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Abstract

Bound-constrained minimization is a subject of active research. To assess the performance of

existent solvers, numerical evaluations and comparisons are carried on. Arbitrary decisions that may

have a crucial effect on the conclusions of numerical experiments are highlighted in the present work.

As a result, a detailed evaluation based on performance profiles is applied to the comparison of

bound-constrained minimization solvers. Extensive numerical results are presented and analyzed.
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1 Introduction

The development of nonlinear optimization software is a very active field of research. On one hand, many
solvers have achieved a maturity stage and are being used for tackling a wide range of applied problems in
areas such as Chemistry, Economy, Engineering, Medicine, and Physics, just to name a few. On the other
hand, new methods are frequently proposed and their effectiveness and efficiency need to be assessed. In
any case, testing and comparing solvers and proposals is required, and coming to conclusions is as tricky
as developing fair testing environments. Performance profiles [17] and data profiles [23] have become
standards for presenting numerical comparisons in the last years. However, their usage requires several
arbitrary decisions to be made, which may influence the obtained conclusions.

In the present work, we focus on bound-constrained minimization software. A numerical evaluation of
the most well-known open-source solvers plus fmincon [10, 11] is conducted. fmincon was included in the
comparison due to its popularity among the huge number of Matlab users. Open-source solvers comprised
Algencan [1, 2], ASA [21], Ipopt [24], Lancelot B [14, 20], L-BFGS-B [9, 25, 22], and SPG [6, 7]. ASA and
L-BFGS-B are solvers developed for bound-constrained minimization. fmincon calls different methods
(SQP, active-set strategies, interior-point methods and trust-region reflective) depending on the problem
at hand. SPG targets convex-constrained minimization. Algencan, Ipopt and Lancelot B are nonlinear
programming (NLP) solvers. In this study we are interested in the application of the former methods to
bound-constrained minimization assuming that, in some way, their performances on this simpler case may
have some relation to their performances in the harder NLP case. This is true for Augmented Lagrangian
methods like Algencan and Lancelot B in the following way. Algencan makes use a bound-constrained
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minimization solver named Gencan [3, 4, 5] in order to solve the Augmented Lagrangian subproblems,
while Lancelot B employs SBMIN [12, 13] for the same purpose. Should a numerical evaluation reveal,
for example, that ASA is “better” than Gencan for solving bound-constrained minimization problems
(see [21]), it could imply that Algencan using ASA for solving the Augmented Lagrangian subproblems
would perform better than the current version of Algencan for solving NLP problems. To check this
possibility was, in fact, the motivation of the present work.

Summing up, the issue of whether to use performance profiles or data profiles for comparing solvers
is debated in the present work. Some decisions that have to be taken for building the performance
profiles are tackled. A detailed evaluation based on performance profiles is applied to the comparison
of the aforementioned bound-constrained minimization solvers. The remainder of the paper is organized
as follows. In Section 2, the evaluation framework is described. Section 3 is devoted to the numerical
experiments. Alternative approaches are discussed on Section 4. Conclusions are drawn in Section 5.

2 Comparison framework

2.1 Performance profiles or data profiles?

Consider m methods M1, . . . ,Mm and p problems P1, . . . , Pp and let tij be a metric of the effort that
method Mi made in problem Pj in order to arrive to a point with functional value fij . It is assumed that
the metric tij is such that the smaller its value, the higher the performance of method Mi on problem
Pj . Moreover, let tmin

j denote the smallest among all the performance measurements required by each
method that “found a solution” for problem Pj . In performance profiles, each method Mi is related to a
curve

Γi(τ) =
#{j ∈ {1, . . . , p} | Mi found a solution for Pj with tij ≤ τ tmin

j }

p
, (1)

where #S denotes the cardinality of set S. Performance profiles are useful to graphically represent a
comparison between several methods on a large set of test problems. They show the fraction Γi(τ) of
problems a methodMi solved within a prescribed limit on its performance measurement (like, for example,
CPU time). For each problem, the imposed limit is a proportion τ ≥ 1 of the performance measurement
of the most efficient method for this particular problem. It means that, for a method Mi, Γi(τ ≡ 1)
represents the fraction of problems for which the method was the most efficient over all the methods. On
the other hand, Γi(τ ≡ ∞) represents the fraction of problems solved by method Mi, irrespective of the
required effort. Therefore, the fraction Γi(τ ≡ 1) is usually associated with the efficiency of method Mi,
while Γi(τ ≡ ∞) is associated with its robustness.

Performance profiles were designed to give “easy” and “hard” problems the same importance within
the test set, where by “easy” it should be understood that the problem can be rapidly or effortlessly
solved. This decision may, as a matter of fact, strongly affect the conclusions of a comparison. If, on the
other hand, it is assumed that hard-to-solve, or, equivalently, time-consuming problems should be more
relevant in the comparison, performance profiles (1) might be replaced by data profiles

Γ̂i(τ) =
#{j ∈ {1, . . . , p} | Mi found a solution for Pj with tij ≤ τ}

p
. (2)

Data profile Γ̂i(τ) represents the fraction of problems method Mi is able to solve within a prescribed limit
on its performance measurement (like CPU time or number of functional evaluations). The difference
with the performance profile is that the limit is independent of the behavior of the other methods being
tested.

Are time-consuming problems more important than rapidly-solved problems when analyzing the be-
havior of two or more methods? There is no clear answer to that question and, hence, any assumption
that shall be made must be clearly stated in every numerical evaluation.
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2.2 Meaning of “to solve a problem”

When comparing methods theoretically capable of finding stationary points, how should we deal with
problems in which the methods found different local minimizers? For sure, comparing the effort made by
the methods to converge to different points should not be an option. Therefore, the question is whether
those problems should be removed from the performance comparison or not. Although doing this is,
in fact, a common practice, removing those problems with no further consideration leads to a loss of
information. The elimination of the problems in which the methods arrived at qualitatively different
solutions is commonly justified by the claim that a method theoretically capable of finding stationary
points cannot be penalized for having found poor quality local minimizers. If on one hand it seems to be
a fair reasoning, on the other hand it ignores the fact that well-designed methods accomplish more than
what is guaranteed by their convergence theory.

Most box-constrained optimization methods are guaranteed to find stationary points. In practice,
good methods do more than that, such as “magical steps” in the sense of [15] (pp. 387–391), which
happen to be effective to increase the probability of convergence to global minimizers. The line-search
procedures of Gencan [5], for example, include extrapolation steps that are not necessary from the point
of view of KKT convergence. This extra job may deteriorate the efficiency of the method as it increases
the number of objective function evaluations, but it enhances the probability of convergence to global
minimizers. This is an example of a design choice of the developers of Gencan that aims robustness in
detriment of efficiency.

If, in a hypothetical situation, two well designed methods found solutions of different quality in 20%
of the test set problems and each method found solutions of better quality in half of those cases, including
those problems will not affect the relative comparison among the methods — it will only reduce in 10%
the robustness of each method, preserving the fact that both methods are equally robust. However, if,
due to design reasons, one of the methods has a tendency to find better quality minimizers than the other
and, let’s say, it found better solutions in 14% of the cases (while the opposite situation occurred in 6%
of the cases), including those problems will reflect this fact by attributing a greater robustness to the
first method, as it deserves. This choice will not affect the comparison if there are no main robustness
differences in the methods, while it will highlight the advantages of a method over the others should some
substantial differences exist in the quality of the solutions found.

The statement above brings us to the point where we need to determine whether two solutions are
of equivalent quality or not. In the present work we are dealing with bound-constrained minimization
problems, for which it is a trivial task to preserve feasibility of the solutions. The precise satisfaction
of the bound constraints leads us to the simple case where solutions can be evaluated by comparing the
objective functional value only. Since we are dealing with floating-point arithmetic, we cannot simply
ask whether two functional values are equal, and a comparison considering relative errors is in order.

