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Abstract

The problem of minimizing the first eigenvalue of the Dirichlet Laplacian with respect to a union
of m balls with fixed identical radii and variable centers in the plane is investigated in the present
work. The existence of a minimizer is shown and the shape sensitivity analysis of the eigenvalue
with respect to the centers’ positions is presented. With this tool, the derivative of the eigenvalue is
computed and used in a numerical algorithm to determine candidates for minimizers. Candidates are
also constructed by hand based on regular polygons. Numerical solutions contribute in at least three
aspects. They corroborate the idea that some of the candidates based on regular polygons might
be optimal. They also suggest alternative regular patterns that improve solutions associated with
regular polygons. Lastly and most importantly, they delivered better quality solutions that do not
follow any apparent pattern. Overall, for low values of m, candidates for minimizers of the eigenvalue
are proposed and their geometrical properties as well as the appearance of regular patterns formed
by the centers are discussed.

1 Introduction

Optimization of eigenvalues with respect to geometrical features is a topic of high interest in pure and
applied mathematics but also in engineering and natural sciences, such as in structural mechanics for the
control of vibration frequency [3], in mathematical biology [27, 31], acoustics [5, 34] or electromagnetism
[2]. We refer to the book [24] of Henrot for a thorough overview of the topic.

The optimization of Laplacian eigenvalues is a popular topic in Mathematics as these problems
are often simple and elegant to formulate, but are also challenging and require deep mathematical
tools from a large spectrum of disciplines such as partial differential equations, spectral theory and
differential geometry. The celebrated Rayleigh–Faber–Krahn inequality, conjectured by Lord Rayleigh
in the 19th century and proved several decades later by Faber and Krahn, states that the ball minimizes
the first Dirichlet eigenvalue under a volume constraint. Since then, many shape optimization problems
of this nature have been considered, such as the minimization of the kth eigenvalue of the Dirichlet
Laplacian [6, 15] for k > 2, or the minimization of eigenvalues with other types of partial differential
equations (PDEs) and boundary conditions [16, 24]. Shape optimization of eigenvalues under geometric
constraints has also attracted significant interest over the years in the literature: perimeter constraint [19],
convexity constraint for the second Dirichlet eigenvalue [25], box constraint [24], diameter constraint [12],
minimization in the class of polygons with at most n edges [11, 24] and optimal partition problems [13, 14].

Another type of geometric constraint that has not been much investigated in the shape optimization
literature is to optimize with respect to a domain defined as a union of sets. In the engineering literature,
the method of Moving Morphable Component/Void (MMC/MMV) [22, 38] has been developed recently
to tackle such problem. Its goal is to achieve shape and topology optimization using a union of sets
(the so-called components/voids) whose geometrical features can be controlled explicitly. The sensitivity
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analysis in this approach is usually formal and based on regularization, and a rigorous mathematical
analysis, with or without using regularization, is lacking.

In the present paper we propose an initial foray into the rigorous mathematical analysis of this type
of constraint, and consider numerical approximations employing domains with sharp interfaces, i.e.,
without regularization. We propose to investigate the minimization of the first Dirichlet eigenvalue when
the domain is a union of m balls with fixed identical radii and variable centers in the plane. This naturally
yields a well-posed minimization that raises interesting challenges. When considering domains defined
as a union of sets, the union of balls is a natural contender with various applications in computational
biology, molecular modeling, robotics [1, 21] and covering problems [8, 9]. In [7, 8, 9] shape optimization
problems where the set to be optimized is a union of balls have already been considered. However, in these
works the minimization problem does not depend on the solution of a PDE. When the cost functional
depends on the solution of a PDE, specific issues arise. A particularly important feature is the regularity
of the solution and the appearance of singularities near the re-entrant corners that inevitably occur when
working with a union of smooth sets, as described by the theory of corner singularities [18, 30, 33]. The
low regularity of the solution of the PDE that ensues from these singularities complicates the shape
sensitivity analysis and the numerical approximation of a minimizer.

In eigenvalue optimization with respect to the geometry, the first step is usually to determine geo-
metric properties of the minimizer and, if possible, to find a plausible candidate for the minimizer. The
second step is then to prove, or disprove, that this candidate is indeed a minimizer. For instance, for the
minimization of the first Dirichlet eigenvalue under a volume constraint, it was first conjectured by Lord
Rayleigh that the solution was a ball, and the conjecture was proved later on. For the minimization of the
first Dirichlet eigenvalue of the Laplacian in the class of polygons with n edges and fixed volume, known
as the Pólya conjecture, it is conjectured that the solution is the regular polygon with n edges, and an
important step towards proving this conjecture has been obtained recently in [11]. However, the exact
minimizer is sometimes difficult to guess or to describe explicitly. For instance, for the minimization of
the second Dirichlet eigenvalue with a convexity constraint on the plane, it was first conjectured that
the solution was the convex hull of two identical tangent balls, but this result was disproved later in [25].

For the problem investigated in the present paper, several familiar arguments from Dirichlet eigen-
value optimization may be considered to identify potential candidates. For instance, in light of the
Rayleigh–Faber–Krahn inequality, it is reasonable to expect that the minimizer is simply connected and
that the balls tend to agglomerate to approximate a larger ball. The balls’ centers should form several
layers, and a natural question is to ask how the structure of these layers depends on m and whether
regular patterns appear. For low values of m, configurations following a regular polygonal pattern or
aligned with a regular hexagonal lattice are natural candidates for minimizers. However, for specific
values of m a plausible candidate may be difficult to guess, or several candidates may be competing.

