# Optimization of centroidal Voronoi tessellations<sup>\*</sup>

E. G. Birgin<sup>†</sup> J. S. C. Franco<sup>‡</sup> A. Laurain<sup>§</sup>

February 3, 2025

#### Abstract

In this paper, we investigate the optimization of Centroidal Voronoi Tessellations (CVT) under geometric constraints. For this purpose, we minimize a linear combination of the standard CVT energy functional with terms involving geometric attributes such as area and perimeter. The derivative of the objective functional with respect to the position of the generators is computed using techniques of shape calculus and sensitivity analysis of minimization diagrams. Several numerical experiments are presented to explore the geometric constraints of cells with identical areas, cells without small edges, and density-based distributions of cells.

**Keywords:** Centroidal Voronoi Tessellations, Voronoi diagrams, shape optimization, boundconstrained minimization, numerical experiments.

Mathematics Subject Classification: 49Q10, 49J52, 49Q12

## 1 Introduction

Centroidal Voronoi Tessellations (CVTs) are a special case of Voronoi tessellations in which each site coincides with the centroid of its Voronoi cell. They play an important role in various applications in science and engineering, including image processing, data compression, and numerical approximations of partial differential equations, particularly for mesh generation. We refer to [7] for a comprehensive survey of applications. CVT has been generalized to very broad settings, such as CVT of surfaces or line segments, distance metrics, and discrete point sets [8].

A standard approach to computing CVTs is the deterministic Lloyd's algorithm [7, 14], which is a fixed-point algorithm. The convergence of Lloyd's algorithm is slow, but several improvements have been introduced, such as the Lloyd-Newton method [6] and variants that employ quasi-Newton methods, such as the limited-memory BFGS (LBFGS) method [10, 13]. CVTs can also be constructed using probabilistic methods such as MacQueen's algorithm [15].

<sup>\*</sup>This work has been partially supported by the Brazilian agencies FAPESP (grants 2013/07375-0, 2022/05803-3, and 2023/08706-1) and CNPq (grant 302073/2022-1).

<sup>&</sup>lt;sup>†</sup>Department of Computer Science, Institute of Mathematics and Statistics, University of São Paulo, Rua do Matão, 1010, Cidade Universitária, 05508-090, São Paulo, SP, Brazil. e-mail: egbirgin@ime.usp.br

<sup>&</sup>lt;sup>‡</sup>Department of Applied Mathematics, Institute of Mathematics and Statistics, University of São Paulo, Rua do Matão, 1010, Cidade Universitária, 05508-090, São Paulo, SP, Brazil. e-mail: jcastanof@ime.usp.br

<sup>&</sup>lt;sup>§</sup>Faculty of Mathematics, University of Duisburg-Essen, Thea-Leymann-Str. 9, 45127, Essen, Germany, e-mail: antoine.laurain@uni-due.de

As shown in [13], a CVT is a critical point of the CVT energy function and can be constructed using derivative-based optimization methods since the energy function is  $C^2$  within a convex domain. The derivative of the energy and the Lloyd map were computed in [7] and used in subsequent papers such as [4, 13]. The use of these derivatives for gradient-based, Newton and quasi-Newton methods is also discussed in [7].

It was shown in [3] that this type of sensitivity analysis for Voronoi diagrams can be recast in the much more general framework of minimization diagrams. Minimization diagrams are a broad class of diagrams whose cells are defined via the lower envelope of a set of graphs of functions. Many relevant diagrams, such as Voronoi diagrams or power diagrams, are special cases of minimization diagrams. These theoretical results allow us to consider the optimization of any differentiable criterion depending on the geometric properties of the minimization diagram. This includes CVT as a special case, but also various other criteria such as perimeter, area, angles, and other geometric quantities. A useful feature of this general theory is the handling of fixed elements of the geometry, such as the boundary of the domain, which are usually not considered in the sensitivity analysis of Voronoi diagrams. In [3], the authors presented several numerical applications for the optimization of Voronoi diagrams with the aim of obtaining specific properties such as equal cell areas or edges of equal length. These properties are desirable for improving mesh quality using quality measures, see [7, 11].

In this paper, we extend these results to the optimization of CVTs. We consider objective functions that are linear combinations of the CVT energy with additional terms that enforce geometric constraints. The goal is to demonstrate how one can control the geometric properties of CVTs. This can also be seen as minimizing the CVT energy with additional constraints in the form of penalizations. We focus on two types of geometric constraints. The first constraint is of the area type, forcing cells to have identical areas. The second type of constraint is a perimeter constraint, where the goal is to avoid cells with small edges.

In Section 2 we introduce the notation and tools necessary for the sensitivity analysis of Voronoi diagrams, and then apply these results to the computation of the gradient of the CVT and other relevant shape functions. Two different ways to compute the gradients are presented. Numerical experiments are given in Section 3. In the experiments, we show how to compute CVTs where all cells have the same area, cells without edges considered small, and cells whose area is governed by a given function. Conclusions and lines of future work are presented in the last section.

## 2 The CVT energy function and its gradient

In this section, we first recall the main results of [3] that are necessary for the sensitivity analysis of Voronoi diagrams. We then introduce the CVT energy function and use these results to compute its gradient. Consider the set  $A := \{x \in \mathbb{R}^2 : \varphi(x) < 0\}$  with  $\varphi(x) := \min_{\ell \in \mathcal{K}_A} \varphi_\ell(x)$ and  $\varphi_\ell \in \mathcal{C}^{\infty}(\mathbb{R}^2, \mathbb{R})$  for all  $\ell \in \mathcal{K}_A := \{\kappa_0 + 1, \dots, \kappa_0 + \kappa_1\}$  for some given  $\kappa_0, \kappa_1$ . For  $\ell \in \mathcal{K}_A$ , introduce the set  $\partial_\ell A := \{x \in \partial A : \varphi_\ell(x) = 0\}$ ; then we have  $\partial A = \bigcup_{\ell \in \mathcal{K}_A} \partial_\ell A$ . Denote by  $\mathcal{T}_{\partial A}$ the finite set of corners of A. Let  $\mathcal{K}_{\text{vor}} = \{1, \dots, \kappa_0\}$  be a set of indices,  $\mathbf{a} = \{a_k\}_{k \in \mathcal{K}_{\text{vor}}}$  be a set of points in the plane, the so-called *sites*, and let  $\mathbf{V}(\mathbf{a}) := \{V_i(\mathbf{a})\}_{i \in \mathcal{K}_{\text{vor}}}$  be the Voronoi diagram associated with **a**, where the cells of the diagram are defined by

$$V_i(\mathbf{a}) := \{ x \in A \text{ such that } \|x - a_i\| \le \|x - a_j\| \text{ for all } j \in \mathcal{K}_{\text{vor}} \setminus \{i\} \}.$$

We will also need the following notation. The Euclidean norm is denoted by  $\|\cdot\|$ . For  $x, y \in \mathbb{R}^n$ ,  $x \cdot y = x^\top y \in \mathbb{R}$ ;  $x \otimes y = xy^\top \in \mathbb{R}^{n \times n}$ . We use  $y^\perp := Ry$ , for  $y \in \mathbb{R}^2$ , where R is a rotation matrix of angle  $\pi/2$  with respect to a counterclockwise orientation. The transpose of a matrix M is indicated by  $M^\top$ . The gradient with respect to  $x \in \mathbb{R}^2$  of a function  $\psi : \mathbb{R}^2 \to \mathbb{R}$  is denoted  $\nabla_x \psi$  and is a column vector. The Jacobian matrix is denoted  $D_x \psi$ . The gradient with respect to **a** of a function  $G : \mathbb{R}^{q\kappa_0} \to \mathbb{R}$  is  $\nabla G$ . The Jacobian matrix with respect to **a** of a function  $G : \mathbb{R}^{q\kappa_0} \to \mathbb{R}$  is one-dimensional or its area if S is two-dimensional.

#### 2.1 Sensitivity analysis of Voronoi diagrams

Let  $V(\mathbf{a} + t\delta \mathbf{a}) := \{V_k(\mathbf{a} + t\delta \mathbf{a})\}_{k \in \mathcal{K}_{vor}}$  be a perturbed Voronoi diagram. In what follows, we describe the tools and notation needed for the sensitivity analysis of  $V(\mathbf{a} + t\delta \mathbf{a})$  with respect to t.

**Definition 2.1** (interior vertices and edges). For  $\{i, j, k\} \subset \mathcal{K}_{vor}$ , we define the set of inner vertices  $Y_{ijk}(t) \coloneqq \overline{V_i(\mathbf{a} + t\delta \mathbf{a})} \cap \overline{V_j(\mathbf{a} + t\delta \mathbf{a})} \cap \overline{V_k(\mathbf{a} + t\delta \mathbf{a})}$ , that is, points in A at the intersection of three cells, and write  $Y_{ijk} \coloneqq Y_{ijk}(0)$ . For  $k \in \mathcal{K}_{vor} \setminus \{i\}$ ,  $E_{ik}(\mathbf{a} + t\delta \mathbf{a}) \coloneqq \overline{V_i(\mathbf{a} + t\delta \mathbf{a})} \cap \overline{V_k(\mathbf{a} + t\delta \mathbf{a})}$ .

**Definition 2.2** (boundary vertices and edges). For  $\{i, j\} \subset \mathcal{K}_{vor}$  and  $\ell \in \mathcal{K}_A$ , we define the set of boundary vertices  $X_{ij\ell}(t) := \overline{V_i(\mathbf{a} + t\delta \mathbf{a})} \cap \overline{V_j(\mathbf{a} + t\delta \mathbf{a})} \cap \partial_\ell A$ , i.e., points on  $\partial A$  at the intersection of two cells, and write  $X_{ij\ell} := X_{ij\ell}(0)$ . For  $k \in \mathcal{K}_{vor} \setminus \{i\}$  and  $\ell \in \mathcal{K}_A$ ,  $E_{ik}(\mathbf{a}+t\delta \mathbf{a}) := \overline{V_i(\mathbf{a} + t\delta \mathbf{a})} \cap \partial_\ell A$  denotes a boundary edge of  $\mathbf{V}(\mathbf{a} + t\delta \mathbf{a})$ .

We now recall the results of [3], which will allow us to perform the sensitivity analysis of Voronoi diagrams. In [3], a theoretical framework for the analysis of the sensitivity of minimization diagrams was developed, and the particular case of Voronoi diagrams was discussed in [3, §4]. A key aspect of this theory is establishing a set of geometric assumptions that avoid degenerate cases and under which the sensitivity analysis can be performed. Specifically, these assumptions ensure that the interior vertices  $Y_{ijk}$  of the Voronoi diagram belong to at most three cells. Additionally, they eliminate trivial cases where two cells with different indices are identical. These assumptions were formulated in the more general context of minimization diagrams, so here we provide a simpler formulation in the case of Voronoi diagrams, which summarizes the discussion in [3, §4].

#### Assumption 1. Suppose that:

- (Non-degeneracy of interfaces) There holds  $\|\nabla_x \varphi_\ell(x)\| > 0$  for all  $x \in \partial_\ell A$  and for all  $\ell \in \mathcal{K}_A$ , and  $\|a_i a_j\| > 0$  for all  $\{i, j\} \subset \mathcal{K}_{vor}$ .
- (Non-degeneracy of vertices) For all  $\{i, j, k\} \subset \mathcal{K}_{vor}$  such that  $Y_{ijk} \neq \emptyset$  we have  $(a_j a_i)^{\perp} \cdot (a_k a_i) \neq 0$  and  $Y_{ijk} \cap \overline{V_m(\mathbf{a})} = \emptyset$ , for all  $m \in \mathcal{K}_{vor} \setminus \{i, j, k\}$ . In addition, for all

 $\{i, j\} \subset \mathcal{K}_{vor} \text{ and } \ell \in \mathcal{K}_A \text{ and all } v \in X_{ij\ell} \text{ we have } (a_j - a_i)^{\perp} \cdot \nabla \varphi_{\ell}(v) \neq 0, v \cap \overline{V_m(\mathbf{a})} = \emptyset,$ for all  $m \in \mathcal{K}_{vor} \setminus \{i, j\}$ , and  $v \cap \mathcal{T}_{\partial A} = \emptyset$ , where  $\mathcal{T}_{\partial A}$  is the finite set of corners of A.

Under these geometric assumptions, the set  $Y_{ijk}$  contains at most one point, but  $X_{ij\ell}$  may contain multiple points. The key to the sensitivity analysis of the perturbed Voronoi diagram  $V(\mathbf{a} + t\delta \mathbf{a})$  is the computation of the derivatives of the vertices  $Y_{ijk}(t)$  and  $X_{ijk}(t)$ . This is essentially an application of the implicit function theorem under Assumption 1.

**Theorem 2.1.** Suppose Assumption 1 holds and  $|Y_{ijk}| = 1$  for some  $\{i, j, k\} \subset \mathcal{K}_{vor}$ . Then, denoting  $v = Y_{ijk}$ , there exists  $\tau_1 > 0$  and a unique smooth function  $z_v : [0, \tau_1] \to \mathbb{R}^2$  satisfying  $z_v(0) = v, z_v(t) = Y_{ijk}(t)$  for all  $t \in [0, \tau_1]$  and

$$z'_{v}(0) = M_{v}(j,k,i)\delta a_{i} + M_{v}(k,i,j)\delta a_{j} + M_{v}(i,j,k)\delta a_{k},$$
(1)

where

$$M_v(i,j,k) \coloneqq \frac{(a_i - a_j)^{\perp} \otimes (v - a_k)^{\top}}{Q(i,j,k)}$$

and

$$Q(i, j, k) \coloneqq \det \begin{pmatrix} (a_j - a_i)^\top \\ (a_k - a_i)^\top \end{pmatrix}.$$

*Proof.* See [3, Theorem 7].

**Theorem 2.2.** Suppose Assumption 1 holds and let  $\{i, j\} \subset \mathcal{K}_{vor}, \ell \in \mathcal{K}_A$ . Then  $X_{ij\ell}$  is finite,  $X_{ij\ell} \in \partial A \setminus \mathcal{T}_{\partial A}$ , and there exists  $\tau_1 > 0$  such that for all  $v \in X_{ij\ell}$  there exists a unique smooth function  $z_v : [0, \tau_1] \to \mathbb{R}^2$  satisfying z(0) = v,  $\varphi_\ell(z_v(t)) = 0$  for all  $t \in [0, \tau_1]$ , and

$$X_{ij\ell}(t) = \bigcup_{v \in X_{ij\ell}} \{z_v(t)\} \text{ for all } t \in [0, \tau_1].$$

In addition we have

$$z'_{v}(0) = \mathscr{M}^{\ell}_{v}(j,i)\delta a_{i} + \mathscr{M}^{\ell}_{v}(i,j)\delta a_{j}$$

$$\tag{2}$$

with

$$\mathscr{M}_{v}^{\ell}(j,i) \coloneqq \frac{-\nabla_{x}\varphi_{\ell}(v)^{\perp} \otimes (v-a_{i})^{\top}}{\det \begin{pmatrix} (a_{j}-a_{i})^{\top} \\ \nabla_{x}\varphi_{\ell}(v)^{\top} \end{pmatrix}}.$$

*Proof.* See [3, Theorem 8].

Under Assumption 1, the motion of each Voronoi cell  $V_i(\mathbf{a} + t\delta \mathbf{a}), i \in \mathcal{K}_{\text{vor}}$ , can be parameterized by a bi-Lipschitz mapping  $T(\cdot, t)$ , such that its derivative  $\theta := \partial_t T(\cdot, 0)$  can be described explicitly as a function of the sites  $\mathbf{a}$ . The explicit expression of  $\theta$  at the vertices is a consequence of Theorems 2.1 and 2.2. This parameterization is described in the following theorem, which is a particular case of [3, Theorem 5].

**Theorem 2.3.** Let  $i \in \mathcal{K}_{vor}$  and suppose Assumption 1 holds. Then there exist  $t_0 > 0$  and a mapping  $T : \overline{V_i(\mathbf{a})} \times [0, t_0] \to \mathbb{R}^2$  satisfying  $T(V_i(\mathbf{a}), t) = V_i(\mathbf{a} + t\delta \mathbf{a})$ ,  $T(E_{ik}(\mathbf{a}), t) = E_{ik}(\mathbf{a} + t\delta \mathbf{a})$  for all  $k \in \mathcal{K}_{vor} \setminus \{i\}$ ,  $T(E_{i\ell}(\mathbf{a}), t) = E_{i\ell}(\mathbf{a} + t\delta \mathbf{a})$  for all  $\ell \in \mathcal{K}_A$ ,  $T(\partial V_i(\mathbf{a}), t) = \partial V_i(\mathbf{a} + t\delta \mathbf{a})$  and  $T(\cdot, t) : \overline{V_i(\mathbf{a})} \to \overline{V_i(\mathbf{a} + t\delta \mathbf{a})}$  is bi-Lipschitz for all  $t \in [0, t_0]$ . In addition we have

$$\begin{aligned} \theta(x) \cdot \nu(x) &= \frac{\nabla_a \phi(x, a_k) \cdot \delta a_k - \nabla_a \phi(x, a_i) \cdot \delta a_i}{\|\nabla_x \phi(x, a_k) - \nabla_x \phi(x, a_i)\|} \text{ for all } x \in E_{ik}(\mathbf{a}) \text{ and all } k \in \mathcal{K}_{vor} \setminus \{i\}, \\ \theta(x) \cdot \nu(x) &= 0 \text{ for all } x \in E_{i\ell}(\mathbf{a}) \text{ and for all } \ell \in \mathcal{K}_A, \\ \theta(v) \cdot \tau(v) &= (M_v(j, k, i) \delta a_i + M_v(k, i, j) \delta a_j + M_v(i, j, k) \delta a_k) \cdot \tau(v) \\ \text{ for all } v \in Y_{ijk}, \{i, j, k\} \subset \mathcal{K}_{vor}, \\ \theta(v) \cdot \tau(v) &= (\mathscr{M}_v^\ell(j, i) \delta a_i + \mathscr{M}_v^\ell(i, j) \delta a_j) \cdot \tau(v) \text{ for all } v \in X_{ij\ell}, \{i, j\} \subset \mathcal{K}_{vor}, \ell \in \mathcal{K}_A. \end{aligned}$$

where  $\theta := \partial_t T(\cdot, 0)$ ,  $\nu$  is the outward unit normal vector to  $V_i(\mathbf{a})$ ,  $\phi(x, a) := ||x - a||^2$ , and  $\tau$  is a tangent vector to  $\partial V_i(\mathbf{a})$ .

