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Abstract

In this paper, we investigate the optimization of Centroidal Voronoi Tessellations (CVT)
under geometric constraints. For this purpose, we minimize a linear combination of the
standard CVT energy functional with terms involving geometric attributes such as area and
perimeter. The derivative of the objective functional with respect to the position of the gener-
ators is computed using techniques of shape calculus and sensitivity analysis of minimization
diagrams. Several numerical experiments are presented to explore the geometric constraints
of cells with identical areas, cells without small edges, and density-based distributions of cells.
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1 Introduction

Centroidal Voronoi Tessellations (CVTs) are a special case of Voronoi tessellations in which
each site coincides with the centroid of its Voronoi cell. They play an important role in various
applications in science and engineering, including image processing, data compression, and nu-
merical approximations of partial differential equations, particularly for mesh generation. We
refer to [7] for a comprehensive survey of applications. CVT has been generalized to very broad
settings, such as CVT of surfaces or line segments, distance metrics, and discrete point sets [8].

A standard approach to computing CVTs is the deterministic Lloyd’s algorithm [7, 14],
which is a fixed-point algorithm. The convergence of Lloyd’s algorithm is slow, but several
improvements have been introduced, such as the Lloyd-Newton method [6] and variants that
employ quasi-Newton methods, such as the limited-memory BFGS (LBFGS) method [10, 13].
CVTs can also be constructed using probabilistic methods such as MacQueen’s algorithm [15].
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As shown in [13], a CVT is a critical point of the CVT energy function and can be constructed
using derivative-based optimization methods since the energy function is C2 within a convex
domain. The derivative of the energy and the Lloyd map were computed in [7] and used in
subsequent papers such as [4, 13]. The use of these derivatives for gradient-based, Newton and
quasi-Newton methods is also discussed in [7].

It was shown in [3] that this type of sensitivity analysis for Voronoi diagrams can be recast
in the much more general framework of minimization diagrams. Minimization diagrams are a
broad class of diagrams whose cells are defined via the lower envelope of a set of graphs of
functions. Many relevant diagrams, such as Voronoi diagrams or power diagrams, are special
cases of minimization diagrams. These theoretical results allow us to consider the optimization of
any differentiable criterion depending on the geometric properties of the minimization diagram.
This includes CVT as a special case, but also various other criteria such as perimeter, area,
angles, and other geometric quantities. A useful feature of this general theory is the handling
of fixed elements of the geometry, such as the boundary of the domain, which are usually not
considered in the sensitivity analysis of Voronoi diagrams. In [3], the authors presented several
numerical applications for the optimization of Voronoi diagrams with the aim of obtaining
specific properties such as equal cell areas or edges of equal length. These properties are desirable
for improving mesh quality using quality measures, see [7, 11].

In this paper, we extend these results to the optimization of CVTs. We consider objective
functions that are linear combinations of the CVT energy with additional terms that enforce
geometric constraints. The goal is to demonstrate how one can control the geometric properties
of CVTs. This can also be seen as minimizing the CVT energy with additional constraints in the
form of penalizations. We focus on two types of geometric constraints. The first constraint is of
the area type, forcing cells to have identical areas. The second type of constraint is a perimeter
constraint, where the goal is to avoid cells with small edges.

In Section 2 we introduce the notation and tools necessary for the sensitivity analysis of
Voronoi diagrams, and then apply these results to the computation of the gradient of the CVT
and other relevant shape functions. Two different ways to compute the gradients are presented.
Numerical experiments are given in Section 3. In the experiments, we show how to compute
CVTs where all cells have the same area, cells without edges considered small, and cells whose
area is governed by a given function. Conclusions and lines of future work are presented in the
last section.

2 The CVT energy function and its gradient

In this section, we first recall the main results of [3] that are necessary for the sensitivity
analysis of Voronoi diagrams. We then introduce the CVT energy function and use these results
to compute its gradient. Consider the set A := {x ∈ R2 : φ(x) < 0} with φ(x) := minℓ∈KA

φℓ(x)
and φℓ ∈ C∞(R2,R) for all ℓ ∈ KA := {κ0 + 1, . . . , κ0 + κ1} for some given κ0, κ1. For ℓ ∈ KA,
introduce the set ∂ℓA := {x ∈ ∂A : φℓ(x) = 0}; then we have ∂A = ∪ℓ∈KA

∂ℓA. Denote by T∂A
the finite set of corners of A. Let Kvor = {1, . . . , κ0} be a set of indices, a = {ak}k∈Kvor be a set
of points in the plane, the so-called sites, and let V (a) := {Vi(a)}i∈Kvor be the Voronoi diagram
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associated with a, where the cells of the diagram are defined by

Vi(a) := {x ∈ A such that ∥x− ai∥ ≤ ∥x− aj∥ for all j ∈ Kvor \ {i}} .

We will also need the following notation. The Euclidean norm is denoted by ∥ · ∥. For x, y ∈ Rn,
x · y = x⊤y ∈ R; x ⊗ y = xy⊤ ∈ Rn×n. We use y⊥ := Ry, for y ∈ R2, where R is a rotation
matrix of angle π/2 with respect to a counterclockwise orientation. The transpose of a matrix
M is indicated byM⊤. The gradient with respect to x ∈ R2 of a function ψ : R2 → R is denoted
∇xψ and is a column vector. The Jacobian matrix is denoted Dxψ. The gradient with respect
to a of a function G : Rqκ0 → R is ∇G. The Jacobian matrix with respect to a of a function
G : Rqκ0 → Rn is denoted by DG. For a sufficiently smooth set S ⊂ R2, S denotes its closure,
|S| its perimeter if S is one-dimensional or its area if S is two-dimensional.

2.1 Sensitivity analysis of Voronoi diagrams

Let V (a + tδa) := {Vk(a + tδa)}k∈Kvor be a perturbed Voronoi diagram. In what follows, we
describe the tools and notation needed for the sensitivity analysis of V (a + tδa) with respect
to t.

Definition 2.1 (interior vertices and edges). For {i, j, k} ⊂ Kvor, we define the set of inner
vertices Yijk(t) := Vi(a+ tδa)∩Vj(a+ tδa)∩Vk(a+ tδa), that is, points in A at the intersection

of three cells, and write Yijk := Yijk(0). For k ∈ Kvor \ {i}, Eik(a + tδa) := Vi(a+ tδa) ∩
Vk(a+ tδa) denotes an interior edge of V (a+ tδa).

Definition 2.2 (boundary vertices and edges). For {i, j} ⊂ Kvor and ℓ ∈ KA, we define the
set of boundary vertices Xijℓ(t) := Vi(a+ tδa) ∩ Vj(a+ tδa) ∩ ∂ℓA, i.e., points on ∂A at the
intersection of two cells, and write Xijℓ := Xijℓ(0). For k ∈ Kvor\{i} and ℓ ∈ KA, Eik(a+tδa) :=

Vi(a+ tδa) ∩ ∂ℓA denotes a boundary edge of V (a+ tδa).

We now recall the results of [3], which will allow us to perform the sensitivity analysis of
Voronoi diagrams. In [3], a theoretical framework for the analysis of the sensitivity of mini-
mization diagrams was developed, and the particular case of Voronoi diagrams was discussed
in [3, §4]. A key aspect of this theory is establishing a set of geometric assumptions that avoid
degenerate cases and under which the sensitivity analysis can be performed. Specifically, these
assumptions ensure that the interior vertices Yijk of the Voronoi diagram belong to at most three
cells. Additionally, they eliminate trivial cases where two cells with different indices are identi-
cal. These assumptions were formulated in the more general context of minimization diagrams,
so here we provide a simpler formulation in the case of Voronoi diagrams, which summarizes the
discussion in [3, §4].

Assumption 1. Suppose that:

• (Non-degeneracy of interfaces) There holds ∥∇xφℓ(x)∥ > 0 for all x ∈ ∂ℓA and for all
ℓ ∈ KA, and ∥ai − aj∥ > 0 for all {i, j} ⊂ Kvor.

• (Non-degeneracy of vertices) For all {i, j, k} ⊂ Kvor such that Yijk ̸= ∅ we have (aj −
ai)

⊥ · (ak − ai) ̸= 0 and Yijk ∩ Vm(a) = ∅, for all m ∈ Kvor \ {i, j, k}. In addition, for all
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{i, j} ⊂ Kvor and ℓ ∈ KA and all v ∈ Xijℓ we have (aj − ai)
⊥ · ∇φℓ(v) ̸= 0, v ∩ Vm(a) = ∅,

for all m ∈ Kvor \ {i, j}, and v ∩ T∂A = ∅, where T∂A is the finite set of corners of A.

