∇2fx(0) = Q(x)T∇2f(x)Q(x). (2)

2.1 Method that employs SPG for leaving faces

Our first method (Algorithm 1) is inspired by Algorithm 4.1 in [6]. In its kth iteration, we check
whether the gradient norm in the current face, ∥∇I

Ωf(x
k)∥, is greater than or equal to a multiple

of the reduced gradient norm, ∥∇Ωf(x
k)∥. If this condition holds, then xk+1 is computed using

Algorithm 2, which performs one iteration of a descent method on fxk , where the descent direction
is obtained by MINRES. Otherwise, xk+1 is computed by Algorithm 3, which applies a monotone
iteration of the Spectral Projected Gradient (SPG) method [8] to the minimization of f in Ω.

Algorithm 1. Active-Set Newton-MR method with SPG

Step 0. Given x0 ∈ Ω, ϵ > 0, θ ∈ (0, 1], ρ ∈ (0, 1), m ∈ N, a1 ≥ 1, a2 ∈ (0, 1), λspg
max ≥ λspg

min > 0
be given. Set k := 0.

Step 1. If ∥∇Ωf(x
k)∥ ≤ ϵ, STOP.

Step 2. If
∥∥∇I

Ωf(x
k)
∥∥ ≥ θ∥∇Ωf(x

k)∥, compute xk+1 by applying Algorithm 2 with parameters
xk, ρ, m, a1, and a2. Otherwise, compute xk+1 by applying Algorithm 3 with parameters xk, ρ,
λspg
max, and λspg

min.

Step 3. Set k := k + 1 and go to Step 1.

Within faces, we apply Algorithm 2, which is a descent method with Armijo line search and
extrapolation. To obtain the search direction, we first compute an approximate solution dk1 to the
minimum residual problem associated with the Newton system. This solution is then corrected to
produce a direction dk satisfying conditions ∥dk∥ ≤ a1∥∇fxk(0)∥ and ⟨∇fxk(0), dk⟩ ≤ −a2∥∇fxk(0)∥2
(see Lemma 2.1).

Algorithm 2. MINRES-Based Descent Method

Inputs: xk ∈ Ω, ρ ∈ (0, 1), m ∈ N, a1 ≥ 1, a2 ∈ (0, 1).

Step 1. Using MINRES, compute an approximate solution dk1 of the subproblem

min
s∈R|I(xk)|

∥∇2fxk(0)s+∇fxk(0)∥22.

Define
dk2 = β1d

k
1, (3)

3

where
if ∥dk1∥ ≤ a1∥∇fxk(0)∥ then β1 = 1 else β1 = a1∥∇fxk(0)∥/∥dk1∥. (4)

and then set
dk = β2d

k
2 + (1− β2) (−∇fxk(0)) , (5)

where

if ⟨∇fxk(0), dk2⟩ ≤ −a2∥∇fxk(0)∥2 then β2 = 1 else β2 = (1− a2)/

(
1 +

〈
∇fxk(0), dk2

〉
∥∇fxk(0)∥2

)
. (6)

Step 2.1. If xk +Q(xk)dk ∈ F(xk), set α0 = 1 and go to Step 3.

Step 2.2. If f(PΩ(x
k + Q(xk)dk)) ≤ fxk(0), then using at most m oracle calls, find xk+1 ∈

∂F(xk) such that f(xk+1) ≤ f(PΩ(x
k +Q(xk)dk)) and STOP.

Step 2.3. Compute tmax = max
{
t ∈ (0, 1] : xk + tQ(xk)dk ∈ Ω

}
. If fxk(tmaxd

k) ≤ fxk(0),
using at most m oracle calls, find xk+1 ∈ ∂F(xk) such that f(xk+1) ≤ fxk(tmaxd

k) and STOP.
Otherwise, set α0 = tmax.

Step 3. Find the smallest nonnegative integer ℓk such that

fxk((0.5)ℓkα0d
k) ≤ fxk(0) + ρ(0.5)ℓkα0⟨∇fxk(0), dk⟩. (7)

Step 4. If ℓk > 0, define xk+1 = xk + (0.5)ℓkα0Q(xk)dk. Otherwise, using at most m oracle
calls, find xk+1 ∈ F(xk) such that f(xk+1) ≤ fxk(α0d

k).

As a leaving-face algorithm, we use a monotone variant of the SPG method, which applies Armijo
line search with the direction vk = PΩ

(
xk − (1/λspg

k)∇f(xk)
)
−xk, where λspg

k is the Barzilai-Borwein
stepsize with safeguards.

Algorithm 3. Monotone SPG [7]

Inputs: xk ∈ Ω, ρ ∈ (0, 1), λspg
max ≥ λspg

min > 0.

Step 1. Choose λspg
k ∈

[
λspg
min, λ

spg
max

]
and compute the solution vk to

min
v∈Ω\{xk}

∇f(xk)T v + (λspg
k /2)∥v∥2.

Step 2. Find the smallest nonnegative integer jk such that

f(xk + (0.5)jkvk) ≤ f(xk) + ρ(0.5)jk⟨∇f(xk), vk⟩.

Step 3. Set xk+1 = xk + (0.5)jkvk.

Let us begin our analysis by focusing on the properties of Algorithm 2. Our first lemma establishes
the descent properties of the search direction dk.

Lemma 2.1. Let dk be defined by (5) and (6). Then

∥dk∥ ≤ a1∥∇fxk(0)∥ and ⟨∇fxk(0), dk⟩ ≤ −a2∥∇fxk(0)∥2. (8)

4

Proof. By (3) and (4), we have
∥dk2∥ ≤ a1∥∇fxk(0)∥. (9)

Let us now analyze dk defined by (5) and (6). If
〈
∇fxk(0), dk2

〉
≤ −a2∥∇fxk(0)∥2 then by (6) we

have β2 = 1. Thus, in view of (9), we obtain

∥dk∥ = ∥dk2∥ ≤ a1∥∇fxk(0)∥ and
〈
∇fxk(0), dk

〉
=
〈
∇fxk(0), dk2

〉
≤ −a2∥∇fxk(0)∥2,

that is (8) holds. Suppose now that
〈
∇fxk(0), dk2

〉
> −a2∥∇fxk(0)∥2. Then we have

1 + ⟨∇fxk(0), dk2⟩/∥∇fxk(0)∥2 > 1− a2 > 0,

and so, by (6),

0 < β2 = (1− a2)/
(
1 + ⟨∇fxk(0), dk2⟩/∥∇fxk(0)∥2

)
< 1.

Consequently, it follows from (5) and (9) that

∥dk∥ ≤ β2∥dk2∥+ (1− β2)∥∇fxk(0)∥ ≤ a1∥∇fxk(0)∥.

In addition, by (5) and (6), defining νk = 1 + ⟨∇fxk(0), dk2⟩/∥∇fxk(0)∥2 and ξk = ∥∇fxk(0)∥2 +〈
∇fxk(0), dk2

〉
, we also have

⟨∇fxk(0), dk⟩ = β2⟨∇fxk(0), dk2⟩ − (1− β2)∥∇fxk(0)∥2

=
(
(1− a2)

〈
∇fxk(0), dk2

〉
− (νk − (1− a2)) ∥∇fxk(0)∥2

)
/νk

=
(
−a2

〈
∇fxk(0), dk2

〉
− a2∥∇fxk(0)∥2

)
/νk

= ((−a2ξk)/ξk) ∥∇fxk(0)∥2 = −a2∥∇fxk(0)∥2.

Therefore, (8) also holds in this case.

Combining Lemma 2.1 and the Lipschitz continuity of ∇f (assumption A1), the next lemma
provides a positive lower bound for stepsizes that do not satisfy the Armijo condition.

Lemma 2.2. Suppose that A1 holds. Given α > 0, if

fxk(αdk) > fxk(0) + ρα⟨∇fxk(0), dk⟩ (10)

then α > 2(1− ρ)a2/(Lga
2
1).

Proof. Using the definition of fxk in (1), we see that inequality (10) is equivalent to

ρα⟨∇fxk(0), dk⟩+ f(xk) < f
(
xk + αQ(xk)dk

)
. (11)

Notice that Q(xk)TQ(xk) = Id. Thus, by assumption A1 we also have

f(xk + αQ(xk)dk) ≤ f(xk) + α[⟨∇fxk(0), dk⟩+ (Lg/2)α∥dk∥2]. (12)

From (11) and (12), it follows that ρ⟨∇fxk(0), dk⟩ < ⟨∇fxk(0), dk⟩ + (Lg/2)α∥dk∥2. Therefore,
by Lemma 2.1, we conclude that

α > (2(1− ρ)/Lg)
(
−⟨∇fxk(0), dk⟩/∥dk∥2

)
≥ 2(1− ρ)a2/(Lga

2
1).

5

In view of Lemmas 2.1 and 2.2, if xk+1 is computed by Algorithm 2, then the objective function
decreases by at least a multiple ∥∇I

Ωf(x
k)∥2.

Lemma 2.3. Suppose that A1 holds. Then, whenever xk+1 is computed by Step 4 of Algorithm 2,
we have

f(xk)− f(xk+1) ≥ ρmin
{
a2, (1− ρ)a22/(Lga

2
1)
}∥∥∥∇I

Ωf(x
k)
∥∥∥2 . (13)

Moreover, the number of evaluations of f necessary to guarantee the fulfillment of (7) is bounded
from above by

∣∣log2 (min
{
1/2, (1− ρ)a2/(2Lga

2
1)
})∣∣.

Proof. First, let us show that

(0.5)ℓkα0 ≥ min
{
α0, (1− ρ)a2/(Lga

2
1)
}
. (14)

If ℓk = 0, then (14) is clearly true. Thus, let us assume that ℓk > 0. In this case, by the definition
of ℓk, it follows that

fxk

(
(0.5)ℓk−1α0d

k
)
> fxk(0) + ρ(0.5)ℓk−1α0⟨∇fxk(0), dk⟩.