Let f1, . . . , fm be the objective function values found by methods M1, . . . ,Mm when applied to a
given problem. Let fmin = min{f1, . . . , fm} and consider

εi =
fi − fmin

max{1, |fmin|}
, i = 1, . . . ,m. (3)

For a given tolerance εf > 0, we say that method Mi found a solution if

εi ≤ εf , (4)

i.e. we are considering “small” absolute errors whenever |fmin| ≤ 1 and “small” relative errors otherwise.
In addition, we also say that method Mi found a solution if fi ≤ −f∞, where f∞ is a very large positive
number. In this case, we assume the objective function is unbounded from below within the feasible region
and any value of fi ≤ −f∞ is considered a solution. Needless to say, arbitrary choices of the threshold
parameter εf may exert a great influence in the comparison process. Postponing the discussions related
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to the determination of εf and the choice and measurement of an appropriate performance metric, we
finish this subsection with an illustrative example.

Let us assume that we have methods M1 and M2 and a test set with 293 problems. Assume that
we used certain performance metric and some value of the threshold parameter εf to decide, according
to (3–4), whether two solutions are equivalent or not. Figure 1a shows the performance profiles ignoring
those problems in which the methods found solutions of different quality, while Figure 1b shows the
performance profiles using the whole set of problems. Figure 1a says that method M1 is more efficient
than method M2, but it gives no clue about the robustness of the methods (or, even worse, it may
suggest to an unadvised reader that both methods are equally robust). On the other hand, Figure 1b,
which provides very similar knowledge with respect to the efficiency of the methods, presents an extra
information: M1 is approximately 8% more robust than M2.

The missing information in Figure 1a is the following: according to (3–4), both methods found
equivalent solutions in 234 problems (the ones used to build Figure 1a) and different quality solutions
in the remaining 59 problems. Among these 59 problems, method M1 found better quality solutions
in 41, while the opposite situation occurred in the other 18 problems. Summing up, using the convention
introduced in (3–4), method M1 found a solution in 275 problems, while method M2 found a solution
in 252 problems. Figure 1b shows this information on the right hand side of the graphic, saying that
method M1 has a robustness of 0.94 ≈ 275/293, while method M2 has a robustness of 0.86 ≈ 252/293.
Whether Figure 1a or Figure 1b is preferable is a matter of taste, but if Figure 1a is chosen, the information
related to the disregarded problems, accompanied by every applicable warning, should be provided to
the reader.

2.3 Performance metric

Whenever different versions of a certain method are subject to evaluation, the comparison of the number
of iterations executed by each of them is usually enough to provide a reasonably accurate figure of their
relative performance. In the derivative-free optimization case, it is well accepted that the most time-
consuming task for any method is the evaluation of the objective function and, under this hypothesis,
the number of functional evaluations is used as a metric to assess the performance of the methods. In
any other scenario, such as that of the evaluation of distinct methods, the only metric whose comparison
carries any significance is the CPU time required for task completion. Thankfully, most of the state-
of-the-art software in the nonlinear programming field is open source and can be freely downloaded,
compiled and run in a unified computational environment for measuring CPU time.

Even in such an ideal scenario, some special care is called for. That is because outward factors such
as programming languages, compilers and compilation directives do exert some influence on the machine
code generated and, thus, on the measured CPU time. Moreover, other environment aspects at runtime
can also interfere with the solver’s algorithmic choices — Gencan may dynamically opt to use CG instead
of trust-regions or Newton in order to compute some “inner-to-the-face steps” if there is not enough
memory for a direct linear-systems solver such as MA27 or MA57 to complete a matrix factorization.
Another example of a factor that may have an influence in numerical evaluations including Lancelot B
is related to the use of the widely accepted Cuter collection [8, 19] of test problems. In [8], p. 136, when
describing the interfaces between Cuter and several solvers, it is written “Of course, LANCELOT also
solves problems in SIF, but it does not require an interface using the CUTE tools. Note that LANCELOT
exploits much more structure than that provided by the interface tools.”. The efficiency gains obtained by
Lancelot B by exploiting the structure of a problem coded in SIF (like the ones in the Cuter collection)
over a competitor method that uses an interface remains to be elucidated. Nevertheless, even though
the exact effects of the aforementioned conditions on a method’s performance are not fully understood,
programming languages, compiler options, software versions, operating system and platform description
details should be meticulously reported when presenting numerical experiments in order to at least
increase the chance of reproducibility.
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Some considerations about measurement of the CPU time spent by a method during a problem’s
resolution are in order. On one hand, timing small intervals became a matter of growing importance with
the introduction of performance profiles, which were designed to give “easy” and “hard” problems the
same importance. On the other hand, it is known that tools traditionally used for measuring CPU time
have a resolution somewhere between a hundredth and millionth of a second [26]. The precise resolution
is platform-dependent, being a hundredth of a second one of the most common situations, as is the case of
the platform where the numerical experiments of the present work were run1. With the aim of improving
the accuracy of the measured time interval, the timing of a single execution of a method may be obtained
by the timing of a sufficiently large number η of runs without interruption. Denoting by T (η) the CPU
time actually measured, the CPU time t(η) that corresponds to the execution of a single instance of the
problem can be easily computed as

t(η) =
T (η)

η
.

One might ask how long the interval T (η) must be in order to guarantee that the underlying t(η) will
carry enough accuracy. Aiming at providing an answer to this question, the following experiment was
conducted. For a random sample of six problems, the value of t(η) was computed for increasingly longer
time intervals T (η) and, for each one of them, a relative error was obtained as follows:

ε(t(η)) =
t(η)− t∗

t∗
,

where t∗ corresponds to the CPU time attained for the largest number of uninterrupted runs performed.
From this data, it was possible to establish that, for values of T (η) longer than 10 seconds, the associated
relative error ε(t(η)) would be no greater than 2%. Figure 2 illustrates the results of the experiment
performed with problem BQP1VAR from the Cuter collection. Performance profiles in Figures 1a and 1b
were built using CPU time as the performance metric, which was measured as described in previous
paragraphs.

Unfortunately, it is not always possible to modify a given method to measure the CPU time as de-
scribed above. Consider t̂ij the CPU time of a single measurement (thereby, prone to error) of method Mi

applied to problem Pj , and let t̂min
j be the shortest among all the times required by each method that

found a solution for problem Pj according to (3–4). Error measurements in t̂ij may lead to two different
inconveniences: (a) comparing small and error-prone metric measurements may lead to wrong conclu-
sions, and (b) if t̂min

j = 0 for some problem Pj then, by (1), problem Pj will never be considered in the

curve of a method Mi that found a solution for problem Pj with t̂ij > 0.
At least three trivial and arbitrary decisions to overcome (a) and (b) may be considered:

(i) disregard problems Pj such that t̂min
j ≤ 0.01 seconds and use tij ≡ t̂ij as a performance metric for

the remaining problems;

(ii) disregard problems Pj such that all methods being considered found equivalent solutions in t̂ij ≤
0.01 seconds and use tij ≡ max{0.01 seconds, t̂ij} ∀i as a performance metric for the remaining
problems; or

(iii) do not disregard any problem and use tij ≡ max{0.01 seconds, t̂ij} as a performance metric.

We dismissed option (i) since it may eliminate a problem Pj with t̂min
j ≤ 0.01 seconds even when a

method Mi may have found a solution taking t̂ij ≫ t̂min
j , canceling the advantage of the fastest method

(the one with t̂ij = t̂min
j ) in the comparison procedure.