Under these geometric assumptions, the set Yijk contains at most one point, but Xijℓ may
contain multiple points. The key to the sensitivity analysis of the perturbed Voronoi diagram
V (a + tδa) is the computation of the derivatives of the vertices Yijk(t) and Xijk(t). This is
essentially an application of the implicit function theorem under Assumption 1.

Theorem 2.1. Suppose Assumption 1 holds and |Yijk| = 1 for some {i, j, k} ⊂ Kvor. Then,
denoting v = Yijk, there exists τ1 > 0 and a unique smooth function zv : [0, τ1] → R2 satisfying
zv(0) = v, zv(t) = Yijk(t) for all t ∈ [0, τ1] and

z′v(0) =Mv(j, k, i)δai +Mv(k, i, j)δaj +Mv(i, j, k)δak, (1)

where

Mv(i, j, k) :=
(ai − aj)

⊥ ⊗ (v − ak)
⊤

Q(i, j, k)

and

Q(i, j, k) := det

(
(aj − ai)

⊤

(ak − ai)
⊤

)
.

Proof. See [3, Theorem 7].

Theorem 2.2. Suppose Assumption 1 holds and let {i, j} ⊂ Kvor, ℓ ∈ KA. Then Xijℓ is finite,
Xijℓ ∈ ∂A \ T∂A , and there exists τ1 > 0 such that for all v ∈ Xijℓ there exists a unique smooth
function zv : [0, τ1] → R2 satisfying z(0) = v, φℓ(zv(t)) = 0 for all t ∈ [0, τ1], and

Xijℓ(t) =
⋃

v∈Xijℓ

{zv(t)} for all t ∈ [0, τ1].

In addition we have
z′v(0) = M ℓ

v (j, i)δai + M ℓ
v (i, j)δaj (2)

with

M ℓ
v (j, i) :=

−∇xφℓ(v)
⊥ ⊗ (v − ai)

⊤

det

(
(aj − ai)

⊤

∇xφℓ(v)
⊤

) .

Proof. See [3, Theorem 8].

Under Assumption 1, the motion of each Voronoi cell Vi(a+ tδa), i ∈ Kvor, can be parame-
terized by a bi-Lipschitz mapping T (·, t), such that its derivative θ := ∂tT (·, 0) can be described
explicitly as a function of the sites a. The explicit expression of θ at the vertices is a consequence
of Theorems 2.1 and 2.2. This parameterization is described in the following theorem, which is
a particular case of [3, Theorem 5].
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Theorem 2.3. Let i ∈ Kvor and suppose Assumption 1 holds. Then there exist t0 > 0 and a
mapping T : Vi(a)× [0, t0] → R2 satisfying T (Vi(a), t) = Vi(a+ tδa), T (Eik(a), t) = Eik(a+ tδa)
for all k ∈ Kvor \ {i}, T (Eiℓ(a), t) = Eiℓ(a+ tδa) for all ℓ ∈ KA, T (∂Vi(a), t) = ∂Vi(a+ tδa) and
T (·, t) : Vi(a) → Vi(a+ tδa) is bi-Lipschitz for all t ∈ [0, t0]. In addition we have

θ(x) · ν(x) = ∇aϕ(x,ak)·δak−∇aϕ(x,ai)·δai
∥∇xϕ(x,ak)−∇xϕ(x,ai)∥ for all x ∈ Eik(a) and all k ∈ Kvor \ {i},

θ(x) · ν(x) = 0 for all x ∈ Eiℓ(a) and for all ℓ ∈ KA,

θ(v) · τ(v) = (Mv(j, k, i)δai +Mv(k, i, j)δaj +Mv(i, j, k)δak) · τ(v)
for all v ∈ Yijk, {i, j, k} ⊂ Kvor,

θ(v) · τ(v) = (M ℓ
v (j, i)δai + M ℓ

v (i, j)δaj) · τ(v) for all v ∈ Xijℓ, {i, j} ⊂ Kvor, ℓ ∈ KA.

(3)

where θ := ∂tT (·, 0), ν is the outward unit normal vector to Vi(a), ϕ(x, a) := ∥x− a∥2, and τ is
a tangent vector to ∂Vi(a).

Theorems 2.1, 2.2, and 2.3 permit the computation of various relevant geometric quantities
related to Voronoi diagrams. The derivative of area and edge integrals is of particular interest
and has been performed in [3, Sections 3 and 4]; here we give a brief summary of these results.
Starting with the case of an area integral, consider

G1(a+ tδa) :=

∫
Vi(a+tδa)

f(x) dx, (4)

where f ∈ C1(A,R). Then, using Theorem 2.3, we have Vi(a + tδa) = T (Vi(a), t) and we can
apply a change of variable to transform the integral in (4) to an integral on Vi(a). Next we can
differentiate the obtained expression with respect to t, use the divergence theorem to transform
the integral on Vi(a) to an integral on ∂Vi(a), and use the first equality in (3) to obtain

∇G1(a) · δa =
∑

E∈E int
i

δai
∥ai − ak(i,E)∥

·
∫
E
f(x)(x− ai) dx

−
∑

E∈E int
i

δak(i,E)

∥ai − ak(i,E)∥
·
∫
E
f(x)(x− ak(i,E)) dx.

(5)

Next, consider the edge integral function defined by

G2(a+ tδa) :=

∫
E(a+tδa)

f(x) dx, (6)

where f ∈ C1(A,R). Here, the edge E(a) can either be an interior edge given by E(a) =
Vi(a) ∩ Vk(a), {i, k} ⊂ Kvor, or a boundary edge given by E(a) = Vi(a) ∩ ∂ℓA, ℓ ∈ KA. In a
similar way as for the area integral, using Theorem 2.3 we obtain the following expression for
the gradient:

∇G2(a) · δa = F(i, wE) · τ(wE)−F(i, vE) · τ(vE), (7)
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where τ is here the tangent vector to ∂Vi(a) with respect to a counterclockwise orientation and

F(i, v) =


Mv(j, k, i)δai +Mv(k, i, j)δaj +Mv(i, j, k)δak, if v ∈ Yijk,

M ℓ
v (j, i)δai + M ℓ

v (i, j)δaj , if v ∈ Xijℓ,

0, if v ∈ T∂A.
(8)

Note that in (8), the indices j, k in Yijk and the index j in Xijℓ actually depend on the index i
and on the vertex v. These indices may be uniquely determined by choosing a counterclockwise
orientation of the cells around the vertex v.

2.2 CVT energy function

Let ρ : A → R, ρ > 0, be a given density function. We work with the CVT energy function
[4, 7, 13] defined by

G(a) :=
1

κ0

κ0∑
i=1

Gi(a) with Gi(a) =

∫
Vi(a)

ρ(x)∥x− ai∥2 dx, (9)

recalling that a = {ai}κ0
i=1 are the sites generating the cells Vi(a). In [7, 13] it is shown that the

critical points of the function G(a) generates a CVT. The calculation of the gradient of G(a)
is standard and has been performed, for example, in [7, 13]. Here, in Sections 2.3 and 2.4 we
present the calculation of the gradient of G(a) using our framework, which will also allow us
to supplement G(a) with other geometric terms in the numerical experiments. We present two
ways to calculate the gradient of G(a). First, we compute ∇G(a) directly using (5), and second,
we provide first an explicit formula for Gi(a) and G(a) as a function of the vertices and ai,
and compute the gradient of that formula. We then discuss the differences between these two
formulas for applications.

For numerical purposes, (9) needs to be evaluated. In the general case, quadrature rules
need to be employed. In some particular cases, an explicit expression of G(a) can be obtained.
Let T (ai, v, w) be the triangle with vertices ai, v, w, where w is the neighbor vertex of v in
counterclockwise direction, and define Vi as the set of vertices of Vi(a). Then we have the

partition Vi(a) =
⋃
v∈Vi

T (ai, v, w). Thus

Gi(a) =

∫
Vi(a)

ρ(x)∥x− ai∥2 dx =
∑
v∈Vi

∫
T (ai,v,w)

ρ(x)∥x− ai∥2 dx.

Now, we consider the transformation ϕ : R2 → R2 defined as follows,

ϕ(ξ, λ) = ai + ξ(v − ai) + λ(w − ai) with ξ, λ ≥ 0 and ξ + λ = 1.