Theorems 2.1, 2.2, and 2.3 permit the computation of various relevant geometric quantities related to Voronoi diagrams. The derivative of area and edge integrals is of particular interest and has been performed in [3, Sections 3 and 4]; here we give a brief summary of these results. Starting with the case of an area integral, consider

$$G_1(\mathbf{a} + t\delta \mathbf{a}) \coloneqq \int_{V_i(\mathbf{a} + t\delta \mathbf{a})} f(x) \, dx,\tag{4}$$

where  $f \in C^1(\overline{A}, \mathbb{R})$ . Then, using Theorem 2.3, we have  $V_i(\mathbf{a} + t\delta \mathbf{a}) = T(V_i(\mathbf{a}), t)$  and we can apply a change of variable to transform the integral in (4) to an integral on  $V_i(\mathbf{a})$ . Next we can differentiate the obtained expression with respect to t, use the divergence theorem to transform the integral on  $V_i(\mathbf{a})$  to an integral on  $\partial V_i(\mathbf{a})$ , and use the first equality in (3) to obtain

$$\nabla G_1(\mathbf{a}) \cdot \delta \mathbf{a} = \sum_{E \in \mathcal{E}_i^{\text{int}}} \frac{\delta a_i}{\|a_i - a_{k(i,E)}\|} \cdot \int_E f(x)(x - a_i) \, dx$$
  
$$- \sum_{E \in \mathcal{E}_i^{\text{int}}} \frac{\delta a_{k(i,E)}}{\|a_i - a_{k(i,E)}\|} \cdot \int_E f(x)(x - a_{k(i,E)}) \, dx.$$
(5)

Next, consider the edge integral function defined by

$$G_2(\mathbf{a} + t\delta \mathbf{a}) \coloneqq \int_{E(\mathbf{a} + t\delta \mathbf{a})} f(x) \, dx,\tag{6}$$

where  $f \in C^1(\overline{A}, \mathbb{R})$ . Here, the edge  $E(\mathbf{a})$  can either be an interior edge given by  $E(\mathbf{a}) = \overline{V_i(\mathbf{a})} \cap \overline{V_k(\mathbf{a})}, \{i,k\} \subset \mathcal{K}_{\text{vor}}$ , or a boundary edge given by  $E(\mathbf{a}) = \overline{V_i(\mathbf{a})} \cap \partial_{\ell}A, \ell \in \mathcal{K}_A$ . In a similar way as for the area integral, using Theorem 2.3 we obtain the following expression for the gradient:

$$\nabla G_2(\mathbf{a}) \cdot \delta \mathbf{a} = \mathcal{F}(i, w_E) \cdot \tau(w_E) - \mathcal{F}(i, v_E) \cdot \tau(v_E), \tag{7}$$

where  $\tau$  is here the tangent vector to  $\partial V_i(\mathbf{a})$  with respect to a counterclockwise orientation and

$$\mathcal{F}(i,v) = \begin{cases} M_v(j,k,i)\delta a_i + M_v(k,i,j)\delta a_j + M_v(i,j,k)\delta a_k, & \text{if } v \in Y_{ijk}, \\ \mathscr{M}_v^\ell(j,i)\delta a_i + \mathscr{M}_v^\ell(i,j)\delta a_j, & \text{if } v \in X_{ij\ell}, \\ 0, & \text{if } v \in \mathcal{T}_{\partial A}. \end{cases}$$
(8)

Note that in (8), the indices j, k in  $Y_{ijk}$  and the index j in  $X_{ij\ell}$  actually depend on the index i and on the vertex v. These indices may be uniquely determined by choosing a counterclockwise orientation of the cells around the vertex v.

### 2.2 CVT energy function

Let  $\rho : A \to \mathbb{R}, \rho > 0$ , be a given density function. We work with the CVT energy function [4, 7, 13] defined by

$$G(\mathbf{a}) \coloneqq \frac{1}{\kappa_0} \sum_{i=1}^{\kappa_0} G_i(\mathbf{a}) \text{ with } G_i(\mathbf{a}) = \int_{V_i(\mathbf{a})} \rho(x) \|x - a_i\|^2 \, dx, \tag{9}$$

recalling that  $\mathbf{a} = \{a_i\}_{i=1}^{\kappa_0}$  are the sites generating the cells  $V_i(\mathbf{a})$ . In [7, 13] it is shown that the critical points of the function  $G(\mathbf{a})$  generates a CVT. The calculation of the gradient of  $G(\mathbf{a})$  is standard and has been performed, for example, in [7, 13]. Here, in Sections 2.3 and 2.4 we present the calculation of the gradient of  $G(\mathbf{a})$  using our framework, which will also allow us to supplement  $G(\mathbf{a})$  with other geometric terms in the numerical experiments. We present two ways to calculate the gradient of  $G(\mathbf{a})$ . First, we compute  $\nabla G(\mathbf{a})$  directly using (5), and second, we provide first an explicit formula for  $G_i(\mathbf{a})$  and  $G(\mathbf{a})$  as a function of the vertices and  $a_i$ , and compute the gradient of that formula. We then discuss the differences between these two formulas for applications.

For numerical purposes, (9) needs to be evaluated. In the general case, quadrature rules need to be employed. In some particular cases, an explicit expression of  $G(\mathbf{a})$  can be obtained. Let  $T(a_i, v, w)$  be the triangle with vertices  $a_i, v, w$ , where w is the neighbor vertex of v in counterclockwise direction, and define  $\mathcal{V}_i$  as the set of vertices of  $V_i(\mathbf{a})$ . Then we have the partition  $V_i(\mathbf{a}) = \bigcup_{v \in \mathcal{V}_i} T(a_i, v, w)$ . Thus

$$G_i(\mathbf{a}) = \int_{V_i(\mathbf{a})} \rho(x) \|x - a_i\|^2 \, dx = \sum_{v \in \mathcal{V}_i} \int_{T(a_i, v, w)} \rho(x) \|x - a_i\|^2 \, dx.$$

Now, we consider the transformation  $\phi : \mathbb{R}^2 \to \mathbb{R}^2$  defined as follows,

 $\phi(\xi,\lambda) = a_i + \xi(v - a_i) + \lambda(w - a_i)$  with  $\xi, \lambda \ge 0$  and  $\xi + \lambda = 1$ .

Using a change of variables, we have

$$\int_{T(a_i,v,w)} f(x) \, dx = \int_{\xi=0}^1 \int_{\lambda=0}^{1-\xi} f(\phi(\xi,\lambda)) |J(v,w,a_i)| \, d\lambda \, d\xi,$$

with the Jacobian matrix  $J(v, w, a_i) = D\phi = (v - a_i | w - a_i) \in \mathbb{R}^{2 \times 2}$  and

$$|J(v, w, a_i)| = \begin{vmatrix} v_1 - a_{i,1} & w_1 - a_{i,1} \\ v_2 - a_{i,2} & w_2 - a_{i,2} \end{vmatrix}$$
  
=  $(v_1 - a_{i,1})(w_2 - a_{i,2}) - (v_2 - a_{i,2})(w_1 - a_{i,1})$   
=  $-(v - a_i) \cdot (w - a_i)^{\perp}.$  (10)

For  $f(x) = \rho(x) ||x - a_i||^2$ , we get

$$\begin{aligned} &\int_0^1 \int_0^{1-\xi} \rho(\phi(\xi,\lambda)) \|\phi(\xi,\lambda) - a_i\|^2 |J(v,w,a_i)| \, d\lambda d\xi \\ &= |J(v,w,a_i)| \int_0^1 \int_0^{1-\xi} \rho(\phi(\xi,\lambda)) \|\xi(v-a_i) + \lambda(w-a_i)\|^2 \, d\lambda d\xi \\ &= |J(v,w,a_i)| \int_0^1 \int_0^{1-\xi} \rho(\phi(\xi,\lambda)) (\xi^2 \|v-a_i\|^2 + \lambda^2 \|w-a_i\|^2 + 2\lambda \xi(v-a_i) \cdot (w-a_i)) \, d\lambda d\xi. \end{aligned}$$

To simplify this expression further, we need to choose a specific class of functions  $\rho$  such as polynomials. Let us consider the particular case  $\rho \equiv 1$ , which results in

$$\int_0^1 \int_0^{1-\xi} \|\phi(\xi,\lambda) - a_i\|^2 |J(v,w,a_i)| \, d\lambda d\xi = \frac{|J(v,w,a_i)|}{12} (\|v - a_i\|^2 + (v - a_i) \cdot (w - a_i) + \|w - a_i\|^2).$$

Finally,

$$G_i(\mathbf{a}) = \sum_{v \in \mathcal{V}_i} \frac{|J(v, w, a_i)|}{12} (\|v - a_i\|^2 + (v - a_i) \cdot (w - a_i) + \|w - a_i\|^2),$$

and this yields the following explicit formula of  $G(\mathbf{a})$  in the case  $\rho \equiv 1$ :

$$G(\mathbf{a}) = \frac{1}{\kappa_0} \sum_{i=1}^{\kappa_0} \left( \sum_{v \in \mathcal{V}_i} \frac{|J(v, w, a_i)|}{12} (\|v - a_i\|^2 + (v - a_i) \cdot (w - a_i) + \|w - a_i\|^2) \right).$$
(11)

## **2.3** Computing the gradient of the integral form of $G(\mathbf{a})$

Here, we compute the value of the gradient of the integral form (9) of  $G(\mathbf{a})$  using (5). First, we have

$$\nabla G(\mathbf{a}) = \nabla \left(\frac{1}{\kappa_0} \sum_{i=1}^{\kappa_0} G_i(\mathbf{a})\right) = \frac{1}{\kappa_0} \sum_{i=1}^{\kappa_0} \nabla G_i(\mathbf{a}).$$

Let  $\mathcal{E}_{i}^{\text{int}}$  be the set of the interior edges of the cell  $V_{i}(\mathbf{a})$  and k(i, E) be the index such that  $E = \overline{V_{i}(\mathbf{a})} \cap \overline{V_{k(i,E)}(\mathbf{a})}$ . Applying (5), we get

$$\nabla G_i(\mathbf{a}) \cdot \delta \mathbf{a} = \nabla \left( \int_{V_i(\mathbf{a})} \rho(x) \|x - a_i\|^2 \, dx \right) \cdot \delta \mathbf{a}$$
  
= 
$$\sum_{E \in \mathcal{E}_i^{\text{int}}} \frac{\delta a_i}{\|a_i - a_{k(i,E)}\|} \cdot \underbrace{\int_E \rho(x) \|x - a_i\|^2 (x - a_i) \, dx}_{=:I_E^1}$$
  
- 
$$\sum_{E \in \mathcal{E}_i^{\text{int}}} \frac{\delta a_{k(i,E)}}{\|a_i - a_{k(i,E)}\|} \cdot \underbrace{\int_E \rho(x) \|x - a_i\|^2 (x - a_{k(i,E)}) \, dx}_{=:I_E^2}$$
  
- 
$$2\delta a_i \cdot \int_{V_i(\mathbf{a})} \rho(x) (x - a_i) \, dx.$$

Note that the last term is not present in (5) but appears as the integrand  $\rho(x) ||x - a_i||^2$  depends on  $a_i$ .

Introducing  $c_i \coloneqq \frac{\int_{V_i(\mathbf{a})} \rho(x) x \, dx}{\int_{V_i(\mathbf{a})} \rho(x) \, dx}$  the centroid of the cell  $V_i(\mathbf{a})$ , we obtain

$$\nabla G_i(\mathbf{a}) \cdot \delta \mathbf{a} = 2\delta a_i \cdot (a_i - c_i) \int_{V_i(\mathbf{a})} \rho(x) \, dx + \sum_{E \in \mathcal{E}_i^{\text{int}}} \frac{\delta a_i \cdot I_E^1 - \delta a_{k(i,E)} \cdot I_E^2}{\|a_i - a_{k(i,E)}\|}.$$

This yields

$$\nabla G(\mathbf{a}) \cdot \delta \mathbf{a} = \frac{1}{\kappa_0} \sum_{i=1}^{\kappa_0} \sum_{E \in \mathcal{E}_i^{\text{int}}} \frac{\delta a_i \cdot I_E^1 - \delta a_{k(i,E)} \cdot I_E^2}{\|a_i - a_{k(i,E)}\|} + 2\delta a_i \cdot (a_i - c_i) \int_{V_i(\mathbf{a})} \rho(x) \, dx.$$

Now we rearrange the term

$$\sum_{i=1}^{\kappa_0} \sum_{E \in \mathcal{E}_i^{\text{int}}} \frac{\delta a_{k(i,E)} \cdot I_E^2}{\|a_i - a_{k(i,E)}\|}$$

by summing over all fixed indices k such that k = k(i, E) for some index i and edge E. Then  $a_i$  becomes  $a_{i(k,E)}$  which yields

$$\sum_{i=1}^{\kappa_0} \sum_{E \in \mathcal{E}_i^{\text{int}}} \frac{\delta a_{k(i,E)} \cdot I_E^2}{\|a_i - a_{k(i,E)}\|} = \sum_{k=1}^{\kappa_0} \sum_{E \in \mathcal{E}_k^{\text{int}}} \frac{\delta a_k \cdot \int_E \rho(x) \|x - a_{i(k,E)}\|^2 (x - a_k) \, dx}{\|a_{i(k,E)} - a_k\|}.$$

Using the property  $||x - a_{i(k,E)}|| = ||x - a_k||$  on E and changing the notation for indices, we end up with

$$\sum_{i=1}^{\kappa_0} \sum_{E \in \mathcal{E}_i^{\text{int}}} \frac{\delta a_{k(i,E)} \cdot I_E^2}{\|a_i - a_{k(i,E)}\|} = \sum_{i=1}^{\kappa_0} \sum_{E \in \mathcal{E}_i^{\text{int}}} \frac{\delta a_i \cdot I_E^1}{\|a_i - a_{k(i,E)}\|}.$$

Thus, the terms depending on  $I_E^1$  and  $I_E^2$  cancel out in  $\nabla G(\mathbf{a}) \cdot \delta \mathbf{a}$  and

$$\nabla G(\mathbf{a}) \cdot \delta \mathbf{a} = \frac{1}{\kappa_0} \sum_{i=1}^{\kappa_0} 2\delta a_i \cdot (a_i - c_i) \int_{V_i(\mathbf{a})} \rho(x) \, dx,\tag{12}$$

which is the standard formula in the literature, see for instance [4, 7, 12]. The fact that  $I_E^1$  and  $I_E^2$  cancel out is also written in [12, p.278] for instance.

#### 2.4 Explicit gradient computation in the constant density case

To obtain the expression (12) of  $\nabla G(\mathbf{a})$ , we have used (5), which is based on Theorem 2.3, using the shape calculus techniques of [3]. In the special case where  $\rho$  is constant,  $\nabla G(\mathbf{a})$  can be obtained in a simpler way, without using Theorem 2.3, by directly differentiating (11). The purpose of this section is to perform this calculation and discuss the formula obtained. Note that one could also perform an explicit calculation of  $\nabla G(\mathbf{a})$  for specific classes of functions  $\rho$ , such as polynomials.

Let  $\mathcal{E}_i$  be the set of edges of  $V_i(\mathbf{a})$ . In (11) the sum is over  $\mathcal{V}_i$ , the set of vertices of  $V_i(\mathbf{a})$ . We transform it into a sum over  $E \in \mathcal{E}_i$  in order to use the results of Section 2.1. We also write  $v_E$ ,  $w_E$  instead of v, w, recalling that w is the neighbor vertex of v in counterclockwise orientation. Differentiating (11), we thus obtain

$$\nabla G(\mathbf{a}) \cdot \delta \mathbf{a} = \frac{1}{\kappa_0} \sum_{i=1}^{\kappa_0} \left( \frac{1}{12} \sum_{E \in \mathcal{E}_i} \sigma \nabla \gamma + \gamma \nabla \sigma \right) \cdot \delta \mathbf{a},\tag{13}$$

where  $\gamma := |J(v_E, w_E, a_i)|$  and  $\sigma := ||v_E - a_i||^2 + (v_E - a_i) \cdot (w_E - a_i) + ||w_E - a_i||^2$ . First, we compute

$$\nabla \gamma \cdot \delta \mathbf{a} = \nabla (|J(v_E, w_E, a_i)|) \cdot \delta \mathbf{a} = \operatorname{sign}(J(v_E, w_E, a_i)) \nabla (J(v_E, w_E, a_i)) \cdot \delta \mathbf{a}$$

Using (10), we have

$$\begin{aligned} \nabla (J(v_E, w_E, a_i)) \cdot \delta \mathbf{a} &= -\nabla ((v_E - a_i) \cdot (w_E - a_i)^{\perp}) \cdot \delta \mathbf{a} \\ &= -((D(v_E - a_i))^{\top} (w_E - a_i)^{\perp} + (D(w_E - a_i)^{\perp})^{\top} (v_E - a_i)) \cdot \delta \mathbf{a} \\ &= -D(v_E - a_i) \delta \mathbf{a} \cdot (w_E - a_i)^{\perp} - D(w_E - a_i)^{\perp} \delta \mathbf{a} \cdot (v_E - a_i) \\ &= -D(v_E - a_i) \delta \mathbf{a} \cdot (w_E - a_i)^{\perp} + D(w_E - a_i) \delta \mathbf{a} \cdot (v_E - a_i)^{\perp} \\ &= -Dv_E \delta \mathbf{a} \cdot w_E^{\perp} + Dv_E \delta \mathbf{a} \cdot a_i^{\perp} + Da_i \delta \mathbf{a} \cdot w_E^{\perp} \\ &+ Dw_E \delta \mathbf{a} \cdot v_E^{\perp} - Dw_E \delta \mathbf{a} \cdot a_i^{\perp} - Da_i \delta \mathbf{a} \cdot v_E^{\perp}. \end{aligned}$$

We have  $Da_i \delta \mathbf{a} = \delta a_i$  and in view of (1), (2), (8) we have that  $Dv_E \delta \mathbf{a} = \mathcal{F}(i, v_E)$  and  $Dw_E \delta \mathbf{a} = \mathcal{F}(i, w_E)$ , thus

$$\nabla \gamma \cdot \delta \mathbf{a} = \operatorname{sign}(J(v_E, w_E, a_i))(\mathcal{F}(i, v_E) \cdot (-w_E^{\perp} + a_i^{\perp}) + \mathcal{F}(i, w_E) \cdot (v_E^{\perp} - a_i^{\perp}) - \delta a_i(-w_E^{\perp} + v_E^{\perp})).$$
(14)

Now, we compute

$$\nabla \sigma \cdot \delta \mathbf{a} = [\nabla (\|v_E - a_i\|^2) + \nabla ((v_E - a_i) \cdot (w_E - a_i)) + \nabla (\|w_E - a_i\|^2)] \cdot \delta \mathbf{a}.$$

We have

$$\nabla((v_E - a_i) \cdot (w_E - a_i)) \cdot \delta \mathbf{a} = [(w_E - a_i)\nabla(v_E - a_i) + (v_E - a_i)\nabla(w_E - a_i)] \cdot \delta \mathbf{a}$$
  
$$= (w_E - a_i) \cdot [(Dv_E - Da_i) \cdot \delta \mathbf{a}] + (v_E - a_i) \cdot [(Dw_E - Da_i) \cdot \delta \mathbf{a}]$$
  
$$= (w_E - a_i) \cdot (\mathcal{F}(i, v_E) - \delta a_i) + (v_E - a_i) \cdot (\mathcal{F}(i, w_E) - \delta a_i)$$
  
$$= \mathcal{F}(i, v_E) \cdot (w_E - a_i) + \mathcal{F}(i, w_E) \cdot (v_E - a_i) - \delta a_i(w_E + v_E - 2a_i),$$

and in a similar way

$$\nabla(\|v_E - a_i\|^2) \cdot \delta \mathbf{a} = 2\mathcal{F}(i, v_E) \cdot (v_E - a_i) - 2\delta a_i \cdot (v_E - a_i)$$
$$\nabla(\|w_E - a_i\|^2) \cdot \delta \mathbf{a} = 2\mathcal{F}(i, w_E) \cdot (w_E - a_i) - 2\delta a_i \cdot (w_E - a_i).$$