Thus, by Lemma 2.1, we have (0.5)ℓk−1α0 > 2(1 − ρ)a2/(Lga
2
1), which implies that (14) also holds

when ℓk > 0. Now, let us refine the lower bound in (14). In view of Steps 2.1 and 2.3 of Algorithm
2, we have α0 = 1 or α0 = tmax ≤ 1. The latter occurs only if fxk(tmaxd

k) > fxk(0). In particular,
this means that inequality (10) holds for α = tmax. Consequently, by Lemma 2.2, in this case we
must have α0 = tmax > 2(1− ρ)a2/(Lga

2
1). Therefore, in any case, we have

α0 ≥ min
{
1, 2(1− ρ)a2/(Lga

2
1)
}
. (15)

Combining (14) and (15), we obtain

(0.5)ℓkα0 ≥ min
{
1, (1− ρ)a2/(Lga

2
1)
}
. (16)

Now, from Steps 3 and 4 of Algorithm 2, we obtain

f(xk)− f(xk+1) ≥ ρ(0.5)ℓkα0

(
−⟨∇fxk(0), dk⟩

)
≥ ρ(0.5)ℓkα0a2∥∇fxk(0)∥2

= ρ(0.5)ℓkα0a2

∥∥∥Q(xk)T∇f(xk)
∥∥∥2 ≥ ρ(0.5)ℓkα0a2

∥∥∥∇I
Ωf(x

k)
∥∥∥2

≥ ρmin
{
1, (1− ρ)a2/(Lga

2
1)
}
a2

∥∥∥∇I
Ωf(x

k)
∥∥∥2 ,

that is, (13) is true. Finally, notice that the number of evaluations of f performed at Step 3 of
Algorithm 2 is equal to ℓk + 1. From (16), we have

(0.5)ℓk+1 ≥ (0.5)ℓk+1α0 ≥ min
{
1/2, (1− ρ)a2/(2Lga

2
1)
}
.

Then, taking the logarithm on both sides, it follows that

ℓk + 1 ≤
∣∣log2 (min

{
1/2, (1− ρ)a2/(2Lga

2
1)
})∣∣ .

6

If xk+1 is computed by Algorithm 3, then the objective function decreases by at least a constant
multiple of ∥∇Ωf(x

k)∥2.

Lemma 2.4. (Theorem 4.2 in [7]) Suppose that A1 holds. Then, whenever xk+1 is computed by
Algorithm 3, we have

f(xk)− f(xk+1) ≥ ρ(1− 2ρ)/(8Lg)min
{
λspg
min, λ

spg
min/λ

spg
max

}2 ∥∥∥∇Ωf(x
k)
∥∥∥2 .

Moreover, the number of evaluations of f necessary to guarantee the fulfillment of (7) is bounded
from above by

∣∣log2 (min
{
1, (1− 2ρ)λspg

min/(4Lg)
})∣∣+ 1.

Let
{
xk
}
k≥0

be a sequence generated by Algorithm 1. Denote by

T (ϵ) = inf
{
k ∈ N : ∥∇Ωf(x

k)∥ ≤ ϵ
}
, (17)

the first hitting time to the set of ϵ-approximate stationary points of f with respect to Ω, and consider
the sets

ST (ϵ)−1 = {k ∈ {0, . . . , T (ϵ)− 1} : xk+1 is computed in Step 4 of Alg. 2 or by Alg. 3}
UT (ϵ)−1 = {k ∈ {0, . . . , T (ϵ)− 1} : xk+1 is computed in Step 2.2 or Step 2.3 of Alg. 2}

The next theorem establishes that T (ϵ) ≤ O
(
nϵ−2

)
, that is, Algorithm 1 needs no more than O(nϵ−2)

iterations to find ϵ-approximate stationary points.

Theorem 2.5. Suppose that assumptions A1 and A2 hold, and let
{
xk
}T (ϵ)

k=0
be generated by Algorithm

1. Then
T (ϵ) ≤ 1 + (n+ 1)(f(x0)− flow)κ

−1
1 ϵ−2, (18)

where

κ1 = min
{
ρa2θ

2, (ρ(1− ρ)/Lg)(θa2/a1)
2, ρ(1− 2ρ)/(8Lg)min{λspg

min, λ
spg
min/λ

spg
max

}2}. (19)

Proof. If T (ϵ) ≤ 1, then (18) is clearly true. Thus, suppose that T (ϵ) ≥ 2 and let k ∈ {0, . . . , T (ϵ)− 1}.
By the definition of T (ϵ) we have

∥∇Ωf(x
k)∥ > ϵ. (20)

If ∥∥∥∇I
Ωf(x

k)
∥∥∥ ≥ θ∥∇Ωf(x

k)∥ (21)

then, by Step 2 of Algorithm 1, the next iterate xk+1 is computed by Algorithm 2. Specifically, if
xk+1 is obtained from Step 4 of Algorithm 2, it follows from Lemma 2.3, (21), (20) and (19) that

f(xk)− f(xk+1) ≥ ρmin
{
a2, (1− ρ)a22/(Lga

2
1)
}
θ2∥∇Ωf(x

k)∥2 ≥ κ1ϵ
2. (22)

On the other hand, if xk+1 is computed by Algorithm 3, it follows from Lemma 2.3, (21) and (19)
that

f(xk)− f(xk+1) ≥ (ρ(1− 2ρ)/(8Lg))min
{
λspg
min, λ

spg
min/λ

spg
max

}2
ϵ2 ≥ κ1ϵ

2. (23)

7

In view of (22) and (23), for any k ∈ ST (ϵ)−1 we have f(xk) − f(xk+1) ≥ κ1ϵ
2. In addition, for any

k ∈ UT (ϵ)−1, we have f(xk+1) ≤ f(xk). Thus, by assumption A1,

f(x0)− flow ≥
T (ϵ)−1∑
k=0

f(xk)− f(xk+1) ≥
∑

k∈ST (ϵ)−1

f(xk)− f(xk+1) ≥ |ST (ϵ)−1|κ1ϵ2,

which implies that
|ST (ϵ)−1| ≤ (f(x0)− flow)κ

−1
1 ϵ−2. (24)

Notice that if k ∈ UT (ϵ)−1, then xk+1 ∈ ∂F(xk+1), and so |I(xk+1)| ≤ |I(xk)| − 1. Consequently,

there can be at most n consecutive iterations of Algorithm 1 with xk+1 being computed by Step 2.3
of Algorithm 2. In the worst case, each iteration in ST (ϵ)−1 would be followed by n consecutive
iterations in UT (ϵ)−1. Therefore,

|UT (ϵ)−1| ≤ n|ST (ϵ)−1|. (25)

Finally, combining (24) and (25), we conclude that

T (ϵ) = |ST (ϵ)−1|+ |UT (ϵ)−1| ≤ (1 + n)(f(x0)− flow)κ
−1
1 ϵ−2,

which means that (18) also holds when T (ϵ) ≥ 2.

Remark 2.6. If k ∈ ST (ϵ)−1 then it follows from Lemmas 2.3 and 2.4 that the number of evaluations
of f at the k-th iteration is bounded from above by

(m+ 3) + max

{∣∣∣∣log2(min

{
1

2
,
(1− ρ)a2
2Lga21

})∣∣∣∣ , ∣∣∣∣log2(min

{
1,

(1− 2ρ)λspg
min

4Lg

})∣∣∣∣} .

Additionally, there will be one gradient computation and one Hessian computation. On the other
hand, if k ∈ UT (ϵ)−1, then at the k-th iteration there will be one gradient computation, one Hessian
computation and, at most, m + 1 function evaluations. In summary, each iteration of Algorithm 1
requires at most

(m+ 5) + max

{∣∣∣∣log2(min

{
1

2
,
(1− ρ)a2
2Lga21

})∣∣∣∣ , ∣∣∣∣log2(min

{
1,

(1− 2ρ)λspg
min

4Lg

})∣∣∣∣}
calls to the oracle. Then, in view of Theorem 2.5, Algorithm 1 needs no more than O

(
nϵ−2

)
calls to

the oracle to find xk such that ∥∇Ωf(x
k)∥ ≤ ϵ.

2.2 Method that employs cubic regularization for leaving faces

In what follows, we consider a method (Algorithm 4) that uses an adaptation of the Newton MINRES
method [21] within the faces, while it employes the Cubic Regularization of the Newton’s method
[6] to leave the faces. Regarding the MINRES method for approximately solving mins∈Rp ∥Hs+ g∥22,
we use Algorithm 1 from [21], which is called by

[
s, Dtype

]
= MINRES (H, g, η). Denote the residual

by r = −(Hs+ g) and consider

⟨g, s⟩+ ⟨Hs, s⟩ ≤ 0, (26)

∥Hr∥ ≤ η∥Hs∥, (27)

⟨g, r⟩ = −∥r∥2, (28)

⟨Hr, r⟩ < 0. (29)

8

In view of Lemmas 11–13 in [21], if the number of iterations performed by MINRES does not exceed
the grade of g with respect to H [21, Def. 1], then the outcome can take only one of the following
two forms:

• Dtype = ‘SOL’, meaning that ⟨Hs, s⟩ > 0, ⟨Hr, r⟩ > 0, (26), and (27) hold;

• Dtype = ‘NPC’, meaning that (28) and (29) hold.

As in [21], we shall assume throughout the remainder of our analysis that this dichotomy always
applies, that is, whenever MINRES is applied, the number of iterations does not exceed the grade of
the corresponding linear least squares problem.

Algorithm 4 follows a structure similar to that of Algorithm 1, but with some important differ-
ences. In addition to using different methods within faces and for leaving faces, a key distinction is
the switching mechanism between these methods. Specifically, whenever Newton-MR neither pro-
duces a functional decrease of order O(ϵ3/2) nor returns a point on the boundary of the face that
results in a simple decrease of the objective function, we switch to the Cubic Regularization method
for the next iterate, which is guaranteed to produce a functional decrease of O(ϵ3/2).

Algorithm 4. Active-Set Newton-MR method with Cubic Regularization

Step 0. Given x0 ∈ Ω, ϵ > 0, θ, η ∈ (0, 1], τ ∈ (0, 1], ρ ∈ (0, 1/2), m ∈ N, a1 ≥ 1 > a2 > 0, and
M,α, γ > 0 be given. Set η0 ≥ η, M0 = M , σ0 = 0 and k := 0.

Step 1. If ∥∇Ωf(x
k)∥ ≤ ϵ, STOP.

Step 2. If σk ∈ {0, 2} and
∥∥∇I

Ωf(x
k)
∥∥ ≥ θ∥∇Ωf(x

k)∥, call Algorithm 5 with parameters xk, ρ,
ηk, η, τ , m, a1, and a2 to compute xk+1, σk+1, and ηk+1 and set Mk+1 = Mk. Otherwise, call
Algorithm 6 with parameters xk, Mk, M , α, and γ to compute xk+1 and Mk+1 and set σk+1 = 0
and ηk+1 = ηk.