Using a change of variables, we have∫
T (ai,v,w)

f(x) dx =

∫ 1

ξ=0

∫ 1−ξ

λ=0
f(ϕ(ξ, λ))|J(v, w, ai)| dλ dξ,
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with the Jacobian matrix J(v, w, ai) = Dϕ = (v − ai|w − ai) ∈ R2×2 and

|J(v, w, ai)| =

∣∣∣∣v1 − ai,1 w1 − ai,1
v2 − ai,2 w2 − ai,2

∣∣∣∣
= (v1 − ai,1)(w2 − ai,2)− (v2 − ai,2)(w1 − ai,1)

= −(v − ai) · (w − ai)
⊥.

(10)

For f(x) = ρ(x)∥x− ai∥2, we get∫ 1

0

∫ 1−ξ

0
ρ(ϕ(ξ, λ))∥ϕ(ξ, λ)− ai∥2|J(v, w, ai)| dλdξ

= |J(v, w, ai)|
∫ 1

0

∫ 1−ξ

0
ρ(ϕ(ξ, λ))∥ξ(v − ai) + λ(w − ai)∥2 dλdξ

= |J(v, w, ai)|
∫ 1

0

∫ 1−ξ

0
ρ(ϕ(ξ, λ))(ξ2∥v − ai∥2 + λ2∥w − ai∥2 + 2λξ(v − ai) · (w − ai)) dλdξ.

To simplify this expression further, we need to choose a specific class of functions ρ such as
polynomials. Let us consider the particular case ρ ≡ 1, which results in∫ 1

0

∫ 1−ξ

0
∥ϕ(ξ, λ)−ai∥2|J(v, w, ai)| dλdξ =

|J(v, w, ai)|
12

(∥v−ai∥2+(v−ai) ·(w−ai)+∥w−ai∥2).

Finally,

Gi(a) =
∑
v∈Vi

|J(v, w, ai)|
12

(∥v − ai∥2 + (v − ai) · (w − ai) + ∥w − ai∥2),

and this yields the following explicit formula of G(a) in the case ρ ≡ 1:

G(a) =
1

κ0

κ0∑
i=1

∑
v∈Vi

|J(v, w, ai)|
12

(∥v − ai∥2 + (v − ai) · (w − ai) + ∥w − ai∥2)

 . (11)

2.3 Computing the gradient of the integral form of G(a)

Here, we compute the value of the gradient of the integral form (9) of G(a) using (5). First, we
have

∇G(a) = ∇

(
1

κ0

κ0∑
i=1

Gi(a)

)
=

1

κ0

κ0∑
i=1

∇Gi(a).
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Let E int
i be the set of the interior edges of the cell Vi(a) and k(i, E) be the index such that

E = Vi(a) ∩ Vk(i,E)(a). Applying (5), we get

∇Gi(a) · δa = ∇

(∫
Vi(a)

ρ(x)∥x− ai∥2 dx

)
· δa

=
∑

E∈E int
i

δai
∥ai − ak(i,E)∥

·
∫
E
ρ(x)∥x− ai∥2(x− ai) dx︸ ︷︷ ︸

=:I1E

−
∑

E∈E int
i

δak(i,E)

∥ai − ak(i,E)∥
·
∫
E
ρ(x)∥x− ai∥2(x− ak(i,E)) dx︸ ︷︷ ︸

=:I2E

− 2δai ·
∫
Vi(a)

ρ(x)(x− ai) dx.

Note that the last term is not present in (5) but appears as the integrand ρ(x)∥x−ai∥2 depends
on ai.

Introducing ci :=

∫
Vi(a)

ρ(x)x dx∫
Vi(a)

ρ(x) dx
the centroid of the cell Vi(a), we obtain

∇Gi(a) · δa = 2δai · (ai − ci)

∫
Vi(a)

ρ(x) dx+
∑

E∈E int
i

δai · I1E − δak(i,E) · I2E
∥ai − ak(i,E)∥

.

This yields

∇G(a) · δa =
1

κ0

κ0∑
i=1

∑
E∈E int

i

δai · I1E − δak(i,E) · I2E
∥ai − ak(i,E)∥

+ 2δai · (ai − ci)

∫
Vi(a)

ρ(x) dx.

Now we rearrange the term

κ0∑
i=1

∑
E∈E int

i

δak(i,E) · I2E
∥ai − ak(i,E)∥

by summing over all fixed indices k such that k = k(i, E) for some index i and edge E. Then ai
becomes ai(k,E) which yields

κ0∑
i=1

∑
E∈E int

i

δak(i,E) · I2E
∥ai − ak(i,E)∥

=

κ0∑
k=1

∑
E∈E int

k

δak ·
∫
E
ρ(x)∥x− ai(k,E)∥2(x− ak) dx

∥ai(k,E) − ak∥
.

Using the property ∥x− ai(k,E)∥ = ∥x− ak∥ on E and changing the notation for indices, we end
up with

κ0∑
i=1

∑
E∈E int

i

δak(i,E) · I2E
∥ai − ak(i,E)∥

=

κ0∑
i=1

∑
E∈E int

i

δai · I1E
∥ai − ak(i,E)∥

.
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Thus, the terms depending on I1E and I2E cancel out in ∇G(a) · δa and

∇G(a) · δa =
1

κ0

κ0∑
i=1

2δai · (ai − ci)

∫
Vi(a)

ρ(x) dx, (12)

which is the standard formula in the literature, see for instance [4, 7, 12]. The fact that I1E and
I2E cancel out is also written in [12, p.278] for instance.

2.4 Explicit gradient computation in the constant density case

To obtain the expression (12) of ∇G(a), we have used (5), which is based on Theorem 2.3,
using the shape calculus techniques of [3]. In the special case where ρ is constant, ∇G(a) can
be obtained in a simpler way, without using Theorem 2.3, by directly differentiating (11). The
purpose of this section is to perform this calculation and discuss the formula obtained. Note
that one could also perform an explicit calculation of ∇G(a) for specific classes of functions ρ,
such as polynomials.

Let Ei be the set of edges of Vi(a). In (11) the sum is over Vi, the set of vertices of Vi(a). We
transform it into a sum over E ∈ Ei in order to use the results of Section 2.1. We also write vE ,
wE instead of v,w, recalling that w is the neighbor vertex of v in counterclockwise orientation.
Differentiating (11), we thus obtain

∇G(a) · δa =
1

κ0

κ0∑
i=1

 1

12

∑
E∈Ei

σ∇γ + γ∇σ

 · δa, (13)

where γ := |J(vE , wE , ai)| and σ := ∥vE − ai∥2 + (vE − ai) · (wE − ai) + ∥wE − ai∥2. First, we
compute

∇γ · δa = ∇(|J(vE , wE , ai)|) · δa = sign(J(vE , wE , ai))∇(J(vE , wE , ai)) · δa.

Using (10), we have

∇(J(vE , wE , ai)) · δa = −∇((vE − ai) · (wE − ai)
⊥) · δa

= −((D(vE − ai))
⊤(wE − ai)

⊥ + (D(wE − ai)
⊥)⊤(vE − ai)) · δa

= −D(vE − ai)δa · (wE − ai)
⊥ −D(wE − ai)

⊥δa · (vE − ai)

= −D(vE − ai)δa · (wE − ai)
⊥ +D(wE − ai)δa · (vE − ai)

⊥

= −DvEδa · w⊥
E +DvEδa · a⊥i +Daiδa · w⊥

E

+DwEδa · v⊥E −DwEδa · a⊥i −Daiδa · v⊥E .

We have Daiδa = δai and in view of (1), (2), (8) we have that DvEδa = F(i, vE) and DwEδa =
F(i, wE), thus

∇γ ·δa = sign(J(vE , wE , ai))(F(i, vE)·(−w⊥
E+a⊥i )+F(i, wE)·(v⊥E−a⊥i )−δai(−w⊥

E+v⊥E)). (14)
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Now, we compute

∇σ · δa = [∇(∥vE − ai∥2) +∇((vE − ai) · (wE − ai)) +∇(∥wE − ai∥2)] · δa.