Figures 3a and 3b show the single-measurement counterparts of Figure 1b corresponding to alterna-
tives (ii) and (iii), respectively. Figure 3a shows a nice property of the test set of problems: the efficiency

1See [16], pp. 183–186, for a guideline to check the timing resolution of your own Linux platform.
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Metric

Minimum Q1 Median Q3 Maximum

# of variables 1 4 100 5000 37,311

# of bound constraints 0 0 0 12 20,000

Table 1: Minimum, maximum, median and first and third quartiles of the number of variables and
bound-constraints of the 293 unconstrained and bound-constrained problems from the Cuter test set.

rates of the methods are mostly preserved even when, following alternative (ii), the 79 problems in which
both methods found a solution in no more than one hundredth of a second are disregarded. It is worth
noting that, for the remaining 214 = 293 − 79 problems, 29 intervals shorter than one hundredth of a
second corresponding to method M1 were overestimated when substituted by 0.01 seconds, while the
same situation occurred for method M2 in only 7 problems. Since in these 36 problems one method
took more than one hundredth of a second (otherwise the problem would have been disregarded), such
overestimation does not affect the computed efficiency rate of the methods at all, its influence being
restricted to the intermediate parts of the performance profile graphics. On the other hand, Figure 3a
reduces the apparent robustness rates of the methods by eliminating those 79 problems. Note that the
robustness rates of methods M1 and M2 decreased in different proportions. This difference can be easily
explained. From Figure 3a, we have that M1 solves 276 ≈ 0.92 × (293 − 79) + 79 problems, while M2

solves 252 ≈ 0.81 × (293 − 79) + 79 problems. It means that the true robustness rates of methods M1

and M2 are 0.94 ≈ 276/293 and 0.86 ≈ 252/293, respectively, as shown in Figure 1b. If Figure 3a is to
be used to illustrate a comparison, the true robustness rates of the methods should be informed.

Following (iii), Figure 3b preserves the robustness of the methods and artificially increases their
efficiency by adding 79 ties. (Those 79 ties come from the overestimation of 108 and 85 measured
times shorter than one hundredth of a second for methods M1 and M2, respectively.) The efficiency of
method M1 goes from 0.67 (in Figure 3a) to 0.76 ≈ (0.67× (293−79)+1.0×79)/293, while the efficiency
of method M2 goes from 0.33 to 0.51 ≈ (0.33× (293− 79) + 1.0× 79)/293. If Figure 3b is to be used to
illustrate a comparison, the efficiency rates of the methods computed ignoring the artificially introduced
ties (0.67 and 0.33 for methods M1 and M2, respectively) should be reported. None of the graphics seem
to be completely satisfactory, but any of them may be used, accompanied by the due clarifications, to
present the results of a numerical comparison.

3 Numerical experiments

In the numerical experiments, we considered 293 problems from the Cuter collection [19] (version.date:
’CUTEr: Mon Jan 8 15:36:20 EST 2007’). It corresponds to all the unconstrained and bound-constrained
problems from the Cuter collection with the exception of problem WALL100, for which we were not able
to run the interface subroutines. Test problems are of the form

Min f(x) subject to x ∈ Ω,

where Ω = {x ∈ R
n | ℓ ≤ x ≤ u}, ℓ, u ∈ R

n, ℓ ≤ u, and f : Rn → R is continuously differentiable. A
few figures related to the test set are shown in Table 1. The stopping criterion associated with successful
convergence, common to all the considered methods, was

‖PΩ(x−∇f(x))− x‖∞ ≤ εg, (5)

where PΩ(·) represents the Euclidean projection onto Ω.
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In the numerical experiments we considered Algencan 2.3.7, ASA 2.2, fmincon included in the Matlab
Optimization Toolbox Software Version 4.1 (R2008b), Ipopt 3.9.3, Lancelot B included in GALAHAD ver-
sion 2.40003, L-BFGS-B (modified on April 25, 2011) and SPG (downloaded from the TANGO Project
web page on 08/10/2011).2 In Algencan, Ipopt and Lancelot B, we provided every HSL subroutine
required to improve their performance, but not Metis. In all cases we preserved software’s default param-
eters. It is worth noting that Algencan, fmincon, Ipopt, and Lancelot B use second-order information,
while ASA, L-BFGS-B, and SPG use only first-order information. Software was compiled with GNU
Fortran (gfortran) and GCC version 4.3.3. The compiler optimization option -O4 was adopted. All the
experiments were executed on a 2.4GHz Intel Core 2 Quad Q6600 with 4.0GB of RAM memory running
the GNU/Linux Operating System. CPU time measuring was made by calling to the Cuter tool creprt
designed to obtain statistics concerning function evaluations and CPU time.

We opted for using performance profiles to present the results of the numerical experiments. Dealing
with a large set of mostly academic test problems, we believe that easy-to-solve instances have the same
importance as the harder ones. This is because similar easy-to-solve bound-constrained problems may
have to be processed a huge number of times when nonlinear programming tools are employed as sub-
algorithms in the context of Global Optimization or Mixed-Integer Nonlinear Programming.

In the performance profiles, we relied on CPU time as the performance measurement. The CPU time
of each pair method/problem was limited to thirty minutes. This limitation should be taken into account
in the global performance analysis. Note that, according to the concepts of efficiency and robustness
applied in the present work, a short time limit may depict an inefficiency case as a failure, affecting the
robustness of a method.

Because we understand that providing a robustness analysis of the methods being tested is one of
the main features of the present comparison, we decided to build the performance profiles using the
whole set of test problems, i.e., including those for which the methods found different quality solutions
as well. With regard to considering or not problems for which all methods found equivalent solutions in
at most one hundredth of a second, the numerical experiments will show that it makes no difference in
the present analysis — fmincon never finished running in one hundredth of a second or less. It is worth
noting that the present performance study refers to a comparative analysis between the seven methods
being considered, and that the exclusion or inclusion of a method may modify the relative comparison
among the methods.

In order to run the tested methods, a value for the threshold parameter εg in the stopping criterion (5)
has to be determined. This is a dimensional parameter and there is no clear rule to establish its value.
Moreover, the difficulty in achieving small values of the sup-norm of the projected gradient might vary
according to whether a method makes use of second-order information or not. To cope with this situation,
we performed five different runs of each pair method/problem for εg ∈ {10−4, 10−5, . . . , 10−8}. With all
this data at hand, we needed to determine a value for the threshold parameter εf in (4), as well as
for −f∞. Once again, since there is no easy way to select an arbitrary value for εf , for each possible
choice of εg we present the results for every εf ∈ {10−4, 10−5, . . . , 10−8} such that εf ≥ εg. We also
arbitrarily set f∞ = 1020.

Considering all possible combinations of εg and εf , we arrived at fifteen different performance profiles.
It is a common practice in most of the published papers that make use of performance profiles to only
present one of those combinations. Table 2 shows the efficiency and the robustness rates of each of the
seven methods in all fifteen possible performance profiles. Roughly speaking, Table 2 makes it clear that
Lancelot B appears as the most robust method for almost any combination of εg and εf . The second place
in the robustness ranking is disputed between Ipopt for loose values of the tolerance εf and Algencan for
tight values of the tolerance εf . The third place is occupied by Algencan in the former case and by ASA
in the later one. The first three places in the ranking of efficiency rates are shared between Algencan,
ASA, Ipopt and Lancelot B, being Algencan in first place in fourteen out of the fifteen combination of εg

2As of this writing, these are the newest versions of all the considered open-source solvers.
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and εf . Figures 4a and 4b show the performance profiles for the extreme cases εg = εf = 10−8 and
εg = εf = 10−4, respectively. Note that the top of the ranking is shared by Lancelot B and Algencan in
the former case, and by Ipopt, Algencan, and Lancelot B in the later one. The most notable difference
refers to Ipopt, which ascended from the fourth position in the former to the first one in later case. This
variation in the efficiency and robustness rates as a function of the threshold parameter εf is illustrated
in Figure 5. As expected, the efficiency remains almost constant, while the robustness rates decrease
when εf becomes smaller. All methods show a similar behavior with the exception of Ipopt — many
final iterates of Ipopt are not considered solutions according to (3–4) when εf is small, causing a larger
deterioration in its robustness.