Numerical investigations are then key to observe regular pattern formations in the minimizers and to
establish conjectures. For this purpose we propose an algorithm based on shape optimization techniques
[20, 26, 35] to approximate the minimizers. The union of balls can be seen as a nonsmooth set, a
curvilinear polygon to be more precise, and a small perturbation of the centers’ positions generates a
geometric perturbation of this nonsmooth set. Under appropriate conditions on the balls’ positions,
this geometrical perturbation may be parameterized by a bi-Lipschitz mapping between the reference
and the perturbed domains; here we can use the mapping that was constructed in [8, 9] for covering
problems. This shape sensitivity analysis allows us eventually to compute the gradient of the eigenvalue
with respect to the centers’ positions, via the computation of the eigenvalue derivative with respect to
the shape.

The eigenvalue gradient is then used in a numerical algorithm to approximate the minimizers. How-
ever, the computation of an accurate gradient is a challenging numerical problem, specially nearby regular
patterns, where the computation of the gradient may be unstable. Thus, we use a standard steepest
descent algorithm with Armijo’s line search and we proceed to perform a block coordinate search heuris-
tic, which can still make use of some of the gradient’s components when the full gradient is not reliable,
which was shown to improve the quality of the solution found. We conduct experiments by considering
the problem with up to ten balls, where we start by guessing regular patterns which may provide good
candidate solutions. These regular pattern solutions are then compared with the ones found by our
algorithm starting from random initial points. In general, the algorithm finds solutions which are similar
to the ones obtained with regular patterns, which suggests for some values of m that the regular pattern
solutions are indeed minimizers; in some cases, the solution found by the algorithm suggests other reg-
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ular patterns to be tested. However, surprisingly, for five and ten balls, our algorithm finds non-regular
solutions which are better than the ones found under regular patterns, indicating that the problem of
minimizing the first Dirichlet Laplacian with respect to a union of balls may have some unexpected
solutions depending on the number of balls considered.

The rest of this work is organized as follows. In Section 2 the eigenvalue minimization problem
is introduced, existence of solutions is proved, and the shape sensitivity analysis of the eigenvalue is
performed. Section 3 describes the considered optimization algorithm. An ad hoc heuristic based on
block coordinate search and a simple process to construct solutions based on regular patterns are also
described. Numerical experiments are given in Section 4. Conclusions and lines for future research are
given in the last section.

Notation: The notation | · | is used for the Euclidian norm in Rn. For a given set ω ⊂ R2, ∂ω denotes
its boundary, ω its closure, intω its interior, ωc its complement, and ν denotes the unitary-norm normal
vector to ∂ω, pointing outwards of ω. Let B(xi, r) denote an open ball with center xi and radius r.
We use the notation νi for the normal vector to ∂B(xi, r), pointing outwards of B(xi, r), and τi for the
unitary-norm tangent vector to ∂B(xi, r), pointing counterclockwise. The divergence of a vector field
V : R2 → R2 is denoted by div V , and its Jacobian matrix by DV . For a function v : ω → R, the normal
derivative on ∂ω is denoted ∂νv := ∇v · ν. The identity matrix in R2×2 is denoted by I.

2 Problem setting and sensitivity analysis

Let Ω ⊂ R2 be a bounded open set,

H1(Ω) := {v ∈ L2(Ω) | ∇v ∈ L2(Ω)} and H1
0 (Ω) := {v ∈ H1(Ω) | v = 0 on ∂Ω}.

The first Dirichlet Laplacian eigenvalue is defined as

λ(Ω) := min
u∈H1

0 (Ω)\{0}

∫
Ω

|∇u|2∫
Ω

u2
.

The first eigenvalue is simple if Ω is a regular connected open set and positive, see [24, Theorem 1.2.5].
The corresponding eigenfunction u satisfies

−∆u = λ(Ω)u in Ω, (1)

u = 0 on ∂Ω, (2)

and we impose the normalization condition ‖u‖L2(Ω) = 1.
In this paper we consider the following eigenvalue minimization problem

Minimize λ(x) with respect to x := {xi}mi=1 ∈ R2m, (3)

where λ(x) := λ(Ω(x)) denotes the solution to (1,2) with Ω = Ω(x) := ∪mi=1B(xi, r), with m and r fixed,
xi ∈ R2 for all i ∈M := {1, . . . ,m}. We briefly explain why the minimizers of problem (3) are not trivial
and produce an interesting geometrical configuration of the centers {xi}mi=1; a more detailed discussion
is provided at the beginning of Section 3. First, when x? := {x?i }mi=1 is a solution of problem (3), Ω(x?)
must be connected due to a monotonicity property of Dirichlet eigenvalues, see Theorem 2. Second, Ω(x?)
achieves an equilibrium between two competing tendencies. On one hand, Ω(x?) strives to maximize
its area, as the first Dirichlet eigenvalue tends to decrease as the area of the domain increases. On
the other hand, Ω(x?) seeks to minimize the angles (measured from the interior of Ω(x?)) at circle
intersections, and to prevent small gaps from appearing, as these create strong singularities that increase
the eingenvalue. Furthermore, considering that the minimizer of λ with respect to a free-form shape
under a volume constraint is a ball due to the Rayleigh–Faber–Krahn inequality, see [24, Theorem 3.2.1],
one expects the balls B(x?i , r) to agglomerate and approximate a large ball as m→∞, and to minimize
their overlapping while avoiding gaps in Ω(x?), i.e., Ω(x?) should be simply connected. Note that the
minimizing of overlapping is also typical of solutions of covering problems [8, 9, 17].
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2.1 Existence of solutions

In this section we discuss the existence of solutions for problem (3). For this purpose we will use a
result of Šverak [36]; see also [24, Theorem 2.3.19]. We first recall the definition of Hausdorff distance
for compact and open sets, following [24, Section 2.3.3].

Definition 1 (Hausdorff convergence). Let K1,K2 be two non-empty compact sets in R2 and set

d(x,K1) := inf
y∈K1

|y − x|, for all x ∈ R2,

ρ(K1,K2) := sup
x∈K1

d(x,K2).