We have

∇((vE − ai) · (wE − ai)) · δa = [(wE − ai)∇(vE − ai) + (vE − ai)∇(wE − ai)] · δa
= (wE − ai) · [(DvE −Dai) · δa] + (vE − ai) · [(DwE −Dai) · δa]
= (wE − ai) · (F(i, vE)− δai) + (vE − ai) · (F(i, wE)− δai)

= F(i, vE) · (wE − ai) + F(i, wE) · (vE − ai)− δai(wE + vE − 2ai),

and in a similar way

∇(∥vE − ai∥2) · δa = 2F(i, vE) · (vE − ai)− 2δai · (vE − ai)

∇(∥wE − ai∥2) · δa = 2F(i, wE) · (wE − ai)− 2δai · (wE − ai).

Combining these results, we get

∇σ · δa = 2F(i, vE) · (vE − ai)− 2δai · (vE − ai) + F(i, vE) · (wE − ai) + F(i, wE) · (vE − ai)

− δai(wE + vE − 2ai) + 2F(i, wE) · (wE − ai)− 2δai · (wE − ai)

= F(i, vE) · (2vE + wE − 3ai) + F(i, wE) · (vE + 2wE − 3ai) (15)

− 3δai · (vE + wE − 2ai).

Replacing (14) and (15) in (13), we obtain

∇Gi(a) · δa =
1

12

∑
E∈Ei

κi(E)(F(i, vE) · (−w⊥
E + a⊥i ) + F(i, wE) · (v⊥E − a⊥i )− δai(−w⊥

E + v⊥E))

+ |J(vE , wE , ai)|(F(i, vE) · (2vE + wE − 3ai) + F(i, wE) · (vE + 2wE − 3ai)

− 3δai · (vE + wE − 2ai)),

where

κi(E) := sign(J(vE , wE , ai))(∥vE − ai∥2 + (vE − ai) · (wE − ai) + ∥wE − ai∥2).

Finally, rearranging the last expression for ∇Gi(a) · δa, we get

∇G(a) · δa =
1

κ0

κ0∑
i=1

∇Gi(a) · δa, (16)

with

∇Gi(a) · δa =
1

12

∑
E∈Ei

F(i, vE) · (κi(E)(−w⊥
E + a⊥i ) + |J(vE , wE , ai)|(2vE + wE − 3ai))

+ F(i, wE)(κi(E)(v⊥E − a⊥i ) + |J(vE , wE , ai)|(vE + 2wE − 3ai)

− δai · (κi(E)(−w⊥
E + v⊥E) + 3|J(vE , wE , ai)|(vE + wE − 2ai)).

(17)
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Formula (16) is equivalent to (12) for the special case ρ = 1. As explained above, formula (17)
illustrates how the gradient of objective functions depending on Voronoi diagrams can be com-
puted directly, without having to differentiate a parameterized integral. However, one drawback
is that this explicit calculation only works for specific densities ρ. Also, we expect this formula
to be more computationally expensive than (12), since (12) results from a simplification (I1E and
I2E canceling out). This means that (16), (17) could be further simplified for more efficiency,
but this reduces the advantage of the explicit calculation.

3 Numerical experiments

In this section, we show numerical experiments related to the construction of centroidal Voronoi
tessellations with special desired features. CVTs are always constructed by minimizing a com-
bination of the energy function G(a) with an additional term that forces the desired geometric
feature subject to a ∈ R2κ0 in the domain A = [0,

√
κ0]

2, where κ0 is the number of sites. In
Section 3.1 we perform a numerical experiment in which we compare in practice the expressions
(12) and (16) of the gradient of G(a). In Section 3.2, we deal with the problem of constructing
CVTs with cells of equal area. In Section 3.3, we show how to avoid small edges. In Section
3.4, we deal with the construction of CVTs with cells of different sizes for different regions of
the domain A.

The entire code is written in Fortran 90. Voronoi diagrams are computed with the imple-
mentation provided in [1, 2, 3]. All experiments were performed on a computer with an Apple
M1 processor and 8 GB of RAM, running MacOS Sonoma (version 14.6.1). The code was com-
piled using the GFortran compiler of GCC (version 14.1.0) with the -O3 optimization directive
enabled.

3.1 Centroidal Voronoi tessellation

In this section we minimize G(a), defined in (9), without additional geometric terms. For general
densities ρ, quadrature rules must be used to evaluate (9). In all our experiments, we focus on
the case ρ ≡ 1 and the explicit form (11) of G(a); this allows us to preserve the exactness of the
function and to save computational time in the optimization process. The optimization problems
are solved with the quasi-Newton method L-BFGS-B [5, 16, 17]. Default values are used for
all its parameters. The stopping criterion is set to obtain an infinity norm of the continuous
projected gradient less than or equal to ϵ = 10−8, i.e., to find an iterate ak such that∥∥∥PA

(
ak −∇G(ak)

)
− ak

∥∥∥
∞

≤ ϵ = 10−8,

where PA represents the (orthogonal) projection operator onto the (convex) feasible set A =
[0,

√
κ0]

2. The initial point a0 of the optimization process consists of uniformly distributed
random points in the domain A. This type of starting point is only used in this experiment,
where only the function G(a) is minimized. In Sections 3.2, 3.3, and 3.4, where the combination
of G(a) with an extra term is minimized, we take as starting point a0 the approximate solution a⋆

to the problem of minimizing G(a).
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Tables 1 and 2 show some details of the optimization process on a set of instances with κ0 ∈
{5, 10, 50, 100, 1000, 10000, 25000, 50000}, considering expressions (12) and (16) for computing
the gradient, respectively. In the tables, κ0 is the number of sites considered. The columns
G(a⋆) and ∥∇G(a⋆)∥∞ denote the value of the objective function and the sup-norm of the
continuous projected gradient at the final iterate a⋆. “it” is the number of iterations, “fcnt” is
the number of evaluations of the objective function, and “Time” is the elapsed CPU time in
seconds. The column “fcnt/it” shows the average number of function evaluations per iteration.
From these tables we can see that, for each κ0, the values of G(a⋆) are very similar when using
both gradient expressions, and that in all cases it was possible to achieve the stopping criterion
imposed. The tables also show that the performance of the method was slightly faster when
using the expression (12) than when using the expression (16). This confirms the observation of
Section 2.4, where it is explained that (16) is expected to be more computationally demanding
than (12). For this reason, in Sections 3.2, 3.3, and 3.4 the expression (12) is used to compute
the gradient of G. Figure 1 shows the resulting diagrams for the cases κ0 ∈ {500, 1000}.

κ0 G(a⋆) ∥∇G(a⋆)∥∞ it fcnt Time fcnt/it

5 1.76349E−01 6.8E−09 24 30 0.001 1.25
10 1.69930E−01 8.6E−09 31 35 0.002 1.13
50 1.65505E−01 9.6E−09 88 95 0.022 1.08
100 1.63885E−01 9.9E−09 115 124 0.050 1.08
500 1.62358E−01 9.5E−09 254 278 0.320 1.09
1000 1.62019E−01 8.7E−09 477 530 1.208 1.11
10000 1.61780E−01 8.8E−09 494 505 12.915 1.02
25000 1.61708E−01 8.3E−09 753 780 60.151 1.04
50000 1.61661E−01 8.7E−09 1221 1271 472.639 1.04

Table 1: Details of the optimization process and the solutions found for the problem of mini-
mizing G(a) with increasing values of κ0 and using (12) for computing ∇G.

κ0 G(a⋆) ∥∇G(a⋆)∥∞ it fcnt Time fcnt/it

5 1.76349E−01 6.8E−09 24 30 0.002 1.25
10 1.69930E−01 8.6E−09 31 35 0.004 1.13
50 1.65443E−01 9.6E−09 107 120 0.034 1.12
100 1.63885E−01 9.9E−09 115 124 0.061 1.08
500 1.62241E−01 4.9E−09 239 258 0.376 1.08
1000 1.62170E−01 8.5E−09 202 208 0.621 1.03
10000 1.61783E−01 9.1E−09 507 522 16.301 1.03
25000 1.61719E−01 8.8E−09 736 762 63.164 1.04
50000 1.61649E−01 8.6E−09 1285 1343 598.587 1.05

Table 2: Details of the optimization process and the solutions found for the problem of mini-
mizing G(a) with increasing values of κ0 and using (16) for computing ∇G.

12



Figure 1: Centroidal Voronoi tessellations with κ0 ∈ {500, 1000}. Results obtained using the
gradient formula (12).