Combining these results, we get

$$\nabla \sigma \cdot \delta \mathbf{a} = 2\mathcal{F}(i, v_E) \cdot (v_E - a_i) - 2\delta a_i \cdot (v_E - a_i) + \mathcal{F}(i, v_E) \cdot (w_E - a_i) + \mathcal{F}(i, w_E) \cdot (v_E - a_i) - \delta a_i (w_E + v_E - 2a_i) + 2\mathcal{F}(i, w_E) \cdot (w_E - a_i) - 2\delta a_i \cdot (w_E - a_i) = \mathcal{F}(i, v_E) \cdot (2v_E + w_E - 3a_i) + \mathcal{F}(i, w_E) \cdot (v_E + 2w_E - 3a_i) - 3\delta a_i \cdot (v_E + w_E - 2a_i).$$
(15)

Replacing (14) and (15) in (13), we obtain

$$\nabla G_i(\mathbf{a}) \cdot \delta \mathbf{a} = \frac{1}{12} \sum_{E \in \mathcal{E}_i} \kappa_i(E) (\mathcal{F}(i, v_E) \cdot (-w_E^{\perp} + a_i^{\perp}) + \mathcal{F}(i, w_E) \cdot (v_E^{\perp} - a_i^{\perp}) - \delta a_i (-w_E^{\perp} + v_E^{\perp}))$$
  
+  $|J(v_E, w_E, a_i)| (\mathcal{F}(i, v_E) \cdot (2v_E + w_E - 3a_i) + \mathcal{F}(i, w_E) \cdot (v_E + 2w_E - 3a_i)$   
 $- 3\delta a_i \cdot (v_E + w_E - 2a_i)),$ 

where

$$\kappa_i(E) := \operatorname{sign}(J(v_E, w_E, a_i))(\|v_E - a_i\|^2 + (v_E - a_i) \cdot (w_E - a_i) + \|w_E - a_i\|^2).$$

Finally, rearranging the last expression for  $\nabla G_i(\mathbf{a}) \cdot \delta \mathbf{a}$ , we get

$$\nabla G(\mathbf{a}) \cdot \delta \mathbf{a} = \frac{1}{\kappa_0} \sum_{i=1}^{\kappa_0} \nabla G_i(\mathbf{a}) \cdot \delta \mathbf{a},$$
(16)

with

$$\nabla G_{i}(\mathbf{a}) \cdot \delta \mathbf{a} = \frac{1}{12} \sum_{E \in \mathcal{E}_{i}} \mathcal{F}(i, v_{E}) \cdot (\kappa_{i}(E)(-w_{E}^{\perp} + a_{i}^{\perp}) + |J(v_{E}, w_{E}, a_{i})|(2v_{E} + w_{E} - 3a_{i})) + \mathcal{F}(i, w_{E})(\kappa_{i}(E)(v_{E}^{\perp} - a_{i}^{\perp}) + |J(v_{E}, w_{E}, a_{i})|(v_{E} + 2w_{E} - 3a_{i}) - \delta a_{i} \cdot (\kappa_{i}(E)(-w_{E}^{\perp} + v_{E}^{\perp}) + 3|J(v_{E}, w_{E}, a_{i})|(v_{E} + w_{E} - 2a_{i})).$$

$$(17)$$

Formula (16) is equivalent to (12) for the special case  $\rho = 1$ . As explained above, formula (17) illustrates how the gradient of objective functions depending on Voronoi diagrams can be computed directly, without having to differentiate a parameterized integral. However, one drawback is that this explicit calculation only works for specific densities  $\rho$ . Also, we expect this formula to be more computationally expensive than (12), since (12) results from a simplification ( $I_E^1$  and  $I_E^2$  canceling out). This means that (16), (17) could be further simplified for more efficiency, but this reduces the advantage of the explicit calculation.

## 3 Numerical experiments

In this section, we show numerical experiments related to the construction of centroidal Voronoi tessellations with special desired features. CVTs are always constructed by minimizing a combination of the energy function  $G(\mathbf{a})$  with an additional term that forces the desired geometric feature subject to  $\mathbf{a} \in \mathbb{R}^{2\kappa_0}$  in the domain  $A = [0, \sqrt{\kappa_0}]^2$ , where  $\kappa_0$  is the number of sites. In Section 3.1 we perform a numerical experiment in which we compare in practice the expressions (12) and (16) of the gradient of  $G(\mathbf{a})$ . In Section 3.2, we deal with the problem of constructing CVTs with cells of equal area. In Section 3.3, we show how to avoid small edges. In Section 3.4, we deal with the construction of CVTs with cells of different sizes for different regions of the domain A.

The entire code is written in Fortran 90. Voronoi diagrams are computed with the implementation provided in [1, 2, 3]. All experiments were performed on a computer with an Apple M1 processor and 8 GB of RAM, running MacOS Sonoma (version 14.6.1). The code was compiled using the GFortran compiler of GCC (version 14.1.0) with the -O3 optimization directive enabled.

### 3.1 Centroidal Voronoi tessellation

In this section we minimize  $G(\mathbf{a})$ , defined in (9), without additional geometric terms. For general densities  $\rho$ , quadrature rules must be used to evaluate (9). In all our experiments, we focus on the case  $\rho \equiv 1$  and the explicit form (11) of  $G(\mathbf{a})$ ; this allows us to preserve the exactness of the function and to save computational time in the optimization process. The optimization problems are solved with the quasi-Newton method L-BFGS-B [5, 16, 17]. Default values are used for all its parameters. The stopping criterion is set to obtain an infinity norm of the continuous projected gradient less than or equal to  $\epsilon = 10^{-8}$ , i.e., to find an iterate  $\mathbf{a}^k$  such that

$$\left\| P_A \left( \mathbf{a}^k - \nabla G(\mathbf{a}^k) \right) - \mathbf{a}^k \right\|_{\infty} \le \epsilon = 10^{-8},$$

where  $P_A$  represents the (orthogonal) projection operator onto the (convex) feasible set  $A = [0, \sqrt{\kappa_0}]^2$ . The initial point  $\mathbf{a}^0$  of the optimization process consists of uniformly distributed random points in the domain A. This type of starting point is only used in this experiment, where only the function  $G(\mathbf{a})$  is minimized. In Sections 3.2, 3.3, and 3.4, where the combination of  $G(\mathbf{a})$  with an extra term is minimized, we take as starting point  $\mathbf{a}^0$  the approximate solution  $\mathbf{a}^*$  to the problem of minimizing  $G(\mathbf{a})$ .

Tables 1 and 2 show some details of the optimization process on a set of instances with  $\kappa_0 \in \{5, 10, 50, 100, 1000, 10000, 25000, 50000\}$ , considering expressions (12) and (16) for computing the gradient, respectively. In the tables,  $\kappa_0$  is the number of sites considered. The columns  $G(\mathbf{a}^*)$  and  $\|\nabla G(\mathbf{a}^*)\|_{\infty}$  denote the value of the objective function and the sup-norm of the continuous projected gradient at the final iterate  $\mathbf{a}^*$ . "it" is the number of iterations, "fcnt" is the number of evaluations of the objective function, and "Time" is the elapsed CPU time in seconds. The column "fcnt/it" shows the average number of function evaluations per iteration. From these tables we can see that, for each  $\kappa_0$ , the values of  $G(\mathbf{a}^*)$  are very similar when using both gradient expressions, and that in all cases it was possible to achieve the stopping criterion imposed. The tables also show that the performance of the method was slightly faster when using the expression (12) than when using the expression (16). This confirms the observation of Section 2.4, where it is explained that (16) is expected to be more computationally demanding than (12). For this reason, in Sections 3.2, 3.3, and 3.4 the expression (12) is used to compute the gradient of G. Figure 1 shows the resulting diagrams for the cases  $\kappa_0 \in \{500, 1000\}$ .

| $\kappa_0$ | $G(\mathbf{a}^{\star})$ | $\ \nabla G(\mathbf{a}^{\star})\ _{\infty}$ | it   | fcnt | Time    | fcnt/it |
|------------|-------------------------|---------------------------------------------|------|------|---------|---------|
| 5          | 1.76349E - 01           | 6.8E - 09                                   | 24   | 30   | 0.001   | 1.25    |
| 10         | 1.69930E - 01           | 8.6E - 09                                   | 31   | 35   | 0.002   | 1.13    |
| 50         | 1.65505E - 01           | 9.6E - 09                                   | 88   | 95   | 0.022   | 1.08    |
| 100        | 1.63885E - 01           | $9.9E{-}09$                                 | 115  | 124  | 0.050   | 1.08    |
| 500        | 1.62358E - 01           | 9.5 E - 09                                  | 254  | 278  | 0.320   | 1.09    |
| 1000       | 1.62019E - 01           | 8.7 E - 09                                  | 477  | 530  | 1.208   | 1.11    |
| 10000      | 1.61780E - 01           | 8.8E - 09                                   | 494  | 505  | 12.915  | 1.02    |
| 25000      | 1.61708E - 01           | $8.3E{-}09$                                 | 753  | 780  | 60.151  | 1.04    |
| 50000      | 1.61661E - 01           | 8.7E - 09                                   | 1221 | 1271 | 472.639 | 1.04    |

Table 1: Details of the optimization process and the solutions found for the problem of minimizing  $G(\mathbf{a})$  with increasing values of  $\kappa_0$  and using (12) for computing  $\nabla G$ .

| $\kappa_0$ | $G(\mathbf{a}^{\star})$ | $\ \nabla G(\mathbf{a}^{\star})\ _{\infty}$ | it   | fcnt | Time    | fcnt/it |
|------------|-------------------------|---------------------------------------------|------|------|---------|---------|
| 5          | 1.76349E - 01           | 6.8E - 09                                   | 24   | 30   | 0.002   | 1.25    |
| 10         | 1.69930E - 01           | 8.6E - 09                                   | 31   | 35   | 0.004   | 1.13    |
| 50         | 1.65443E - 01           | 9.6E - 09                                   | 107  | 120  | 0.034   | 1.12    |
| 100        | 1.63885E - 01           | $9.9E{-}09$                                 | 115  | 124  | 0.061   | 1.08    |
| 500        | 1.62241E - 01           | $4.9E{-}09$                                 | 239  | 258  | 0.376   | 1.08    |
| 1000       | 1.62170E - 01           | 8.5 E - 09                                  | 202  | 208  | 0.621   | 1.03    |
| 10000      | 1.61783E - 01           | $9.1E{-}09$                                 | 507  | 522  | 16.301  | 1.03    |
| 25000      | 1.61719E - 01           | 8.8E - 09                                   | 736  | 762  | 63.164  | 1.04    |
| 50000      | 1.61649E - 01           | 8.6E - 09                                   | 1285 | 1343 | 598.587 | 1.05    |

Table 2: Details of the optimization process and the solutions found for the problem of minimizing  $G(\mathbf{a})$  with increasing values of  $\kappa_0$  and using (16) for computing  $\nabla G$ .



Figure 1: Centroidal Voronoi tessellations with  $\kappa_0 \in \{500, 1000\}$ . Results obtained using the gradient formula (12).

#### 3.2 Centroidal Voronoi tessellation with cells of identical area.

In this section, we consider the merit function given by

$$f_1(\mathbf{a}) \coloneqq \omega G(\mathbf{a}) + J^1(\mathbf{a}),$$

where

$$J^{1}(\mathbf{a}) := \frac{1}{\kappa_{0}} \sum_{i=1}^{\kappa_{0}} [J_{i}^{1}(\mathbf{a})]^{2} \text{ with } J_{i}^{1}(\mathbf{a}) := \left( \int_{V_{i}(\mathbf{a})} dx \right) / \left( \frac{1}{\kappa_{0}} \int_{A} dx \right) - 1,$$

and  $\omega \geq 0$  is given. The function  $J^1(\mathbf{a})$  measures the deviation of the area of each Voronoi cell  $V_i(\mathbf{a})$  with respect to the average area of the cells in the domain A. The purpose of minimizing  $f_1(\mathbf{a})$  is to find CVTs with cells of similar area, i.e., what is expected in an approximate solution  $\mathbf{a}$  is that for all i,  $|V_i(\mathbf{a})| \approx \frac{1}{\kappa_0} \int_A dx = 1$ , because  $A = [0, \sqrt{\kappa_0}]^2$ . Since  $J_i^1$  corresponds to (4) with  $f \equiv 1$ , applying (5), we have that

$$\nabla J_i^1(\mathbf{a}) \cdot \delta \mathbf{a} = \frac{\kappa_0}{|A|} \sum_{E \in \mathcal{E}_i^{\text{int}}} \frac{|E|}{\|a_i - a_{k(i,E)}\|} [\delta a_i \cdot (p_E - a_i) - \delta a_{k(i,E)} \cdot (p_E - a_{k(i,E)})]$$

where  $p_E \coloneqq (v_E + w_E)/2$  and k(i, E) is the index such that  $E = \overline{V_i(\mathbf{a})} \cap \overline{V_{k(i,E)}(\mathbf{a})}$ .

The choice of the parameter  $\omega$  is important for the optimization process to obtain the desired results. We will present an appropriate choice for  $\omega$  that was found in the particular case where  $\kappa_0 = 10$  is used, and then show the results obtained when optimizing the cases with  $\kappa_0 \in$ {500, 1000} using the same value for  $\omega$ . Figure 2(a) shows the solution of minimizing  $G(\mathbf{a})$ , while

Figures 2(b-e) show the solutions obtained by minimizing  $f_1(\mathbf{a})$  with  $\omega \in \{1, 0.1, 0.01, 0.001\}$ . In the figures, the cells  $V_i(\mathbf{a})$  that satisfy  $|J_i^1(\mathbf{a})| > 10^{-3}$  are colored green. Therefore, the uncolored cells  $V_i$  satisfy  $|J_i^1(\mathbf{a})| \le 10^{-3}$ , which means that the uncolored cells have an area that is very close to the desired area (the relative error of the cell area to the ideal area is less than or equal to 0.1%). The desired goal is reached when all cells are uncolored, which is the case for  $\omega = 0.001$ . Table 3 shows details of the solutions found. In particular, it shows the area of each cell. It is interesting to compare the cell areas of the diagrams constructed by minimizing G alone and  $f_1$  with  $\omega = 0.001$ . Table 4 shows some details of the optimization process. In the table, the columns  $f_1(\mathbf{a}^*)$  and  $||f_1(\mathbf{a}^*)||_{\infty}$  indicate the value of the objective function and the sup-norm of the continuous projected gradient at the final iterate  $\mathbf{a}^{\star}$ . The columns  $G(\mathbf{a}^{\star})$  and  $J^{1}(\mathbf{a}^{\star})$  identify the value of the CVT energy function and the function  $J^{1}$  at the final iterate  $\mathbf{a}^{\star}$ . The remaining columns contain the number of iterations, the number of function evaluations, and the CPU time in seconds. The numbers in the table show that, regardless of the value of  $\omega$ , the problems were easily solved, with the optimization process stopping in all cases due to the imposed stopping criterion. The value of G in the solution  $\mathbf{a}^{\star}$  obtained by minimizing G alone is  $G(\mathbf{a}^{\star}) = 1.69930\text{E-}01$ ; see Table 2. As  $\omega$  decreases, Table 4 shows that  $J^1(\mathbf{a}^{\star})$  improves by at least an order of magnitude, while  $G(\mathbf{a}^{\star})$  deteriorates only slightly, remaining close to the value obtained by minimizing G alone. This means that minimizing  $f_1$  succeeds in designing a diagram with the desired geometric properties at the cost of only a small increase in the CVT energy function, which is the function that a CVT diagram should minimize. In short, minimizing  $f_1$ succeeds in designing a CVT diagram with the desired characteristics.

| Cell | $G(\mathbf{a})$             |                             | $f_1(\mathbf{a})$ with $\omega = 1$ |                             | $f_1(\mathbf{a})$ wit       | $f_1(\mathbf{a})$ with $\omega = 0.1$ |                           | n $\omega = 0.01$           | $f_1(\mathbf{a})$ with $\omega = 0.001$ |                             |
|------|-----------------------------|-----------------------------|-------------------------------------|-----------------------------|-----------------------------|---------------------------------------|---------------------------|-----------------------------|-----------------------------------------|-----------------------------|
| i    | $ V_i(\mathbf{a}^{\star}) $ | $ J_i^1(\mathbf{a}^\star) $ | $ V_i(\mathbf{a}^{\star}) $         | $ J_i^1(\mathbf{a}^\star) $ | $ V_i(\mathbf{a}^{\star}) $ | $ J_i^1(\mathbf{a}^\star) $           | $ V_i(\mathbf{a}^\star) $ | $ J_i^1(\mathbf{a}^\star) $ | $ V_i(\mathbf{a}^\star) $               | $ J_i^1(\mathbf{a}^\star) $ |
| 1    | 8.31E - 01                  | 1.69E - 01                  | 9.97E-01                            | 3.28E-03                    | 9.99E - 01                  | 7.09E - 04                            | 9.98E - 01                | 1.58E - 03                  | 1.00E+00                                | 1.60E - 04                  |
| 2    | 1.08E + 00                  | 8.10E - 02                  | 9.97E-01                            | 3.28E - 03                  | 9.99E - 01                  | 7.09E - 04                            | 1.00E+00                  | 9.40E-04                    | 1.00E+00                                | 9.50E - 05                  |
| 3    | 1.09E+00                    | 8.75E - 02                  | 1.04E+00                            | 4.08E - 02                  | 1.01E+00                    | 6.30E - 03                            | 1.00E+00                  | 9.86E - 04                  | 1.00E+00                                | 9.95E - 05                  |
| 4    | 1.09E+00                    | 8.75E - 02                  | 1.04E+00                            | 4.08E - 02                  | 1.01E+00                    | 6.30E - 03                            | 1.00E+00                  | 9.86E - 04                  | 1.00E+00                                | 9.95E - 05                  |
| 5    | 9.13E - 01                  | 8.72E - 02                  | 9.55E-01                            | 4.47E - 02                  | 9.94E - 01                  | 6.43E - 03                            | 9.99E - 01                | 1.33E - 03                  | 1.00E+00                                | 1.34E-04                    |
| 6    | 1.09E+00                    | 8.75E - 02                  | 1.01E+00                            | 1.04E - 02                  | 1.00E+00                    | 1.55E - 03                            | 1.00E+00                  | 9.86E - 04                  | 1.00E+00                                | 9.95E - 05                  |
| 7    | 9.13E - 01                  | 8.72E - 02                  | 9.55E-01                            | 4.47E - 02                  | 9.94E - 01                  | 6.43E - 03                            | 9.99E - 01                | 1.33E - 03                  | 1.00E+00                                | 1.34E-04                    |
| 8    | 1.08E + 00                  | 8.10E - 02                  | 9.97E-01                            | 3.28E - 03                  | 9.99E - 01                  | 7.09E - 04                            | 1.00E+00                  | 9.40E-04                    | 1.00E+00                                | 9.50E - 05                  |
| 9    | 8.31E - 01                  | 1.69E - 01                  | 9.97E-01                            | 3.28E - 03                  | 9.99E - 01                  | 7.09E - 04                            | 9.98E - 01                | 1.58E - 03                  | 1.00E+00                                | 1.60E - 04                  |
| 10   | 1.09E+00                    | 8.75E - 02                  | 1.01E+00                            | 1.04E-02                    | 1.00E+00                    | 1.55E - 03                            | 1.00E+00                  | 9.86E-04                    | 1.00E+00                                | 9.95E - 05                  |

Table 3: Obtained values for the area  $|V_i(\mathbf{a}^*)|$  of each cell and  $J^1(\mathbf{a}^*)$  after minimizing the functions  $G(\mathbf{a})$  and  $f_1(\mathbf{a}) = \omega G(\mathbf{a}) + J^1(\mathbf{a})$  with  $\omega \in \{1, 0.1, 0.01, 0.001\}$ .

| ω     | $f_1(\mathbf{a}^{\star})$ | $\ \nabla f_1(\mathbf{a}^\star)\ _{\infty}$ | $G(\mathbf{a}^{\star})$ | $J^1(\mathbf{a}^{\star})$ | $\operatorname{it}$ | fcnt | Time  |
|-------|---------------------------|---------------------------------------------|-------------------------|---------------------------|---------------------|------|-------|
| 1     | 1.73112E-01               | $1.9E{-}09$                                 | 1.72354E - 01           | 7.57491E - 04             | 44                  | 63   | 0.004 |
| 0.1   | 1.74133E - 02             | $9.1E{-}09$                                 | $1.73964E{-}01$         | $1.68787 \mathrm{E}{-05}$ | 94                  | 119  | 0.005 |
| 0.01  | 1.82952E - 03             | 9.7 E - 09                                  | 1.82810E - 01           | 1.41961E - 06             | 29                  | 32   | 0.002 |
| 0.001 | $1.83081E{-}04$           | $2.7\mathrm{E}{-09}$                        | 1.83066E - 01           | $1.44641E{-}08$           | 35                  | 38   | 0.002 |

Table 4: Details of the process of minimizing the function  $f_1(\mathbf{a}) = \omega G(\mathbf{a}) + J^1(\mathbf{a})$  varying  $\omega$ .