The Hausdorff distance of K1 and K2 is defined by

dH(K1,K2) := max(ρ(K1,K2), ρ(K2,K1)).

If Ω1,Ω2 are two open subsets of a (large) compact set K, then their Hausdorff distance is defined by:

dH(Ω1,Ω2) := dH(K \ Ω1,K \ Ω2).

The Hausdorff convergence of Ωn to Ω? is denoted Ωn
H→ Ω?.

For any set D ⊂ R2 open, let ]Dc denote the number of connected components of Dc. The result
of Šverak actually states the γ-convergence of Ωn to Ω, but for the sake of simplicity we provide here a
simpler statement dealing only with the first eigenvalue.

Theorem 1 (Šverak). Let K ⊂ R2 be a fixed compact set and Ωn a sequence of open subsets of K. Let
p be a given integer and assume that the sets Ωn satisfy ]Ωcn ≤ p for all n ∈ N. Then, if the sets Ωn
converge for the Hausdorff distance to a set Ω we have λ(Ωn)→ λ(Ω).

We will also need the following monotonicity property for the inclusion for Dirichlet eigenvalues; see
[24, Section 1.3.2].

Lemma 1. Let Ω1,Ω2 be two bounded sets in R2 such that Ω1 ⊂ Ω2. Then λ(Ω1) ≤ λ(Ω2). Moreover,
the inequality is strict as long as Ω2 \ Ω1 contains a set of positive capacity.

Let {xn}n∈N be a minimizing sequence for problem (3), i.e., a sequence satisfying

λ(xn)→ inf
x∈R2m

λ(x) ≥ 0.

The key ingredient to prove existence of a solution to problem (3) is to apply Theorem 1, for which we
need to prove the Hausdorff convergence of Ω(xn) towards a set Ω(x?). However, Ω(xn) does not always
converge in the sense of Hausdorff to Ω(x?), but rather to a slightly larger set Ω† which is the union of
Ω(x?) with a finite set of points. This allows us to show that λ(Ω†) = λ(Ω(x?)).

In what follows we will use
Ai := ∂B(xi, r) ∩ ∂Ω(x) (4)

for i ∈M. Connected components of Ai are called arcs of ∂Ω(x); note that arcs are closed sets.

Theorem 2. There exists x? ∈ R2m solution of problem (3). In addition Ω(x?) is connected, it holds
|x?i − x?j | < 2mr for all i, j ∈M, and

min
j∈M\{i}

|x?i − x?j | < 2r for all i ∈M. (5)

Proof. Suppose that a minimizer x? ∈ R2m exists and that Ω(x?) is not connected. Without loss of
generality, we can assume that there are only two connected components C1 and C2; the general case
follows immediately. Then it is easy to see that λ(C1) and λ(C2) are both Dirichlet eigenvalues on Ω(x?)
(but need not be the lowest Dirichlet eigenvalue). Without loss of generality we can also assume λ(C1) ≤
λ(C2). Since Ω(x?) has only two connected components, we have λ(Ω(x?)) = min{λ(C1), λ(C2)} =
λ(C1); see [24, Remark 1.2.4]. Then, using Lemma 1, it is always possible to remove some ball B(x?i , r)
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from C2 and add some ball B(xi, r) to C1 so that λ(C1 ∪ B(xi, r)) < λ(C1) = λ(Ω(x?)), which would
contradict the fact that x? is a minimizer. Thus Ω(x?) must be connected. The fact that |x?i −x?j | < 2mr
for all i, j ∈M and (5) both follow immediately.

Let {xn}n∈N be a minimizing sequence for problem (3). Since λ(x) is invariant by a uniform trans-
lation of the points xi, i.e., λ(x + ηy) = λ(x) for all η ∈ R, where y := {yi}mi=1 ∈ R2m and yi = y ∈ R2

for all i ∈M, we can assume that x1,n = (0, 0) is the origin, where xn = {xi,n}mi=1. We can also assume
that Ω(xn) is connected and that |xi,n− xj,n| < 2mr for all i, j ∈M, for all n ∈ N, otherwise if it is not
the case for some n, we can substitute xn with some yn such that λ(yn) < λ(xn), following the same
reasoning used to show that Ω(x?) is connected. Thus xi,n ⊂ B((0, 0), 2mr) for all i ∈M and all n ∈ N.

Hence we can extract a subsequence converging to some x? such that x?i ⊂ B((0, 0), 2mr) for all i ∈M.
With a slight abuse of notation we also denote the subsequence by {xn}n∈N.

Now we apply Theorem 1 to show that λ(Ω(xn)) → λ(Ω(x?)). To this end we need to show that
there exists p ∈ N such that ]Ω(xn)c ≤ p for all n ∈ N. Let C be a connected component of Ω(xn)c.
Then ∂C is a finite union of arcs of ∂Ω(xn). Also, two distinct connected components of Ω(xn)c can not
have any arc in common. According to [28, Theorem 3.2] or [1, Theorem 2.2], ∂Ω(x) is the union of at
most 6m− 12 arcs. Thus, the number of connected components of Ω(xn)c is also bounded by 6m− 12,
independently of n.