For bound-constrained minimization, fmincon consists in the Trust Region Reflective Algorithm [10,
11] due to historical reasons. Development policies that can be loosely described as “do not modify the
current behavior of the method in a given problem” prevent its developers from updating their code.
At its current state, fmincon features a large number of alternative stopping criteria related to lack of
progress, which cause the method to stop prematurely with respect to the final objective functional value.
Seeking efficiency, several solvers use to have some stopping criteria associated with “lack of progress”
that halt the execution of the method when it seems that no further progress can be made. In cases
in which the function value found is considered a solution by the comparison procedure, this premature
stop favors the solver, presenting it as an efficient method. Note that other solvers may struggle through
hundreds of iterations with slow progress, trying to satisfy the required stopping criterion associated
with convergence, but without making any significant improvement in the objective function. On the
other hand, if a solver stops its execution (due to a supposed lack of progress) and the objective function
value found is not considered a solution by the comparison procedure, the premature stop makes the
solver appear to be less robust than its competitors. This whole situation is neither bad nor good, it is
just the reflection of design choices made by developers. Of course, in general, solvers allow the user to
inhibit those alternative stopping criteria related to lack of progress and any experienced user is able to
bypass them if desired. However, in the present work we opted to run all the solvers with their default
parameters and to attempt to explain the results.

An explanation connecting the results being reported in the present work and the ones presented in [21]
is in order. We consider the result of a method M1 more satisfactory than the result of a method M2 in
two situations: when M1 finds a feasible point and M2 does not, and when both find feasible points and
the objective function value attained by M1 is sufficiently smaller than the one obtained by M2. In any of
these two situations, we consider M1 more robust than M2. If both methods arrive at feasible points with
similar functional values, we consider the method that consumed less CPU time the most efficient one. In
the context of bound-constrained minimization, returning a feasible point is a trivial task. Therefore, we
claim that a comparison should be centered around the objective function values obtained by the methods
(the picture is far more complicated in the presence of nonlinear constraints). The whole comparison
procedure elaborated on the present work is based on that foundation. A different perspective was taken
in [21]. From the originally considered set of test problems, those for which different local minimizers
were found by the methods were discarded, as were those in which all methods stopped in no more than
one hundredth of a second. The stopping criterion adopted was (5) with εg = 10−6. The specific test
used to determine whether local minimizers were equivalent or not, as well as a possible preference of a
certain solver for better quality local minimizers, were not reported. Note that a comparison based only
on problems for which all the methods found equivalent solutions can only arrive at conclusions related
to the efficiency of the methods, but not to their robustness.

Irrespective of the different methodologies used for comparison, there are two other possible sources
of discrepancies: the test sets of problems are different and the methods being compared themselves were
updated since the publication of [21]. One of the main changes in the active-sets-based method Gencan
is that it was originally developed [5] as a first-order method that estimated Hessian-vector products
by means of incremental quotients to compute truncated-Newton directions using CG within the faces.
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Efficiency Robustness

εf = 10−4 10−5 10−6 10−7 10−8 10−4 10−5 10−6 10−7 10−8

Algencan

εg = 10−4 0.5324 — — — — 0.8601 — — — —

εg = 10−5 0.5392 0.5324 — — — 0.8635 0.8430 — — —

εg = 10−6 0.5290 0.5290 0.5358 — — 0.8703 0.8567 0.8294 — —

εg = 10−7 0.5529 0.5495 0.5563 0.5529 — 0.8771 0.8635 0.8430 0.8294 —

εg = 10−8 0.5631 0.5563 0.5700 0.5700 0.5597 0.8771 0.8669 0.8464 0.8328 0.8157

ASA

εg = 10−4 0.5358 — — — — 0.7679 — — — —

εg = 10−5 0.5188 0.4983 — — — 0.8362 0.8020 — — —

εg = 10−6 0.5085 0.4915 0.4846 — — 0.8396 0.8225 0.7952 — —

εg = 10−7 0.4710 0.4539 0.4505 0.4437 — 0.8430 0.8259 0.8123 0.7952 —

εg = 10−8 0.4573 0.4505 0.4369 0.4334 0.4164 0.8464 0.8396 0.8191 0.8123 0.7747

fmincon

εg = 10−4 0.0034 — — — — 0.4608 — — — —

εg = 10−5 0.0137 0.0137 — — — 0.5631 0.4676 — — —

εg = 10−6 0.0137 0.0137 0.0068 — — 0.6041 0.5427 0.4744 — —

εg = 10−7 0.0137 0.0137 0.0137 0.0068 — 0.6314 0.5973 0.5529 0.4881 —

εg = 10−8 0.0102 0.0102 0.0102 0.0102 0.0068 0.6485 0.6246 0.6007 0.5358 0.4778

Ipopt

εg = 10−4 0.3549 — — — — 0.8874 — — — —

εg = 10−5 0.3754 0.3857 — — — 0.8908 0.8874 — — —

εg = 10−6 0.3891 0.3959 0.3857 — — 0.8874 0.8840 0.7952 — —

εg = 10−7 0.3754 0.3891 0.3788 0.3891 — 0.8805 0.8771 0.7918 0.7713 —

εg = 10−8 0.3618 0.3720 0.3618 0.3686 0.3686 0.8840 0.8840 0.7986 0.7747 0.7645

Lancelot B

εg = 10−4 0.4471 — — — — 0.8532 — — — —

εg = 10−5 0.4334 0.4437 — — — 0.8874 0.8703 — — —

εg = 10−6 0.4437 0.4471 0.4471 — — 0.8908 0.8771 0.8635 — —

εg = 10−7 0.4471 0.4471 0.4505 0.4505 — 0.9010 0.8840 0.8669 0.8464 —

εg = 10−8 0.4471 0.4471 0.4471 0.4471 0.4369 0.9044 0.8908 0.8737 0.8567 0.8294

L-BFGS-B

εg = 10−4 0.3481 — — — — 0.7713 — — — —

εg = 10−5 0.3481 0.3481 — — — 0.7918 0.7611 — — —

εg = 10−6 0.3379 0.3413 0.3413 — — 0.7952 0.7782 0.7474 — —

εg = 10−7 0.3379 0.3413 0.3379 0.3447 — 0.8020 0.7850 0.7611 0.7440 —

εg = 10−8 0.3140 0.3140 0.3106 0.3106 0.3072 0.7713 0.7645 0.7474 0.7372 0.7099

SPG

εg = 10−4 0.3174 — — — — 0.6587 — — — —

εg = 10−5 0.3208 0.3208 — — — 0.7952 0.7201 — — —

εg = 10−6 0.3174 0.3174 0.3106 — — 0.7952 0.7645 0.7201 — —

εg = 10−7 0.3140 0.3140 0.3106 0.3106 — 0.7816 0.7474 0.7235 0.7099 —

εg = 10−8 0.3072 0.3072 0.3106 0.3072 0.2969 0.7679 0.7509 0.7270 0.7133 0.6792

Table 2: Efficiency and robustness rates for each combination of εg ∈ {10−4, . . . , 10−8}, εf ∈
{10−4, . . . , 10−8} and εf ≥ εg. In case the reader is able to see the table in colours, first, second
and third places in the efficiency and robustness rankings are shown in blue, green and red, respectively.
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Nowadays, Gencan incorporates second-order information in several ways: (i) the true Hessian-vector
product can be used in CG, (ii) the Newton direction can be computed using a direct solver, and (iii)
Gencan has embedded the trust-region approach of Betra [3] in the computation of an inner-to-the-face
step. HSL direct solvers MA27 and MA57 can now be linked to Gencan in order to solve linear systems.
In connection with MA27, either MC30 or MC77 can be used to scale such linear systems. One among
the four possible options for taking inner-to-the-face steps is automatically chosen in Gencan depending
on the dimension of the problem being solved. Naturally, the user has also the option of setting the
strategy of their choice. Summing up, we believe that the differences in the comparison procedure, the
set of test problems, and the updates in ASA and Gencan justify the discrepancies between the numerical
experiments presented in [21] and the ones being reported here.