Taking into account  $\kappa_0 = 1000$ , we also perform the experiment of minimizing only G



Figure 2: Centroidal Voronoi tessellations with  $\kappa_0 = 10$ . In (a) we show the result of minimizing the function  $G(\mathbf{a})$ . In (b-e) we show the diagrams obtained by minimizing  $f_1(\mathbf{a}) = \omega G(\mathbf{a}) + J^1(\mathbf{a})$  with decreasing values of  $\omega$ .

and  $f_1$  with  $\omega \in \{1, 0.1, 0.01, 0.001\}$ . Figure 3 shows the distribution of cell areas in the four different approximate solutions  $\mathbf{a}^*(\omega)$  found by minimizing the function  $f_1(\mathbf{a})$  varying  $\omega$ . Consider the solutions  $\mathbf{a}^*(\omega)$  for the different values of  $\omega$  and let  $\nu_1 = \min_{\{\omega,i\}} |V_i(\mathbf{a}^*(\omega))|$ ,  $\nu_{101} = \max_{\{\omega,i\}} |V_i(\mathbf{a}^*(\omega))|$ ,  $\Delta \nu = (\nu_{101} - \nu_1)/100$ , and  $\nu_j = \nu_1 + j \Delta \nu$  for  $j = 2, \ldots, 100$ . The figure shows the distribution of the values of  $|V_i(\mathbf{a}^*(\omega))|$  for  $\omega \in \{1, 0.1, 0.01, 0.001\}$  and  $i = 1, \ldots, \kappa_0$  over the intervals  $[\nu_j, \nu_{j+1}]$  for  $j = 1, \ldots, 100$ . More specifically, there is a graph for each  $\mathbf{a}^*(\omega)$  and, for each value  $\frac{1}{2}(\nu_j + \nu_{j+1})$  in the abscissa, the graph shows in the ordinate the proportion of cells  $V_i(\mathbf{a}^*(\omega))$  whose area  $|V_i(\mathbf{a}^*(\omega))|$  is in the interval  $[\nu_j, \nu_{j+1}]$ . The plot clearly shows that, the smaller the value of  $\omega$ , the larger the proportion of cells in the solution  $\mathbf{a}^*(\omega)$  whose area is close to 1. Figure 4(a-b) shows the diagrams obtained by minimizing G alone and  $f_1$  with  $\omega = 0.001$ , respectively. In both figures, cells  $V_i(\mathbf{a})$  such that  $|J_i^1(\mathbf{a})| > 10^{-3}$  are painted green. Basically speaking, this means that when minimizing G alone, almost none of the cells have the desired area, while when minimizing  $f_1$  with  $\omega = 0.001$ , all have the desired area.



Figure 3: Distribution of the cell areas in the approximate solutions found when minimizing the function  $f_1(\mathbf{a}) = \omega G(\mathbf{a}) + J^1(\mathbf{a})$  with  $\kappa_0 = 1000$  considering  $\omega \in \{1, 0.1, 0.01, 0.001\}$ .



Figure 4: Centroidal Voronoi tessellation with  $\kappa_0 = 1000$ . In (a) we show the diagram resulting from minimizing the function  $G(\mathbf{a})$ . In (b) we show the diagrams obtained by minimizing  $f_1(\mathbf{a}) = \omega G(\mathbf{a}) + J^1(\mathbf{a})$  with  $\omega = 0.001$ .

### 3.3 Centroidal Voronoi tessellation avoiding cells with small edges

In this section, we consider the size of the edges of the cells. Scrutinizing the cells in Figure 4(a), we observe the presence of cells with small edges. Specifically, given a fraction  $c_2 \in (0, 1)$ , we say that "an edge E of a cell  $V_i(\mathbf{a})$  is small" if its size |E| is smaller than  $c_2\bar{E}_i$ , where  $\bar{E}_i = P_i/n_i$  is the average of the edge sizes of the cell  $V_i(\mathbf{a})$ ,  $P_i$  is the perimeter of the cell, and  $n_i$  is the number of edges of the cell. Given a tolerance  $c_2 \in (0, 1)$ , to construct CVTs that do not have cells with small edges, we consider the objective function

$$f_2(\mathbf{a}) := \omega \, G(\mathbf{a}) + J^2(\mathbf{a}),$$

where

$$J^{2}(\mathbf{a}) := \sum_{i=1}^{\kappa_{0}} J_{i}^{2}(\mathbf{a}) \text{ with } J_{i}^{2}(\mathbf{a}) := \frac{1}{n_{i}} \sum_{E \in \mathcal{E}_{i}} \min\left\{0, \frac{|E|}{\bar{E}_{i}} - c_{2}\right\}^{2}$$
(18)

and  $\omega \geq 0$  is a given constant. In (18),  $\mathcal{E}_i$  is the set of edges of cell  $V_i(\mathbf{a})$  and  $n_i = |\mathcal{E}_i|$ . Given  $c_2 \in (0, 1)$ , if all edges  $E \in \mathcal{E}_i$  of a cell  $V_i(\mathbf{a})$  satisfy  $|E| \geq c_2 \bar{E}_i$ , i.e., if the size of each cell edge is at least  $100\% \times c_2$  of the average size, then  $|E|/\bar{E}_i - c_2 \geq 0$  for all E, and hence  $J_i^2$  vanishes. Thus,  $J_i^2$  measures the violation of the constraints on the minimum size of the edges of the cell  $V_i(\mathbf{a})$ . The gradient  $\nabla J_i^2$  depends on  $\nabla |E|$  and |E| corresponds to (6) with  $f \equiv 1$ . Therefore, by (7,8), we have that

$$\nabla J_i^2(\mathbf{a}) \cdot \delta \mathbf{a} = \sum_{E \in \mathcal{E}_i} \mu(E) ([\mathcal{F}(i, w_E) - \mathcal{F}(i, v_E)] \cdot \tau_E)$$

with

$$\mu(E) := \frac{2}{P_i} \left( \min\left\{ 0, \frac{|E|}{\bar{E}_i} - c_2 \right\} - \sum_{\tilde{E} \in \mathcal{E}_i} \frac{|\tilde{E}|}{P_i} \min\left\{ 0, \frac{|\tilde{E}|}{\bar{E}_i} - c_2 \right\} \right).$$

To obtain an appropriate value for  $\omega$ , we analyze the results of minimizing  $f_2(\mathbf{a})$  with  $c_2 = 0.5$ and  $\kappa_0 = 10$ , varying  $\omega \in \{1, 0.1, 0.01\}$ . Table 5 shows the results. The numbers in the table show that all the problems were easily solved and stopped by the imposed criterion. Furthermore, we can see that, as expected, the smaller the value of  $\omega$ , the smaller the value of  $J^2(\mathbf{a}^*(\omega))$ . We can also see that as  $\omega$  decreases, the value of G increases. However, it increases only slightly and always remains close to the value obtained by minimizing the function G alone, which is 1.69930E-01 (see Table 2). This suggests that the solutions found, which satisfy the desired geometric properties, also preserve the property of minimizing the CVT energy function. Figures 5(a-d) show the diagrams obtained when minimizing  $G(\mathbf{a})$  and  $f_2(\mathbf{a})$  with  $c_2 = 0.5$  and varying  $\omega \in \{1, 0.1, 0.01\}$ . Considering  $c_2 = 0.5$  means that we expect diagrams in which no cell has an edge smaller than 50% of the average size of its edges. In the figures, colored cells are those that do not satisfy the desired property. This means that satisfactory results were obtained when minimizing  $f_2(\mathbf{a})$  with  $\omega = 0.1$  and  $\omega = 0.01$ . Table 6 analyzes the obtained solutions in detail. For each cell of each solution, the table shows the size of its edges, the average size of the edges, the ratio of the smallest edge to the average, and the value of  $J_i^2$ . The table clearly shows that as  $\omega$  decreases, the smallest edge of each cell approaches the smallest required proportion, that is, 50%.

| ω    | $f_2(\mathbf{a}^{\star})$ | $\ \nabla f_2(\mathbf{a}^\star)\ _{\infty}$ | $G(\mathbf{a}^{\star})$ | $J^2(\mathbf{a}^{\star})$ | $\mathbf{it}$ | fcnt | Time  |
|------|---------------------------|---------------------------------------------|-------------------------|---------------------------|---------------|------|-------|
| 1    | 1.70217E - 01             | $1.9E{-}09$                                 | 1.70079E - 01           | 1.37640E - 04             | 8             | 9    | 0.002 |
| 0.1  | $1.70437 \mathrm{E}{-02}$ | 7.3E - 09                                   | 1.70393E - 01           | $4.34693 \mathrm{E}{-06}$ | 17            | 21   | 0.002 |
| 0.01 | $1.70479E{-}03$           | $9.9E{-}09$                                 | $1.70474E{-}01$         | 5.12211E - 08             | 27            | 30   | 0.003 |

Table 5: Details of the process of minimizing  $f_2(\mathbf{a}) = \omega G(\mathbf{a}) + J^2(\mathbf{a})$  with  $c_2 = 0.5$  varying  $\omega$ .

Upon determining the value  $\omega = 0.01$ , additional experiments with  $\kappa_0 \in \{500, 1000\}$  were performed. The experiments consisted of minimizing  $G(\mathbf{a})$  as well as  $f_2(\mathbf{a})$  with  $\omega = 0.01$ , varying  $c_2$ . Tables 7 and 8 and Figures 6 and 7 show the results. The results in the tables show that, when the value of  $c_2$  increases, the optimization process is slightly more expensive. However, in all cases, the problems were easily solved. The interesting observation is that when  $c_2$  increases, solutions  $\mathbf{a}^*$  with more restrictive geometric conditions are calculated with a very small increase in the value of  $G(\mathbf{a}^*)$ . Moreover, the values of G remain close to the value obtained when minimizing G alone (see Table 2). We can also see that as  $c_2$  increases,  $J^2(\mathbf{a}^*)$ also increases and, at  $c_2 = 0.9$ , the geometric condition is not met. In the figures, seven shades of blue were used to paint the cells. The darkest cells are those with side sizes between 10-20% of the mean. The lighter cells are those with side sizes between 70 and 80% of the mean. The figures show that, as the value of  $c_2$  increases, cells with edge sizes smaller than 80% of the average size disappear.

Figure 8 analyzes ten different diagrams with  $\kappa_0 = 1000$  obtained by minimizing G alone and the function  $f_2$  with  $\omega = 0.01$  and  $c_2 \in \{0.1, 0.2, \dots, 0.9\}$ . For a given solution  $\mathbf{a}^*$ , the figure