Since Ω(xn) is uniformly bounded, there exists Ω† and a subsequence of Ω(xn), still denoted Ω(xn)

for simplicity, with Ω(xn)
H→ Ω†; see [26, Corollary 2.2.26]. Since B(xi,n, r)

H→ B(x?i , r) we have Ω(x?) =

∪mi=1B(x?i , r) ⊂ Ω†; see [26, Section 2.2.3.2]. Then, introduce Ω̃n = ∪mi=1B(x?i , r + εi,n) with εi,n :=
|x?i −xi,n|. We can take a subsequence, still denoted εi,n, so that εi,n = |x?i −xi,n| is nonincreasing for all

i ∈M. Thus Ω̃n is nonincreasing with respect to the inclusion and using a property of [26, Section 2.2.3.2]

we get Ω̃n
H→ int∪mi=1B(x?i , r). Also, we have Ω(xn) ⊂ Ω̃n, and since the Hausdorff convergence for open

sets is stable for the inclusion, see [26, Section 2.2.3.2], we get Ω† ⊂ int∪mi=1B(x?i , r). Hence, we have
obtained

Ω(x?) ⊂ Ω† ⊂ int∪mi=1B(x?i , r).

Now observe that the difference between Ω(x?) and int∪mi=1B(x?i , r) is a finite set of points, thus

λ(Ω(x?)) = λ(Ω†) = λ(int∪mi=1B(x?i , r)).

Finally we can apply Theorem 1, this shows that λ(Ω(xn)) → λ(Ω†) = λ(Ω(x?)). Since xn is a mini-
mizing sequence, we get

λ(x?) = min
x∈R2m

λ(x),

and this shows that x? ∈ R2m is a solution to problem (3).

2.2 Shape sensitivity analysis

In this section we compute the shape derivative of the first Dirichlet eigenvalue, under appropriate
conditions on the balls’ centers. The required condition, given in Assumption 1, is the same as in the
shape sensitivity analysis for covering problem, see [8, 9]. It precludes balls from being tangent and from
having the same centers. Also, any three circles can not intersect at the same point. In the covering
problem, where no PDE was involved, these conditions were introduced for the sensitivity analysis, but
it was shown in [8, 9] that the shape derivative often existed even when Assumption 1 was not satisfied.
Here, the situation is more singular, and as x approaches a singular configuration, i.e., a configuration
where Assumption 1 is not satisfied, one observes that the gradient of λ with respect to x also becomes
singular. This phenomenon is due to the presence of corner singularities in the eigenfunction near the
circles’ intersections on ∂Ω(x); see [30, 33]. Note that in computational geometry, the circles ∂B(xi, r),
i ∈M, satisfying Assumption 1 are said to be in general position; see [1].

Assumption 1. The centers {xi}mi=1 satisfy |xi − xj | /∈ {0, 2r} for all i, j ∈ M, i 6= j and ∂B(xi, r) ∩
∂B(xj , r) ∩ ∂B(xk, r) = ∅ for all i, j, k ∈M with i, j, k pairwise distinct.

Assumption 1 is used to obtain Theorem 3, a stability result on the structure of the boundary
∂Ω(x+ tδx) with respect to t, where δx := {δxi}mi=1 ∈ R2m is given. To be more precise, it allows us to
show that ∂Ω(x + tδx) is the union of a fixed number of arcs for small t, i.e., that no new arcs appear
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and no arcs disappear. This allows us to build a bi-Lipschitz mapping Tt : Ω(x) → R2 that is used to
compute the shape derivative of Ω 7→ λ(Ω) using a change of variables. We omit the proof of Theorem 3
as it is essentially a particular case of [9, Theorem 2], except for the fact that the mapping Tt is only
defined on ∂Ω(x) in [9, Theorem 2]. To show that Tt : Ω(x) → R2 is a bi-Lipschitz mapping on the
whole domain Ω(x), one can proceed as in [8, Theorem 3.6].

Theorem 3. Suppose that Assumption 1 holds. Then there exists t0 > 0 such that for all t ∈ [0, t0] we
have the following decomposition:

∂Ω(x + tδx) =

k̄⋃
k=1

Sk(t), (6)

where Sk(t) are arcs parameterized by an angle aperture [θk,v(t), θk,w(t)], t 7→ θk,v(t), t 7→ θk,w(t) are
continuous functions on [0, t0], and k̄ is independent of t.

Also, for all t ∈ [0, t0] there exists a bi-Lipschitz mapping Tt : Ω(x) → R2 satisfying Tt(Ω(x)) =
Ω(x + tδx), Tt(∂Ω(x)) = ∂Ω(x + tδx) and Tt(Sk(0)) = Sk(t) for all k = 1, . . . , k̄. Furthermore,

V · νi = δxi · νi on Sk(0) ∩ ∂B(xi, r), for all k = 1, . . . , k̄, (7)

V (z) = δxi −
ν`(z) · (δxi − δx`)

τi(z) · ν`(z)
τi(z) if z ∈ ∂B(xi, r) ∩ ∂B(x`, r), i 6= `, (8)

where V := ∂tTt|t=0.

Theorem 3 allows us to directly compute derivatives of shape functionals that do not depend on the
solution of a PDE, as in [8, 9]. An additional step is required when the shape functional depends on the
solution of a PDE however, as the regularity of the solution plays an important role for the existence of
the derivative of the shape functional, and the analysis of the singularities appearing near the corners of
∂Ω(x) becomes a critical element. To this end, we need to discuss first some general regularity results
for elliptic equations in curvilinear polygons.

Definition 2 (Curvilinear polygons). For ` ≥ 2, a bounded open subset D ⊂ R2 is said to be a C`
curvilinear polygon, or more precisely a C` curvilinear κ-gon, if it is Lipschitz, simply connected, and has
a piecewise C` boundary ∂D =

⋃
k∈K Γk, K := {1, 2, . . . , κ}, κ ≥ 2, where Γk is a C` open arc. Denoting

Γκ+1 := Γ1, we define the vertex, or corner ak as the common endpoint ak := Γk ∩Γk+1, for k ∈ K. The
corner angle θk at ak is the angle between the tangents to Γk and Γk+1 at ak, measured from the interior
of D. We assume that 0 < θk < 2π and θk 6= π for all k ∈ K. When Γk is a line segment for all k ∈ K,
then the curvilinear polygon D is called a polygon, or more precisely a κ-gon.