Returning to the matter of our comparison itself, there is a missing piece of information with respect to
the performance profiles presented in Table 2, Figures 4a, 4b, and 5a that affects the computed efficiency
of the methods. As we have already mentioned, none of the problems were excluded from the performance
profiles by reason of being solved by all the methods in no more than one hundredth of a second. However,
most of the methods had several short time intervals overestimated due to being replaced by 0.01 seconds,
as suggested in Subsection 2.3. The number of times an overestimated CPU time was considered to build
the fifteen performance profiles was, on average, 94 for Algencan, 66 for ASA, 0 for fmincon, 24 for Ipopt,
66 for Lancelot B, 11 for L-BFGS-B, and 13 for SPG. If we exclude fmincon from the comparison, then,
on average, 55 problems are excluded from the performance profile calculation for being solved by all the
remaining methods in at most one hundredth of a second. Considering the remaining problems (238 on
average), Table 3 shows the efficiency and robustness rates of the fifteen performance profiles for each
combination of εg and εf . The efficiency rates presented in Table 3, which does not include artificially
added ties, are more realistic than the ones presented in Table 2. However, it is worth noting that the
efficiency ranking induced by Table 3 is mostly identical to the one suggested by Table 2. On the other
hand, the robustness rates appear to be smaller than they really are by the exclusion of, on average, 55
problems solved by all the methods in at most one hundredth of a second. The true robustness rates can
be easily computed (as already shown in Section 2) and are presented on Table 4. These robustness rates
are almost identical to the ones shown in Table 2 and the slight differences are justified by the exclusion
of fmincon.

While performance profiles present each method in comparison to the other ones being tested and
analyzed, Table 5 shows absolute information related to each method. In particular, for each method and
each value of εg ∈ {10−4, . . . , 10−8}, Table 5 provides: Convergence – the number of problems in which
a method declared to have satisfied the convergence stopping criterion (5); Unbounded – the number of
problems in which the method declared the objective function to be unbounded from below within the
feasible region; CPU Time – the number of problems in which the method exhausted the thirty-minutes
time limit without fulfilling any other criteria; and Other – the number of times a method stopped due
to an alternative stopping criteria. The last column of the table shows the “Individual robustness rate”,
computed as the fraction of problems in which a given method satisfied the stopping criterion (5) asked
by the user or identified the objective function as unbounded. We say this rate is “individual” because
it corresponds to the case in which a sole method being run by a user returns an unequivocal positive
answer, without utilizing any additional information to check the quality of that solution. Algencan
occupies the first place in the ranking of individual robustness rates irrespective of the value of εg. The
second place in the ranking belongs to ASA, while Ipopt and Lancelot B share second and third places
depending on the value of εg.
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Efficiency Robustness

εf = 10−4 10−5 10−6 10−7 10−8 10−4 10−5 10−6 10−7 10−8

Algencan

εg = 10−4 0.4219 — — — — 0.8270 — — — —

εg = 10−5 0.4316 0.4188 — — — 0.8291 0.8034 — — —

εg = 10−6 0.4213 0.4170 0.4255 — — 0.8383 0.8255 0.7915 — —

εg = 10−7 0.4492 0.4449 0.4557 0.4515 — 0.8475 0.8347 0.8101 0.7932 —

εg = 10−8 0.4730 0.4647 0.4835 0.4835 0.4797 0.8506 0.8423 0.8182 0.8017 0.7846

ASA

εg = 10−4 0.4262 — — — — 0.7131 — — — —

εg = 10−5 0.3974 0.3718 — — — 0.7949 0.7521 — — —

εg = 10−6 0.3915 0.3702 0.3574 — — 0.8000 0.7787 0.7447 — —

εg = 10−7 0.3475 0.3263 0.3249 0.3122 — 0.8051 0.7839 0.7679 0.7468 —

εg = 10−8 0.3444 0.3361 0.3223 0.3182 0.3049 0.8133 0.8050 0.7810 0.7727 0.7317

Ipopt

εg = 10−4 0.2025 — — — — 0.8608 — — — —

εg = 10−5 0.2222 0.2393 — — — 0.8632 0.8590 — — —

εg = 10−6 0.2426 0.2553 0.2383 — — 0.8596 0.8553 0.7447 — —

εg = 10−7 0.2331 0.2500 0.2405 0.2489 — 0.8517 0.8475 0.7426 0.7173 —

εg = 10−8 0.2282 0.2407 0.2314 0.2397 0.2520 0.8589 0.8589 0.7562 0.7273 0.7195

Lancelot B

εg = 10−4 0.3165 — — — — 0.8186 — — — —

εg = 10−5 0.2906 0.3034 — — — 0.8590 0.8376 — — —

εg = 10−6 0.3064 0.3106 0.3106 — — 0.8638 0.8468 0.8298 — —

εg = 10−7 0.3136 0.3136 0.3207 0.3207 — 0.8771 0.8559 0.8354 0.8101 —

εg = 10−8 0.3278 0.3278 0.3306 0.3306 0.3293 0.8838 0.8672 0.8471 0.8264 0.7967

L-BFGS-B

εg = 10−4 0.1983 — — — — 0.7173 — — — —

εg = 10−5 0.1880 0.1880 — — — 0.7393 0.7009 — — —

εg = 10−6 0.1745 0.1787 0.1787 — — 0.7447 0.7234 0.6851 — —

εg = 10−7 0.1780 0.1822 0.1814 0.1899 — 0.7542 0.7331 0.7046 0.6835 —

εg = 10−8 0.1660 0.1660 0.1653 0.1653 0.1748 0.7220 0.7137 0.6942 0.6818 0.6545

SPG

εg = 10−4 0.1561 — — — — 0.5781 — — — —

εg = 10−5 0.1496 0.1496 — — — 0.7436 0.6496 — — —

εg = 10−6 0.1489 0.1489 0.1404 — — 0.7447 0.7064 0.6511 — —

εg = 10−7 0.1483 0.1483 0.1477 0.1477 — 0.7288 0.6864 0.6582 0.6414 —

εg = 10−8 0.1577 0.1577 0.1653 0.1612 0.1626 0.7178 0.6971 0.6694 0.6529 0.6179

Table 3: Efficiency and robustness rates for each combination of εg ∈ {10−4, . . . , 10−8}, εf ∈
{10−4, . . . , 10−8} and εf ≥ εg disregarding fmincon. In case the reader is able to see the table in
colours, first, second and third places in the efficiency and robustness rankings are shown in blue, green
and red, respectively.
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Robustness

εf = 10−4 10−5 10−6 10−7 10−8

Algencan

εg = 10−4 0.8601 — — — —

εg = 10−5 0.8635 0.8430 — — —

εg = 10−6 0.8703 0.8601 0.8328 — —

εg = 10−7 0.8771 0.8669 0.8464 0.8328 —

εg = 10−8 0.8771 0.8703 0.8498 0.8362 0.8191

ASA

εg = 10−4 0.7679 — — — —

εg = 10−5 0.8362 0.8020 — — —

εg = 10−6 0.8396 0.8225 0.7952 — —

εg = 10−7 0.8430 0.8259 0.8123 0.7952 —

εg = 10−8 0.8464 0.8396 0.8191 0.8123 0.7747

Ipopt

εg = 10−4 0.8874 — — — —

εg = 10−5 0.8908 0.8874 — — —

εg = 10−6 0.8874 0.8840 0.7952 — —

εg = 10−7 0.8805 0.8771 0.7918 0.7713 —

εg = 10−8 0.8840 0.8840 0.7986 0.7747 0.7645

Lancelot B

εg = 10−4 0.8532 — — — —

εg = 10−5 0.8874 0.8703 — — —

εg = 10−6 0.8908 0.8771 0.8635 — —

εg = 10−7 0.9010 0.8840 0.8669 0.8464 —

εg = 10−8 0.9044 0.8908 0.8737 0.8567 0.8294

L-BFGS-B

εg = 10−4 0.7713 — — — —

εg = 10−5 0.7918 0.7611 — — —

εg = 10−6 0.7952 0.7782 0.7474 — —

εg = 10−7 0.8020 0.7850 0.7611 0.7440 —

εg = 10−8 0.7713 0.7645 0.7474 0.7372 0.7099

SPG

εg = 10−4 0.6587 — — — —

εg = 10−5 0.7952 0.7201 — — —

εg = 10−6 0.7952 0.7645 0.7201 — —

εg = 10−7 0.7816 0.7474 0.7235 0.7099 —

εg = 10−8 0.7679 0.7509 0.7270 0.7133 0.6792

Table 4: Robustness rates for each combination of εg ∈ {10−4, . . . , 10−8}, εf ∈ {10−4, . . . , 10−8} and
εf ≥ εg disregarding fmincon. This robustness rates correspond to the ones in Table 3 with the inclusion
of those problems that were solved by all the six methods in at most one hundredth of a second. In case
the reader is able to see the table in colours, first, second and third places in the ranking of robustness
rate are shown in blue, green and red, respectively.
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Stopping criteria Individual
robustness