|                                                                                                                                                                                                                                | Cell $i$                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                          | Edges                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | s sizes                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                  | $\bar{E}_i$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $100( E_i^{\min} /\bar{E}_i)\%$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $J_i^2(\mathbf{a}^{\star})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                | 1                                                                                                                                                                                                   | 1.20E + 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7.75E - 01                                                                                                                                                                                                                                               | 9.70E - 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7.75E - 01                                                                                                                                                                                                                                                                                                                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                | 9.30E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 83.4%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                | 2                                                                                                                                                                                                   | 1.05E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $9.24E{-}01$                                                                                                                                                                                                                                             | 5.65E - 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $5.65 \mathrm{E}{-01}$                                                                                                                                                                                                                                                                                                                                                      | 9.24E - 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                | 8.06E - 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 70.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00E + 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                | 3                                                                                                                                                                                                   | 3.36E - 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7.75E - 01                                                                                                                                                                                                                                               | 9.82E - 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $1.05E{+}00$                                                                                                                                                                                                                                                                                                                                                                | $9.24\mathrm{E}{-01}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                                                                                                | 8.14E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 41.3%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $1.51\mathrm{E}{-03}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| a)                                                                                                                                                                                                                             | 4                                                                                                                                                                                                   | 9.82E - 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $1.05E{+}00$                                                                                                                                                                                                                                             | 9.24E - 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $3.36E{-}01$                                                                                                                                                                                                                                                                                                                                                                | 7.75E - 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                | 8.14E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 41.3%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $1.51\mathrm{E}{-03}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| U                                                                                                                                                                                                                              | 5                                                                                                                                                                                                   | 3.36E - 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9.70E - 01                                                                                                                                                                                                                                               | $3.36E{-}01$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5.65E - 01                                                                                                                                                                                                                                                                                                                                                                  | 9.02E - 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.65E - 01                                                                                                       | 6.12E - 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 54.9%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00E + 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| E.                                                                                                                                                                                                                             | 6                                                                                                                                                                                                   | 9.24E - 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $1.05E{+}00$                                                                                                                                                                                                                                             | 9.82E - 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $7.75E{-}01$                                                                                                                                                                                                                                                                                                                                                                | 3.36E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                | 8.14E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 41.3%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $1.51\mathrm{E}{-03}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                | 7                                                                                                                                                                                                   | 9.02E - 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $5.65 \mathrm{E}{-01}$                                                                                                                                                                                                                                   | $3.36E{-}01$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $9.70E{-}01$                                                                                                                                                                                                                                                                                                                                                                | 3.36E - 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $5.65 \mathrm{E}{-01}$                                                                                           | 6.12E - 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 54.9%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00E + 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                | 8                                                                                                                                                                                                   | 5.65E - 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9.24E - 01                                                                                                                                                                                                                                               | $1.05E{+}00$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $9.24\mathrm{E}{-01}$                                                                                                                                                                                                                                                                                                                                                       | $5.65 \mathrm{E}{-01}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                | 8.06E - 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 70.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00E + 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                | 9                                                                                                                                                                                                   | 7.75E - 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $1.20E{+}00$                                                                                                                                                                                                                                             | 7.75E - 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9.70E - 01                                                                                                                                                                                                                                                                                                                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                | 9.30E - 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 83.4%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00E + 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                | 10                                                                                                                                                                                                  | 1.05E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9.82E - 01                                                                                                                                                                                                                                               | 7.75E - 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.36E-01                                                                                                                                                                                                                                                                                                                                                                    | $9.24\mathrm{E}{-01}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                                                                                                | 8.14E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 41.3%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $1.51\mathrm{E}{-03}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                | Cell $i$                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                          | Edges                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | s sizes                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                  | $E_i$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $100( E_i^{\min} /\bar{E}_i)\%$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $J_i^2(\mathbf{a}^{\star})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                | 1                                                                                                                                                                                                   | 1.22E + 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7.54E - 01                                                                                                                                                                                                                                               | 9.47E - 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7.54E - 01                                                                                                                                                                                                                                                                                                                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                | 9.18E - 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 82.2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00E + 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                | 2                                                                                                                                                                                                   | 1.07E + 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9.22E - 01                                                                                                                                                                                                                                               | 5.56E - 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.56E - 01                                                                                                                                                                                                                                                                                                                                                                  | 9.22E - 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                | 8.05E - 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 69.1%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00E + 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 3                                                                                                                                                                                                                              | 3                                                                                                                                                                                                   | 3.73E - 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7.54E - 01                                                                                                                                                                                                                                               | 9.73E - 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $1.05E{+}00$                                                                                                                                                                                                                                                                                                                                                                | 9.22E - 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                | 8.14E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 45.9%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.44E-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| th                                                                                                                                                                                                                             | 4                                                                                                                                                                                                   | 9.73E - 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $1.05E{+}00$                                                                                                                                                                                                                                             | 9.22E - 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $3.73E{-}01$                                                                                                                                                                                                                                                                                                                                                                | 7.54E - 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                | 8.14E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 45.9%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.44E-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| wi.                                                                                                                                                                                                                            | 5                                                                                                                                                                                                   | 3.73E - 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9.47E - 01                                                                                                                                                                                                                                               | 3.73E - 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.56E - 01                                                                                                                                                                                                                                                                                                                                                                  | 9.01E - 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.56E - 01                                                                                                       | 6.18E - 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 60.4%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00E + 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| a)                                                                                                                                                                                                                             | 6                                                                                                                                                                                                   | 9.22E - 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $1.05E{+}00$                                                                                                                                                                                                                                             | 9.73E - 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7.54E - 01                                                                                                                                                                                                                                                                                                                                                                  | 3.73E - 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                | 8.14E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 45.9%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.44E - 04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $f_2($                                                                                                                                                                                                                         | 7                                                                                                                                                                                                   | 9.01E - 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.56E - 01                                                                                                                                                                                                                                               | 3.73E - 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9.47E - 01                                                                                                                                                                                                                                                                                                                                                                  | 3.73E - 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.56E - 01                                                                                                       | 6.18E - 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 60.4%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00E + 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| E.                                                                                                                                                                                                                             | 8                                                                                                                                                                                                   | 5.56E - 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9.22E - 01                                                                                                                                                                                                                                               | 1.07E + 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9.22E - 01                                                                                                                                                                                                                                                                                                                                                                  | 5.56E - 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                | 8.05E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 69.1%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00E + 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                | 9                                                                                                                                                                                                   | 7.54E - 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $1.22E{+}00$                                                                                                                                                                                                                                             | 7.54E - 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9.47E - 01                                                                                                                                                                                                                                                                                                                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                | 9.18E - 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 82.2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00E + 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                | 10                                                                                                                                                                                                  | 1.05E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9.73E - 01                                                                                                                                                                                                                                               | 7.54E - 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.73E - 01                                                                                                                                                                                                                                                                                                                                                                  | 9.22E - 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                | 8.14E - 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 45.9%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.44E - 04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                | a 11 i                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                  | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100(  Emin  (E))()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>7</b> 9( 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                | Cell $i$                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                          | Edges                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | s sizes                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                  | $\bar{E}_i$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $100( E_i^{\min} /\bar{E}_i)\%$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $J_i^2(\mathbf{a}^{\star})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                | Cell <i>i</i>                                                                                                                                                                                       | 1.23E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7.40E-01                                                                                                                                                                                                                                                 | Edges<br>9.29E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | s sizes<br>7.40E-01                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                  | $\bar{E}_i$<br>9.10E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\frac{100( E_i^{\min} /\bar{E}_i)\%}{81.3\%}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\frac{J_i^2(\mathbf{a}^{\star})}{0.00\text{E}{+}00}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| = 0.1                                                                                                                                                                                                                          | Cell $i$<br>1<br>2                                                                                                                                                                                  | 1.23E+00<br>1.08E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7.40E-01<br>9.20E-01                                                                                                                                                                                                                                     | Edges<br>9.29E-01<br>5.50E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5 sizes<br>7.40E-01<br>5.50E-01                                                                                                                                                                                                                                                                                                                                             | 9.20E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                | $E_i$<br>9.10E-01<br>8.04E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\frac{100( E_i^{\min} /\bar{E}_i)\%}{81.3\%}$ 68.4%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\frac{J_i^2(\mathbf{a}^{\star})}{0.00E+00}\\0.00E+00$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $\omega = 0.1$                                                                                                                                                                                                                 | Cell <i>i</i><br>1<br>2<br>3                                                                                                                                                                        | 1.23E+00<br>1.08E+00<br>4.01E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.40E-01<br>9.20E-01<br>7.40E-01                                                                                                                                                                                                                         | Edges<br>9.29E-01<br>5.50E-01<br>9.66E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7.40E-01<br>5.50E-01<br>1.04E+00                                                                                                                                                                                                                                                                                                                                            | 9.20E-01<br>9.20E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -<br>-<br>-                                                                                                      | $E_i$<br>9.10E-01<br>8.04E-01<br>8.14E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\frac{100( E_i^{\min} /\bar{E}_i)\%}{81.3\%}$ $\frac{68.4\%}{49.3\%}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\frac{J_i^2(\mathbf{a}^{\star})}{0.00E+00}$<br>0.00E+00<br>1.09E-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $\sin \omega = 0.1$                                                                                                                                                                                                            | Cell <i>i</i><br>1<br>2<br>3<br>4                                                                                                                                                                   | 1.23E+00<br>1.08E+00<br>4.01E-01<br>9.66E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7.40E-01<br>9.20E-01<br>7.40E-01<br>1.04E+00                                                                                                                                                                                                             | Edges<br>9.29E-01<br>5.50E-01<br>9.66E-01<br>9.20E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7.40E-01<br>5.50E-01<br>1.04E+00<br>4.01E-01                                                                                                                                                                                                                                                                                                                                | 9.20E-01<br>9.20E-01<br>7.40E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                  | $\begin{array}{c} \bar{E}_i \\ 9.10E-01 \\ 8.04E-01 \\ 8.14E-01 \\ 8.14E-01 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\frac{100( E_i^{\min} /\bar{E}_i)\%}{81.3\%}$ $\frac{81.3\%}{68.4\%}$ $49.3\%$ $49.3\%$ $49.3\%$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{c} J_i^2(\mathbf{a}^{\star}) \\ \hline 0.00\text{E}{+}00 \\ 0.00\text{E}{+}00 \\ 1.09\text{E}{-}05 \\ 1.09\text{E}{-}05 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| with $\omega = 0.1$                                                                                                                                                                                                            | Cell <i>i</i><br>1<br>2<br>3<br>4<br>5                                                                                                                                                              | 1.23E+00<br>1.08E+00<br>4.01E-01<br>9.66E-01<br>4.01E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7.40E-01<br>9.20E-01<br>7.40E-01<br>1.04E+00<br>9.29E-01                                                                                                                                                                                                 | Edges<br>9.29E-01<br>5.50E-01<br>9.66E-01<br>9.20E-01<br>4.01E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | sizes           7.40E-01           5.50E-01           1.04E+00           4.01E-01           5.50E-01                                                                                                                                                                                                                                                                        | 9.20E-01<br>9.20E-01<br>7.40E-01<br>9.02E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -<br>-<br>-<br>5.50E-01                                                                                          | $\begin{array}{c} \bar{E}_i \\ \hline 9.10E-01 \\ 8.04E-01 \\ 8.14E-01 \\ 8.14E-01 \\ 6.22E-01 \\ 6.22E-01 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\frac{100( E_i^{\min} /\bar{E}_i)\%}{81.3\%}$ $\frac{81.3\%}{68.4\%}$ $49.3\%$ $49.3\%$ $64.4\%$ $42.3\%$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{c} J_i^2(\mathbf{a}^{\star}) \\ \hline 0.00\mathrm{E}{+}00 \\ 0.00\mathrm{E}{+}00 \\ 1.09\mathrm{E}{-}05 \\ 1.09\mathrm{E}{-}05 \\ 0.00\mathrm{E}{+}00 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| a) with $\omega = 0.1$                                                                                                                                                                                                         | Cell <i>i</i><br>1<br>2<br>3<br>4<br>5<br>6                                                                                                                                                         | 1.23E+00<br>1.08E+00<br>4.01E-01<br>9.66E-01<br>4.01E-01<br>9.20E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7.40E-01<br>9.20E-01<br>7.40E-01<br>1.04E+00<br>9.29E-01<br>1.04E+00                                                                                                                                                                                     | Edges<br>9.29E-01<br>5.50E-01<br>9.66E-01<br>9.20E-01<br>4.01E-01<br>9.66E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | sizes           7.40E-01           5.50E-01           1.04E+00           4.01E-01           5.50E-01           7.40E-01                                                                                                                                                                                                                                                     | 9.20E-01<br>9.20E-01<br>7.40E-01<br>9.02E-01<br>4.01E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -<br>-<br>5.50E-01                                                                                               | $\begin{array}{c} \bar{E}_i \\ \hline 9.10E-01 \\ 8.04E-01 \\ 8.14E-01 \\ 8.14E-01 \\ 6.22E-01 \\ 8.14E-01 \\ 8.14E-01 \\ 0.22E-01 \\ 8.14E-01 \\ 0.22E-01 \\ 0.22$ | $\frac{100( E_i^{\min} /\bar{E}_i)\%}{81.3\%}$ $\frac{81.3\%}{68.4\%}$ $49.3\%$ $49.3\%$ $64.4\%$ $49.3\%$ $49.3\%$ $64.4\%$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c} J_i^2(\mathbf{a}^{\star}) \\ \hline 0.00\mathrm{E}{+}00 \\ 0.00\mathrm{E}{+}00 \\ 1.09\mathrm{E}{-}05 \\ 1.09\mathrm{E}{-}05 \\ 0.00\mathrm{E}{+}00 \\ 1.09\mathrm{E}{-}05 \\ 0.00\mathrm{E}{+}00 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $f_2(\mathbf{a}) 	ext{ with } \omega = 0.1$                                                                                                                                                                                    | $\begin{array}{c} \text{Cell } i \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ \end{array}$                                                                                                                 | 1.23E+00<br>1.08E+00<br>4.01E-01<br>9.66E-01<br>4.01E-01<br>9.20E-01<br>9.20E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.40E-01<br>9.20E-01<br>7.40E-01<br>1.04E+00<br>9.29E-01<br>1.04E+00<br>5.50E-01                                                                                                                                                                         | Edges<br>9.29E-01<br>5.50E-01<br>9.66E-01<br>9.20E-01<br>4.01E-01<br>9.66E-01<br>4.01E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7.40E-01<br>5.50E-01<br>1.04E+00<br>4.01E-01<br>5.50E-01<br>7.40E-01<br>9.29E-01                                                                                                                                                                                                                                                                                            | 9.20E-01<br>9.20E-01<br>7.40E-01<br>9.02E-01<br>4.01E-01<br>4.01E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -<br>-<br>5.50E-01<br>-<br>5.50E-01                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\frac{100( E_i^{\min} /\bar{E}_i)\%}{81.3\%}$ $\frac{81.3\%}{68.4\%}$ $49.3\%$ $49.3\%$ $64.4\%$ $49.3\%$ $64.4\%$ $64.4\%$ $64.4\%$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} J_i^2(\mathbf{a}^{\star}) \\ \hline 0.00\mathrm{E}+00 \\ 0.00\mathrm{E}+00 \\ 1.09\mathrm{E}-05 \\ 1.09\mathrm{E}-05 \\ 0.00\mathrm{E}+00 \\ 1.09\mathrm{E}-05 \\ 0.00\mathrm{E}+00 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| in $f_2(\mathbf{a})$ with $\omega = 0.1$                                                                                                                                                                                       | Cell <i>i</i><br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>0                                                                                                                                          | 1.23E+00<br>1.08E+00<br>4.01E-01<br>9.66E-01<br>4.01E-01<br>9.20E-01<br>9.02E-01<br>5.50E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7.40E-01<br>9.20E-01<br>7.40E-01<br>1.04E+00<br>9.29E-01<br>1.04E+00<br>5.50E-01<br>9.20E-01                                                                                                                                                             | Edges<br>9.29E-01<br>5.50E-01<br>9.66E-01<br>4.01E-01<br>9.66E-01<br>4.01E-01<br>1.08E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | sizes           7.40E-01           5.50E-01           1.04E+00           4.01E-01           5.50E-01           7.40E-01           9.29E-01           9.20E-01                                                                                                                                                                                                               | 9.20E-01<br>9.20E-01<br>7.40E-01<br>9.02E-01<br>4.01E-01<br>4.01E-01<br>5.50E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -<br>-<br>5.50E-01<br>-<br>5.50E-01                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\frac{100( E_i^{\min} /\bar{E}_i)\%}{81.3\%}$ $\frac{81.3\%}{68.4\%}$ $49.3\%$ $64.4\%$ $49.3\%$ $64.4\%$ $64.4\%$ $68.4\%$ $61.4\%$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} J_i^2(\mathbf{a}^{\star}) \\ \hline 0.00\mathrm{E}+00 \\ 0.00\mathrm{E}+00 \\ 1.09\mathrm{E}-05 \\ 1.09\mathrm{E}-05 \\ 0.00\mathrm{E}+00 \\ 1.09\mathrm{E}-05 \\ 0.00\mathrm{E}+00 \\ 0.00\mathrm{E}+00 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\operatorname{Min} f_2(\mathbf{a}) \operatorname{with} \omega = 0.1$                                                                                                                                                          | $\begin{array}{c} \text{Cell } i \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \end{array}$                                                                                                    | 1.23E+00<br>1.08E+00<br>4.01E-01<br>9.66E-01<br>4.01E-01<br>9.20E-01<br>9.02E-01<br>5.50E-01<br>7.40E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7.40E-01<br>9.20E-01<br>7.40E-01<br>1.04E+00<br>9.29E-01<br>1.04E+00<br>5.50E-01<br>9.20E-01<br>1.23E+00<br>0.65E-01                                                                                                                                     | Edges<br>9.29E-01<br>5.50E-01<br>9.66E-01<br>4.01E-01<br>9.66E-01<br>4.01E-01<br>1.08E+00<br>7.40E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | sizes           7.40E-01           5.50E-01           1.04E+00           4.01E-01           5.50E-01           7.40E-01           9.29E-01           9.20E-01           9.20E-01           9.20E-01           9.20E-01                                                                                                                                                      | 9.20E-01<br>9.20E-01<br>7.40E-01<br>9.02E-01<br>4.01E-01<br>4.01E-01<br>5.50E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -<br>-<br>5.50E-01<br>-<br>5.50E-01<br>-                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\frac{100( E_i^{\min} /\bar{E}_i)\%}{81.3\%}$ $\frac{81.3\%}{68.4\%}$ $49.3\%$ $64.4\%$ $49.3\%$ $64.4\%$ $64.4\%$ $68.4\%$ $81.3\%$ $40.2\%$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c} J_i^2(\mathbf{a}^{\star}) \\ \hline 0.00\text{E}+00 \\ 0.00\text{E}+00 \\ 1.09\text{E}-05 \\ 1.09\text{E}-05 \\ 0.00\text{E}+00 \\ 1.09\text{E}-05 \\ 0.00\text{E}+00 \\ 0.00\text{E}+00 \\ 0.00\text{E}+00 \\ 0.00\text{E}+00 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Min $f_2(\mathbf{a})$ with $\omega = 0.1$                                                                                                                                                                                      | Cell <i>i</i><br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10                                                                                                                                    | $\begin{array}{c} 1.23E{+}00\\ 1.08E{+}00\\ 4.01E{-}01\\ 9.66E{-}01\\ 4.01E{-}01\\ 9.20E{-}01\\ 9.20E{-}01\\ 5.50E{-}01\\ 5.50E{-}01\\ 7.40E{-}01\\ 1.04E{+}00\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c} 7.40\mathrm{E}{-}01\\ 9.20\mathrm{E}{-}01\\ 7.40\mathrm{E}{-}01\\ 1.04\mathrm{E}{+}00\\ 9.29\mathrm{E}{-}01\\ 1.04\mathrm{E}{+}00\\ 5.50\mathrm{E}{-}01\\ 9.20\mathrm{E}{-}01\\ 1.23\mathrm{E}{+}00\\ 9.66\mathrm{E}{-}01 \end{array}$ | $\begin{array}{c} {\rm Edges} \\ 9.29{\rm E}{-}01 \\ 5.50{\rm E}{-}01 \\ 9.66{\rm E}{-}01 \\ 9.20{\rm E}{-}01 \\ 4.01{\rm E}{-}01 \\ 9.66{\rm E}{-}01 \\ 4.01{\rm E}{-}01 \\ 1.08{\rm E}{+}00 \\ 7.40{\rm E}{-}01 \\ 7.40{\rm E}{-}01 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{c} s \text{ sizes} \\ \hline 7.40 \text{E}-01 \\ 5.50 \text{E}-01 \\ 1.04 \text{E}+00 \\ 4.01 \text{E}-01 \\ 5.50 \text{E}-01 \\ 7.40 \text{E}-01 \\ 9.29 \text{E}-01 \\ 9.20 \text{E}-01 \\ 9.29 \text{E}-01 \\ 4.01 \text{E}-01 \end{array}$                                                                                                               | 9.20E-01<br>9.20E-01<br>7.40E-01<br>9.02E-01<br>4.01E-01<br>4.01E-01<br>5.50E-01<br>-<br>9.20E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -<br>-<br>5.50E-01<br>-<br>5.50E-01<br>-<br>-                                                                    | $\begin{array}{c} \bar{E}_i \\ 9.10 E-01 \\ 8.04 E-01 \\ 8.14 E-01 \\ 8.14 E-01 \\ 6.22 E-01 \\ 8.14 E-01 \\ 6.22 E-01 \\ 8.04 E-01 \\ 9.10 E-01 \\ 8.14 E-01 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\frac{100( E_i^{\min} /\bar{E}_i)\%}{81.3\%}$ $\frac{81.3\%}{68.4\%}$ $49.3\%$ $64.4\%$ $64.4\%$ $64.4\%$ $64.4\%$ $68.4\%$ $81.3\%$ $49.3\%$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c} J_i^2(\mathbf{a}^{\star}) \\ \hline 0.00\mathrm{E}+00 \\ 0.00\mathrm{E}+00 \\ 1.09\mathrm{E}-05 \\ 1.09\mathrm{E}-05 \\ 0.00\mathrm{E}+00 \\ 1.09\mathrm{E}-05 \\ 0.00\mathrm{E}+00 \\ 0.00\mathrm{E}+00 \\ 0.00\mathrm{E}+00 \\ 1.09\mathrm{E}-05 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Min $f_2(\mathbf{a})$ with $\omega = 0.1$                                                                                                                                                                                      | Cell <i>i</i><br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>Coll                                                                                                                            | $\begin{array}{c} 1.23E{+}00\\ 1.08E{+}00\\ 4.01E{-}01\\ 9.66E{-}01\\ 4.01E{-}01\\ 9.20E{-}01\\ 9.02E{-}01\\ 5.50E{-}01\\ 7.40E{-}01\\ 1.04E{+}00\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} 7.40\mathrm{E}{-}01\\ 9.20\mathrm{E}{-}01\\ 7.40\mathrm{E}{-}01\\ 1.04\mathrm{E}{+}00\\ 9.29\mathrm{E}{-}01\\ 1.04\mathrm{E}{+}00\\ 5.50\mathrm{E}{-}01\\ 9.20\mathrm{E}{-}01\\ 1.23\mathrm{E}{+}00\\ 9.66\mathrm{E}{-}01 \end{array}$ | Edges<br>9.29E-01<br>5.50E-01<br>9.66E-01<br>9.20E-01<br>4.01E-01<br>9.66E-01<br>4.01E-01<br>1.08E+00<br>7.40E-01<br>7.40E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | s sizes           7.40E-01           5.50E-01           1.04E+00           4.01E-01           5.50E-01           7.40E-01           9.20E-01           9.20E-01           9.29E-01           4.01E-01                                                                                                                                                                       | 9.20E-01<br>9.20E-01<br>7.40E-01<br>9.02E-01<br>4.01E-01<br>4.01E-01<br>5.50E-01<br>9.20E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -<br>-<br>5.50E-01<br>-<br>5.50E-01<br>-<br>-                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\frac{100( E_i^{\min} /\bar{E}_i)\%}{81.3\%}$ $\frac{81.3\%}{68.4\%}$ $49.3\%$ $64.4\%$ $64.4\%$ $64.4\%$ $64.4\%$ $68.4\%$ $81.3\%$ $49.3\%$ $100( E^{\min} /\bar{E}_i)\%$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $ \begin{array}{c} J_i^2(\mathbf{a}^{\star}) \\ \hline 0.00E+00 \\ 0.00E+00 \\ 1.09E-05 \\ 1.09E-05 \\ 0.00E+00 \\ 1.09E-05 \\ 0.00E+00 \\ 0.00E+00 \\ 0.00E+00 \\ 1.09E-05 \\ \hline \\ \hline J^2(\mathbf{a}^{\star}) \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $\qquad \qquad $                                                                                        | Cell <i>i</i><br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>Cell                                                                                                                            | $\begin{array}{c} 1.23E + 00\\ 1.08E + 00\\ 4.01E - 01\\ 9.66E - 01\\ 4.01E - 01\\ 9.20E - 01\\ 9.02E - 01\\ 5.50E - 01\\ 7.40E - 01\\ 1.04E + 00\\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7.40E-01<br>9.20E-01<br>7.40E-01<br>1.04E+00<br>9.29E-01<br>1.04E+00<br>5.50E-01<br>9.20E-01<br>1.23E+00<br>9.66E-01                                                                                                                                     | Edges<br>9.29E-01<br>5.50E-01<br>9.66E-01<br>9.20E-01<br>4.01E-01<br>9.66E-01<br>4.01E-01<br>1.08E+00<br>7.40E-01<br>7.40E-01<br>Edges                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5 sizes         7.40E-01         5.50E-01         1.04E+00         4.01E-01         5.50E-01         7.40E-01         9.29E-01         9.29E-01         4.01E-01                                                                                                                                                                                                            | 9.20E-01<br>9.20E-01<br>7.40E-01<br>9.02E-01<br>4.01E-01<br>4.01E-01<br>5.50E-01<br>9.20E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -<br>-<br>5.50E-01<br>-<br>5.50E-01<br>-<br>-                                                                    | $\begin{array}{c} \bar{E}_i \\ 9.10E-01 \\ 8.04E-01 \\ 8.14E-01 \\ 8.14E-01 \\ 6.22E-01 \\ 8.14E-01 \\ 6.22E-01 \\ 8.04E-01 \\ 9.10E-01 \\ 8.14E-01 \\ \hline \bar{E}_i \\ \hline \bar{E}_i \\ 0.08E-01 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $  \frac{100( E_i^{\min} /\bar{E}_i)\%}{81.3\%} \\                                   $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $ \begin{array}{c} J_i^2(\mathbf{a}^{\star}) \\ \hline 0.00E+00 \\ 0.00E+00 \\ 1.09E-05 \\ 1.09E-05 \\ 0.00E+00 \\ 1.09E-05 \\ 0.00E+00 \\ 0.00E+00 \\ 1.09E-05 \\ \hline \\ J_i^2(\mathbf{a}^{\star}) \\ \hline \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 01 Min $f_2(\mathbf{a})$ with $\omega = 0.1$                                                                                                                                                                                   | Cell <i>i</i><br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>Cell<br>1<br>2                                                                                                                  | $\begin{array}{c} 1.23E{+}00\\ 1.08E{+}00\\ 4.01E{-}01\\ 9.66E{-}01\\ 4.01E{-}01\\ 9.20E{-}01\\ 9.02E{-}01\\ 5.50E{-}01\\ 7.40E{-}01\\ 1.04E{+}00\\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7.40E-01<br>9.20E-01<br>7.40E-01<br>1.04E+00<br>9.29E-01<br>1.04E+00<br>5.50E-01<br>9.20E-01<br>1.23E+00<br>9.66E-01<br>7.37E-01<br>0.20E 01                                                                                                             | Edges<br>9.29E-01<br>5.50E-01<br>9.66E-01<br>9.20E-01<br>4.01E-01<br>9.66E-01<br>4.01E-01<br>1.08E+00<br>7.40E-01<br>7.40E-01<br>Edges<br>9.26E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3 sizes         7.40E-01         5.50E-01         1.04E+00         4.01E-01         5.50E-01         7.40E-01         9.29E-01         9.29E-01         4.01E-01         3 sizes         7.37E-01         5 48E_01                                                                                                                                                          | 9.20E-01<br>9.20E-01<br>7.40E-01<br>9.02E-01<br>4.01E-01<br>5.50E-01<br>9.20E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -<br>-<br>5.50E-01<br>-<br>5.50E-01<br>-<br>-                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{c} 100( E_i^{\min} /\bar{E}_i)\%\\ \hline 81.3\%\\ \hline 68.4\%\\ \textbf{49.3\%}\\ \textbf{49.3\%}\\ \hline \textbf{64.4\%}\\ \hline \textbf{64.4\%}\\ \hline 64.4\%\\ \hline 68.4\%\\ \textbf{81.3\%}\\ \hline \textbf{49.3\%}\\ \hline \hline 100( E_i^{\min} /\bar{E}_i)\%\\ \hline 81.1\%\\ \hline 68.2\%\\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $ \begin{array}{c} J_i^2(\mathbf{a}^{\star}) \\ \hline 0.00E+00 \\ 0.00E+00 \\ 1.09E-05 \\ 1.09E-05 \\ 0.00E+00 \\ 1.09E-05 \\ 0.00E+00 \\ 0.00E+00 \\ 1.09E-05 \\ \hline \\ J_i^2(\mathbf{a}^{\star}) \\ \hline 0.00E+00 \\ 0.00E+00 \\ 0.00E+00 \\ \hline \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| = 0.01 Min $f_2(\mathbf{a})$ with $\omega = 0.1$                                                                                                                                                                               | Cell <i>i</i><br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>Cell<br>1<br>2<br>2                                                                                                             | $\begin{array}{c} 1.23E{+}00\\ 1.08E{+}00\\ 4.01E{-}01\\ 9.66E{-}01\\ 4.01E{-}01\\ 9.20E{-}01\\ 9.02E{-}01\\ 5.50E{-}01\\ 7.40E{-}01\\ 1.04E{+}00\\ \hline 1.23E{+}00\\ 1.08E{+}00\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7.40E-01<br>9.20E-01<br>7.40E-01<br>1.04E+00<br>9.29E-01<br>1.04E+00<br>5.50E-01<br>9.20E-01<br>1.23E+00<br>9.66E-01<br>7.37E-01<br>9.20E-01<br>7.27E-01                                                                                                 | Edges<br>9.29E-01<br>5.50E-01<br>9.66E-01<br>9.20E-01<br>4.01E-01<br>9.66E-01<br>4.01E-01<br>1.08E+00<br>7.40E-01<br>7.40E-01<br>Edges<br>9.26E-01<br>5.48E-01<br>9.65E 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | s sizes         7.40E-01         5.50E-01         1.04E+00         4.01E-01         5.50E-01         7.40E-01         9.29E-01         9.29E-01         4.01E-01         3 sizes         7.37E-01         5.48E-01                                                                                                                                                          | 9.20E-01<br>9.20E-01<br>7.40E-01<br>9.02E-01<br>4.01E-01<br>4.01E-01<br>5.50E-01<br>9.20E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -<br>-<br>5.50E-01<br>-<br>5.50E-01<br>-<br>-<br>-<br>-                                                          | $\begin{array}{c} \bar{E}_i \\ 9.10 E-01 \\ 8.04 E-01 \\ 8.14 E-01 \\ 8.14 E-01 \\ 6.22 E-01 \\ 8.14 E-01 \\ 6.22 E-01 \\ 8.04 E-01 \\ 9.10 E-01 \\ 8.14 E-01 \\ \hline \bar{E}_i \\ 9.08 E-01 \\ 8.04 E-01 \\ 8.04 E-01 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} 100( E_i^{\min} /\bar{E}_i)\%\\ \hline 81.3\%\\ \hline 68.4\%\\ \textbf{49.3\%}\\ \textbf{49.3\%}\\ \hline \textbf{64.4\%}\\ \hline \textbf{64.4\%}\\ \hline 64.4\%\\ \hline 68.4\%\\ \hline 81.3\%\\ \textbf{49.3\%}\\ \hline \hline 100( E_i^{\min} /\bar{E}_i)\%\\ \hline 81.1\%\\ \hline 68.2\%\\ \textbf{49.0\%}\\ \hline \textbf{49.0\%}\\ \hline \textbf{68.2\%}\\ \textbf{49.0\%}\\ \hline \textbf{49.0\%}\\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{c} J_i^2(\mathbf{a}^{\star}) \\ \hline 0.00\text{E}+00 \\ 0.00\text{E}+00 \\ 1.09\text{E}-05 \\ 1.09\text{E}-05 \\ 0.00\text{E}+00 \\ 1.09\text{E}-05 \\ 0.00\text{E}+00 \\ 0.00\text{E}+00 \\ 0.00\text{E}+00 \\ \hline 1.09\text{E}-05 \\ \hline J_i^2(\mathbf{a}^{\star}) \\ \hline 0.00\text{E}+00 \\ 0.00\text{E}+00 \\ 0.00\text{E}+00 \\ 1.28\text{E}-07 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $\omega = 0.01$ Min $f_2(\mathbf{a})$ with $\omega = 0.1$                                                                                                                                                                      | Cell <i>i</i> 1 2 3 4 5 6 7 8 9 10 Cell 1 2 3 4                                                                                                                                                     | $\begin{array}{c} 1.23E+00\\ 1.08E+00\\ 4.01E-01\\ 9.66E-01\\ 4.01E-01\\ 9.20E-01\\ 9.02E-01\\ 5.50E-01\\ 7.40E-01\\ 1.04E+00\\ 1.08E+00\\ 4.06E-01\\ 9.65E-01\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c} 7.40E-01\\ 9.20E-01\\ 7.40E-01\\ 1.04E+00\\ 9.29E-01\\ 1.04E+00\\ 5.50E-01\\ 9.20E-01\\ 1.23E+00\\ 9.66E-01\\ \hline \end{array}$                                                                                                      | Edges<br>9.29E-01<br>5.50E-01<br>9.66E-01<br>9.20E-01<br>4.01E-01<br>9.66E-01<br>4.01E-01<br>1.08E+00<br>7.40E-01<br>7.40E-01<br>5.48E-01<br>9.26E-01<br>9.26E-01<br>9.26E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | s sizes         7.40E-01         5.50E-01         1.04E+00         4.01E-01         5.50E-01         7.40E-01         9.29E-01         9.29E-01         4.01E-01         3 sizes         7.37E-01         5.48E-01         1.04E+00                                                                                                                                         | 9.20E-01<br>9.20E-01<br>7.40E-01<br>9.02E-01<br>4.01E-01<br>4.01E-01<br>5.50E-01<br>9.20E-01<br>9.20E-01<br>9.20E-01<br>7.27E 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -<br>-<br>5.50E-01<br>-<br>5.50E-01<br>-<br>-<br>-<br>-<br>-                                                     | $\begin{array}{c} \bar{E}_i \\ 9.10 E-01 \\ 8.04 E-01 \\ 8.14 E-01 \\ 8.14 E-01 \\ 6.22 E-01 \\ 8.14 E-01 \\ 6.22 E-01 \\ 8.04 E-01 \\ 9.10 E-01 \\ 8.14 E-01 \\ \hline \bar{E}_i \\ 9.08 E-01 \\ 8.04 E-01 \\ 8.14 E-01 \\ 8.14 E-01 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c} 100( E_i^{\min} /\bar{E}_i)\%\\ \hline 81.3\%\\ \hline 68.4\%\\ \textbf{49.3\%}\\ \textbf{49.3\%}\\ \hline \textbf{64.4\%}\\ \hline \textbf{64.4\%}\\ \hline \textbf{64.4\%}\\ \hline 68.4\%\\ \hline \textbf{81.3\%}\\ \textbf{49.3\%}\\ \hline \hline 100( E_i^{\min} /\bar{E}_i)\%\\ \hline \textbf{81.1\%}\\ \hline 68.2\%\\ \textbf{49.9\%}\\ \textbf{49.9\%}\\ \textbf{40.0\%}\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} J_i^2(\mathbf{a}^{\star}) \\ \hline 0.00\text{E}+00 \\ 0.00\text{E}+00 \\ 1.09\text{E}-05 \\ 1.09\text{E}-05 \\ 0.00\text{E}+00 \\ 1.09\text{E}-05 \\ 0.00\text{E}+00 \\ 0.00\text{E}+00 \\ 0.00\text{E}+00 \\ 1.09\text{E}-05 \\ \hline J_i^2(\mathbf{a}^{\star}) \\ \hline 0.00\text{E}+00 \\ 0.00\text{E}+00 \\ 1.28\text{E}-07 \\ 1.28\text{E}-07 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $\sin \omega = 0.01 \qquad \qquad \text{Min } f_2(\mathbf{a}) \text{ with } \omega = 0.1 \qquad \qquad$ | Cell <i>i</i><br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>Cell<br>1<br>2<br>3<br>4<br>5<br>5<br>6<br>7<br>8<br>9<br>10<br>Cell <i>i</i>                                                   | $\begin{array}{c} 1.23E+00\\ 1.08E+00\\ 4.01E-01\\ 9.66E-01\\ 4.01E-01\\ 9.20E-01\\ 9.02E-01\\ 5.50E-01\\ 7.40E-01\\ 1.04E+00\\ \hline \\ 1.23E+00\\ 1.08E+00\\ 4.06E-01\\ 9.65E-01\\ \hline \\ 4.06E-01\\ \hline \\ 9.65E-01\\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7.40E-01<br>9.20E-01<br>7.40E-01<br>1.04E+00<br>9.29E-01<br>1.04E+00<br>5.50E-01<br>9.20E-01<br>1.23E+00<br>9.66E-01<br>7.37E-01<br>9.20E-01<br>7.37E-01<br>1.04E+00<br>0.26E 01                                                                         | Edges<br>9.29E-01<br>5.50E-01<br>9.66E-01<br>9.20E-01<br>4.01E-01<br>9.66E-01<br>4.01E-01<br>1.08E+00<br>7.40E-01<br>7.40E-01<br>5.48E-01<br>9.26E-01<br>9.20E-01<br>9.20E-01<br>4.06E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | s sizes         7.40E-01         5.50E-01         1.04E+00         4.01E-01         5.50E-01         7.40E-01         9.29E-01         9.29E-01         4.01E-01         3 sizes         7.37E-01         5.48E-01         1.04E+00         4.06E-01                                                                                                                        | 9.20E-01<br>9.20E-01<br>7.40E-01<br>9.02E-01<br>4.01E-01<br>4.01E-01<br>5.50E-01<br>9.20E-01<br>9.20E-01<br>9.20E-01<br>7.37E-01<br>0.02E 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -<br>-<br>5.50E-01<br>-<br>-<br>5.50E-01<br>-<br>-<br>-<br>-                                                     | $\begin{array}{c} \bar{E}_i \\ 9.10 E-01 \\ 8.04 E-01 \\ 8.14 E-01 \\ 8.14 E-01 \\ 6.22 E-01 \\ 8.14 E-01 \\ 6.22 E-01 \\ 8.04 E-01 \\ 9.10 E-01 \\ 8.14 E-01 \\ \hline \bar{E}_i \\ 9.08 E-01 \\ 8.04 E-01 \\ 8.04 E-01 \\ 8.14 E-01 \\ 8.1$             | $\begin{array}{c} 100( E_i^{\min} /\bar{E}_i)\%\\ \hline 81.3\%\\ \hline 68.4\%\\ \textbf{49.3\%}\\ \textbf{49.3\%}\\ \hline \textbf{64.4\%}\\ \hline \textbf{64.4\%}\\ \hline \textbf{64.4\%}\\ \hline 68.4\%\\ \hline \textbf{81.3\%}\\ \textbf{49.3\%}\\ \hline 100( E_i^{\min} /\bar{E}_i)\%\\ \hline \textbf{81.1\%}\\ \hline 68.2\%\\ \textbf{49.9\%}\\ \hline \textbf{49.9\%}\\ \hline \textbf{65.2\%}\\ \hline \textbf{65.2\%}\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} J_i^2(\mathbf{a}^{\star}) \\ \hline 0.00\text{E}+00 \\ 0.00\text{E}+00 \\ 1.09\text{E}-05 \\ 1.09\text{E}-05 \\ 0.00\text{E}+00 \\ 1.09\text{E}-05 \\ 0.00\text{E}+00 \\ 0.00\text{E}+00 \\ 0.00\text{E}+00 \\ 1.09\text{E}-05 \\ \hline J_i^2(\mathbf{a}^{\star}) \\ \hline 0.00\text{E}+00 \\ 0.00\text{E}+00 \\ 1.28\text{E}-07 \\ 1.28\text{E}-07 \\ 1.28\text{E}-07 \\ 0.00\text{E}+00 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| with $\omega = 0.01$<br>Min $f_2(\mathbf{a})$ with $\omega = 0.1$                                                                                                                                                              | Cell <i>i</i> 1 2 3 4 5 6 7 8 9 10 Cell 1 2 3 4 5 6 6                                                                                                                                               | $\begin{array}{c} 1.23E+00\\ 1.08E+00\\ 4.01E-01\\ 9.66E-01\\ 4.01E-01\\ 9.20E-01\\ 9.02E-01\\ 5.50E-01\\ 7.40E-01\\ 1.04E+00\\ 1.08E+00\\ 4.06E-01\\ 9.65E-01\\ 4.06E-01\\ 9.20E-01\\ 9.20E-01\\ 0.0E-01\\ 0.0E-01$ | $\begin{array}{c} 7.40E-01\\ 9.20E-01\\ 7.40E-01\\ 1.04E+00\\ 9.29E-01\\ 1.04E+00\\ 5.50E-01\\ 9.20E-01\\ 1.23E+00\\ 9.66E-01\\ \hline \end{array}$                                                                                                      | $\begin{array}{c} \text{Edges} \\ 9.29\text{E}-01 \\ 5.50\text{E}-01 \\ 9.66\text{E}-01 \\ 9.20\text{E}-01 \\ 4.01\text{E}-01 \\ 9.66\text{E}-01 \\ 4.01\text{E}-01 \\ 1.08\text{E}+00 \\ 7.40\text{E}-01 \\ 7.40\text{E}-01 \\ \hline 9.26\text{E}-01 \\ 9.26\text{E}-01 \\ 9.20\text{E}-01 \\ 9.20\text{E}-01 \\ 4.06\text{E}-01 \\ 9.65\text{E}-01 \\ 9.65\text{E}-01 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | s sizes         7.40E-01         5.50E-01         1.04E+00         4.01E-01         5.50E-01         7.40E-01         9.29E-01         9.20E-01         4.01E-01         3.5izes         7.37E-01         5.48E-01         1.04E+00         4.01E-01                                                                                                                        | $\begin{array}{c} 9.20E-01\\ 9.20E-01\\ 7.40E-01\\ 9.02E-01\\ 4.01E-01\\ 4.01E-01\\ 5.50E-01\\ 9.20E-01\\ 9.20E-01\\ 9.20E-01\\ 7.37E-01\\ 9.02E-01\\ 4.06E-01\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -<br>-<br>5.50E-01<br>-<br>-<br>5.50E-01<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>5.48E-01 | $\begin{array}{c} \bar{E}_i \\ 9.10 E-01 \\ 8.04 E-01 \\ 8.14 E-01 \\ 8.14 E-01 \\ 6.22 E-01 \\ 8.14 E-01 \\ 6.22 E-01 \\ 8.04 E-01 \\ 9.10 E-01 \\ 8.14 E-01 \\ \hline \bar{E}_i \\ 9.08 E-01 \\ 8.04 E-01 \\ 8.14 E-01 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c} 100( E_i^{\min} /\bar{E}_i)\%\\ \hline 81.3\%\\ \hline 68.4\%\\ \textbf{49.3\%}\\ \hline \textbf{49.3\%}\\ \hline \textbf{64.4\%}\\ \hline \textbf{64.4\%}\\ \hline \textbf{64.4\%}\\ \hline \textbf{68.4\%}\\ \hline \textbf{81.3\%}\\ \hline \textbf{49.3\%}\\ \hline \hline 100( E_i^{\min} /\bar{E}_i)\%\\ \hline \textbf{81.1\%}\\ \hline \textbf{68.2\%}\\ \hline \textbf{49.9\%}\\ \hline \textbf{49.9\%}\\ \hline \textbf{49.9\%}\\ \hline \textbf{65.2\%}\\ \hline \textbf{49.9\%}\\ \hline \textbf{49.9\%}\\ \hline \textbf{69.0\%}\\ \hline \textbf{49.9\%}\\ \hline \textbf{49.9\%}\\ \hline \textbf{69.0\%}\\ \hline \textbf{49.9\%}\\ \hline \textbf$ | $\begin{array}{c} J_i^2(\mathbf{a}^{\star}) \\ \hline 0.00E+00 \\ 0.00E+00 \\ 1.09E-05 \\ 1.09E-05 \\ 0.00E+00 \\ 1.09E-05 \\ 0.00E+00 \\ 0.00E+00 \\ 0.00E+00 \\ 1.09E-05 \\ \hline J_i^2(\mathbf{a}^{\star}) \\ \hline 0.00E+00 \\ 0.00E+00 \\ 1.28E-07 \\ 1.28E-07 \\ 0.00E+00 \\ 1.28E-07 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| a) with $\omega = 0.01$<br>Min $f_2(\mathbf{a})$ with $\omega = 0.1$                                                                                                                                                           | Cell <i>i</i>                                                                                                                                                                                       | $\begin{array}{c} 1.23E+00\\ 1.08E+00\\ 4.01E-01\\ 9.66E-01\\ 4.01E-01\\ 9.20E-01\\ 9.02E-01\\ 5.50E-01\\ 7.40E-01\\ 1.04E+00\\ 1.08E+00\\ 4.06E-01\\ 9.65E-01\\ 4.06E-01\\ 9.20E-01\\ 9.02E-01\\ 0.02E-01\\ 0.02E-01\\$                     | $\begin{array}{c} 7.40E-01\\ 9.20E-01\\ 7.40E-01\\ 1.04E+00\\ 9.29E-01\\ 1.04E+00\\ 5.50E-01\\ 9.20E-01\\ 1.23E+00\\ 9.66E-01\\ \hline \end{array}$                                                                                                      | $\begin{array}{c} \text{Edges} \\ 9.29\text{E}-01 \\ 5.50\text{E}-01 \\ 9.66\text{E}-01 \\ 9.20\text{E}-01 \\ 4.01\text{E}-01 \\ 9.66\text{E}-01 \\ 4.01\text{E}-01 \\ 1.08\text{E}+00 \\ 7.40\text{E}-01 \\ 7.40\text{E}-01 \\ \hline 7.40\text{E}-01 \\ \hline 9.26\text{E}-01 \\ 9.20\text{E}-01 \\ 4.06\text{E}-01 \\ 9.65\text{E}-01 \\ 4.06\text{E}-01 \\ 9.65\text{E}-01 \\ \hline 9.65\text{E}$ | s sizes         7.40E-01         5.50E-01         1.04E+00         4.01E-01         5.50E-01         7.40E-01         9.29E-01         9.29E-01         4.01E-01         5 sizes         7.37E-01         5.48E-01         1.04E+00         4.01E-01                                                                                                                        | 9.20E-01<br>9.20E-01<br>7.40E-01<br>9.02E-01<br>4.01E-01<br>4.01E-01<br>5.50E-01<br>9.20E-01<br>9.20E-01<br>9.20E-01<br>9.20E-01<br>9.02E-01<br>9.02E-01<br>4.06E-01<br>4.06E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -<br>-<br>5.50E-01<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-     | $\begin{array}{c} \bar{E}_i \\ 9.10 E-01 \\ 8.04 E-01 \\ 8.14 E-01 \\ 8.14 E-01 \\ 6.22 E-01 \\ 8.14 E-01 \\ 6.22 E-01 \\ 8.04 E-01 \\ 9.10 E-01 \\ 8.14 E-01 \\ \hline \bar{E}_i \\ 9.08 E-01 \\ 8.04 E-01 \\ 8.04 E-01 \\ 8.14 E-01 \\ 8.14 E-01 \\ 6.23 E-01 \\ 8.14 E-01 \\ 8.1$             | $\begin{array}{c} 100( E_i^{\min} /\bar{E}_i)\%\\ \hline 81.3\%\\ \hline 68.4\%\\ \textbf{49.3\%}\\ \hline \textbf{49.3\%}\\ \hline \textbf{64.4\%}\\ \hline \textbf{64.4\%}\\ \hline \textbf{64.4\%}\\ \hline \textbf{68.4\%}\\ \hline \textbf{68.4\%}\\ \hline \textbf{81.3\%}\\ \hline \textbf{49.3\%}\\ \hline \hline 100( E_i^{\min} /\bar{E}_i)\%\\ \hline \textbf{81.1\%}\\ \hline \textbf{68.2\%}\\ \hline \textbf{49.9\%}\\ \hline \textbf{49.9\%}\\ \hline \textbf{65.2\%}\\ \hline \textbf{49.9\%}\\ \hline \textbf{65.2\%}\\ \hline \textbf$ | $\begin{array}{c} J_i^2(\mathbf{a}^{\star}) \\ \hline 0.00\text{E}+00 \\ 0.00\text{E}+00 \\ 1.09\text{E}-05 \\ 1.09\text{E}-05 \\ 0.00\text{E}+00 \\ 1.09\text{E}-05 \\ 0.00\text{E}+00 \\ 0.00\text{E}+00 \\ 0.00\text{E}+00 \\ 1.09\text{E}-05 \\ \hline J_i^2(\mathbf{a}^{\star}) \\ \hline 0.00\text{E}+00 \\ 0.00\text{E}+00 \\ 1.28\text{E}-07 \\ 0.00\text{E}+00 \\ 1.28\text{E}-07 \\ 0.00\text{E}+00 \\ 1.28\text{E}-07 \\ 0.00\text{E}+00 \\ \hline 0.00\text{E}+00 \\ 1.28\text{E}-07 \\ 0.00\text{E}+00 \\ \hline 0.0$ |
| $f_2(\mathbf{a}) \text{ with } \omega = 0.01$<br>Min $f_2(\mathbf{a}) \text{ with } \omega = 0.1$                                                                                                                              | Cell <i>i</i> 1  2  3  4  5  6  7  8  9  10  Cell  1  2  3  4  5  6  7  8  9  10  Cell  1  2  3  4  5  6  7  8                                                                                      | $\begin{array}{c} 1.23E+00\\ 1.08E+00\\ 4.01E-01\\ 9.66E-01\\ 4.01E-01\\ 9.20E-01\\ 9.02E-01\\ 5.50E-01\\ 7.40E-01\\ 1.04E+00\\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} 7.40E-01\\ 9.20E-01\\ 7.40E-01\\ 1.04E+00\\ 9.29E-01\\ 1.04E+00\\ 5.50E-01\\ 9.20E-01\\ 1.23E+00\\ 9.66E-01\\ \hline \end{array}$                                                                                                      | $\begin{array}{c} \text{Edges} \\ 9.29\text{E}-01 \\ 5.50\text{E}-01 \\ 9.66\text{E}-01 \\ 9.20\text{E}-01 \\ 4.01\text{E}-01 \\ 9.66\text{E}-01 \\ 4.01\text{E}-01 \\ 1.08\text{E}+00 \\ 7.40\text{E}-01 \\ 7.40\text{E}-01 \\ \hline 7.40\text{E}-01 \\ 9.26\text{E}-01 \\ 9.20\text{E}-01 \\ 4.06\text{E}-01 \\ 9.65\text{E}-01 \\ 4.06\text{E}-01 \\ 1.08\text{E}+00 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | s sizes         7.40E-01         5.50E-01         1.04E+00         4.01E-01         5.50E-01         7.40E-01         9.29E-01         9.20E-01         9.29E-01         4.01E-01         5 sizes         7.37E-01         5.48E-01         1.04E+00         9.20E-01         9.20E-01         9.20E-01         9.20E-01         9.20E-01         9.20E-01         9.20E-01 | 9.20E-01<br>9.20E-01<br>7.40E-01<br>9.02E-01<br>4.01E-01<br>4.01E-01<br>5.50E-01<br>9.20E-01<br>9.20E-01<br>9.20E-01<br>9.02E-01<br>9.02E-01<br>4.06E-01<br>4.06E-01<br>5.48E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -<br>-<br>5.50E-01<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-     | $\begin{array}{c} \bar{E}_i \\ 9.10 E-01 \\ 8.04 E-01 \\ 8.14 E-01 \\ 8.14 E-01 \\ 6.22 E-01 \\ 8.14 E-01 \\ 6.22 E-01 \\ 8.04 E-01 \\ 9.10 E-01 \\ 8.14 E-01 \\ \hline \bar{E}_i \\ 9.08 E-01 \\ 8.04 E-01 \\ 8.14 E-01 \\ 8.14 E-01 \\ 6.23 E-01 \\ 8.14 E-01 \\ 6.23 E-01 \\ 8.04 E-01 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{c} 100( E_i^{\min} /\bar{E}_i)\%\\ \hline 81.3\%\\ \hline 68.4\%\\ \textbf{49.3\%}\\ \hline \textbf{49.3\%}\\ \hline \textbf{64.4\%}\\ \hline \textbf{64.4\%}\\ \hline \textbf{64.4\%}\\ \hline \textbf{68.4\%}\\ \hline \textbf{81.3\%}\\ \hline \textbf{49.3\%}\\ \hline \hline 100( E_i^{\min} /\bar{E}_i)\%\\ \hline \textbf{81.1\%}\\ \hline \textbf{68.2\%}\\ \hline \textbf{49.9\%}\\ \hline \textbf{49.9\%}\\ \hline \textbf{65.2\%}\\ \hline \textbf{65.2\%}\\ \hline \textbf{65.2\%}\\ \hline \textbf{68.2\%}\\ \hline \textbf{68.2\%}\\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} J_i^2(\mathbf{a}^{\star}) \\ \hline 0.00E+00 \\ 0.00E+00 \\ 1.09E-05 \\ 1.09E-05 \\ 0.00E+00 \\ 1.09E-05 \\ 0.00E+00 \\ 0.00E+00 \\ 0.00E+00 \\ 1.09E-05 \\ \hline J_i^2(\mathbf{a}^{\star}) \\ \hline 0.00E+00 \\ 0.00E+00 \\ 1.28E-07 \\ 0.00E+00 \\ 1.28E-07 \\ 0.00E+00 \\ 0.00E+$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| in $f_2(\mathbf{a})$ with $\omega = 0.01$<br>Min $f_2(\mathbf{a})$ with $\omega = 0.1$                                                                                                                                         | $\begin{array}{c} \text{Cell } i \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ \hline \\ \text{Cell} \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 9 \\ \hline \\ \end{array}$            | $\begin{array}{c} 1.23E+00\\ 1.08E+00\\ 4.01E-01\\ 9.66E-01\\ 4.01E-01\\ 9.20E-01\\ 9.02E-01\\ 5.50E-01\\ 7.40E-01\\ 1.04E+00\\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} 7.40E-01\\ 9.20E-01\\ 7.40E-01\\ 1.04E+00\\ 9.29E-01\\ 1.04E+00\\ 5.50E-01\\ 9.20E-01\\ 1.23E+00\\ 9.66E-01\\ \hline \end{array}$                                                                                                      | $\begin{array}{r} \text{Edges} \\ 9.29\text{E}-01 \\ 5.50\text{E}-01 \\ 9.66\text{E}-01 \\ 9.20\text{E}-01 \\ 4.01\text{E}-01 \\ 4.01\text{E}-01 \\ 1.08\text{E}+00 \\ 7.40\text{E}-01 \\ 7.40\text{E}-01 \\ \hline 7.40\text{E}-01 \\ 9.26\text{E}-01 \\ 9.65\text{E}-01 \\ 9.20\text{E}-01 \\ 4.06\text{E}-01 \\ 9.65\text{E}-01 \\ 4.06\text{E}-01 \\ 1.08\text{E}+00 \\ 7.37\text{E}-01 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | sizes           7.40E-01           5.50E-01           1.04E+00           4.01E-01           5.50E-01           7.40E-01           9.29E-01           9.29E-01           9.29E-01           4.01E-01           5 sizes           7.37E-01           5.48E-01           1.04E+00           4.06E-01           5.48E-01           9.26E-01           9.20E-01                  | $\begin{array}{c} 9.20E-01\\ 9.20E-01\\ 7.40E-01\\ 9.02E-01\\ 4.01E-01\\ 5.50E-01\\ \hline 9.20E-01\\ 9.20E-01\\ 9.20E-01\\ 7.37E-01\\ 9.02E-01\\ 4.06E-01\\ 4.06E-01\\ 5.48E-01\\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -<br>-<br>5.50E-01<br>-<br>5.50E-01<br>-<br>-<br>-<br>-<br>5.48E-01<br>-<br>5.48E-01<br>-                        | $\begin{array}{c} \bar{E}_i \\ 9.10 E-01 \\ 8.04 E-01 \\ 8.14 E-01 \\ 8.14 E-01 \\ 6.22 E-01 \\ 8.14 E-01 \\ 6.22 E-01 \\ 8.04 E-01 \\ 9.10 E-01 \\ 8.14 E-01 \\ \hline \bar{E}_i \\ 9.08 E-01 \\ 8.04 E-01 \\ 8.14 E-01 \\ 8.23 E-01 \\ 8.04 E-01 \\ 9.08 E-01 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} 100( E_i^{\min} /\bar{E}_i)\%\\ \hline 81.3\%\\ \hline 68.4\%\\ \textbf{49.3\%}\\ \hline \textbf{49.3\%}\\ \hline \textbf{64.4\%}\\ \hline \textbf{64.4\%}\\ \hline \textbf{64.4\%}\\ \hline \textbf{64.4\%}\\ \hline \textbf{68.4\%}\\ \hline \textbf{81.3\%}\\ \hline \textbf{49.3\%}\\ \hline \hline \textbf{100}( E_i^{\min} /\bar{E}_i)\%\\ \hline \textbf{81.1\%}\\ \hline \textbf{68.2\%}\\ \hline \textbf{49.9\%}\\ \hline \textbf{65.2\%}\\ \hline \textbf{49.9\%}\\ \hline \textbf{65.2\%}\\ \hline \textbf{65.2\%}\\ \hline \textbf{81.1\%}\\ \hline \textbf{68.2\%}\\ \hline \textbf{81.1\%}\\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{c} J_i^2(\mathbf{a}^{\star}) \\ \hline 0.00E+00 \\ 0.00E+00 \\ 1.09E-05 \\ 1.09E-05 \\ 0.00E+00 \\ 1.09E-05 \\ 0.00E+00 \\ 0.00E+00 \\ 0.00E+00 \\ 1.09E-05 \\ \hline J_i^2(\mathbf{a}^{\star}) \\ \hline 0.00E+00 \\ 0.00E+00 \\ 1.28E-07 \\ 0.00E+00 \\ 1.28E-07 \\ 0.00E+00 \\ 0.00E+00 \\ 0.00E+00 \\ 0.00E+00 \\ 0.00E+00 \\ 0.00E+00 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $\label{eq:main_state} \text{Min $f_2(\mathbf{a})$ with $\omega = 0.01$} \end{tabular} \qquad \text{Min $f_2(\mathbf{a})$ with $\omega = 0.1$}$                                                                                | $\begin{array}{c} \text{Cell } i \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ \hline \\ \hline \\ \text{Cell} \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ \hline \\ \end{array}$ | $\begin{array}{c} 1.23E+00\\ 1.08E+00\\ 4.01E-01\\ 9.66E-01\\ 4.01E-01\\ 9.20E-01\\ 9.02E-01\\ 5.50E-01\\ 7.40E-01\\ 1.04E+00\\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} 7.40E-01\\ 9.20E-01\\ 7.40E-01\\ 1.04E+00\\ 9.29E-01\\ 1.04E+00\\ 5.50E-01\\ 9.20E-01\\ 1.23E+00\\ 9.66E-01\\ \hline \end{array}$                                                                                                      | $\begin{array}{r} \text{Edges} \\ 9.29\text{E}-01 \\ 5.50\text{E}-01 \\ 9.66\text{E}-01 \\ 9.20\text{E}-01 \\ 9.20\text{E}-01 \\ 4.01\text{E}-01 \\ 1.08\text{E}+00 \\ 7.40\text{E}-01 \\ 7.40\text{E}-01 \\ 7.40\text{E}-01 \\ 9.26\text{E}-01 \\ 9.65\text{E}-01 \\ 9.65\text{E}-01 \\ 9.65\text{E}-01 \\ 4.06\text{E}-01 \\ 9.65\text{E}-01 \\ 4.06\text{E}-01 \\ 1.08\text{E}+00 \\ 7.37\text{E}-01 \\ 7.37\text{E}-01 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | sizes           7.40E-01           5.50E-01           1.04E+00           4.01E-01           5.50E-01           7.40E-01           9.29E-01           9.29E-01           4.01E-01           5.sizes           7.37E-01           5.48E-01           1.04E+00           4.06E-01           9.20E-01           9.20E-01                                                        | $\begin{array}{c} 9.20E-01\\ 9.20E-01\\ 7.40E-01\\ 9.02E-01\\ 4.01E-01\\ 5.50E-01\\ \hline 9.20E-01\\ 9.20E-01\\ 9.20E-01\\ 7.37E-01\\ 9.02E-01\\ 4.06E-01\\ 4.06E-01\\ 5.48E-01\\ \hline 9.20E-01\\ \hline$ | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                      | $\begin{array}{c} \bar{E}_i \\ 9.10 E-01 \\ 8.04 E-01 \\ 8.14 E-01 \\ 8.14 E-01 \\ 6.22 E-01 \\ 8.14 E-01 \\ 6.22 E-01 \\ 8.04 E-01 \\ 9.10 E-01 \\ 8.14 E-01 \\ \hline \bar{E}_i \\ 9.08 E-01 \\ 8.04 E-01 \\ 8.14 E-01 \\ 6.23 E-01 \\ 8.14 E-01 \\ 6.23 E-01 \\ 8.04 E-01 \\ 9.08 E-01 \\ 8.14 E-01 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c} 100( E_i^{\min} /\bar{E}_i)\%\\ \hlinespace{-0.5ex} 81.3\%\\ \hlinespace{-0.5ex} 68.4\%\\ \mbox{49.3\%}\\ \hlinespace{-0.5ex} 49.3\%\\ \hlinespace{-0.5ex} 64.4\%\\ \mbox{49.3\%}\\ \hlinespace{-0.5ex} 68.4\%\\ \mbox{49.3\%}\\ \hlinespace{-0.5ex} 100( E_i^{\min} /\bar{E}_i)\%\\ \hlinespace{-0.5ex} 81.1\%\\ \mbox{65.2\%}\\ \mbox{49.9\%}\\ \mbox{65.2\%}\\ \mbox{49.9\%}\\ \mbox{65.2\%}\\ \mbox{49.9\%}\\ \mbox{65.2\%}\\ \mbox{68.2\%}\\ \mbox{49.9\%}\\ \mbox{65.2\%}\\ \mbox{68.2\%}\\ \mbox{49.9\%}\\ \mbox{65.2\%}\\ \mbox{68.2\%}\\ \mbox{49.9\%}\\ \mbox{65.2\%}\\ \mbox{68.2\%}\\ \mbox{68.1.1\%}\\ \mbox{49.9\%}\\ \mbox{69.0\%}\\ 69$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $ \begin{array}{c} J_i^2(\mathbf{a}^{\star}) \\ \hline 0.00E+00 \\ 0.00E+00 \\ 1.09E-05 \\ 1.09E-05 \\ 0.00E+00 \\ 1.09E-05 \\ 0.00E+00 \\ 0.00E+00 \\ 0.00E+00 \\ 1.09E-05 \\ \hline J_i^2(\mathbf{a}^{\star}) \\ \hline 0.00E+00 \\ 1.28E-07 \\ 0.00E+00 \\ 1.28E-07 \\ 0.00E+00 \\ 1.28E-07 \\ 0.00E+00 \\ 0.00E+00 \\ 0.00E+00 \\ 0.00E+00 \\ 1.28E-07 \\ \hline \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