Let Kθ,a be a sector with opening angle θ ∈ (0, 2π] and vertex a, i.e.,

Kθ,a = {(r, ϑ) : 0 < r <∞, |ϑ| < θ/2},

where r := |x− a|. Let Vs
2,γ(Kθ,a) be the weighted Sobolev space equipped with the norm

‖v‖Vs
2,γ(Kθ,a) :=

∑
|α|≤s

∫
Kθ,a

r2(γ−s+|α|) |Dαv(x)|2 dx

1/2

.

Here s ∈ N, α = (α1, α2) is a multi-index, |α| = α1 + α2 and Dαv := ∂α1
1 ∂α2

2 v. The idea behind the
definition of Vs

2,γ(Kθ,a) is that the weight r2(γ−s+|α|) allows for singularities in Dαv: a larger value of γ
allows for a stronger singularity in Dαv; see [30, Section 6.1.1] and [33, Section 1.2.1].

The definition of Vs
2,γ(Kθ,a) is useful for a curvilinear polygon with a single vertex. One can extend

this definition to the case of several vertices following [30, Section 6.2.1]. Let D be a C∞ curvilinear
polygon with vertices ak, k ∈ K. Assume that for all k ∈ K, there exists a neighbourhood Uk such that
D ∩ Uk = Kθk,ak ∩ Uk. Let ζk, k ∈ K, be C∞-functions in D equal to one in a neighbourhood of ak and
to zero in D \ Uk, and set ζ0 = 1 −

∑κ
k=1 ζk. Let Hs(D) denote the standard Sobolev space and define

the weighted Sobolev space Vs
2,β(D), where β = (β1, . . . , βκ) is a vector of real numbers, as the set of

6



all functions on D such that ζ0v ∈ Hs(D) and ζkv ∈ Vs
2,βk

(Kθk,ak), k ∈ K. The space Vs
2,β(D) does not

depend on the choice of the cut-off functions ζk and is equipped with the norm

‖v‖Vs
2,β(D) := ‖ζ0v‖Hs(D) +

κ∑
k=1

‖ζkv‖Vs
2,βk

(Kθk,ak ).

Let v ∈ H1
0 (D) be the solution to

−∆v = f in D, (9)

v = 0 on ∂D. (10)

The following lemma is a straightforward adaptation of [33, Theorem 1.3.2]. In [33], the boundary ∂D
has only one vertex, but the result extends immediately to the case of several vertices. Roughly speaking,
the singularity in the solution v of (9,10) is of order rπ/θk at the vertex ak, so the singularity gets stronger
as the angle θk (measured from the interior of D) increases, and βk needs to be chosen smaller as θk
increases in order to obtain ‖ζkv‖Vs

2,βk
(Kθk,ak ) <∞.

Lemma 2. Suppose that f ∈ V0
2,β(D) and |βk − 1| < π/θk for all k ∈ K. Then there exists a unique

solution v ∈ Vs
2,β(D) of problem (9,10) and the following estimate holds:

‖v‖V2
2,β(D) ≤ c‖f‖V0

2,β(D).

In our case the set Ω(x) is a curvilinear polygon if Assumption 1 holds, but Ω(x) does not coincide
with a sector in the neighbourhood of the vertices ak, k ∈ K. However, in this case we can locally
transform the boundary of ∂Ω(x) in a small neighbourhood of the vertices using a diffeomorphism,
following the procedure described in [33, Section 1.3.7]. This yields the following result.

Lemma 3. Suppose that Assumption 1 holds and that |βk − 1| < π/θk for all k ∈ K. Suppose that
there exists a diffeomorphism ψ : U(Ω(x)) 7→ R2, where U(Ω(x)) is a neighbourhood of Ω(x), such that
ψ(ak) = ak, Dψ(ak) = I and that there exists a neighbourhood Uk of ak such that ψ(Ω(x) ∩ Uk) =
Kθk,ak ∩ ψ(Uk) for all k ∈ K. Then the following estimate holds for the first eigenfunction u solution to
(1,2):

‖u ◦ ψ−1‖V2
2,β(ψ(Ω)) ≤ c‖u ◦ ψ−1‖V0

2,β(ψ(Ω)).

We can now state the main result of this section, whose proof relies on the regularity results in
weighted Sobolev spaces obtained for the eigenfunction u.

Theorem 4. Suppose that Assumption 1 holds, then

∇λ(x) = −
(∫
A1

|∇u|2ν1, · · · ,
∫
Am
|∇u|2νm

)>
. (11)

Proof. Since Assumption 1 holds, the set Ω(x + tδx) is a curvilinear polygon and is Lipschitz for all
t ∈ [0, t0] and t0 sufficiently small. We use the notation Ω = Ω(x) for simplicity. Let (λt, ut) be the first
Dirichlet eigenpair in the domain Ω(x + tδx) with the normalization condition∫

Ω(x+tδx)

u2
t = 1. (12)

Using the change of variable x 7→ Tt(x), where Tt is given by Theorem 3, the eigenvalue evaluated on
the perturbed domain is

λt =

∫
Ω(x+tδx)

|∇ut|2 =

∫
Ω

A(t)∇ut · ∇ut

with ut := ut ◦ Tt and A(t) := (detTt)(DTt)
−1(DTt)

−>.
Adapting the results from [20, Theorem 4.1, p. 482] and [29, Lemma 2.16], we can show that t 7→ A(t)

belongs to C1([0, t0]; C0(Ω,Rd×d)) and

A′(0) :=
dA

dt
(0) = −DV −DV T + (div V )I, (13)
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and V := ∂tTt|t=0. When Ω is of class Ck, k ≥ 1, it is shown in [35, Proposition 2.82] that t−1(ut − u)
converges strongly to u̇ in H1

0 (Ω), where u̇ is the so-called material derivative of ut. The proof of [35,
Proposition 2.82] extends straightforwardly to the case where Ω is Lipschitz.