Step 3. Set k := k + 1 and go to Step 1.

In what follows, we describe in detail the Newton-MR algorithm.

Algorithm 5. Newton-MR

Inputs: xk ∈ Ω, ρ ∈ (0, 1/2), ηk ∈ [η, 1], η ∈ (0, 1], τ ∈ (0, 1], m ∈ N, a1 ≥ 1 > a2 > 0.

Step 1. Call Minimal Residual method as [sk, Dktype] = MINRES
(
∇2fxk(0),∇fxk(0), ηk

)
and set

rk = −(∇2fxk(0)sk +∇fxk(0)). Define

dk1 =

{
sk, if Dktype = ‘SOL’,

rk, if Dktype = ‘NPC’ .
(30)

Set

Flag =


1, if Dktype = ‘SOL’ and min

{
⟨∇2f

xk
(0)dk1 ,d

k
1⟩

∥dk1∥2
,
⟨∇2f

xk
(0)rk,rk⟩

∥rk∥2

}
< ηk,

1, if Dktype = ‘NPC’ and ∥∇2fxk(0)rk∥ ≤ ηk∥∇2fxk(0)sk∥,
0, otherwise.

(31)

and define

ηk+1 =

{
ηk, if Flag = 0,
max {τ ηk, η} , if Flag = 1.

(32)

9

If Flag = 0, define dk = dk1. Otherwise, define dk2 = β1d
k
1, where β1 is given by (4), and then set

dk = β2d
k
2 + (1− β2) (−∇fxk(0)), where β2 is given by (6).

Step 2.1. If xk +Q(xk)dk ∈ F(xk), set α0 = 1 and go to Step 3.

Step 2.2. If f(PΩ(x
k + Q(xk)dk)) ≤ fxk(0), using at most m oracle calls, find xk+1 ∈ ∂F(xk)

such that f(xk+1) ≤ f(PΩ(x
k +Q(xk)dk)), set σk+1 = 2 and STOP.

Step 2.3. Compute tmax = max
{
t ∈ (0, 1] : xk + tQ(xk)dk ∈ Ω

}
. If fxk(tmaxd

k) ≤ fxk(0),
using at most m oracle calls, find xk+1 ∈ ∂F(xk) such that f(xk+1) ≤ fxk(tmaxd

k), set σk+1 = 2
and STOP. Otherwise, set α0 = tmax.

Step 3. Find the smallest nonnegative integer ℓk such that

fxk((0.5)ℓkα0d
k) ≤ fxk(0) + ρ(0.5)ℓkα0⟨∇fxk(0), dk⟩. (33)

Step 4. If ℓk > 0, define xk+1 = xk + (0.5)ℓkα0Q(xk)dk, set σk+1 = Flag and STOP.

Step 5. If Flag = 1, using at most m oracle calls, find xk+1 ∈ F(xk) such that f(xk+1) ≤
fxk(α0d

k). If xk+1 ∈ ∂F(xk), set σk+1 = 2. Otherwise, set σk+1 = 1. Then STOP.

Step 6. Find the smallest nonnegative integer jk such that

xk + 2jα0Q(xk)dk ∈ Ωand fxk(2jα0d
k) ≤ fxk(0) + ρ2jα0⟨∇fxk(0), dk⟩ (34)

holds with j = jk and (34) does not hold with j = jk + 1.

Step 6.1. If xk + 2jk+1α0Q(xk)dk ∈ Ω, define xk+1 = xk + 2jkα0Q(xk)dk, σk+1 = 0 and STOP.

Step 6.2. Compute tmax = max
{
t ∈ (0, 1] : xk + tQ(xk)dk ∈ Ω

}
. If fxk(tmaxd

k) > fxk(0), de-
fine xk+1 = xk + 2jkα0Q(xk)dk, σk+1 = 0 and STOP.

Step 6.3. Using at most m oracle calls, find xk+1 ∈ ∂F(xk) with f(xk+1) ≤ fxk(tmaxd
k), and

set σk+1 = 2.

In Step 1 of Algorithm 5, the variable Flag characterizes the quality of the search direction dk1
obtained via MINRES. As it will be established in Lemmas 2.9, 2.12 and 2.13, when Flag = 0, we
can obtain a functional decrease of O(ϵ3/2) along the search direction dk1, which is then chosen as the
search direction dk. On the other hand, when Flag = 1, the descent properties of dk1 are less clear.
In this case, we modify dk1 by the same procedure used in Algorithm 2, which produces a direction dk

along which a functional decrease of O(ϵ2) is guaranteed (Lemma 2.9). In Step 2, we check whether
a unity step along dk results in a point that remains within the face F(xk). If it does, we proceed to
Step 3, where a suitable stepsize is determined using an Armijo line-search starting from α0 = 1. If
not, we attempt to find a point on the boundary of the face that results in at least a simple decrease
in the objective function, in which case we set σk+1 = 2. If this fails, we move to Step 3 and begin
the Armijo line-search with the stepsize α0 = tmax, corresponding to the point along dk that lies on

10

the boundary of F(xk). If the Armijo condition is not satisfied with the stepsize α0, we define xk+1

as the resulting point and set σk+1 = Flag, stopping at Step 4. In contrast, if the Armijo condition
is satisfied with α0, we attempt to obtain a larger functional decrease using extrapolation1. The
result is a point xk+1 that either (a) belongs to the boundary of the current face and produces at
least a simple decrease in the objective function, where we set σk+1 = 2 (Steps 5 and 6.3); or (b)
produces a functional decrease of O(ϵ3/2), in which case we set σk+1 = 0 (Steps 6.1 and 6.2). Finally,
it is worth noticing that when Ω = Rn and f(·) is µ-strongly convex, Algorithm 5 with ηk = η = µ
essentially reduces to one iteration of Algorithm 4 in [21], as we will have Flag = 0 and Steps 2.2,
2.3, 5, 6.2, and 6.3 will be unnecessary.

Let us now present the Cubic Regularization Method for bound-constrained minimization pro-
posed in [6]. For that, given x ∈ Rn, we define T2(x, ·) : Rn → R by T2(x, s) = ⟨∇f(x), s⟩ +
1
2⟨∇

2f(x)s, s⟩.

Algorithm 6. One Iteration of the Cubic Regularization Method [6]

Inputs: xk ∈ Ω, Mk ≥ M > 0, α, γ > 0 be given. Set ℓ := 0.

Step 1. Compute an approximate solution sℓ ∈ Rn of the constrained cubic subproblem

Minimize T2(x, s) + (2ℓMk)∥s∥3 subject to xk + s ∈ Ω

such that

T2(x
k, sℓ) + (2ℓMk)∥sℓ∥3 ≤ 0 and ∥∇Ω[Tp(x

k, x− xk) + (2ℓMk)∥x− xk∥3]|x=xk+sℓ∥ ≤ γ∥sℓ∥2.

Step 2. If
f(xk)− f(xk + sℓ) ≥ α∥sℓ∥3, (35)

set ℓk = ℓ, and go to Step 3. Otherwise, set ℓ := ℓ+ 1 and go to Step 1.

Step 3. Define xk+1 = xk + sℓk and Mk+1 = max
{
2ℓk−1Mk,M

}
.

In addition to A1 and A2, we will consider the following assumption:

A3. ∇2f : Rn → Rn×n is LH -Lipschitz continuous.

We begin our analysis by examining the properties of Algorithm 5. The next two lemmas provide
positive lower bounds for stepsizes that do not satisfy the Armijo condition.

Lemma 2.7. Suppose that A1 and A3 hold and let the pair (xk, σk) be generated by Algorithm 4 such
that σk = 0 and ∥∇I

Ωf(x
k)∥ ≥ θ∥∇Ωf(x

k)∥. In addition, suppose that Dktype = ‘SOL’ and Flag = 0.
Given α ∈ (0, 1], if

fxk(αdk) > fxk(0) + ρα⟨∇fxk(0), dk⟩, (36)

then

α > max

{√
3(1− 2ρ)η/(LH∥dk∥), 2(1− ρ)η/Lg

}
. (37)

1A precise way to implement the extrapolation procedure is described in Section 3.

11

Proof. Since σk = 0 and ∥∇I
Ωf(x

k)∥ ≥ θ∥∇Ωf(x
k)∥, it follows from Step 2 of Algorithm 4 that

Algorithm 5 is called. Then, as Dktype = ‘SOL’ and Flag = 0, it follows from Step 2.1 of Algorithm 5

and definition (30) that dk = dk1 = sk. Consequently, by (26), Flag = 0 and (31), we have

⟨∇fxk(0), dk⟩ ≤ −⟨∇2fxk(0)dk, dk⟩, (38)

⟨∇2fxk(0)dk, dk⟩ ≥ ηk∥dk∥2 ≥ η∥dk∥2. (39)

It follows from A3, (1), (2), (38), and (39) that

fxk(αdk) ≤ fxk(0) + α⟨∇fxk(0), dk⟩+ α

2
⟨∇2fxk(0)dk, dk⟩+ LH

6
α3∥dk∥3. (40)

Now, combining (38), (36) and (40), we get

(1− ρ)α⟨∇2fxk(0)dk, dk⟩ ≤ (1− ρ)α
(
−⟨∇fxk(0), dk⟩

)
= ρα⟨∇fxk(0), dk⟩ − α⟨∇fxk(0), dk⟩

< fxk(αdk)− fxk(0)− α⟨∇fxk(0), dk⟩

≤ α

2
⟨∇2fxk(0)dk, dk⟩+ LH

6
α3∥dk∥3.

Thus, (1/2− ρ)α⟨∇2fxk(0)dk, dk⟩ < (LH/6)α3∥dk∥3, and so, by (39),

α >

√
3(1− 2ρ)

LH∥dk∥
⟨∇2fxk(0)dk, dk⟩

∥dk∥2
≥

√
3(1− 2ρ)η

LH∥dk∥
. (41)

On the other hand, by A1 and (2), we have

fxk(αdk) ≤ fxk(0) + α⟨∇fxk(0), dk⟩+
Lg

2
α2∥dk∥2. (42)

Combining (42) and (36), we obtain

ρα⟨∇fxk(0), dk⟩ < α⟨∇fxk(0), dk⟩+
Lg

2
α2∥dk∥2,

which together with (38) and (39) gives

α >
2(1− ρ)

Lg

(
−⟨∇fxk(0), dk⟩

∥dk∥2

)
≥ 2(1− ρ)

Lg

⟨∇2fxk(0)dk, dk⟩
∥dk∥2

≥ 2(1− ρ)η

Lg
. (43)

Finally, from (41) and (43) we see that (37) is true.