Table 6: Details of cells after minimizing the objective functions  $G(\mathbf{a})$  and  $f_2(\mathbf{a})$  with  $\omega \in \{1, 0.1, 0.01\}$ .

shows the proportion of cells  $V_i(\mathbf{a}^*)$  satisfying  $J^2(\mathbf{a}^*) = 0$  as a function of  $c \in [0, 1]$ . Figure 8 shows, for example, that the statement "all my edges are at least 10% the average size of my edges" is true for 100% of the cells in any of the ten solutions and that the statement "all my edges are at least 50% the average size of my edges" is true for slightly more than 95% of the

| $c_2$ | $f_2(\mathbf{a}^{\star})$ | $\ \nabla f_2(\mathbf{a}^\star)\ _{\infty}$ | $G(\mathbf{a}^{\star})$   | $J^2(\mathbf{a}^{\star})$ | it  | fcnt | Time  |
|-------|---------------------------|---------------------------------------------|---------------------------|---------------------------|-----|------|-------|
| 0.2   | $1.62359E{-}03$           | 6.4E - 09                                   | $1.62359E{-}01$           | $1.36588E{-11}$           | 64  | 101  | 0.141 |
| 0.3   | 1.62361E - 03             | 8.4E - 09                                   | 1.62361E - 01             | $6.44011\mathrm{E}{-11}$  | 114 | 145  | 0.186 |
| 0.4   | 1.62368E - 03             | 9.2E - 09                                   | 1.62368E - 01             | $2.48965 \mathrm{E}{-10}$ | 233 | 311  | 0.350 |
| 0.5   | $1.62384 \mathrm{E}{-03}$ | 9.3E - 09                                   | $1.62384E{-}01$           | 8.14196E - 10             | 335 | 454  | 0.498 |
| 0.6   | 1.62424E - 03             | $6.1E{-}09$                                 | 1.62423E - 01             | 2.89568E - 09             | 345 | 427  | 0.480 |
| 0.7   | $1.62564 \mathrm{E}{-03}$ | 8.6E - 09                                   | 1.62562E - 01             | $1.46599 \mathrm{E}{-08}$ | 507 | 558  | 0.638 |
| 0.8   | 1.63419E - 03             | 8.6E - 09                                   | 1.63398E - 01             | $2.15309 \mathrm{E}{-07}$ | 633 | 642  | 0.781 |
| 0.9   | 1.74145E - 03             | 9.0E - 09                                   | $1.69973 \mathrm{E}{-01}$ | 4.17186E - 05             | 722 | 753  | 0.997 |