Thus we may compute the derivative

λ′ :=
dλt
dt

∣∣∣∣
t=0

=

∫
Ω

A′(0)∇u · ∇u+ 2∇u · ∇u̇. (14)

The eigenfunction u also satisfies the variational equation∫
Ω

∇u · ∇v = λ

∫
Ω

uv for all v ∈ H1
0 (Ω).

In particular we can choose the test function v = u̇ ∈ H1
0 (Ω) which yields∫

Ω

∇u · ∇u̇ = λ

∫
Ω

uu̇. (15)

Also, differentiating the normalization condition (12) after the change of variable x 7→ Tt(x), we get∫
Ω

2uu̇+ u2 div V = 0. (16)

Combining (14), (15) and (16) we obtain

λ′ =

∫
Ω

A′(0)∇u · ∇u− λu2 div V =

∫
Ω

S1 : DV.

with
S1 := (|∇u|2 − λu2)I − 2∇u⊗∇u. (17)

Now we prove that S1 ∈ W 1,1(Ω,R2×2). Since u ∈ H1
0 (Ω) we clearly have S1 ∈ L1(Ω,R2×2). First

we prove DS1 ∈ L1(Ω,R2×2×2) using Lemma 3. We claim that the diffeomorphism ψ of Lemma 3
can be built as follows. Let U(Ω) be a neighbourhood of Ω. Since Assumption 1 holds, for sufficiently
small ε > 0 the set Ω ∩ B(ak, ε) is the epigraph of a piecewise smooth function in an appropriate
coordinate system of origin ak, and the graph of this function converges towards the graph of a sector
Kθk,ak ∩B(ak, ε) as ε→ 0, where ak and θk are the vertices and interior angles of the curvilinear polygon
Ω, respectively; see Definition 2. Thus, we can find a smooth ψ in U(Ω)∩B(ak, ε) such that ψ(ak) = ak,
ψ(Ω ∩ B(ak, ε)) = Kθk,ak ∩ ψ(B(ak, ε)) and Dψ(ak) = I for all k ∈ K. In U(Ω) \ ∪κk=1B(ak, 2ε), ψ is
chosen as the identity. Then ψ can be smoothly extended to the transition region U(Ω)∩(∪κk=1B(ak, 2ε)).

Next, we can apply Lemma 3 since ψ(Ω) coincides, in a neighbourhood of ak, with a sector Kθk,ak .
With v := u ◦ ψ−1, this yields the estimate

‖v‖V2
2,β(ψ(Ω)) ≤ c‖v‖V0

2,β(ψ(Ω)) (18)

with |βk − 1| < π/θk, for all k ∈ K. Then we have, using the change of variable x 7→ ψ−1(x),∫
Ω

|D2u∇u| =
∫
ψ(Ω)

|D2v∇v|ξ, (19)

where ξ := det(D(ψ−1)) : ψ(Ω) → R and for all δ > 0, we can choose ε sufficiently small so that
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‖ξ − 1‖
L∞(U(ψ(Ω)))

≤ δ. Applying (18),(19), using 1 =
∑κ
k=0 ζk, we get, using rk := |x− ak|,∫

Ω

|D2u∇u| =
∫
ψ(Ω)

ζ0|D2v∇v|ξ +

κ∑
k=1

∫
ψ(Ω)

r
1/2
k r

−1/2
k ζk|D2v∇v|ξ

≤ c

(∫
ψ(Ω)

ζ0|D2v|2
)1/2(∫

ψ(Ω)

ζ0|∇v|2
)1/2

+ c

κ∑
k=1

(∫
ψ(Ω)

rkζk|D2v|2
)1/2(∫

ψ(Ω)

r−1
k ζk|∇v|2

)1/2

≤ c‖ζ0v‖H2(ψ(Ω))‖ζ0v‖H1(ψ(Ω)) + c

κ∑
k=1

‖ζkv‖V2

2, 1
2

(Kθk,ak )‖ζkv‖V0

2, 1
2

(Kθk,ak )

≤ c‖ζ0v‖2H2(ψ(Ω)) + c

κ∑
k=1

‖ζkv‖2V2

2, 1
2

(Kθk,ak ),

where c denotes a generic constant. Further, using β = ( 1
2 ,

1
2 , . . . ,

1
2 ), we get(∫

Ω

|D2u∇u|
)2

≤ c‖v‖2V2
2,β(ψ(Ω)) ≤︸︷︷︸

(18)

c‖v‖2V0
2,β(ψ(Ω))

≤ c‖ζ0v‖2L2(ψ(Ω)) + c

κ∑
k=1

∫
ψ(Ω)

rkζk|v|2

≤ c‖v‖2L2(ψ(Ω)) ≤ c‖u‖
2
L2(Ω).

Thus ∇|∇u|2 = 2D2u∇u ∈ L1(Ω,R2). In view of (17), we can treat the other terms of S1 in a similar
way and we conclude that DS1 ∈ L1(Ω,R2×2×2) and S1 ∈W 1,1(Ω,R2×2).

Finally, using S1 ∈ W 1,1(Ω,R2×2) and the fact that Ω is Lipschitz, we can apply [32, Proposition 1]
which yields, using u = 0 on ∂Ω,

λ′ =

∫
∂Ω

(S1ν) · V = −
∫
∂Ω

|∂νu|2V · ν

Now, using (7) we get

∇λ(x) · δx = λ′ = −
m∑
i=1

∫
Ai
|∂νu|2V · νi =

m∑
i=1

δxi ·
∫
Ai
−|∂νu|2νi

which yields (11).