Lemma 2.8. Suppose that A1 and A3 hold and let the pair (xk, σk) be generated by Algorithm 4 such
that σk = 0 and ∥∇I

Ωf(x
k)∥ ≥ θ∥∇Ωf(x

k)∥. In addition, suppose that Dktype = ‘NPC’ and Flag = 0.
Given α ∈ (0, 1], if

fxk(αdk) > fxk(0) + ρα⟨∇fxk(0), dk⟩ (44)

then

α > max

{√
6(1− ρ)/(LH∥dk∥), 2(1− ρ)/Lg

}
. (45)

12

Proof. Since σk = 0 and ∥∇I
Ωf(x

k)∥ ≥ θ∥∇Ωf(x
k)∥, it follows from Step 2 of Algorithm 4 that

Algorithm 5 is called. Then, as Dktype = ‘NPC’ and Flag = 0, it follows from Step 2.1 of Algorithm 5

and definition (30) that dk = dk1 = rk. Consequently, by (28) and (29) we have

⟨∇fxk(0), dk⟩ = −∥dk∥2, (46)

⟨∇2fxk(0)dk, dk⟩ < 0. (47)

It follows from A3, (1), (2) and (47) that

fxk(αdk) ≤ fxk(0) + α⟨∇fxk(0), dk⟩+ (LH/6)α3∥dk∥3. (48)

Combining (44) and (48), it follows that

ρα⟨∇fxk(0), dk⟩ < α⟨∇fxk(0), dk⟩+ (LH/6)α3∥dk∥3.

Thus, by (46), α2 > 6(1− ρ)
(
−⟨∇fxk(0), dk⟩

)
/(LH∥dk∥3) = 6(1− ρ)/(LH∥dk∥), which implies that

α >
√
6(1− ρ)/(LH∥dk∥). (49)

On the other hand, by A1, (1) and (2) we also have

fxk(αdk) ≤ f(xk) + α⟨∇fxk(0), dk⟩+ (Lg/2)α
2∥dk∥2. (50)

Then, combining (44) and (50), it follows that

ρα⟨∇fxk(0), dk⟩ < α⟨∇fxk(0), dk⟩+ (Lg/2)α
2∥dk∥2.

Therefore, by (46), we get

α > 2(1− ρ)(−⟨∇fxk(0), dk⟩)/(Lg∥dk∥2) = 2(1− ρ)/Lg. (51)

In view of (49) and (51), we conclude that (45) is true.

In view of Lemmas 2.7 and 2.8, we can now derive lower bounds for the functional decrease
f(xk)− f(xk+1) that occurs when xk+1 is computed in Step 4 of Algorithm 5.

Lemma 2.9. Suppose that A1 and A3 hold. Then, whenever xk+1 is computed at Step 4 of Algo-
rithm 5, we have

f(xk)− f(xk+1) ≥



ρ(1−ρ)
Lg

(
a2

a1

)2
∥∇I

Ωf(x
k)∥2, if Flag = 1,

ρ
25/2

(
η
Lg

)3/2√
3(1−2ρ)

LH
∥∇I

Ωf(x
k)∥3/2, if Flag = 0 and Dktype = ‘SOL’,

ρ

2
[(

Lg
η

)
+1

]3/2
√

6(1−ρ)
LH

∥∇I
Ωf(x

k)∥3/2, if Flag = 0 and Dktype = ‘NPC’.

(52)

Moreover, the number of evaluations of f(·) required to guarantee the fulfilment of (33) is bounded
from above by

| log2
(
min

{
(1− ρ)η/2Lg, (1− ρ)a2/2Lga

2
1

})
|.

13

Proof. Since xk+1 is computed by Step 4 of Algorithm 5, it follows that ℓk > 0, and so

fxk((0.5)ℓk−1α0d
k) > fxk(0) + ρ(0.5)ℓk−1α0⟨∇fxk(0), dk⟩. (53)

Let us analyse separately the possible cases.

Case 1: Flag = 1.

By Step 1 of Algorithm 5, dk is defined by the same correction procedure employed in Algorithm 2.
Consequently, by Lemma 2.1 we have

∥dk∥ ≤ a1∥∇fxk(0)∥ and ⟨∇fxk(0), dk⟩ ≤ −a2∥∇fxk(0)∥2. (54)

Then, by A1, Lemma 2.2 also applies to dk. In particular, it follows from (53) that

(0.5)ℓk−1α0 > 2(1− ρ)a2/(Lga
2
1). (55)

Now, combining (1), (33), the second inequality in (54), and (55), we obtain

f(xk)− f(xk+1) = fxk(0)− fxk((0.5)ℓkα0d
k) ≥ ρ(0.5)ℓkα0

(
−⟨∇fxk(0), dk⟩

)
≥ ρ

2
(0.5)ℓk−1α0a2∥∇fxk(0)∥2 ≥ ρ(1− ρ)

Lg

(
a2
a1

)2

∥∇fxk(0)∥2

≥ ρ(1− ρ)

Lg

(
a2
a1

)2

∥∇I
Ωf(x

k)∥2,

that is, (52) holds in this case.

Case 2: Flag = 0 and Dktype = ‘SOL’.

In this case, it follows from (53) and Lemma 2.7 that

(0.5)ℓk−1α0 > max

{√
3(1− 2ρ)η/(LH∥dk)∥, 2(1− ρ)η/Lg

}
. (56)

In addition, by (31), (26)-(27), and ηk ≥ η, we also have

⟨∇fxk(0), dk⟩ ≤ −⟨∇2fxk(0)dk, dk⟩, (57)

⟨∇2fxk(0)dk, dk⟩ ≥ η∥dk∥2, (58)

⟨∇2fxk(0)rk, rk⟩ ≥ η∥rk∥2, (59)

∥∇2fxk(0)rk∥ ≤ ηk∥∇2fxk(0)dk∥. (60)

Combining (1), (33), (57) and (58), it follows that

f(xk)− f(xk+1) = fxk(0)− fxk((0.5)ℓkα0d
k) ≥ ρ(0.5)ℓkα0

(
−⟨∇fxk(0), dk⟩

)
≥ ρ

2
(0.5)ℓk−1α0⟨∇2fxk(0)dk, dk⟩ ≥

ηρ

2

√
3(1− 2ρ)η

LH∥dk∥
∥dk∥2. (61)

On the other hand, by (59) we have

∥rk∥2 = ∥rk∥2

⟨∇2fxk(0), rk⟩
⟨∇2fxk(0)rk, rk⟩ ≤

∥∇2fxk(0)rk∥∥rk∥
ηk

.

14

Then, dividing both sides by ∥rk∥ and using (60) and A1 we get

∥rk∥ ≤ ∥∇2fxk(0)rk∥
ηk

≤ ∥∇2fxk(0)dk∥ ≤ ∥∇2fxk(0)∥∥dk∥ ≤ Lg∥dk∥.

Thus,

∥∇fxk(0)∥ ≤ ∥rk∥+ ∥∇2fxk(0)dk∥ ≤ 2Lg∥dk∥. (62)

Combining (61) and (62), it follows that

f(xk)− f(xk+1) ≥ ηρ

2

√
3(1− 2ρ)η

LH∥dk∥
∥∇fxk(0)∥3/2

(2Lg)3/2

≥ ρ

25/2

(
η

Lg

)3/2
√

3(1− 2ρ)

LH
∥∇I

Ωf(x
k)∥3/2,

that is, (52) holds in this case.

Case 3: Flag = 0 and Dktype = ‘NPC’.

In this case, it follows from (53) and Lemma 2.8 that

(0.5)ℓk−1α0 > max

{√
6(1− ρ)/(LH∥dk∥), 2(1− ρ)/Lg

}
. (63)

In addition, by (31) and (28) we have

⟨∇fxk(0), dk⟩ = −∥dk∥2, (64)

and
∥∇2fxk(0)dk∥ > ηk∥∇2fxk(0)sk∥ ≥ η∥∇2fxk(0)sk∥. (65)

Combining (1), (7), (64) and (63), it follows that

f(xk)− f(xk+1) ≥ ρ(0.5)ℓkα
(
−⟨∇fxk(0), dk⟩

)
=

ρ

2
(0.5)ℓk−1α0∥dk∥2

≥ (ρ/2)
√

6(1− ρ)/LH∥dk∥3/2. (66)

On the other hand, by (65) and A1, we have

∥∇fxk(0)∥ ≤ ∥∇fxk(0) + rk∥+ ∥rk∥ = ∥∇2fxk(0)sk∥+ ∥dk∥

< ∥∇2fxk(0)dk∥/η + ∥dk∥ ≤ ∥∇2fxk(0)∥∥dk∥/η + ∥dk∥

≤ (Lg/η + 1)∥dk∥.

(67)

Combining (66) and (67), it follows that

f(xk)− f(xk+1) ≥ ρ

2

√
6(1− ρ)

LH

∥∇fxk(0)∥3/2

(Lg/η + 1)3/2
≥ ρ

2(Lg/η + 1)3/2

√
6(1− ρ)

LH
∥∇I

Ωf(x
k)∥3/2,

that is, (52) also holds in this case.

15

To conclude, notice that the number of evaluations of f(·) performed at Step 3 of Algorithm 5 is
equal to ℓk + 1. Since α0 ∈ (0, 1], it follows from (54), (56) and (63) that

(0.5)ℓk+1 ≥ (0.5)ℓk+1α0 > min
{
(1− ρ)η/(2Lg), (1− ρ)a2/(2Lga

2
1), (1− ρ)/(2Lg)

}
.

Then, taking the logarithm on both sides and using the fact that η ∈ (0, 1], we obtain

ℓk + 1 ≤
∣∣log2 (min

{
(1− ρ)η/(2Lg), (1− ρ)a2/(2Lga

2
1)
})∣∣ .

The lemma below provides an upper bound on the maximum stepsize that satisfies the Armijo
condition when the direction dk is certified with Flag = 0. This result will be used in the sequel to
derive an upper bound on the number of function evaluations required in the extrapolation procedure
in Step 6 of Algorithm 5.