3.2 Centroidal Voronoi tessellation with cells of identical area.

In this section, we consider the merit function given by

f1(a) := ωG(a) + J1(a),

where

J1(a) :=
1

κ0

κ0∑
i=1

[J1
i (a)]

2 with J1
i (a) :=

(∫
Vi(a)

dx

)
/

(
1

κ0

∫
A
dx

)
− 1,

and ω ≥ 0 is given. The function J1(a) measures the deviation of the area of each Voronoi
cell Vi(a) with respect to the average area of the cells in the domainA. The purpose of minimizing
f1(a) is to find CVTs with cells of similar area, i.e., what is expected in an approximate solution
a is that for all i, |Vi(a)| ≈ 1

κ0

∫
A dx = 1, because A = [0,

√
κ0]

2. Since J1
i corresponds to (4)

with f ≡ 1, applying (5), we have that

∇J1
i (a) · δa =

κ0
|A|

∑
E∈E int

i

|E|
∥ai − ak(i,E)∥

[δai · (pE − ai)− δak(i,E) · (pE − ak(i,E))],

where pE := (vE + wE)/2 and k(i, E) is the index such that E = Vi(a) ∩ Vk(i,E)(a).
The choice of the parameter ω is important for the optimization process to obtain the desired

results. We will present an appropriate choice for ω that was found in the particular case where
κ0 = 10 is used, and then show the results obtained when optimizing the cases with κ0 ∈
{500, 1000} using the same value for ω. Figure 2(a) shows the solution of minimizing G(a), while

13



Figures 2(b-e) show the solutions obtained by minimizing f1(a) with ω ∈ {1, 0.1, 0.01, 0.001}.
In the figures, the cells Vi(a) that satisfy |J1

i (a)| > 10−3 are colored green. Therefore, the
uncolored cells Vi satisfy |J1

i (a)| ≤ 10−3, which means that the uncolored cells have an area that
is very close to the desired area (the relative error of the cell area to the ideal area is less than
or equal to 0.1%). The desired goal is reached when all cells are uncolored, which is the case
for ω = 0.001. Table 3 shows details of the solutions found. In particular, it shows the area of
each cell. It is interesting to compare the cell areas of the diagrams constructed by minimizing
G alone and f1 with ω = 0.001. Table 4 shows some details of the optimization process. In the
table, the columns f1(a

⋆) and ∥f1(a⋆)∥∞ indicate the value of the objective function and the
sup-norm of the continuous projected gradient at the final iterate a⋆. The columns G(a⋆) and
J1(a⋆) identify the value of the CVT energy function and the function J1 at the final iterate a⋆.
The remaining columns contain the number of iterations, the number of function evaluations,
and the CPU time in seconds. The numbers in the table show that, regardless of the value of ω,
the problems were easily solved, with the optimization process stopping in all cases due to the
imposed stopping criterion. The value of G in the solution a⋆ obtained by minimizing G alone
is G(a⋆) = 1.69930E-01; see Table 2. As ω decreases, Table 4 shows that J1(a⋆) improves by at
least an order of magnitude, while G(a⋆) deteriorates only slightly, remaining close to the value
obtained by minimizing G alone. This means that minimizing f1 succeeds in designing a diagram
with the desired geometric properties at the cost of only a small increase in the CVT energy
function, which is the function that a CVT diagram should minimize. In short, minimizing f1
succeeds in designing a CVT diagram with the desired characteristics.

Cell G(a) f1(a) with ω = 1 f1(a) with ω = 0.1 f1(a) with ω = 0.01 f1(a) with ω = 0.001

i |Vi(a⋆)| |J1
i (a

⋆)| |Vi(a⋆)| |J1
i (a

⋆)| |Vi(a⋆)| |J1
i (a

⋆)| |Vi(a⋆)| |J1
i (a

⋆)| |Vi(a⋆)| |J1
i (a

⋆)|
1 8.31E−01 1.69E−01 9.97E−01 3.28E−03 9.99E−01 7.09E−04 9.98E−01 1.58E−03 1.00E+00 1.60E−04
2 1.08E+00 8.10E−02 9.97E−01 3.28E−03 9.99E−01 7.09E−04 1.00E+00 9.40E−04 1.00E+00 9.50E−05
3 1.09E+00 8.75E−02 1.04E+00 4.08E−02 1.01E+00 6.30E−03 1.00E+00 9.86E−04 1.00E+00 9.95E−05
4 1.09E+00 8.75E−02 1.04E+00 4.08E−02 1.01E+00 6.30E−03 1.00E+00 9.86E−04 1.00E+00 9.95E−05
5 9.13E−01 8.72E−02 9.55E−01 4.47E−02 9.94E−01 6.43E−03 9.99E−01 1.33E−03 1.00E+00 1.34E−04
6 1.09E+00 8.75E−02 1.01E+00 1.04E−02 1.00E+00 1.55E−03 1.00E+00 9.86E−04 1.00E+00 9.95E−05
7 9.13E−01 8.72E−02 9.55E−01 4.47E−02 9.94E−01 6.43E−03 9.99E−01 1.33E−03 1.00E+00 1.34E−04
8 1.08E+00 8.10E−02 9.97E−01 3.28E−03 9.99E−01 7.09E−04 1.00E+00 9.40E−04 1.00E+00 9.50E−05
9 8.31E−01 1.69E−01 9.97E−01 3.28E−03 9.99E−01 7.09E−04 9.98E−01 1.58E−03 1.00E+00 1.60E−04
10 1.09E+00 8.75E−02 1.01E+00 1.04E−02 1.00E+00 1.55E−03 1.00E+00 9.86E−04 1.00E+00 9.95E−05

Table 3: Obtained values for the area |Vi(a⋆)| of each cell and J1(a⋆) after minimizing the
functions G(a) and f1(a) = ωG(a) + J1(a) with ω ∈ {1, 0.1, 0.01, 0.001}.

ω f1(a
⋆) ∥∇f1(a⋆)∥∞ G(a⋆) J1(a⋆) it fcnt Time

1 1.73112E−01 1.9E−09 1.72354E−01 7.57491E−04 44 63 0.004
0.1 1.74133E−02 9.1E−09 1.73964E−01 1.68787E−05 94 119 0.005
0.01 1.82952E−03 9.7E−09 1.82810E−01 1.41961E−06 29 32 0.002
0.001 1.83081E−04 2.7E−09 1.83066E−01 1.44641E−08 35 38 0.002

Table 4: Details of the process of minimizing the function f1(a) = ωG(a) + J1(a) varying ω.

Taking into account κ0 = 1000, we also perform the experiment of minimizing only G
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(a) G(a)

(b) f(a) with ω = 1 (c) f(a) with ω = 0.1

(d) f(a) with ω = 0.01 (e) f(a) with ω = 0.001

Figure 2: Centroidal Voronoi tessellations with κ0 = 10. In (a) we show the result of minimizing
the function G(a). In (b-e) we show the diagrams obtained by minimizing f1(a) = ωG(a)+J1(a)
with decreasing values of ω.
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and f1 with ω ∈ {1, 0.1, 0.01, 0.001}. Figure 3 shows the distribution of cell areas in the
four different approximate solutions a⋆(ω) found by minimizing the function f1(a) varying ω.
Consider the solutions a⋆(ω) for the different values of ω and let ν1 = min{ω,i} |Vi(a⋆(ω))|,
ν101 = max{ω,i} |Vi(a⋆(ω))|, ∆ν = (ν101 − ν1)/100, and νj = ν1 + j∆ν for j = 2, . . . , 100.
The figure shows the distribution of the values of |Vi(a⋆(ω))| for ω ∈ {1, 0.1, 0.01, 0.001} and
i = 1, . . . , κ0 over the intervals [νj , νj+1] for j = 1, . . . , 100. More specifically, there is a graph for
each a⋆(ω) and, for each value 1

2(νj + νj+1) in the abscissa, the graph shows in the ordinate the
proportion of cells Vi(a

⋆(ω)) whose area |Vi(a⋆(ω))| is in the interval [νj , νj+1]. The plot clearly
shows that, the smaller the value of ω, the larger the proportion of cells in the solution a⋆(ω)
whose area is close to 1. Figure 4(a-b) shows the diagrams obtained by minimizing G alone and
f1 with ω = 0.001, respectively. In both figures, cells Vi(a) such that |J1

i (a)| > 10−3 are painted
green. Basically speaking, this means that when minimizing G alone, almost none of the cells
have the desired area, while when minimizing f1 with ω = 0.001, all have the desired area.