Remark 1. Formula (11) for the gradient of λ has a similar structure as formula [8, (2.3)]. The main
difference is the term |∇u|2 in the integrals in (11). In [8, (2.3)], a derivative with respect to the radius r
also appears, but in problem (3) the radius is fixed.

3 Optimization processes

In many eigenvalue optimization problems, the global optimizer can be guessed or a plausible candidate
emerges from numerical experiments. For instance, in the case of the minimization of the second Dirichlet
Laplacian eigenvalue with a convexity constraint, the so-called stadium, convex hull of two identical
tangent disks, was at first considered as a candidate for minimizing the second eigenvalue, but this
conjecture was disproved later on in [25]. For the minimization of the first eigenvalue in the class of
n-gons, it has been proved for n = 3, 4 that the regular n-gon is the minimizer, and it is conjectured
that the regular n-gon is also the minimizer for n ≥ 5; see [24]. An important step towards proving this
conjecture has been made recently in [11].
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For problem (3) the optimizers may be difficult to foresee, but an educated guess can be made about
them by pondering several arguments. First, as explained at the beginning of Section 2, one expects
Ω(x?) to be simply connected and to converge towards a ball as m→∞, in some appropriate sense. For
small values of m, the deviation from a ball could be relatively large. Second, Ω(x?) should display an
equilibrium between maximizing its area, keeping Ω(x?) simply connected, and minimizing the angles
(measured from the interior of Ω(x?)) at the circles’ intersections on ∂Ω(x?). This equilibrium can be
well understood by considering the solution for m = 2 in Figure 1. Furthermore, since the thinnest
covering of the plane is achieved by arranging the discs’ centers in a regular hexagonal lattice; see [17,
Ch.2, p.32], one expects that such lattice should play an important role for problem (3), as it allows to
minimize the balls’ overlapping without creating gaps in Ω(x?). For m = 10, we were able to construct
a reasonable solution by placing the balls’ centers on a regular hexagonal lattice, but our algorithm was
able to find a better solution. However, we conjecture that the regular hexagonal lattice should play a
significant role for larger values of m.

In this section we describe the practical implementation of the computation of the objective function
of problem (3) and its derivatives. We also describe the optimization algorithms used in the attempt
to solve problem (3). We begin the section with the description of ad hoc techniques, inspired by the
above considerations and by numerical results, for constructing solutions of problem (3) following regular
polygonal patterns.

3.1 Construction of solutions following regular polygonal patterns

In view of the above discussion, it is natural for low values of m to consider arrangements of the centers
{xi}mi=1 following a regular polygonal pattern. As m increases, more balls need to be placed at the center
and surrounded by an outer layer of balls. For m from 2 to 5 we considered configurations with the
centers of the balls at the vertices of a regular polygon with m vertices and side L. For m between 6
and 10, we contemplated configurations with m− 1 balls centered at the vertices of a regular polygon of
side L with m − 1 vertices and one ball centered at the polygon’s center. Numerical experiments show
that the case m = 10 is the limit case where it is more interesting to place two balls at the center. In
such configurations, the value of L would be a variable to be determined. Since these are simple one-
dimensional optimization problems, although more sophisticated approaches could be used, we opted for
a brute-force search in an interval [Lmin, Lmax]. In other words, using the chain rule and expression (11)
of ∇λ(x), the derivatives with respect to L could have been easily calculated, however, knowing that the
solutions could be singular, we envisioned that brute force would be more appropriate.

In this experiment, as in the whole work, we considered balls of radius r = 1. We chose Lmin = 1
and Lmax = 2 and we tested all values of L ∈ [Lmin, Lmax] of the form L = Lmin + k h (Lmax − Lmin) for

k = 0, 1, . . . , N − 1 and h = 1/(N − 1). We considered N = 10,000. We denote by L̂ the best L found

in this way, with a value λ̂ for the corresponding value of λ(x) as depicted in Figure 1.

3.2 Evaluation of the objective function and its gradient

Our numerical experiments were performed using the open-source software FreeFEM [23]. The finite
element method was used to compute the eigenfunction with standard piecewise linear Lagrange elements
for the discretization. The convergence analysis of finite element approximations to shape gradients for
eigenvalue problems on polygons was performed in [39]. In order to evaluate the gradient ∇λ(x) given
by (11), one must obtain the first eigenvector solution to (1,2) for a given Ω(x). Thus, for the numerical
implementation and solution of problem (1,2), we consider the following main three steps: (i) determine
the decomposition (6) into arcs of the boundary ∂Ω(x); (ii) generate a finite element mesh for Ω(x);
(iii) compute λ(x) and the correspondent approximate eigenfunction by solving the eigenvalue problem
using a shifted-inverse power method and evaluate ∇λ(x).

To generate a finite element mesh for Ω(x), the mesh generation process in FreeFEM expects the
boundary ∂Ω(x) as input, given as the parameterization of a closed curve or a union of connected
closed components such as lines and arcs, for instance. The boundary of each connected component
of Ω(x) may be itself composed of several connected components, that can be classified as either outer
or inner boundary. This information must be provided for the mesh generation. In our case, ∂Ω(x) is
a union of arcs Sk, k = 1, . . . , k̄, see the decomposition (6). The mapping of these arcs is performed
using the following numerical procedure, supposing Assumption 1 holds. For all i, j ∈M, we fix the ball
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(a) m = 2, λ̂ ≈ 4.0070, L̂ ≈ 1.1212 (b) m = 3, λ̂ ≈ 2.7030, L̂ ≈ 1.5015 (c) m = 4, λ̂ ≈ 1.9835, L̂ ≈ 1.4142