Convergence Unbounded CPU Time Other

Algencan

εg = 10−4 273 3 10 7 0.9420

εg = 10−5 272 3 10 8 0.9386

εg = 10−6 268 3 11 11 0.9249

εg = 10−7 265 3 12 13 0.9147

εg = 10−8 262 3 12 16 0.9044

ASA

εg = 10−4 276 — 11 6 0.9420

εg = 10−5 275 — 11 7 0.9386

εg = 10−6 269 — 16 8 0.9181

εg = 10−7 264 — 20 9 0.9010

εg = 10−8 260 — 21 12 0.8874

fmincon

εg = 10−4 63 — 28 202 0.2150

εg = 10−5 53 — 29 211 0.1809

εg = 10−6 58 — 29 206 0.1980

εg = 10−7 52 — 32 219 0.1775

εg = 10−8 58 — 39 196 0.1980

Ipopt

εg = 10−4 270 — 13 10 0.9215

εg = 10−5 267 — 13 13 0.9113

εg = 10−6 264 — 13 16 0.9010

εg = 10−7 258 — 14 21 0.8805

εg = 10−8 253 — 14 26 0.8635

Lancelot B

εg = 10−4 270 — 13 10 0.9215

εg = 10−5 269 — 14 10 0.9181

εg = 10−6 263 — 15 15 0.8976

εg = 10−7 260 — 17 16 0.8874

εg = 10−8 250 — 17 26 0.8532

L-BFGS-B

εg = 10−4 245 2 13 33 0.8430

εg = 10−5 225 2 13 53 0.7747

εg = 10−6 204 2 16 71 0.7031

εg = 10−7 181 2 19 91 0.6246

εg = 10−8 166 2 18 107 0.5734

SPG

εg = 10−4 269 2 22 — 0.9249

εg = 10−5 259 2 32 — 0.8908

εg = 10−6 255 2 36 — 0.8771

εg = 10−7 241 2 50 — 0.8294

εg = 10−8 232 2 59 — 0.7986

Table 5: “Individual robustness rate” related to each method. In case the reader is able to see the table
in colours, first, second and third places in the ranking of individual robustness rate are shown in blue,
green and red, respectively.
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Number of times all solvers converged to the same stationary point

εf = 10−4 10−5 10−6 10−7 10−8

εg = 10−4 145 (55/90) — — — —

εg = 10−5 178 (57/121) 161 (57/104) — — —

εg = 10−6 167 (56/111) 162 (56/106) 134 (56/78) — —

εg = 10−7 151 (54/97) 145 (54/91) 123 (53/70) 117 (53/64) —

εg = 10−8 129 (44/85) 129 (44/85) 108 (43/65) 104 (43/61) 97 (39/58)

Table 6: Number of problems considered to compute the efficiency rates.

4 Discussion

4.1 Seeking global minimizers or stationary points?

Performance profile Γi(τ) for method Mi, as defined in (1), considers only those problems Pj , j ∈
{1, . . . , p}, for which method Mi found a solution. According to (3–4), given a tolerance εf > 0, we
say that method Mi found a solution for problem Pj whenever it found a feasible point with an ob-
jective function value fij that is close to the best value fmin

j found by the methods being evaluated.
Roughly speaking, this “best value” is taken as if it were the global minimizer of the problem, and the
computational efforts of the (more robust) methods that have found a reasonable approximation to the
global minimizer are being compared to determine their efficiency. The other method that did not find
an approximation to the global minimizer are considered as having failed on problem Pj (affecting their
robustness rate in a negative way). The fact of a method having found or not a stationary point with
tolerance εg > 0 according to (5) is completely ignored. This metric strongly reflects the authors’ believe
that the problem being solved is a minimization problem and that the stopping criterion (5) is just a tool
commonly used to stop the methods.

However, many solvers are actually designed to find local minimizers or even stationary points. So,
all the efforts are directed to satisfy the stopping criterion (5). We now evaluate the methods by their
capacity to find stationary points, comparing the computational effort on those problems in which all
solvers satisfied (5) with tolerance εg > 0 and found the same stationary point. We say that all solvers
found the same stationary point if they all satisfy (3–4) with εf ∈ {10−4, . . . , 10−8} and εf ≥ εg.
This comparison is useful to evaluate the solvers efficiency when considering that their objective is to
find stationary points. The solvers capacity (effectiveness or robustness) to find stationary points, was
already reported on Table 5. As it can be observed in the table, fmincon stopped most of the time
satisfying alternative stopping criteria and failed to satisfy criterion (5). Therefore, it is excluded from
the present efficiency comparison. Moreover, as the main objective of this comparison is to assess the
efficiency of the methods, we excluded from the comparison those problems for which all solvers found the
same stationary point in no more than one hundredth of a second. Otherwise, we would have artificially
increased the efficiency rates of the methods as already explained in Subsection 2.3.

Considering all possible combinations of εg and εf , we obtained fifteen different performance profiles.
Table 6 displays, for each combination of εg and εf , the number of problems being considered to compute
the efficiency rates. In Table 6, A(B/C) means that, among the 293 problems being considered, all solvers
satisfied the stopping criterion (5) and converged to the same stationary point in A problems; and that
among those A problems, in B problems all the methods stopped in no more than one hundredth of a
second, leaving C problems to compute the efficiency rates displayed in Table 7. Table 7 shows that,
independently of the tolerance εg used in the stopping criterion (5) and independently of the tolerance εf

used to determine whether the stationary points are equivalent or not, ASA is the most efficient solver
to find stationary points, followed by Algencan and Lancelot B.
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Efficiency to find stationary points

εf = 10−4 10−5 10−6 10−7 10−8

Algencan

εg = 10−4 0.4444 — — — —

εg = 10−5 0.4628 0.5000 — — —

εg = 10−6 0.4595 0.4717 0.4872 — —

εg = 10−7 0.4639 0.4835 0.4857 0.4688 —

εg = 10−8 0.5176 0.5176 0.5231 0.5246 0.5172

ASA

εg = 10−4 0.7000 — — — —

εg = 10−5 0.5620 0.5673 — — —

εg = 10−6 0.5405 0.5283 0.5641 — —

εg = 10−7 0.4845 0.4615 0.5143 0.5313 —

εg = 10−8 0.4824 0.4824 0.5538 0.5738 0.5862

Ipopt

εg = 10−4 0.0889 — — — —

εg = 10−5 0.1322 0.0962 — — —

εg = 10−6 0.1622 0.1698 0.1154 — —

εg = 10−7 0.1443 0.1429 0.1143 0.1250 —

εg = 10−8 0.1765 0.1765 0.1385 0.1475 0.1207

Lancelot B

εg = 10−4 0.3444 — — — —

εg = 10−5 0.2727 0.2981 — — —

εg = 10−6 0.2613 0.2642 0.3333 — —

εg = 10−7 0.2165 0.2308 0.2857 0.3125 —

εg = 10−8 0.2588 0.2588 0.3385 0.3443 0.3448

L-BFGS-B

εg = 10−4 0.3222 — — — —

εg = 10−5 0.2314 0.2692 — — —

εg = 10−6 0.2072 0.2170 0.2692 — —

εg = 10−7 0.1959 0.2088 0.2714 0.2969 —

εg = 10−8 0.2471 0.2471 0.3231 0.3443 0.3448

SPG

εg = 10−4 0.1889 — — — —

εg = 10−5 0.1736 0.2019 — — —

εg = 10−6 0.1532 0.1604 0.1923 — —

εg = 10−7 0.1649 0.1758 0.2286 0.2500 —

εg = 10−8 0.2235 0.2235 0.2923 0.3115 0.3103

Table 7: Efficiency rates for each combination of εg ∈ {10−4, . . . , 10−8}, εf ∈ {10−4, . . . , 10−8} and
εf ≥ εg disregarding fmincon. These efficiency rates correspond to the case in which we consider that the
solvers objective is to find stationary points. In case the reader is able to see the table in colours, first,
second and third places in the ranking of efficiency rate are shown in blue, green and red, respectively.
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Median sup-norm of projected gradient