Lemma 2.10. Suppose that A1-A3 hold and let xk be an iterate generated by Algorithm 4 such that
∥∇I

Ωf(x
k)∥ ≥ θ∥∇Ωf(x

k)∥. Suppose that dk is computed by Algorithm 5 and that Flag = 0. Given
α > 0, if ∥∇Ωf(x

k)∥ ≥ ϵ and

fxk(αdk) ≤ fxk(0) + ρα⟨∇fxk(0), dk⟩, (68)

then
α ≤ max

{
2Lg/η, (Lg/η + 1)2

}
(f(x0)− flow)ρ

−1θ−2ϵ−2. (69)

Proof. If Dktype = ‘SOL’, then it follows from (68), (57), (58) and (62) that

f(x0)− flow ≥ fxk(0)− fxk(αdk) ≥ ρα
(
−⟨∇fxk(0), dk⟩

)
≥ ρα⟨∇2fxk(0)dk, dk⟩ ≥ ραη∥dk∥2

≥ (ρ/2)(η/Lg)α∥∇I
Ωf(x

k)∥2 ≥ (θ2ρ/2)(η/Lg)ϵ
2α.

Thus, α ≤ 2(Lg/η)
(
f(x0)− flow

)
ρ−1θ−2ϵ−2, which means that (69) holds in this case.

Now, suppose that Dktype = ‘NPC’. Then, by (68), (64) and (67) we have

f(x0)− flow ≥ ρα∥dk∥2 ≥ ρα

(Lg/η + 1)2
∥∇fxk(0)∥2 =

ρα

(Lg/η + 1)2
∥∇I

Ωf(x
k)∥2

≥ ρα

(Lg/η + 1)2
θ2∥∇Ωf(x

k)∥2 ≥ ρθ2

(Lg/η + 1)2
ϵ2α.

Therefore, α ≤ (Lg/η + 1)2
(
f(x0)− flow

)
ρ−1θ−2ϵ−2, which means that (69) also holds in this case.

The next lemma gives an upper bound of O (| log2(ϵ)|) for the number of evaluations of f(·)
required by the extrapolation procedure in Step 6 of Algorithm 5.

Lemma 2.11. Suppose that assumptions A1-A3 hold, and that xk+1 is computed in Step 6 of Al-
gorithm 5. Then, the number of evaluations of f(·) required to guarantee the fulfilment of (34) is
bounded from above by

1 + log2

(
max

{
Lg/η, (Lg/η + 1)2

}
(f(x0)− flow)ρ

−1θ−2ϵ−2
)
. (70)

16

Proof. The execution of Step 6 of Algorithm 5 implies that fxk(α0d
k) ≤ fxk(0). Therefore, α0 = 1.

Indeed, if we had α0 = tmax < 1, then we would have had fxk(tmaxd
k) ≤ fxk(0), and the method

would have stopped at Step 2.3, which was not the case. Notice that the number of evaluations
of f(·) required to fulfill (34) is equal to jk + 1. Since xk+1 is computed by Algorithm 5, we
must have had ∥∇I

Ωf(x
k)∥ > θ∥∇Ωf(x

k)∥, and ∥∇Ωf(x
k)∥ > ϵ. Moreover, by design, we also have

f(xk) ≤ f(x0). Then, the definition of jk, α0 = 1, and Lemma 2.10 imply that

2jk = 2jkα0 ≤ max
{
Lg/η, (Lg/η + 1)2

}
(f(x0)− flow)ρ

−1θ−2ϵ−2.

and so, taking the logarithm, we conclude that jk+1 is bounded from above by the number in (70).

The following two lemmas establish lower bounds of O
(
∥∇I

Ωf(x
k)∥3/2

)
for the functional decrease

f(xk)− f(xk+1) obtained when xk+1 is computed in Steps 6.1 and 6.2 of Algorithm 5.

Lemma 2.12. Suppose that A1 and A3 hold. Then, whenever xk+1 is computed in Step 6.1 of
Algorithm 5, we have

f(xk)− f(xk+1) ≥


ρ

25/2

(
η
Lg

)3/2√
3(1−2ρ)

LH
∥∇I

Ωf(x
k)∥3/2, if Dktype = ‘SOL’,

ρ

2
[(

Lg
η

)
+1

]3/2
√

6(1−ρ)
LH

∥∇I
Ωf(x

k)∥3/2, if Dktype = ‘NPC’.

Proof. As xk+1 is computed in Step 6.1, this means that Flag = 0; otherwise, the Algorithm 5 would
have stopped at Step 5. Since xk + 2jk+1α0Q(xk)dk ∈ Ω, it follows from the definition of jk, that

fxk(2jk+1α0d
k) > fxk(0) + ρ2jk+1α0⟨∇fxk(0), dk⟩. (71)

If Dktype = ‘SOL’, then it follows from Lemma 2.7 that 2jk+1α0 >
√

3(1−2ρ)η
LH∥dk∥ . Thus, by the same

reasoning used in the proof of Lemma 2.9 (Case 2), we see that

f(xk)− f(xk+1) ≥ ρ

25/2

(
η

Lg

)3/2
√

3(1− 2ρ)

LH
∥∇I

Ωf(x
k)∥3/2.

On the other hand, if Dktype = ‘NPC’, then it follows from (71) and Lemma 2.8 that 2jk+1α0 >√
6(1− ρ)/(LH∥dk∥). Thus, as in the proof of Lemma 2.9 (Case 3), it follows that

f(xk)− f(xk+1) ≥ ρ

2(Lg/η + 1)3/2

√
6(1− ρ)

LH
∥∇I

Ωf(x
k)∥3/2,

which concludes the proof.

Lemma 2.13. Suppose that A1 and A3 hold. Then, whenever xk+1 is computed in Step 6.2 of
Algorithm 5, we have

f(xk)− f(xk+1) ≥


ρ

25/2

(
η
Lg

)3/2√
3(1−2ρ)

LH
∥∇I

Ωf(x
k)∥3/2, if Dktype = ‘SOL’,

ρ
2(Lg/η+1)3/2

√
6(1−ρ)
LH

∥∇I
Ωf(x

k)∥3/2, if Dktype = ‘NPC’.
(72)

17

Proof. As xk+1 is computed in Step 6.2, this means that Flag = 0 and

fxk(tmaxd
k) > fxk(0) > fxk(0) + ρtmax⟨∇fxk(0), dk⟩. (73)

Since xk + 2jkα0Q(xk)dk ∈ Ω and xk + 2jk+1α0Q(xk)dk /∈ Ω, we also have the inequality 2jk+1α0 >
tmax. Then, it follows from (73) and Lemmas 2.7 and 2.8 that

2jkα0 > tmax ≥

{ √
3(1− 2ρ)/(LH∥dk∥), if Dktype = ‘SOL’,√
6(1− ρ)/(LH∥dk∥), if Dktype = ‘NPC’.

Thus, by following the same reasoning in the proof of Lemma 2.9 (Cases 2 and 3), we conclude
that (72) is true.

As shown in the lemma below, if xk+1 is computed by Algorithm 6, the objective function
decreases by at least a constant multiple of ∥∇Ωf(x

k)∥3/2.

Lemma 2.14. Suppose that A1 and A3 hold. Then, whenever xk+1 is computed by Algorithm 6, we
have

f(xk)− f(xk+1) ≥ α
(
∥∇Ωf(x

k+1)∥/ (LH + 6(LH + α) + γ)
) 3

2 . (74)

Moreover, the number of evaluations of f(·) required to guarantee the fulfillment of (35) is bounded
from above by 1 + log2 (max {1, (LH + α)/M}).

Proof. Inequality (74) follows from Lemma 3.4 in [6]. Regarding the upper bound on the number
of function evaluations, note that Algorithm 6 requires ℓk + 1 evaluations of f(·). Thus, let us first
show that

2ℓkMk ≤ max {Mk, 2(LH + α)} , (75)

where, by design, ℓk is the smallest nonnegative integer for which (35) is satisfied. If ℓk = 0, then
2ℓkMk = Mk and then (75) clearly holds. Suppose that ℓk > 0. By Lemma 3.2 in [6], (35) is satisfied
whenever 2ℓMk ≥ LH + α. This means that we must have 2ℓk−1Mk < LH + α, because, otherwise,
(35) would had been satisfied by some ℓ with 0 ≤ ℓ ≤ ℓk − 1, contradicting the definition of ℓk.
Therefore,

2ℓkMk = 2
(
2ℓk−1Mk

)
< 2(LH + α) ≤ max {Mk, 2(LH + α)} ,

concluding the proof of (75). Finally, from (75) and Mk ≥ M , it follows that ℓk + 1 ≤ 1 +
log2 (max {1, (LH + α)/M}).

Let
{
xk
}
k≥0

be generated by Algorithm 4, and denote by T (ϵ) the first hitting time to the set of

ϵ-approximate stationary points of f(·) with respect to Ω, as in (17). Given j ∈ {0, . . . , T (ϵ)− 1},
consider the following sets:

S(1)
j = {k ∈ {0, . . . , j} : σk+1 = 0},

S(2)
j = {k ∈ {0, . . . , j} : σk+1 = 1},
Uj = {k ∈ {0, . . . , j} : σk+1 = 2}.

The next theorem establishes that T (ϵ) ≤ O
(
nϵ−3/2

)
, i.e., Algorithm 4 needs no more thanO(nϵ−3/2)

iterations to find ϵ-approximate stationary points.