Figure 3: Distribution of the cell areas in the approximate solutions found when minimizing the
function f1(a) = ωG(a) + J1(a) with κ0 = 1000 considering ω ∈ {1, 0.1, 0.01, 0.001}.
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(a) G(a) (b) f1(a) with ω = 0.001

Figure 4: Centroidal Voronoi tessellation with κ0 = 1000. In (a) we show the diagram resulting
from minimizing the function G(a). In (b) we show the diagrams obtained by minimizing
f1(a) = ωG(a) + J1(a) with ω = 0.001.

3.3 Centroidal Voronoi tessellation avoiding cells with small edges

In this section, we consider the size of the edges of the cells. Scrutinizing the cells in Figure 4(a),
we observe the presence of cells with small edges. Specifically, given a fraction c2 ∈ (0, 1), we
say that “an edge E of a cell Vi(a) is small” if its size |E| is smaller than c2Ēi, where Ēi = Pi/ni
is the average of the edge sizes of the cell Vi(a), Pi is the perimeter of the cell, and ni is the
number of edges of the cell. Given a tolerance c2 ∈ (0, 1), to construct CVTs that do not have
cells with small edges, we consider the objective function

f2(a) := ωG(a) + J2(a),

where

J2(a) :=

κ0∑
i=1

J2
i (a) with J

2
i (a) :=

1

ni

∑
E∈Ei

min

{
0,

|E|
Ēi

− c2

}2

(18)

and ω ≥ 0 is a given constant. In (18), Ei is the set of edges of cell Vi(a) and ni = |Ei|. Given
c2 ∈ (0, 1), if all edges E ∈ Ei of a cell Vi(a) satisfy |E| ≥ c2Ēi, i.e., if the size of each cell edge
is at least 100%× c2 of the average size, then |E|/Ēi − c2 ≥ 0 for all E, and hence J2

i vanishes.
Thus, J2

i measures the violation of the constraints on the minimum size of the edges of the cell
Vi(a). The gradient ∇J2

i depends on ∇|E| and |E| corresponds to (6) with f ≡ 1. Therefore,
by (7,8), we have that

∇J2
i (a) · δa =

∑
E∈Ei

µ(E)([F(i, wE)−F(i, vE)] · τE)
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with

µ(E) :=
2

Pi

min

{
0,

|E|
Ēi

− c2

}
−
∑
Ẽ∈Ei

|Ẽ|
Pi

min

{
0,

|Ẽ|
Ēi

− c2

} .

To obtain an appropriate value for ω, we analyze the results of minimizing f2(a) with c2 = 0.5
and κ0 = 10, varying ω ∈ {1, 0.1, 0.01}. Table 5 shows the results. The numbers in the table show
that all the problems were easily solved and stopped by the imposed criterion. Furthermore,
we can see that, as expected, the smaller the value of ω, the smaller the value of J2(a⋆(ω)).
We can also see that as ω decreases, the value of G increases. However, it increases only
slightly and always remains close to the value obtained by minimizing the function G alone,
which is 1.69930E-01 (see Table 2). This suggests that the solutions found, which satisfy the
desired geometric properties, also preserve the property of minimizing the CVT energy function.
Figures 5(a-d) show the diagrams obtained when minimizing G(a) and f2(a) with c2 = 0.5 and
varying ω ∈ {1, 0.1, 0.01}. Considering c2 = 0.5 means that we expect diagrams in which no
cell has an edge smaller than 50% of the average size of its edges. In the figures, colored cells
are those that do not satisfy the desired property. This means that satisfactory results were
obtained when minimizing f2(a) with ω = 0.1 and ω = 0.01. Table 6 analyzes the obtained
solutions in detail. For each cell of each solution, the table shows the size of its edges, the
average size of the edges, the ratio of the smallest edge to the average, and the value of J2

i . The
table clearly shows that as ω decreases, the smallest edge of each cell approaches the smallest
required proportion, that is, 50%.

ω f2(a
⋆) ∥∇f2(a⋆)∥∞ G(a⋆) J2(a⋆) it fcnt Time

1 1.70217E−01 1.9E−09 1.70079E−01 1.37640E−04 8 9 0.002
0.1 1.70437E−02 7.3E−09 1.70393E−01 4.34693E−06 17 21 0.002
0.01 1.70479E−03 9.9E−09 1.70474E−01 5.12211E−08 27 30 0.003

Table 5: Details of the process of minimizing f2(a) = ωG(a) + J2(a) with c2 = 0.5 varying ω.

Upon determining the value ω = 0.01, additional experiments with κ0 ∈ {500, 1000} were
performed. The experiments consisted of minimizing G(a) as well as f2(a) with ω = 0.01,
varying c2. Tables 7 and 8 and Figures 6 and 7 show the results. The results in the tables
show that, when the value of c2 increases, the optimization process is slightly more expensive.
However, in all cases, the problems were easily solved. The interesting observation is that
when c2 increases, solutions a⋆ with more restrictive geometric conditions are calculated with a
very small increase in the value of G(a⋆). Moreover, the values of G remain close to the value
obtained when minimizing G alone (see Table 2). We can also see that as c2 increases, J2(a⋆)
also increases and, at c2 = 0.9, the geometric condition is not met. In the figures, seven shades
of blue were used to paint the cells. The darkest cells are those with side sizes between 10-20%
of the mean. The lighter cells are those with side sizes between 70 and 80% of the mean. The
figures show that, as the value of c2 increases, cells with edge sizes smaller than 80% of the
average size disappear.

Figure 8 analyzes ten different diagrams with κ0 = 1000 obtained by minimizing G alone
and the function f2 with ω = 0.01 and c2 ∈ {0.1, 0.2, . . . , 0.9}. For a given solution a⋆, the figure
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Cell i Edges sizes Ēi 100(|Emin
i |/Ēi)% J2

i (a
⋆)

M
in
G
(a
)

1 1.20E+00 7.75E−01 9.70E−01 7.75E−01 - - 9.30E−01 83.4% 0.00E+00
2 1.05E+00 9.24E−01 5.65E−01 5.65E−01 9.24E−01 - 8.06E−01 70.0% 0.00E+00
3 3.36E−01 7.75E−01 9.82E−01 1.05E+00 9.24E−01 - 8.14E−01 41.3%41.3%41.3% 1.51E−03
4 9.82E−01 1.05E+00 9.24E−01 3.36E−01 7.75E−01 - 8.14E−01 41.3%41.3%41.3% 1.51E−03
5 3.36E−01 9.70E−01 3.36E−01 5.65E−01 9.02E−01 5.65E−01 6.12E−01 54.9% 0.00E+00
6 9.24E−01 1.05E+00 9.82E−01 7.75E−01 3.36E−01 - 8.14E−01 41.3%41.3%41.3% 1.51E−03
7 9.02E−01 5.65E−01 3.36E−01 9.70E−01 3.36E−01 5.65E−01 6.12E−01 54.9% 0.00E+00
8 5.65E−01 9.24E−01 1.05E+00 9.24E−01 5.65E−01 - 8.06E−01 70.0% 0.00E+00
9 7.75E−01 1.20E+00 7.75E−01 9.70E−01 - - 9.30E−01 83.4% 0.00E+00
10 1.05E+00 9.82E−01 7.75E−01 3.36E−01 9.24E−01 - 8.14E−01 41.3%41.3%41.3% 1.51E−03

Cell i Edges sizes Ēi 100(|Emin
i |/Ēi)% J2

i (a
⋆)

M
in
f 2
(a
)
w
it
h
ω
=

1

1 1.22E+00 7.54E−01 9.47E−01 7.54E−01 - - 9.18E−01 82.2% 0.00E+00
2 1.07E+00 9.22E−01 5.56E−01 5.56E−01 9.22E−01 - 8.05E−01 69.1% 0.00E+00
3 3.73E−01 7.54E−01 9.73E−01 1.05E+00 9.22E−01 - 8.14E−01 45.9%45.9%45.9% 3.44E−04
4 9.73E−01 1.05E+00 9.22E−01 3.73E−01 7.54E−01 - 8.14E−01 45.9%45.9%45.9% 3.44E−04
5 3.73E−01 9.47E−01 3.73E−01 5.56E−01 9.01E−01 5.56E−01 6.18E−01 60.4% 0.00E+00
6 9.22E−01 1.05E+00 9.73E−01 7.54E−01 3.73E−01 - 8.14E−01 45.9%45.9%45.9% 3.44E−04
7 9.01E−01 5.56E−01 3.73E−01 9.47E−01 3.73E−01 5.56E−01 6.18E−01 60.4% 0.00E+00
8 5.56E−01 9.22E−01 1.07E+00 9.22E−01 5.56E−01 - 8.05E−01 69.1% 0.00E+00
9 7.54E−01 1.22E+00 7.54E−01 9.47E−01 - - 9.18E−01 82.2% 0.00E+00
10 1.05E+00 9.73E−01 7.54E−01 3.73E−01 9.22E−01 - 8.14E−01 45.9%45.9%45.9% 3.44E−04