Table 7: Details of the optimization process and the solutions found for the problem of finding centroidal Voronoi tessellations that avoid cells with relatively small edges for  $\kappa_0 = 500$ .

| $c_2$ | $f_2(\mathbf{a}^{\star})$ | $\ \nabla f_2(\mathbf{a}^\star)\ _{\infty}$ | $G(\mathbf{a}^{\star})$   | $J^2(\mathbf{a}^{\star})$ | $\operatorname{it}$ | fcnt | Time  |
|-------|---------------------------|---------------------------------------------|---------------------------|---------------------------|---------------------|------|-------|
| 0.3   | 1.62019E - 03             | 9.3E - 09                                   | 1.62019E - 01             | 3.01081E - 12             | 48                  | 63   | 0.179 |
| 0.4   | 1.62022E - 03             | 9.8E - 09                                   | 1.62022E - 01             | $7.05410 \mathrm{E}{-11}$ | 81                  | 110  | 0.284 |
| 0.5   | 1.62032E - 03             | $6.9E{-}09$                                 | $1.62032E{-}01$           | $3.57745 \mathrm{E}{-10}$ | 235                 | 300  | 0.711 |
| 0.6   | $1.62063 \mathrm{E}{-03}$ | 4.6 E - 09                                  | $1.62063E{-}01$           | 1.33134E - 09             | 310                 | 387  | 0.918 |
| 0.7   | $1.62174 \mathrm{E}{-03}$ | 8.7 E - 09                                  | $1.62173 \mathrm{E}{-01}$ | 8.84976E - 09             | 475                 | 512  | 1.235 |
| 0.8   | 1.62862E - 03             | 9.1E - 09                                   | 1.62850E - 01             | 1.23288E - 07             | 777                 | 787  | 1.970 |
| 0.9   | $1.71539E{-}03$           | 9.5 E - 09                                  | $1.67819E{-}01$           | 3.72017E - 05             | 1357                | 1450 | 4.031 |

Table 8: Details of the optimization process and the solutions found for the problem of finding centroidal Voronoi tessellations that avoid cells with relatively small edges for  $\kappa_0 = 1000$ .

cells in the solutions computed by minimizing G or minimizing  $f_2$  with  $c_2 \in \{0.1, 0.2, 0.3, 0.4\}$ . The zoom in the figure shows that when we minimize  $f_2(\mathbf{a})$  with  $c_2 \leq 0.8$ , the statement "all my edges are at least  $100\% \times c_2$  the average size of my edges" is true for all the cells. When  $c_2 = 0.9$ , the geometric constraints are too restrictive and the solution does not satisfy the desired property. This corresponds to the fact that the corresponding curve falls below 1 for c < 0.9. As a general observation, all the ten curves look very similar when c varies from 0 to 0.35. This is because, in general, when a diagram is built by minimizing G alone, there are only a few cells with small edges. The "difference" between the curves shows that these few undesired edges are eliminated when  $f_2$  is minimized for increasing values of  $c_2$ . The curve relative to the diagram obtained by minimizing G overlaps with that of minimizing  $f_2$  with  $c_2 = 0.1$ . These curves are equal because, when G is minimized, no cell has an edge whose size is less than 10% of the mean.

#### 3.4 Density-based centroidal Voronoi tessellations

In this section, we deal with the construction of CVTs with cells whose size is determined by a function  $\psi : A \to \mathbb{R}$ . For this, following [3], we consider the merit function given by

$$f_3(\mathbf{a}) = G(\mathbf{a}) + \omega J^3(\mathbf{a}),$$



Figure 5: Centroidal Voronoi tessellation with  $\kappa_0 = 10$ . In (a) we show the result of minimizing  $G(\mathbf{a})$ . In (b-d) we show the result of minimizing  $f_2(\mathbf{a}) = \omega G(\mathbf{a}) + J^2(\mathbf{a})$  with  $c_2 = 0.5$  and  $\omega \in \{1, 0.1, 0.01\}$ , respectively.

where

$$J^{3}(\mathbf{a}) := \frac{1}{\kappa_{0}} \sum_{i=1}^{\kappa_{0}} [J_{i}^{3}(\mathbf{a})]^{2} \text{ with } J_{i}^{3}(\mathbf{a}) := \left( \int_{V_{i}(\mathbf{a})} dx \right) / \left( \frac{1}{\kappa_{0}} \int_{A} dx \right) - \psi(a_{i})$$

where  $\omega \geq 0$  is given. The function  $\psi$  has the role of dictating the desired ratio between the area of the cell  $V_i(\mathbf{a})$  and the mean area of the cells. The gradient  $J^3(\mathbf{a})$  depends on  $\nabla J_i^3(\mathbf{a})$  and  $\nabla J_i^3(\mathbf{a}) = \nabla J_i^1(\mathbf{a}) - \nabla_{a_i}\psi(a_i)\cdot\delta a_i$ . A difficulty with the function  $J^3$  thus defined is that the sum of the desired areas does not necessarily equal the total area of the region A. As a consequence,  $J^3$  is expected not to vanish in its global minimizer, which makes it impractical to establish that the global minimizer has been reached. Another option would be to consider a merit function like the one defined in Section 3.2, but with an arbitrary non-constant density function  $\rho$ . This was the approach considered in [7, 13]. Its disadvantage compared to our function  $J^3$  is that it relies on quadrature rules to approximate the merit function and its derivatives, while our



Figure 6: Centroidal Voronoi tessellation with  $\kappa_0 = 500$ . In (a) we show the result of minimizing the function  $G(\mathbf{a})$ . The darker the cell, the more unbalanced the sizes of its edges. In (b-h), preserving the meaning of the colors, we present the resulting diagrams by minimizing  $f_2$  with  $\omega = 0.01$  and varying  $c_2 \in \{0.2, 0.3, \ldots, 0.8\}$ .

approach still allows an exact evaluation of the integrals.

In the numerical experiments, we considered  $\kappa_0 = 1000$  and arbitrarily defined

(a) 
$$\psi(z) = \psi_1(z) := a((\bar{z}_2 - (\bar{z}_1/4)^2)^2 + (\bar{z}_1/4 - 1)^2) + b$$
, where  $\bar{z} = (2z - c)/5$ , c is the center



Figure 7: Centroidal Voronoi tessellations with  $\kappa_0 = 1000$ . In (a) we show the result of minimizing  $G(\mathbf{a})$ . The darker the cell, the more unbalanced the sizes of its edges. In (b-g), preserving the meaning of the colors, we present the diagrams that result from minimizing  $f_2(\mathbf{a})$  with  $\omega = 0.01$ and varying  $c_2 \in \{0.3, 0.4, \ldots, 0.8\}$ .

of the region A, b = 1/4, and  $a = 19/16^2$ ;

**(b)** 
$$\psi(z) = \psi_2(z) := 0.1 + \frac{2.9}{\delta^2} \left( z_2 - 0.6\delta \sin(\frac{2\pi z_1}{\sqrt{\kappa_0}}) - \delta \right)^2$$
, where  $\delta = \frac{\sqrt{\kappa_0}}{2}$ ;



Figure 8: This figure analyzes the solutions with  $\kappa_0 = 1000$  found when minimizing G alone and the function  $f_2(\mathbf{a}) = \omega G(\mathbf{a}) + J^2(\mathbf{a})$  with  $\omega = 0.01$ , varying  $c_2 \in \{0.1, \ldots, 0.9\}$ . For each solution, the figure shows, as a function of c, the proportion of cells that satisfy the statement "all my edges are at least  $100\% \times c$  the average size of my edges."

(c)  $\psi(z) = \psi_3(z) := 0.01 + 20 ||z - c||^2 / r^2$ , where c and r are the center and the radius of the circle inscribing the region A, respectively.

Table 9 and Figure 9 show the details of the optimization process and the solutions found for varying values of  $\omega \in \{1, 0.1, 0.01\}$ . The figures in the table show that, in some cases, the method stopped because the merit function gradient norm reached the desired value. In the other cases, the method was stopped due to "lack of progress". That is, the method continued as long as a decrease in the objective function was observed. If, in a successive number of iterations, progress is no longer observed, the method stops; see [17] for details. This is not an issue in practice and this stopping criterion is as valid as any other, as the tolerance  $\varepsilon_{opt} = 10^{-8}$  used to stop by the gradient rule is arbitrary. In general, the figures in the table show that when  $\omega = 0.01$ , the value of  $G(\mathbf{a}^*)$  is of the same order as the value we found when minimizing G alone, i.e., 1.62E-01; see Table 2. On the other hand, for  $\omega = 1$  we found values of  $J^3(\mathbf{a}^*)$  that are between 2 and 3 orders of magnitude smaller than those found with  $\omega = 0.01$ , with no significant deterioration in the value of  $G(\mathbf{a}^*)$ . Graphically, when  $\omega$  is "small" cells tend to have more uniform areas, whereas for larger values of  $\omega$  we observe cells with different areas. The case of  $\psi_3$  is a little different from the other two, and what we just mentioned would be better observed considering smaller values of  $\omega$ .

|          | ω    | $f_3(\mathbf{a}^{\star})$ | $\ \nabla f_3(\mathbf{a}^\star)\ _{\infty}$ | $G(\mathbf{a}^{\star})$ | $J^3(\mathbf{a}^{\star})$ | it   | fcnt | Time  |
|----------|------|---------------------------|---------------------------------------------|-------------------------|---------------------------|------|------|-------|
|          | 1    | $3.00640 \mathrm{E}{-01}$ | 5.1E - 09                                   | $2.75839E{-}01$         | 2.48011E - 02             | 768  | 792  | 2.839 |
| $\psi_1$ | 0.1  | $2.44043E{-}01$           | 9.2E - 09                                   | $2.14370E{-}01$         | $2.96727 \mathrm{E}{-01}$ | 478  | 490  | 1.140 |
|          | 0.01 | $1.84559E{-}01$           | 9.8E - 09                                   | $1.66529E{-}01$         | $1.80295E{+}00$           | 337  | 355  | 0.835 |
|          | 1    | 5.45833E - 01             | 8.5 E - 04                                  | 3.17750E - 01           | 2.28084E - 01             | 51   | 375  | 1.395 |
| $\psi_2$ | 0.1  | $2.75867 \mathrm{E}{-01}$ | $1.6E{-}04$                                 | 2.29055E - 01           | $4.25556E{-}01$           | 89   | 568  | 1.317 |
|          | 0.01 | 1.88113E - 01             | $1.8\mathrm{E}{-05}$                        | $1.66878E{-01}$         | 2.12344E + 00             | 155  | 1281 | 2.845 |
|          | 1    | $2.07753E{+}00$           | 7.2E - 05                                   | 1.99442E+00             | 8.31023E - 02             | 678  | 807  | 3.187 |
| $\psi_3$ | 0.1  | $1.82859E{+}00$           | $3.8E{-}03$                                 | $1.59789E{+}00$         | 1.20786E + 00             | 1396 | 1521 | 3.638 |
|          | 0.01 | $8.37667 \mathrm{E}{-01}$ | $9.4E{-}09$                                 | $5.18745E{-01}$         | $3.18922E{+}01$           | 1990 | 2067 | 4.640 |

Table 9: Details of the process of minimizing  $f_3(\mathbf{a}) = G(\mathbf{a}) + \omega J^3(\mathbf{a})$ , considering the three different functions  $\psi(z)$  and varying  $\omega$ .

## 4 Conclusions

In this work, we investigated the construction of centroidal Voronoi tesselations with geometric constraints. We have applied a specific case of the theory developed in [3], which provides a sensitivity analysis for Voronoi diagrams. An advantage of this approach is its unified treatment of interior and boundary edges and vertices. This analysis, which enables the computation of the derivative of any differentiable function depending on the Voronoi diagram, relies on standard nondegeneracy assumptions about the geometry.

The resulting optimization problems were easily solved with a standard optimization method, L-BFGS-B, because two arbitrary choices simplified them. The first choice was to consider a constant density function, which allowed the integral to be computed with high accuracy, without incorporating noise in the evaluation of the objective function and its derivatives. The second choice was to define a square domain A, which implied bound-constrained minimization problems. However, the construction of CVTs has a wide range of applications in which domains extend beyond simple box-shaped regions. The simplest case beyond rectangular domains is to consider a convex set. In this case, methods based on gradient projection would be an alternative. However, CVTs are not well defined when two or more sites coincide, and the projection operation tends to construct such points. In any case, with domains given by convex regions or more complex regions, optimization methods for general nonlinear programming (NLP) problems would be required. The problems considered in the present work, extended to arbitrary domains, represent an interesting benchmark set for existing NLP methods. In the same vein, the problems in the present work, with the inclusion of non-constant density functions, are a challenge for existing methods that deal with noise evaluations of the objective function and its gradient.

The numerical results indicate that it is possible to optimize the geometric features of CVTs while maintaining the centroidal property to a reasonable extent. In the numerical experiments, we have considered a single additional geometric constraint; if several simultaneous constraints are desired, a multi-objective optimization approach should be considered. A natural extension of this work is its application to large grids and surface grids [9]. Other research directions in-



Figure 9: Centroidal Voronoi tessellation with  $\kappa_0 = 1000$  constructed by seeking cells of different prescribed sizes, considering the three different functions  $\psi(z)$ . Pictures (a-c) correspond to  $\psi_1$ , (d-f) to  $\psi_2$ , and (g-i) to  $\psi_3$ .

clude exploring alternative mesh quality criteria to improve the convergence of finite-difference operators, for example, by minimizing the distance between the midpoint of a cell edge and the intersection points of grid segments with the cell edge, see [11]. For three-dimensional problems, the theoretical framework established in [3] must first be extended to three dimensions.

**Conflict of interest statement:** On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author contributions: All authors contributed equally to all phases of the development of this work.

**Data availability:** The datasets generated and/or analyzed during the current study are available at http://ime.usp.br/~egbirgin/.

**Funding:** This work has been partially supported by the Brazilian agencies FAPESP (grants 2013/07375-0, 2022/05803-3 and 2023/08706-1) and CNPq (grant 302073/2022-1).

## References

- E. G. Birgin, A. Laurain, R. Massambone, and A. G. Santana. A shape optimization approach to the problem of covering a two-dimensional region with minimum-radius identical balls. SIAM Journal on Scientific Computing, 43(3):A2047–A2078, 2021.
- [2] E. G. Birgin, A. Laurain, R. Massambone, and A. G. Santana. A shape-Newton approach to the problem of covering with identical balls. *SIAM Journal on Scientific Computing*, 44(2):A798–A824, 2022.
- [3] E. G. Birgin, A. Laurain, and T. C. Menezes. Sensitivity analysis and tailored design of minimization diagrams. *Mathematics of Computation*, 92(344):2715–2768, 2023.
- [4] B. Bogosel, G. Buttazzo, and E. Oudet. On the numerical approximation of Blaschke– Santaló diagrams using centroidal Voronoi tessellations. ESAIM: Mathematical Modelling and Numerical Analysis, 58(1):393–420, 2024.
- [5] R. H. Byrd, P. Lu, J. Nocedal, and C. Zhu. A limited memory algorithm for bound constrained optimization. SIAM Journal on Scientific Computing, 16(5):1190–1208, 1995.
- [6] Q. Du and M. Emelianenko. Acceleration schemes for computing centroidal Voronoi tessellations. Numerical Linear Algebra with Applications, 13(2-3):173–192, 2006.
- [7] Q. Du, V. Faber, and M. Gunzburger. Centroidal voronoi tessellations: Applications and algorithms. SIAM Review, 41(4):637–676, 1999.
- [8] Q. Du, M. Gunzburger, and L. Ju. Advances in studies and applications of centroidal voronoi tessellations. Numerical Mathematics: Theory, Methods and Applications, 3(2):119–142, 2010.
- [9] Qiang Du, Max D. Gunzburger, and Lili Ju. Constrained centroidal voronoi tessellations for surfaces. SIAM Journal on Scientific Computing, 24(5):1488–1506, 2003.

- [10] J. C. Hateley, H. Wei, and L. Chen. Fast methods for computing centroidal Voronoi tessellations. *Journal of Scientific Computing*, 63(1):185–212, 2015.
- [11] R. P. Heikes, D. A. Randall, and C. S. Konor. Optimized icosahedral grids: Performance of finite-difference operators and multigrid solver. *Monthly Weather Review*, 141(12):4450– 4469, 2013.
- [12] M. Iri, K. Murota, and T. Ohya. A fast Voronoi-diagram algorithm with applications to geographical optimization problems. In P. Thoft-Christensen, editor, *System Modelling and Optimization*, pages 273–288, Berlin, Heidelberg, 1984. Springer Berlin Heidelberg.
- [13] Y. Liu, W. Wang, B. Lévy, F. Sun, D.-M. Yan, L. Lu, and C. Yang. On Centroidal Voronoi Tessellation–Energy Smoothness and Fast Computation. ACM Transactions on Graphics, 28(4):Article 101, 2009.
- [14] S. P. Lloyd. Least squares quantization in PCM. Institute of Electrical and Electronics Engineers. Transactions on Information Theory, 28(2):129–137, 1982.
- [15] J. B. MacQueen. Some methods for classification and analysis of multivariate observations. In L. M. Le Cam and J. Neyman, editors, *Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability*, volume 1, pages 281–297, Berkeley, CA, 1967. University of California Press.
- [16] J. L. Morales and J. Nocedal. Remark on "Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound constrained optimization". ACM Transactions on Mathematical Software, 38(1):1–4, 2011.
- [17] C. Zhu, R. H. Byrd, P. Lu, and J. Nocedal. Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization. ACM Transactions on Mathematical Software, 23(4):550–560, 1997.