18

Theorem 2.15. Suppose that A1-A3 hold, and let
{
xk
}T (ϵ)

k=0
be generated by Algorithm 4. Then

T (ϵ) ≤ (n+ 1) + 2(n+ 1)
(
f(x0)− flow

)
κ−1
2 ϵ−3/2, (76)

where

κ2 = min

 ρθ
3
2

2
[
Lg

η + 1
] 3

2

√
6(1− ρ)

LH
,
ρθ

3
2

2
5
2

(
η

Lg

) 3
2

√
3(1− 2ρ)

LH
,

α

[LH + 6(LH + α) + γ]
3
2

 . (77)

Proof. If T (ϵ) ≤ 1, then (76) is true. Thus, suppose that T (ϵ) ≥ 2 and let k ∈ {0, . . . , T (ϵ)− 1}. By
(17) we have

∥∇Ωf(x
k)∥ > ϵ. (78)

If k ∈ S(1)
T (ϵ)−1, then σk+1 = 0. This means that xk+1 was computed either by Algorithm 6, at Step 4

of Algorithm 5 with Flag = 0, or at Steps 6.1 or 6.2 of Algorithm 5. In either case, Lemmas 2.9,
2.12 and 2.13 together with (78) imply that

f(xk)− f(xk+1) ≥ κ2ϵ
3/2, (79)

where κ2 is defined in (77). Moreover, we have

f(xℓ+1) ≤ f(xℓ), ℓ = 0, . . . , T (ϵ)− 1. (80)

Thus, combining A2, (80) and (79), it follows that

f(x0)− flow ≥ f(x0)− f(xT (ϵ)) ≥
∑

k∈S(1)

T (ϵ)−1

f(xk)− f(xk+1) ≥
∣∣∣S(1)

T (ϵ)−1

∣∣∣κ2ϵ
3/2,

and so ∣∣∣S(1)
T (ϵ)−1

∣∣∣ ≤ (f(x0)− flow
)
κ−1
2 ϵ−3/2. (81)

On the other hand, if k ∈ S(2)
T (ϵ)−2, then σk+1 = 1. Consequently, by Step 2 of Algorithm 4, xk+2 is

computed by Algorithm 6, and so σk+2 = 0. This means that every iteration in S(2)
T (ϵ)−2 is followed

by one iteration in S(1)
T (ϵ)−1. Thus the cardinality of S(2)

T (ϵ)−2 is not bigger than that of S(1)
T (ϵ)−1.

Consequently, ∣∣∣S(2)
T (ϵ)−1

∣∣∣ ≤ 1 +
∣∣∣S(1)

T (ϵ)−1

∣∣∣ . (82)

Finally, if k ∈ UT (ϵ)−1, then xk+1 is computed at Step 2.2, Step 2.3, or Step 6.3 of Algorithm 5.

This means that xk+1 ∈ ∂F(xk) and so
∣∣I(xk+1)

∣∣ ≤ ∣∣I(xk)∣∣ − 1. Therefore, there can be at most
n consecutive iterations of Algorithm 4 with k ∈ UT (ϵ)−1. In the worst case, each iteration in

S(1)
T (ϵ)−1 ∪ S(2)

T (ϵ)−1 would be followed by n consecutive iterations in UT (ϵ)−1. Then, we have∣∣UT (ϵ)−1

∣∣ ≤ n
∣∣∣S(1)

T (ϵ)−1 ∪ S(2)
T (ϵ)−1

∣∣∣ = n
(∣∣∣S(1)

T (ϵ)−1

∣∣∣+ ∣∣∣S(2)
T (ϵ)−1

∣∣∣) . (83)

Then, combining (81), (82) and (83), we conclude that

T (ϵ) =
∣∣∣S(1)

T (ϵ)−1

∣∣∣+ ∣∣∣S(2)
T (ϵ)−1

∣∣∣+ ∣∣UT (ϵ)−1

∣∣ ≤ ∣∣∣S(1)
T (ϵ)−1

∣∣∣+ 1 +
∣∣∣S(1)

T (ϵ)−1

∣∣∣+ n
(∣∣∣S(1)

T (ϵ)−1

∣∣∣+ ∣∣∣S(2)
T (ϵ)−1

∣∣∣)
≤ (n+ 1) + 2(n+ 1)

∣∣∣S(1)
T (ϵ)−1

∣∣∣ ≤ (n+ 1) + 2(n+ 1)

(
f(x0)− flow

κ2

)
ϵ−3/2.

19

Remark 2.16. In view of Lemmas 2.9 and 2.11, the computation of xk+1 by Algorithm 5 requires
no more than

max


∣∣∣∣log2 (min

{
(1− ρ)η

2Lg
,
(1− ρ)a2

2Lga21

})∣∣∣∣ ,
∣∣∣∣∣∣∣∣log2

max

{(
Lg

η

)
,
[(

Lg

η

)
+ 1

]2}
(f(x0)− flow)

ρθ2ϵ2


∣∣∣∣∣∣∣∣


plus m + 5 evaluations of f(·). On the other hand, by Lemma 2.14, the computation of xk+1 by
Algorithm 6 requires no more than 1+log2 (max {1, (LH + α)/M}) evaluations of f(·). Additionally,
each execution of Algorithm 5 or Algorithm 6 requires the evaluation of one gradient and one Hessian
of f(·). In summary, each iteration of Algorithm 4 requires at most O (| log2(ϵ)|) calls to the oracle.
Therefore, it follows from Theorem 2.15 that Algorithm 4 takes no more than O

(
n| log2(ϵ)|ϵ−3/2

)
calls to the oracle to find an xk such that ∥∇Ωf(x

k)∥ ≤ ϵ.

3 Numerical experiments

In this section, we present numerical results to evaluate the performance of the introduced algorithms.
Hereafter, we will call Algorithm P the algorithm comprising Algorithms 1, 2 and 3 and Algorithm T
the algorithm comprising Algorithms 4, 5 and 6. The letter P indicates the practical appeal of the
first one, with worst-case complexity O(nϵ−2), while the letter T indicates the theoretical concern
behind the development of the second algorithm, with worst-case complexity O(n| log2(ϵ)|ϵ−3/2). For
both algorithms, we used as stop criterion ∥∇Ωf(x)∥∞ ≤ ϵ = 10−8. Other stopping criteria related
to maximum iterations and lack of progress exist, which are identical in the two algorithms. We also
consider a CPU time limit of 10 minutes for each pair method/problem. In the following we describe
some implementation details.

We implemented Algorithms P and T and MINRES in Fortran 90. Codes are available for
download at http://www.ime.usp.br/~egbirgin/. The two methods were evaluated using all un-
constrained and bound-constrained problems from the most updated version of the CUTEst collec-
tion [15] (version 2.4.0). There are 313 unconstrained problems and 162 bound-constrained problems
in this release, for a total of 475 problems. We considered all the problems with their default dimen-
sion and the given starting point x0. The smallest problem has 1 variable, the largest problem has
192,627 variables, and the quartiles of the number of variables are Q1 = 4, Q2 = 50, and Q3 = 5,000.
All experiments were performed on a computer with a 5.2 GHz Intel Core i9-12900K and 5.1 GHz In-
tel Core i9-12900K processor and 9 128 GB of 32000 MHz DDR4 RAM, running Ubuntu 23.04. The
codes were compiled by the GNU Fortran compiler GCC (version 12.3.0) with the -O3 optimization
directive enabled.

3.1 Implementation details

3.1.1 When MINRES encounters a non-positive curvature direction

When MINRES is used in Step 1 of Algorithms 2 and 5, it returns an approximate solution sk

plus Dktype = ‘NPC’ or Dktype = ‘SOL’. The second case means that the Newtonian linear system

has been solved with the desired tolerance (which will be detailed later). If this happens, dk1 in
Algorithms 2 and 5 gets the computed solution sk. On the other hand, Dktype = ‘NPC’ means
that MINRES found a non-positive curvature direction while solving the linear system. If this
happened when being called by Algorithm 5, dk1 gets the residue of the linear system, i.e. dk1 =

20

http://www.ime.usp.br/~egbirgin/

−(∇2fxk(0)sk +∇fxk(0)). In the implementation of Algorithm 2, we evaluated two possibilities for
the case where MINRES returns Dktype = ‘NPC’. The first is the one used in Algorithm 5, which is

to consider dk1 = −(∇2fxk(0)sk + ∇fxk(0)). The second is to consider dk1 = sk if sk ̸= 0, i.e. the
approximate solution itself, and dk1 = −∇fxk(0) if sk = 0. (Note that sk = 0 only when MINRES
detects a non-positive curvature direction in its first iteration). Both options will be evaluated
numerically below.

3.1.2 Tolerance in solving Newtonian systems using MINRES

When MINRES is used in Step 1 of Algorithm 5, the required accuracy is dynamically determined
by ηk ≥ η ≡ ϵ, updated according to (32), where its initial value η0 and its update factor τ ∈ (0, 1)
are given parameters. In Algorithm 2, we use a dynamic tolerance ϵmrk borrowed from [4, p.113].
For k = 1 the tolerance is ϵmr1 = ϵmrini , where ϵmrini ≥ ϵmrend ≡ ϵ is a given parameter, and the idea
is that in the last iteration the tolerance will be ϵmrend. To do this, at iteration k ≥ 1 we use a

tolerance whose value varies linearly with log10(∥∇Ωf(x
k)∥), i.e., ϵmrk =

√
10a log10(|∇Ωf(xk)|2)+b, where

a = log10(ϵ
mr
end/ϵ

mr
ini)/ log10(ϵ/|∇Ωf(x

0)|) and b = 2 log10(ϵ
mr
ini)− a log10(|∇Ωf(x

0)|2).

3.1.3 Optional extrapolations

Algorithm P (Steps 2.2, 2.3, and 4 of Algorithm 2) and Algorithm T (Steps 2.2, 2.3, 5, and 6.3 of
Algorithm 5) attempt to improve the current point by extrapolation. These attempts are of limited
effort by definition, so they do not affect the order of the complexity of the algorithms. For this
reason, their practical influence on the performance of the methods must be determined numerically.
The extrapolation consists of (i) set uk = 0; (ii) while uk+1 ≤ m and f(PΩ(x

k+2uk+1α0Q(xk)dk)) ≤
f(PΩ(x

k + 2ukα0Q(xk)dk)), set uk = uk + 1; (iii) define xk+1 = PΩ(x
k + 2ukα0Q(xk)dk).

3.1.4 Backtracking, Barzilai-Borwein stepsize, and other details

In Step 3 of Algorithm 2, Step 2 of Algorithm 3 and Step 3 of Algorithm 5, in practice, we use
quadratic interpolation with safeguards to find a step tk > 0 such that the corresponding sufficient
descent condition holds. The description of the algorithms refers to a step that is a power of 2 just
to simplify the description. This change has no significance on the theoretical results.

In Algorithm 3, for k ≥ 1 and whenever (xk − xk−1)T (∇fxk(0)−∇fxk−1(0)) > 0, we compute

λspg
k = max

{
λspg
min,min

{
(xk − xk−1)T (xk − xk−1)

(xk − xk−1)T (∇fxk(0)−∇fxk−1(0))
, λspg

max

}}
.

In the other cases, λspg
k ∈ [λspg

min, λ
spg
max] is arbitrary and we considered

λspg
k = max

{
λspg
min,min

{
max{1, ∥xk∥∞}
∥∇Ωf(xk)∥∞

, λspg
max

}}
.