εg = 10−4 10−5 10−6 10−7 10−8

Algencan 1.9D-06 2.3D-08 2.3D-09 2.3D-10 4.0D-11

ASA 6.6D-05 6.7D-06 6.7D-07 7.2D-08 6.5D-09

fmincon 1.1D-05 4.3D-07 5.9D-09 6.3D-10 7.5D-11

Ipopt 8.7D-11 8.3D-11 4.3D-11 1.9D-11 1.3D-11

Lancelot B 2.5D-05 1.6D-06 9.0D-08 9.6D-09 8.2D-10

L-BFGS-B 6.8D-05 6.6D-06 5.9D-07 4.6D-08 4.8D-09

SPG 7.2D-05 6.5D-06 5.9D-07 6.2D-08 6.2D-09

Table 8: Median sup-norm of the projected gradient at the final iterates provided by the solvers. Medians
are taken over the problems in which each solver declared to have satisfied the convergence stopping
criterion.

4.2 Benefits of using second-order information

As already recalled in the previous subsection, the methodology used in the numerical experiments
of Section 3 to assess the solvers’ performance is based on the objective function value at the final
iterate. In theory, this methodology might favor second-order methods (like Algencan, fmincon, Ipopt
and Lancelot B) in the following way. In second-order methods the norm of the gradient is reduced in big
chunks when the methods approach a stationary point, while for gradient-type first-order methods the
gradient’s norm decreases slowly. Therefore, given a tolerance εg > 0, second-order methods usually stop
at a final iterate that loosely satisfies the stopping criterion (5), in contrast to first-order methods whose
final iterate tightly satisfies the stopping criterion (5). Table 8 illustrates this characteristic of the second-
order methods in practice, displaying the median sup-norm of the projected gradient at the final iterate of
each solver. The median is taken over the cases in which each solver declared to have satisfied the stopping
criterion (5). ASA, L-BFGS-B, and SPG clearly show the expected behavior of the first-order methods;
while the remaining solvers show the result of using second-order information. The highlights of the figures
in Table 8 are the small projected gradient sup-norms reported by Ipopt. Accompanying the smaller
gradients, the second-order solvers are supposed to obtain better approximations to an accumulation
point of the generated sequence. Hence, they should have better chances of satisfying (3–4) for a given
tolerance εf > 0; while first-order methods should have larger chances of receiving the label of “having
failed to find a reasonable approximation to the best solution found”.

In [18], p. 112, it is written “It is often thought that modified Newton methods perform well only
close to the solution. This belief has caused many ’hybrid’ algorithms to appear in which a different
method (usually steepest descent) is used until the iterates are close to the solution. It is our experience
that there is little justification for a hybrid approach, since a carefully implemented modified Newton
method will make good progress at points remote from the solution.” This assertion suggests that second-
order methods should be used whenever second-order derivatives are available and/or affordable. This is
certainly true if high precisions (small εg) are required to declare convergence; while it may not be the
case if loose precisions are required. This dependence of the preferable method on the required tolerance
to declare convergence is the reason for considering fifteen combinations of tolerances εf and εg, instead
of fixing an arbitrary choice, in the numerical comparisons of the present work. Moreover, in practice, a
bunch of characteristics of the underlying method and its implementation details, other than using only
first or second-order information, may influence the solver’s performance. In Tables 2 and 3, it can be
seen that, for fixed values of εg, ASA ranks in third place of robustness when (3–4) is applied using small
values of εf ; while it is outperformed by other solvers if loose values of εf are considered, apparently
contradicting the theoretical reasoning of the previous paragraph. This phenomenon is in fact related to
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Stopping criteria Individual
robustness

Convergence Unbounded CPU Time Other

Algencan without using 2nd-order derivatives

εg = 10−4 260 2 11 20 0.8942

εg = 10−5 256 2 13 22 0.8805

εg = 10−6 254 2 14 23 0.8737

εg = 10−7 250 2 16 25 0.8600

εg = 10−8 247 2 16 28 0.8498

Table 9: “Individual robustness rate” related to Algencan without using second-order derivatives.

the performance of Ipopt, which has higher robustness rates when εf ∈ {10−4, 10−5} (pushing down the
ranking of the remaining solvers) and lower robustness rates for εf ∈ {10−6, 10−7, 10−8}. This behavior
of Ipopt, that uses second-order information, might be related to its difficulty in approaching a solution
to high precision when it is situated in the boundary of the feasible region.

It was already mentioned on Section 3 that Algencan automatically chooses whether second-order
information should be used or not, depending on the dimension of the problem being solved. On the
other hand, the user can also select the desired strategy. To illustrate the influence of using second-
order information, we finish this subsection by presenting a comparison among the first-order methods
ASA, L-BFGS-B, and SPG, and Algencan without using second-order derivatives. To do this, it is
enough to use Algencan with the keywords truncated-newton-line-search-inner-solver and
incremental-quotients-in-cg, which reduce Algencan’s underlying method to its first-order an-
cestor introduced in [5] and considered in [21].

Table 9 complements Table 5 by showing the individual robustness rates of Algencan without using
second-order derivatives. Table 10 shows the efficiency and the robustness rates of each of the four
first-order methods in all the fifteen possible performance profiles varying εg and εf . Table 10 (that is
analogous to Table 2) reflects the results of the comparison based on the objective function value at the
final iterate delivered by the methods. On average, 71 (out of the 293) problems were excluded from the
performance profiles calculations for being solved by all the four methods in at most one hundredth of
a second. On the remaining problems, the number of times an overestimated CPU time was considered
to build the fifteen performance profiles was, on average, 27 for Algencan without using second-order
derivatives, 13 for ASA, 3 for L-BFGS-B, and 2 for SPG. Figures in the table show that ASA is the most
efficient and robust first-order method, independently of the combination of tolerances used to build the
performance profiles. In the spirit of the comparison framework described in Subsection 4.1, Table 11
shows the efficiency rates corresponding to the case in which it is considered that the solvers’ objective is
to find stationary points. Considering the fifteen combinations of εg and εf , on average, the four solvers
found equivalent stationary points in 156 out of the 293 problems. Among the problems in which the four
solvers found equivalent stationary points, on average, 65 problems were eliminated from the efficiency
rates computation because all methods found the stationary point in at most one hundredth of a second,
leaving 91 problems for computing the efficiency rates. Once again, figures in Table 11 present ASA as
the most efficient first-order method. These results are in agreement with the ones presented in [21],
showing that they are valid for the test set being considered in the present work and for the current
versions of ASA and Algencan without using second-order derivatives.
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Efficiency Robustness