Cell i Edges sizes Ēi 100(|Emin
i |/Ēi)% J2

i (a
⋆)

M
in
f 2
(a
)
w
it
h
ω
=

0.
1

1 1.23E+00 7.40E−01 9.29E−01 7.40E−01 - - 9.10E−01 81.3% 0.00E+00
2 1.08E+00 9.20E−01 5.50E−01 5.50E−01 9.20E−01 - 8.04E−01 68.4% 0.00E+00
3 4.01E−01 7.40E−01 9.66E−01 1.04E+00 9.20E−01 - 8.14E−01 49.3%49.3%49.3% 1.09E−05
4 9.66E−01 1.04E+00 9.20E−01 4.01E−01 7.40E−01 - 8.14E−01 49.3%49.3%49.3% 1.09E−05
5 4.01E−01 9.29E−01 4.01E−01 5.50E−01 9.02E−01 5.50E−01 6.22E−01 64.4% 0.00E+00
6 9.20E−01 1.04E+00 9.66E−01 7.40E−01 4.01E−01 - 8.14E−01 49.3%49.3%49.3% 1.09E−05
7 9.02E−01 5.50E−01 4.01E−01 9.29E−01 4.01E−01 5.50E−01 6.22E−01 64.4% 0.00E+00
8 5.50E−01 9.20E−01 1.08E+00 9.20E−01 5.50E−01 - 8.04E−01 68.4% 0.00E+00
9 7.40E−01 1.23E+00 7.40E−01 9.29E−01 - - 9.10E−01 81.3% 0.00E+00
10 1.04E+00 9.66E−01 7.40E−01 4.01E−01 9.20E−01 - 8.14E−01 49.3%49.3%49.3% 1.09E−05

Cell Edges sizes Ēi 100(|Emin
i |/Ēi)% J2

i (a
⋆)

M
in
f 2
(a
)
w
it
h
ω
=

0.
01

1 1.23E+00 7.37E−01 9.26E−01 7.37E−01 - - 9.08E−01 81.1% 0.00E+00
2 1.08E+00 9.20E−01 5.48E−01 5.48E−01 9.20E−01 - 8.04E−01 68.2% 0.00E+00
3 4.06E−01 7.37E−01 9.65E−01 1.04E+00 9.20E−01 - 8.14E−01 49.9%49.9%49.9% 1.28E−07
4 9.65E−01 1.04E+00 9.20E−01 4.06E−01 7.37E−01 - 8.14E−01 49.9%49.9%49.9% 1.28E−07
5 4.06E−01 9.26E−01 4.06E−01 5.48E−01 9.02E−01 5.48E−01 6.23E−01 65.2% 0.00E+00
6 9.20E−01 1.04E+00 9.65E−01 7.37E−01 4.06E−01 - 8.14E−01 49.9%49.9%49.9% 1.28E−07
7 9.02E−01 5.48E−01 4.06E−01 9.26E−01 4.06E−01 5.48E−01 6.23E−01 65.2% 0.00E+00
8 5.48E−01 9.20E−01 1.08E+00 9.20E−01 5.48E−01 - 8.04E−01 68.2% 0.00E+00
9 7.37E−01 1.23E+00 7.37E−01 9.26E−01 - - 9.08E−01 81.1% 0.00E+00
10 1.04E+00 9.65E−01 7.37E−01 4.06E−01 9.20E−01 - 8.14E−01 49.9%49.9%49.9% 1.28E−07

Table 6: Details of cells after minimizing the objective functions G(a) and f2(a) with ω ∈
{1, 0.1, 0.01}.

shows the proportion of cells Vi(a
⋆) satisfying J2(a⋆) = 0 as a function of c ∈ [0, 1]. Figure 8

shows, for example, that the statement “all my edges are at least 10% the average size of my
edges” is true for 100% of the cells in any of the ten solutions and that the statement “all my
edges are at least 50% the average size of my edges” is true for slightly more than 95% of the
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c2 f2(a
⋆) ∥∇f2(a⋆)∥∞ G(a⋆) J2(a⋆) it fcnt Time

0.2 1.62359E−03 6.4E−09 1.62359E−01 1.36588E−11 64 101 0.141
0.3 1.62361E−03 8.4E−09 1.62361E−01 6.44011E−11 114 145 0.186
0.4 1.62368E−03 9.2E−09 1.62368E−01 2.48965E−10 233 311 0.350
0.5 1.62384E−03 9.3E−09 1.62384E−01 8.14196E−10 335 454 0.498
0.6 1.62424E−03 6.1E−09 1.62423E−01 2.89568E−09 345 427 0.480
0.7 1.62564E−03 8.6E−09 1.62562E−01 1.46599E−08 507 558 0.638
0.8 1.63419E−03 8.6E−09 1.63398E−01 2.15309E−07 633 642 0.781
0.9 1.74145E−03 9.0E−09 1.69973E−01 4.17186E−05 722 753 0.997

Table 7: Details of the optimization process and the solutions found for the problem of finding
centroidal Voronoi tessellations that avoid cells with relatively small edges for κ0 = 500.

c2 f2(a
⋆) ∥∇f2(a⋆)∥∞ G(a⋆) J2(a⋆) it fcnt Time

0.3 1.62019E−03 9.3E−09 1.62019E−01 3.01081E−12 48 63 0.179
0.4 1.62022E−03 9.8E−09 1.62022E−01 7.05410E−11 81 110 0.284
0.5 1.62032E−03 6.9E−09 1.62032E−01 3.57745E−10 235 300 0.711
0.6 1.62063E−03 4.6E−09 1.62063E−01 1.33134E−09 310 387 0.918
0.7 1.62174E−03 8.7E−09 1.62173E−01 8.84976E−09 475 512 1.235
0.8 1.62862E−03 9.1E−09 1.62850E−01 1.23288E−07 777 787 1.970
0.9 1.71539E−03 9.5E−09 1.67819E−01 3.72017E−05 1357 1450 4.031

Table 8: Details of the optimization process and the solutions found for the problem of finding
centroidal Voronoi tessellations that avoid cells with relatively small edges for κ0 = 1000.

cells in the solutions computed by minimizing G or minimizing f2 with c2 ∈ {0.1, 0.2, 0.3, 0.4}.
The zoom in the figure shows that when we minimize f2(a) with c2 ≤ 0.8, the statement “all
my edges are at least 100% × c2 the average size of my edges” is true for all the cells. When
c2 = 0.9, the geometric constraints are too restrictive and the solution does not satisfy the
desired property. This corresponds to the fact that the corresponding curve falls below 1 for
c < 0.9. As a general observation, all the ten curves look very similar when c varies from 0 to
0.35. This is because, in general, when a diagram is built by minimizing G alone, there are only
a few cells with small edges. The “difference” between the curves shows that these few undesired
edges are eliminated when f2 is minimized for increasing values of c2. The curve relative to the
diagram obtained by minimizing G overlaps with that of minimizing f2 with c2 = 0.1. These
curves are equal because, when G is minimized, no cell has an edge whose size is less than 10%
of the mean.