In Algorithm 6, the approximate solution to the subproblem in Step 2 is calculated using the
projected gradient method. In addition, the representation of the regularization parameter with the
term 2ℓM in the iteration ℓ, where M > 0 is a parameter of Algorithm 6, is only a simplification
for the presentation of the algorithm. In practice, the regularization parameter is represented by ω.
When ℓ = 0, we consider ω = 0. In Step 3, if sufficient decent is not obtained, together with the
operation ℓ := ℓ + 1, we update ω by making ω := max{ωmin, ζω}, where ωmin > 0 and ζ > 1 are

21

parameters of the algorithm. In practice, we consider ωmin = 10−6 and ζ = 10, which are common
values in regularized methods.

3.2 Evaluation of Algorithm P and Algorithm T and their alternatives

This section compares different variants of Algorithms P and T, as well as the best variant of each
algorithm. When comparing two algorithms, we first compare their robustness. In this study, we
examine both unconstrained and bound-constrained problems. The algorithms we consider produce
feasible iterates. Thus, we associate the robustness of a method with the quality of its solutions,
i.e., the value of the objective function of the approximate solution it delivers. For a given problem,
let f1, . . . , fq be the functional value found by the methods M1, . . . ,Mq being compared. Given a
tolerance ftol > 0, we say that fi is equivalent to the best value found if fi ≤ fmin+ftolmax{1, |fmin|}
where fmin = mins=1,...,q{fs}, or if fi ≤ −10−12. If fi is equivalent to the best value found, we say
that the method Mi was successful. Otherwise, we say that it failed. The greater the number of
successes of a method, the greater its robustness. We only analyze the efficiency of methods in
problems where the solutions computed by both methods are considered equivalent. We use CPU
time as a measure of efficiency and present the comparison of efficiency in the form of performance
profiles [13].

Given ftol > 0, let p be the number of problems in which methods M1, . . . ,Mq being com-
pared found equivalent solutions and let tij be the CPU time of method Mi when applied to
problem j. In a performance profile, the curve Γi(τ) associated with method Mi is given by
Γi(τ) = # {j ∈ {1, . . . , p} | tij ≤ τ mins=1,...,q{tsj}}} /p for τ ≥ 1. The value of Γi(1) corresponds
to the proportion of problems in which method Mi was the fastest (including ties). Since only prob-
lems in which the methods find equivalent solutions are considered, for all i there exists a finite value
of τ such that Γi(τ) = 1. Another option would be to include problems in which the methods fail,
considering tij = +∞ if the method Mi failed on problem j. In that case, for each i, there exists
a finite τ̄ such that Γi(τ) is constant for all τ ≥ τ̄ and the value of Γi(τ̄) can be understood as a
measure of robustness of the method Mi. In this work, we evaluate the robustness first and restrict
the performance profiles to evaluate the efficiency only.

3.2.1 Evaluation of alternatives in Algorithm P

In Algorithm P, we considered the standard values θ = 0.1, ρ = 10−4, a1 = 108, a2 = 10−16,
λspg
min = 10−16, and λspg

max = 1016 from the literature. See, for example, [4]. For the parameter m that
limits the effort of the optional extrapolations, we considered m ∈ {0, 5, 10, 15, 20}. The case m = 0
corresponds to no optional extrapolations at all. For the parameter ϵmrini that determines the tolerance
for the solution of Newtonian linear systems, we considered ϵmrini ∈ {10−1, 10−2, 10−3, 10−4, ϵ}. Note
that when ϵmrini = ϵmrend = ϵ all Newtonian linear systems are solved to full precision.

The five options for values of m plus the five options for ϵmrini and the two options for the choice
of direction dk1 when MINRES detects a non-positive curvature direction (see Section 3.1.1) leave
a total of fifty parameter combinations for Algorithm P. The best combination of parameters was
found by employing irace [22]. The irace package implements the Iterated Race method for the
automatic tuning of optimization algorithms, given a set of instances of an optimization problem.
We used 20% of the 475 problems as a training set. The problems were selected by ordering the
unconstrained and box-constrained problems from smallest to largest by the number of variables,
separately, and selecting one in each five in the two ordered sets. The irace package requires a scalar

22

merit function to evaluate the performance of the method whose parameters are being calibrated.
We ignored the final value of the objective function and considered CPU time as a performance
metric, considering a time of 10 minutes if the stopping criterion of a small projected continuous
gradient was not reached. The combination that was identified as the best by irace was m = 20,
ϵmrini = 0.1 and taking dk1 as the approximate solution sk (instead of the residue rk) when MINRES
detectes a non-positive curvature direction. The values of m and ϵmrini coincide with values reported in
the literature for similar situations [4]. The choice of dk1 coincides with the results of the preliminary
experiments carried out to define Algorithm P.

It is important to discuss the sensitivity of the method in relation to its parameter and algorithmic
choice options. When comparing the m = 0 and m = 20 options, we see that the latter finds values
of f smaller than −1012 (suggesting that the objective function may be unbounded from below) in
three more problems (eight versus eleven) and finds better function values in thirty-one problems
when considering tolerance ftol = 0.1. The variant with m = 0 finds values of f equivalent to the best
one in 439 problems, while the variant with m = 20 does the same in 470 problems. Of the problems
in which the two variants found equivalent values of f with tolerance ftol = 0.1, the variant with
m = 0 is faster in 49% of the problems, while the variant with m = 20 is faster in 54%. In conclusion,
extrapolations increase the effectiveness of the method but have little impact on its average efficiency.
Now, examine the options for choosing a search direction when MINRES identifies a non-positive
curvature direction. The options are to use the approximate solution found by MINRES as the
search direction or to use the residue as the search direction. Both options identify 11 values of f
that are smaller than −1012. However, the first option identifies 469 values of f that are considered
equivalent to the best, while the second option identifies 446. Considering problems in which both
options identify equivalent function values, the first option is faster in 57%, while the second option is
faster 45%. In summary, choosing the approximate solution of the linear system as search direction
is a more robust and efficient option. This practical observation contrasts with the fact that the
second option guarantees a functional decrease O(ϵ3/2). Regarding the tolerance required to solve
linear Newtonian systems, we highlight the difference between the more relaxed option ϵmrini = 0.1,
and the more stringent option ϵmrini = ϵmrend = ϵ = 10−8. Surprisingly, the two options produced very
similar results. The two variants identified 11 cases in which f appears to be unbounded below and
found 470 and 461 better function values, respectively. Taking into account the cases in which they
identified equivalent function values, the former variant was faster in 59% of the cases, while the
latter variant was faster in 45% of the cases. In short, the two variants were very similar, with a
slight advantage in robustness and efficiency for the variant in which Newtonian systems are solved
with increasing accuracy.

3.2.2 Evaluation of alternatives in Algorithm T

In Algorithm T we considered θ = 0.1, η = 10−8, ρ = 10−4, α = 10−8, and γ = 1. For the
parameter m that limits the effort of the optional extrapolations, we considered m ∈ {0, 5, 10, 15, 20}.
For the parameters η0 and τ that determine the tolerance for the solution of Newtonian linear
systems, we considered η0 ∈ {10−1, 10−2, 10−3, 10−4, η} and τ ∈ {0.1, 0.3, 0.5, 0.7, 0.9}. We found the
best combination of parameters for Algorithm T by using irace the same way we used to calibrate
the parameters of Algorithm P. The best configuration returned by irace was m = 20, η0 = η, and
τ = 0.9. Note that since η0 = η means that the Newtonian linear systems are solved to full precision
by MINRES, the value of τ has no effect in Algorithm T.

The influence of the extrapolations in Algorithm T was very similar to that already reported for

23

Algorithm P. On the other hand, the tolerance required in the solution of linear Newtonian systems
deserves special mention. Here, we consider the variants with η0 = 0.1 and η0 = η = ϵ = 10−8. It
should be noted that when the Newton direction is computed with higher precision, there is a higher
chance that the search direction produces a functional descent O(ϵ3/2). Conversely, when the Newton
direction is computed with lower precision, there is a greater chance that the search direction will
guarantee only a functional descent of order O(ϵ2). Consequently, Algorithm T is forced to make
more iterations of both Algorithm 5 and Algorithm 6, resulting in a less efficient method. On the one
hand, the variant with η0 = 0.1 proved to be more robust, finding 469 better function values against
441 of the other variant. On the other hand, in the cases where the two variants found function
values considered equivalent, the first was faster in 63% of the cases while the second was faster in
42% of the cases. In other words, the variant that solves linear Newtonian systems in a relaxed way
makes more use of Newton iterations with regularization. This method is considered more robust,
though less efficient. Because efficiency was prioritized when choosing parameters with irace, the
variant with η0 = η was selected.

3.2.3 Algorithm P versus Algorithm T

We end this section by comparing Algorithms P and T. Considering the 475 problems, Algorithms P
and T stopped at the CPU time limit in 25 and 42 problems, found a function value less than or
equal to −1012 in 11 and 13 problems, and found a point with a gradient sup-norm less than or
equal to ϵ in 401 and 371 problems, respectively. Regardless of this, considering all 475 problems,
Table 1 shows the comparison of the function values found, and Figure 1 compares the efficiency of
Algorithms P and T in those problems where both found equivalent function values with ftol = 0.1.
The table shows that Algorithm P is substantially more robust than Algorithm T, since it finds a
significantly larger number of better solutions, regardless of the tolerance considered to determine
that functional values are equivalent. The figure shows that when both methods find equivalent
functional values, Algorithm P is slightly more efficient than Algorithm T. A comparison with the
version of Algorithm T that uses η0 = 0.1 would show that the algorithms are similar in robustness,
but Algorithm P is much more efficient.

ftol
0.1 10−2 10−3 10−4 10−5 10−6 10−7 10−8

Algorithm P 465 461 457 454 451 450 447 441
Algorithm T 412 399 388 380 377 369 369 369

Table 1: Number of solutions equivalent to the best solution found by Algorithms P and T, as a func-
tion of the tolerance ftol ∈ {10−1, 10−2, . . . , 10−8}, considering all the 475 unconstrained problems
and bound-constrained problems from the CUTEst collection.