εf = 10−4 10−5 10−6 10−7 10−8 10−4 10−5 10−6 10−7 10−8

Algencan without using 2nd-order derivatives

εg = 10−4 0.3801 — — — — 0.8145 — — — —

εg = 10−5 0.3624 0.3624 — — — 0.8257 0.8028 — — —

εg = 10−6 0.3891 0.3846 0.3901 — — 0.8371 0.8190 0.8072 — —

εg = 10−7 0.4009 0.3919 0.3946 0.3946 — 0.8333 0.8198 0.8072 0.7982 —

εg = 10−8 0.4286 0.4196 0.4222 0.4267 0.4311 0.8393 0.8259 0.8133 0.8089 0.8089

ASA

εg = 10−4 0.5475 — — — — 0.7647 — — — —

εg = 10−5 0.5413 0.5183 — — — 0.8578 0.8165 — — —

εg = 10−6 0.5430 0.5294 0.5426 — — 0.8552 0.8416 0.8206 — —

εg = 10−7 0.5135 0.5000 0.5022 0.4888 — 0.8559 0.8423 0.8296 0.8161 —

εg = 10−8 0.5268 0.5268 0.5156 0.5156 0.4889 0.8616 0.8571 0.8356 0.8356 0.8089

L-BFGS-B

εg = 10−4 0.2217 — — — — 0.7647 — — — —

εg = 10−5 0.2202 0.2339 — — — 0.7752 0.7477 — — —

εg = 10−6 0.1946 0.2036 0.1839 — — 0.7783 0.7602 0.7220 — —

εg = 10−7 0.2072 0.2162 0.2108 0.2108 — 0.7748 0.7613 0.7444 0.7175 —

εg = 10−8 0.1786 0.1875 0.1822 0.1689 0.1689 0.7411 0.7366 0.7244 0.7111 0.6889

SPG

εg = 10−4 0.1222 — — — — 0.5882 — — — —

εg = 10−5 0.1147 0.1147 — — — 0.7615 0.6743 — — —

εg = 10−6 0.1267 0.1267 0.1211 — — 0.7602 0.7330 0.6816 — —

εg = 10−7 0.1396 0.1441 0.1300 0.1345 — 0.7477 0.7207 0.6906 0.6771 —

εg = 10−8 0.1205 0.1250 0.1200 0.1200 0.1289 0.7277 0.7188 0.6933 0.6756 0.6622

Table 10: Efficiency and robustness rates of the first-order methods for each combination of εg ∈
{10−4, . . . , 10−8}, εf ∈ {10−4, . . . , 10−8} and εf ≥ εg. In case the reader is able to see the table in
colours, first, second and third places in the efficiency and robustness rankings are shown in blue, green
and red, respectively.
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Efficiency to find stationary points

εf = 10−4 10−5 10−6 10−7 10−8

Algencan without using 2nd-order derivatives

εg = 10−4 0.3176 — — — —

εg = 10−5 0.2895 0.3232 — — —

εg = 10−6 0.2477 0.2523 0.2551 — —

εg = 10−7 0.2105 0.2222 0.2222 0.2299 —

εg = 10−8 0.2593 0.2593 0.2692 0.2800 0.2778

ASA

εg = 10−4 0.7647 — — — —

εg = 10−5 0.6667 0.6667 — — —

εg = 10−6 0.7339 0.7290 0.7551 — —

εg = 10−7 0.7368 0.7222 0.7222 0.7126 —

εg = 10−8 0.7531 0.7531 0.7436 0.7333 0.7361

L-BFGS-B

εg = 10−4 0.2235 — — — —

εg = 10−5 0.2193 0.2121 — — —

εg = 10−6 0.1835 0.1869 0.1837 — —

εg = 10−7 0.1684 0.1778 0.1778 0.1839 —

εg = 10−8 0.1605 0.1605 0.1667 0.1733 0.1806

SPG

εg = 10−4 0.0706 — — — —

εg = 10−5 0.0702 0.0707 — — —

εg = 10−6 0.0917 0.0935 0.0918 — —

εg = 10−7 0.1053 0.1111 0.1111 0.1149 —

εg = 10−8 0.0988 0.0988 0.1026 0.1067 0.1111

Table 11: Efficiency rates of the first-order methods for each combination of εg ∈ {10−4, . . . , 10−8},
εf ∈ {10−4, . . . , 10−8} and εf ≥ εg. These efficiency rates correspond to the case in which we consider
that the solvers’ objective is to find stationary points. In case the reader is able to see the table in
colours, first, second and third places in the ranking of efficiency rate are shown in blue, green and red,
respectively.
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5 Conclusions

We employed performance profiles in a robust way to evaluate the performance of some of the most
well-known open-source software for bound-constrained minimization. Whether one of them “is better”
than the others depends on several issues, like, for example, availability of second-order information, size
of the problem being solved, the required accuracy on the solution, and on which between efficiency or
robustness is being sought. Even the definition of robustness might be considered an open question, as
there is no consensus on whether the capacity to find good local minimizers or stationary points should
be evaluated.

The conclusions of the numerical experiments are restricted to the application of the evaluated soft-
ware to the unconstrained and bound-constrained problems from the Cuter collection. It is very clear that
the number of variables (as well as other characteristics of the considered problems) do exert an influence
in the results of the comparison among the solvers performance. In the extreme cases, it is very clear that
for very small problems using second-order information is profitable; while for very large problems only
first-order methods can be applied. While SPG did not present itself as a preferable choice for bound-
constrained minimization, numerical experiments in [7] showed that it may be the most adequate method
for interesting classes of convex-constrained minimization problems. On the same line of reasoning, it
should be noted that the underlying algorithm evaluated in fmincon was trust-region-reflective,
which is fmincon’s default choice for bound-constrained minimization because of historical reasons. Other
options within fmincon, like active-set, interior-point and sqp, which would very likely outper-
form trust-region-reflective, were not tested due to not being the default one.

The present conclusions apply to the software being tested and are not necessarily extensible to
the underlying optimization methods. Some of the software under consideration (Algencan, Ipopt and
Lancelot B) lend themselves to solving NLP problems. Whether the conclusions of the present work
about the similarity among their performance can be extrapolated to the NLP case or not still remains
to be determined. Moreover, in order to tackle the NLP case, the present evaluation procedure needs to
be extended in order to deal with the case of comparing solutions with different degrees of feasibility.

Regarding the comparison framework, many details were meticulously worked and analyzed. In the
end, the impression is that while most of the possible decisions are reasonable choices, it is important to
clearly state the exact calculations being made. On the other hand, it became clear that arbitrary choices
on the stopping criteria of the methods and on the decision of whether a method found a solution or not
may lead to partial conclusions, which do not provide an entirely truthful description of the whole picture.

Acknowledgements: We are indebted to two anonymous referees whose comments helped us to improve
the paper. We are also indebted to Prof. Bill Hager, Editor-in-Chief of Computational Optimization and
Applications, whose instigating comments motivated most of the material in Section 4.
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Figure 1: Performance profiles of methods M1 and M2. (a) Built ignoring the problems in which the
methods found solutions of different quality. (b) Considering the whole set of test problems.
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Figure 2: Problem BQP1VAR from the Cuter collection was solved η consecutive times using Gencan,
for increasing values of η. The graphic (a) shows the relative error ε(t(η)) = (t(η)− t∗)/t∗. Graphic (b)
is a zoom of the right hand side of graphic (a).
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Figure 3: Performance profiles of methods M1 and M2 using a single-run CPU time measurement as
performance metric. As in Figure 1b, problems are not eliminated when the solvers found different quality
solutions. (a) Problems for which both methods found equivalent solutions in at most one hundredth of
a second are disregarded. (b) The whole set of problems is used to draw the curves. In (a), as well as in
(b), for every problem considered to build the curves, any measured time smaller than one hundredth of
a second was replaced by 0.01 seconds. 25
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Figure 4: Performance profiles for the cases (a) εg = εf = 10−8 and (b) εg = εf = 10−4. They correspond
to the extremes of the fifteen combinations of εg and εf presented in Table 2.
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Figure 5: These graphics represent, for the case εg = 10−8, the (a) efficiency and (b) robustness of the
methods as a function of εf ∈ {10−4, . . . , 10−8}. The curves representing the efficiency and robustness
rates of fmincon are missing in these graphics because they are not visible in the scale adopted.
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