3.4 Density-based centroidal Voronoi tessellations

In this section, we deal with the construction of CVTs with cells whose size is determined by a
function ψ : A→ R. For this, following [3], we consider the merit function given by

f3(a) = G(a) + ω J3(a),
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(a) G(a) (b) f2(a) with ω = 1

(c) f2(a) with ω = 0.1 (d) f2(a) with ω = 0.01

Figure 5: Centroidal Voronoi tessellation with κ0 = 10. In (a) we show the result of minimizing
G(a). In (b-d) we show the result of minimizing f2(a) = ωG(a) + J2(a) with c2 = 0.5 and
ω ∈ {1, 0.1, 0.01}, respectively.

where

J3(a) :=
1

κ0

κ0∑
i=1

[J3
i (a)]

2 with J3
i (a) :=

(∫
Vi(a)

dx

)
/

(
1

κ0

∫
A
dx

)
− ψ(ai),

where ω ≥ 0 is given. The function ψ has the role of dictating the desired ratio between the
area of the cell Vi(a) and the mean area of the cells. The gradient J3(a) depends on ∇J3

i (a) and
∇J3

i (a) = ∇J1
i (a)−∇aiψ(ai) ·δai. A difficulty with the function J3 thus defined is that the sum

of the desired areas does not necessarily equal the total area of the region A. As a consequence,
J3 is expected not to vanish in its global minimizer, which makes it impractical to establish that
the global minimizer has been reached. Another option would be to consider a merit function
like the one defined in Section 3.2, but with an arbitrary non-constant density function ρ. This
was the approach considered in [7, 13]. Its disadvantage compared to our function J3 is that
it relies on quadrature rules to approximate the merit function and its derivatives, while our
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(a) G(a) (b) f2(a) with c2 = 0.2 (c) f2(a) with c2 = 0.3

(d) f2(a) with c2 = 0.4 (e) f2(a) with c2 = 0.5 (f) f2(a) with c2 = 0.6

(g) f2(a) with c2 = 0.7 (h) f2(a) with c2 = 0.8

Figure 6: Centroidal Voronoi tessellation with κ0 = 500. In (a) we show the result of minimizing
the function G(a). The darker the cell, the more unbalanced the sizes of its edges. In (b-h),
preserving the meaning of the colors, we present the resulting diagrams by minimizing f2 with
ω = 0.01 and varying c2 ∈ {0.2, 0.3, . . . , 0.8}.

approach still allows an exact evaluation of the integrals.
In the numerical experiments, we considered κ0 = 1000 and arbitrarily defined

(a) ψ(z) = ψ1(z) := a((z̄2 − (z̄1/4)
2)2 + (z̄1/4− 1)2) + b, where z̄ = (2z − c)/5, c is the center
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(a) G(a) (b) f2(a) with c2 = 0.3 (c) f2(a) with c2 = 0.4

(d) f2(a) with c2 = 0.5 (e) f2(a) with c2 = 0.6 (f) f2(a) with c2 = 0.7

(g) f2(a) with c2 = 0.8

Figure 7: Centroidal Voronoi tessellations with κ0 = 1000. In (a) we show the result of minimiz-
ing G(a). The darker the cell, the more unbalanced the sizes of its edges. In (b-g), preserving the
meaning of the colors, we present the diagrams that result from minimizing f2(a) with ω = 0.01
and varying c2 ∈ {0.3, 0.4, . . . , 0.8}.

of the region A, b = 1/4, and a = 19/162;

(b) ψ(z) = ψ2(z) := 0.1 + 2.9
δ2

(
z2 − 0.6δ sin(2πz1√

κ0
)− δ

)2
, where δ =

√
κ0

2 ;
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Figure 8: This figure analyzes the solutions with κ0 = 1000 found when minimizing G alone
and the function f2(a) = ωG(a) + J2(a) with ω = 0.01, varying c2 ∈ {0.1, . . . , 0.9}. For each
solution, the figure shows, as a function of c, the proportion of cells that satisfy the statement
“all my edges are at least 100%× c the average size of my edges.”

(c) ψ(z) = ψ3(z) := 0.01 + 20∥z − c∥2/r2, where c and r are the center and the radius of the
circle inscribing the region A, respectively.

Table 9 and Figure 9 show the details of the optimization process and the solutions found for
varying values of ω ∈ {1, 0.1, 0.01}. The figures in the table show that, in some cases, the method
stopped because the merit function gradient norm reached the desired value. In the other cases,
the method was stopped due to “lack of progress”. That is, the method continued as long as a
decrease in the objective function was observed. If, in a successive number of iterations, progress
is no longer observed, the method stops; see [17] for details. This is not an issue in practice and
this stopping criterion is as valid as any other, as the tolerance εopt = 10−8 used to stop by the
gradient rule is arbitrary. In general, the figures in the table show that when ω = 0.01, the value
of G(a⋆) is of the same order as the value we found when minimizing G alone, i.e., 1.62E-01;
see Table 2. On the other hand, for ω = 1 we found values of J3(a⋆) that are between 2 and 3
orders of magnitude smaller than those found with ω = 0.01, with no significant deterioration
in the value of G(a⋆). Graphically, when ω is “small” cells tend to have more uniform areas,
whereas for larger values of ω we observe cells with different areas. The case of ψ3 is a little
different from the other two, and what we just mentioned would be better observed considering
smaller values of ω.
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ω f3(a
⋆) ∥∇f3(a⋆)∥∞ G(a⋆) J3(a⋆) it fcnt Time

ψ1

1 3.00640E−01 5.1E−09 2.75839E−01 2.48011E−02 768 792 2.839
0.1 2.44043E−01 9.2E−09 2.14370E−01 2.96727E−01 478 490 1.140
0.01 1.84559E−01 9.8E−09 1.66529E−01 1.80295E+00 337 355 0.835

ψ2

1 5.45833E−01 8.5E−04 3.17750E−01 2.28084E−01 51 375 1.395
0.1 2.75867E−01 1.6E−04 2.29055E−01 4.25556E−01 89 568 1.317
0.01 1.88113E−01 1.8E−05 1.66878E−01 2.12344E+00 155 1281 2.845

ψ3

1 2.07753E+00 7.2E−05 1.99442E+00 8.31023E−02 678 807 3.187
0.1 1.82859E+00 3.8E−03 1.59789E+00 1.20786E+00 1396 1521 3.638
0.01 8.37667E−01 9.4E−09 5.18745E−01 3.18922E+01 1990 2067 4.640

Table 9: Details of the process of minimizing f3(a) = G(a) + ω J3(a), considering the three
different functions ψ(z) and varying ω.

4 Conclusions

In this work, we investigated the construction of centroidal Voronoi tesselations with geometric
constraints. We have applied a specific case of the theory developed in [3], which provides a
sensitivity analysis for Voronoi diagrams. An advantage of this approach is its unified treatment
of interior and boundary edges and vertices. This analysis, which enables the computation of the
derivative of any differentiable function depending on the Voronoi diagram, relies on standard
nondegeneracy assumptions about the geometry.

The resulting optimization problems were easily solved with a standard optimization method,
L-BFGS-B, because two arbitrary choices simplified them. The first choice was to consider a
constant density function, which allowed the integral to be computed with high accuracy, with-
out incorporating noise in the evaluation of the objective function and its derivatives. The
second choice was to define a square domain A, which implied bound-constrained minimization
problems. However, the construction of CVTs has a wide range of applications in which domains
extend beyond simple box-shaped regions. The simplest case beyond rectangular domains is to
consider a convex set. In this case, methods based on gradient projection would be an alterna-
tive. However, CVTs are not well defined when two or more sites coincide, and the projection
operation tends to construct such points. In any case, with domains given by convex regions or
more complex regions, optimization methods for general nonlinear programming (NLP) prob-
lems would be required. The problems considered in the present work, extended to arbitrary
domains, represent an interesting benchmark set for existing NLP methods. In the same vein,
the problems in the present work, with the inclusion of non-constant density functions, are a
challenge for existing methods that deal with noise evaluations of the objective function and its
gradient.

The numerical results indicate that it is possible to optimize the geometric features of CVTs
while maintaining the centroidal property to a reasonable extent. In the numerical experiments,
we have considered a single additional geometric constraint; if several simultaneous constraints
are desired, a multi-objective optimization approach should be considered. A natural extension
of this work is its application to large grids and surface grids [9]. Other research directions in-
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(a) f3(a) with ω = 1 (b) f3(a) with ω = 0.1 (c) f3(a) with ω = 0.01

(d) f3(a) with ω = 1 (e) f3(a) with ω = 0.1 (f) f3(a) with ω = 0.01

(g) f3(a) with ω = 1 (h) f3(a) with ω = 0.1 (i) f3(a) with ω = 0.01

Figure 9: Centroidal Voronoi tessellation with κ0 = 1000 constructed by seeking cells of different
prescribed sizes, considering the three different functions ψ(z). Pictures (a-c) correspond to ψ1,
(d-f) to ψ2, and (g-i) to ψ3.

clude exploring alternative mesh quality criteria to improve the convergence of finite-difference
operators, for example, by minimizing the distance between the midpoint of a cell edge and the
intersection points of grid segments with the cell edge, see [11]. For three-dimensional problems,
the theoretical framework established in [3] must first be extended to three dimensions.
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