3.3 Comparision of Algorithm P and Gencan

In this section we compare Algorithm P with Gencan (included in Algencan 3.1.1 and freely avail-
able at http://www.ime.usp.br/~tango/). Gencan is an active set method for bound-constrained
minimization, introduced in [4]. Algencan [1, 5, 7], an augmented Lagrangian method for nonlinear
programming, uses Gencan to solve its subproblems. Gencan is an active set method whose general

24

http://www.ime.usp.br/~tango/

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 100 1000

Γ
(τ
)

τ (log scale)

Algorithm P (Γ(1) = 0.74)
Algoritmo T (Γ(1) = 0.27)

Figure 1: Performance profiles comparing the efficiency of Algorithms P and T on the 402 problems
where the two methods found equivalent objective function values with tolerance ftol = 0.1.

framework is exactly the same as that described by Algorithm 1. That is, it uses exactly the same
criteria as Algorithm P to decide whether the next iteration should be within the current face or
whether the current face should be abandoned. If the current face should be abandoned, Gencan
also uses an SPG iteration as described in Algorithm 3. For iterations within a face, when matrix-
factorizations are not allowed, Gencan, like Algorithm P, uses truncated Newton with line search.
The difference is that Newtonian linear systems are solved with conjugate gradients. In conjugate
gradients, if Hessians are not available, the Hessian vector products are approximated by differences
of gradients. In the present work, we are assuming that Hessians are available and, therefore, Gen-
can as well as Algorithms P and T use true Hessian vector products in conjugate gradients and
MINRES. Gencan’s truncated Newton inspired and shares with Algorithm 2 the way to calculate
the tolerance with which linear systems should be solved, what to do when a non-positive curvature
direction is detected, and how to decide whether to attempt extrapolations or not. That is, the only
relevant difference between Gencan and Algorithm P is that the former uses conjugate gradients and
the latter uses MINRES to solve Newtonian linear systems. It is important to mention that the
comparison presented in [3] ranked Gencan among the most efficient and robust methods for bound-
constrained minimization, in a comparison that included ASA-CG [16], Ipopt [25], Lancelot B [11],
L-BFGS-B [23], SPG [8] and fmincon [9, 10].

We run Gencan with all its default parameters and the same stopping criterion already mentioned
for Algorithms P and T, i.e., ∥∇Ωf(x)∥∞ ≤ ϵ with ϵ = 10−8. Considering the 475 problems,
Algorithm P and Gencan stopped at the CPU time limit in 25 and 33 problems, found a function
value less than or equal to −1012 in 11 and 12 problems, and found a point with a gradient sup-norm
less than or equal to ϵ in 401 and 364 problems, respectively. Regardless of this, considering all the

25

475 problems, Table 2 shows the comparison of the function values found, and Figure 2 compares
the efficiency of the two variants in those problems where both found equivalent function values with
ftol = 0.1. The table and the figure show that Algorithm P is slightly more robust and significantly
more efficient than Gencan. When we consider only the 313 unconstrained problems in the CUTEst
collection, the results are qualitatively equivalent to those shown in [21]. In that study, the Newton-
MR method, from which Algorithms P and T originated, was found to be more robust and efficient
than several variations of Newton’s method that use conjugate gradients to solve Newtonian linear
systems.

ftol
0.1 10−2 10−3 10−4 10−5 10−6 10−7 10−8

Algorithm P 462 453 448 443 438 436 435 428
Gencan 447 445 437 430 427 423 422 416

Table 2: Number of solutions equivalent to the best solution found by Algorithm P and Gencan,
as a function of the tolerance ftol ∈ {10−1, 10−2, . . . , 10−8}, considering all the 475 unconstrained
problems and bound-constrained problems from the CUTEst collection.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 100 1000

Γ
(τ
)

τ (log scale)

Algorithm P (Γ(1) = 0.79)
Gencan 3 (Γ(1) = 0.23)

Figure 2: Performance profiles comparing the efficiency of Algorithm P and Gencan on the 434
problems where the two methods found equivalent objective function values with tolerance ftol = 0.1.

26

4 Conclusion

Recent work has analyzed the practical and theoretical properties of the well-known MINRES method
for solving linear systems, particularly in the context of a truncated Newton method (Newton-MR)
for unconstrained minimization. In this paper, we extended the Newton-MR method in two distinct
ways. In one approach, we preserved the worst-case complexity of O(ϵ−3/2) exhibited by Newton-MR
for unconstrained minimization. In the other approach, inspired by Gencan and guided by numerical
evaluations of various alternatives, we developed an extension of Newton-MR for bound-constrained
minimization with worst-case complexity of O(ϵ−2). Numerical experiments demonstrated that the
latter approach is more robust and efficient than the former, when considering both unconstrained
and bound-constrained problems from the CUTEst collection. A similar conclusion is reached when
only unconstrained problems are considered. On the one hand, it can be argued that worst-case
complexity does not always accurately reflect a method’s practical performance. On the other hand,
it is important to note that the method with lower complexity requires stronger assumptions than
the method with higher complexity. These stronger assumptions are difficult to verify in practice.
The best of the two methods was also compared with Gencan, a method with similar characteristics
but that solves linear systems using conjugate gradients. The new method proved to be more robust
and efficient. In future work, it remains to be seen whether this advantage holds when the method
is used to solve subproblems in an augmented Lagrangian method.

References

[1] R. Andreani, E. G. Birgin, J. M. Mart́ınez, and M. L. Schuverdt. On augmented Lagrangian
methods with general lower-level constraints. SIAM Journal on Optimization, 18(4):1286–1309,
2008.

[2] M. Andretta, E. G. Birgin, and J. M. Mart́ınez. Practical active-set euclidian trust-region
method with spectral projected gradients for bound-constrained minimization. Optimization,
54(3):305–325, 2005.

[3] E. G. Birgin and J. M. Gentil. Evaluating bound-constrained minimization software. Compu-
tational Optimization and Applications, 53(2):347–373, 2012.

[4] E. G. Birgin and J. M. Mart́ınez. Large-scale active-set box-constrained optimization method
with spectral projected gradients. Computational Optimization and Applications, 23(1):101–125,
2002.

[5] E. G. Birgin and J. M. Mart́ınez. Practical Augmented Lagrangian Methods for Constrained
Optimization. Society for Industrial and Applied Mathematics, Philadelphia, PA, 2014.

[6] E. G. Birgin and J. M. Mart́ınez. On regularization and active-set methods with complexity for
constrained optimization. SIAM Journal on Optimization, 28(2):1367–1395, 2018.

[7] E. G. Birgin and J. M. Mart́ınez. Complexity and performance of an augmented Lagrangian
algorithm. Optimization Methods and Software, 35(5):885–920, 2020.

[8] E. G. Birgin, J. M. Mart́ınez, and M. Raydan. Nonmonotone spectral projected gradient methods
on convex sets. SIAM Journal on Optimization, 10(4):1196–1211, 2000.

27

[9] T. F. Coleman and Y. Li. On the convergence of interior-reflective Newton methods for nonlinear
minimization subject to bounds. Mathematical Programming, 67(1–3):189–224, 1994.

[10] T. F. Coleman and Y. Li. An interior trust region approach for nonlinear minimization subject
to bounds. SIAM Journal on Optimization, 6(2):418–445, 1996.

[11] A. R. Conn, N. I. M. Gould, and Ph. L. Toint. Lancelot: A Fortran package for large scale
nonlinear optimization. Springer-Verlag, Berlin, Heidelberg, 1992.

[12] M-A. Dahito and D. Orban. The conjugate residual method in linesearch and trust-region
methods. SIAM Journal on Optimization, 29(3):1988–2025, 2019.

[13] E. D. Dolan and J. J. Moré. Benchmarking optimization software with performance profiles.
Mathematical Programming, 91(2):201–213, 2002.

[14] F. Facchinei, S. Lucidi, and L. Palagi. A truncated Newton algorithm for large scale box
constrained optimization. SIAM Journal on Optimization, 12(4):1100–1125, 2002.

[15] N. I. M. Gould, D. Orban, and Ph. L. Toint. CUTEst: a constrained and unconstrained testing
environment with safe threads for mathematical optimization. Computational Optimization and
Applications, 60(3):545–557, 2014.

[16] W. W. Hager and H. Zhang. A new active set algorithm for box constrained optimization. SIAM
Journal on Optimization, 17(2):526–557, 2006.

[17] M. Heinkenschloss, M. Ulbrich, and S. Ulbrich. Superlinear and quadratic convergence of affine-
scaling interior-point Newton methods for problems with simple bounds without strict comple-
mentarity assumption. Mathematical Programming, 86(3):615–635, 1999.

[18] C.-J. Lin and J. J. Moré. Newton’s method for large bound-constrained optimization problems.
SIAM Journal on Optimization, 9(4):1100–1127, 1999.

[19] Y. Liu and F. Roosta. Convergence of Newton-MR under inexact hessian information. SIAM
Journal on Optimization, 31(1):59–90, 2021.

[20] Y. Liu and F. Roosta. MINRES: From negative curvature detection to monotonicity properties.
SIAM Journal on Optimization, 32(4):2636–2661, 2022.

[21] Y. Liu and F. Roosta. A Newton-MR algorithm with complexity guarantees for nonconvex
smooth unconstrained optimization. Technical report, arXiv:2208.07095v2, 2023.

[22] M. López-Ibáñez, J. Dubois-Lacoste, L. P. Cáceres, T. Stützle, and M. Birattari. The irace pack-
age: Iterated racing for automatic algorithm configuration. Operations Research Perspectives,
3:43–58, 2016.

[23] J. L. Morales and J. Nocedal. Remark on “Algorithm 778: L-BFGS-B: Fortran subroutines
for large-scale bound constrained optimization”. ACM Transactions on Mathematical Software,
38(1):1–4, 2011.

[24] C. C. Paige and M. A. Saunders. Solution of sparse indefinite systems of linear equations. SIAM
Journal on Numerical Analysis, 12(4):617–629, 1975.

28

[25] A. Wächter and L. T. Biegler. On the implementation of an interior-point filter line-search
algorithm for large-scale nonlinear programming. Mathematical Programming, 106(1):25–57,
2005.

29

	Introduction
	Problem definition and new methods
	Method that employs SPG for leaving faces
	Method that employs cubic regularization for leaving faces

	Numerical experiments
	Implementation details
	When MINRES encounters a non-positive curvature direction
	Tolerance in solving Newtonian systems using MINRES
	Optional extrapolations
	Backtracking, Barzilai-Borwein stepsize, and other details

	Evaluation of Algorithm P and Algorithm T and their alternatives
	Evaluation of alternatives in Algorithm P
	Evaluation of alternatives in Algorithm T
	Algorithm P versus Algorithm T

	Comparision of Algorithm P and Gencan

	Conclusion