(d) m = 5, λ̂ ≈ 1.7380, L̂ ≈ 1.1756 (e) m = 6, λ̂ ≈ 1.3803, L̂ ≈ 1.7878 (f) m = 7, λ̂ ≈ 1.0645, L̂ ≈ 1.7238

(g) m = 8, λ̂ ≈ 0.9118, L̂ ≈ 1.5625 (h) m = 9, λ̂ ≈ 0.8313, L̂ ≈ 1.4138 (i) m = 10, λ̂ ≈ 0.7829, L̂ ≈ 1.2855

Figure 1: Best solutions found for m ∈ {2, 3, . . . , 10} following a regular polygonal pattern. The case

m = 2 corresponds to the centers at the ends of a segment of size L̂. For the cases m ∈ {3, 4, 5}, the

centers of the balls correspond to the vertices of a regular polygon with m vertices and side length L̂.
For the cases m ∈ {6, . . . , 10}, we considered regular polygons with m− 1 vertices and one ball is placed
in the center of the polygon.

B(xi, r) and verify if the condition B(xi, r)∩B(xj , r) 6= ∅ holds for j > i. If the condition is satisfied, the
intersection points of the two balls are computed, and a list of vertices of ∂Ω(x) is created by determining
if an intersection point is on ∂Ω(x) or in Ω(x). Then we determine the connected components of ∂Ω(x) in
the following way. For each circle ∂B(xi, r), the polar coordinates with pole xi of the vertices belonging
to ∂B(xi, r) are computed. This allows us to order the vertices on ∂B(xi, r). A first vertex is chosen
randomly on some circle ∂B(xi, r). The next vertex on ∂B(xi, r) can then be found, moving along the
circle using a counterclockwise orientation. This vertex belongs to some ∂B(xj , r) for some j 6= i, and
we proceed to find the next vertex on ∂B(xj , r). This process is then repeated until the initial vertex
is reached. This selects a set of vertices and determines the first connected component of ∂Ω(x). Next
we repeat the process starting from a vertex that has not been selected yet, until no vertex is left.
This eventually provides all connected components of ∂Ω(x). Each connected component of ∂Ω(x) is
associated with a set of vertices which determines a polygon. Any two of these polygons either have
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an empty intersection or one is included in the other. Indeed, since each edge of these polygons is a
segment connecting two consecutive intersection points on a circle, it can be seen that the edges of one
polygon do not intersect the edges of the other. The empty intersection, or inclusion, of one polygon
with the other polygons can be determined numerically using a ray casting algorithm. This allows us
to determine, for each connected component of ∂Ω(x), whether it is an outer or an inner boundary of a
connected component of Ω(x).

Next, the mesh generation is performed by using the command buildmesh. In addition to the
data described above, the command buildmesh expects a number of subdivisions of each arc Sk of
∂Ω(x), k = 1, . . . , k̄, see (6). By defining a multiplicative factor ζ > 0, and denoting by ϑk the angle
aperture of the arc Sk (measured in degrees), the number of subdivisions for the discretization of Sk is
pk = max(2, dζϑke). In this setting, the finite element mesh gets finer as ζ increases, and coarser as ζ
gets closer to zero. For all numerical experiments in Section 4, we have considered ζ = 0.5 which implies
pk = 2 whenever ϑk < 2◦, and pk = dζϑke otherwise. This choice of ζ guarantees a sufficiently fine
mesh for the numerical approximations of solutions of partial differential equations and calculations of
derivatives and integrals in this work, with the maximum edge size of the triangulation of Ω(x) given
by hmax ≈ 0.07. Moreover, although optional parameters can be declared when calling the buildmesh

function, the values of pk, for k = 1, . . . , k̄, are the only values used for mesh generation in each of our
numerical experiments.

The weak formulation of the PDE is then discretized using piecewise linear Lagrange elements and
the eigenvalues and eigenvectors are obtained by calling the function EigenValue, which uses the shift-
invert mode of the ARPACK++ library by default. In our numerical experiments, we have set the
shift parameter of the method as zero for computing the first eigenvalue, while all other parameters are
declared with their default values. The boundary integrals in the expression (11) of ∇λ(x) are then
evaluated using the function int1d. As input parameters, function int1d requires the mesh of the
triangulation of Ω(x), and the label corresponding to the arc (or the union of arcs) where the integration
is to be performed. By default, on edges, FreeFEM uses the Gauss-Legendre quadrature formula with
three nodes, which is exact for polynomials of degree at most five.

3.3 Steepest descent and block coordinate search

In this section we describe the two classical techniques of unconstrained minimization of differentiable
functions which were used to minimize the function λ(x) by exploiting the information available at
its gradient ∇λ(x) as described in Section 3.2. Algorithm 1 describes the Gradient method or Steepest
Descent method with the Armijo line search condition. Note that we use ‖·‖2 and ‖·‖∞ for the Euclidean
and infinity norms, respectively. Global convergence results can be shown for this method assuming only
continuity of the gradient; see [10, Ch.8]. The other technique described is the Block Coordinate Search
method. To minimize a function of many variables, it is natural to keep some variables fixed and move
others with the intention of decreasing the value of the objective function. This classical method works
this idea in a systematic way, and it is having a renewed interest nowadays due to the fact that it can
be applied to huge optimization problems such as those appearing in the areas of machine learning or
statistical learning; see [4, 37]. However, this is not the reason why this method has been considered in
this work, but rather because it proved to be useful to improve solutions found by the Gradient method.
In particular, near a solution, the Gradient method frequently stopped possibly due to a lack of accuracy
in the computation of the gradient, but it turns out that some of its components are still accurately
computed and some further improvements may be achieved along these components.

Algorithm 1 describes the considered Gradient method. In the algorithm, the calculation of tnew

(line 5) uses safeguarded one-dimensional quadratic interpolation, i.e., we define

tnew ←
t2‖∇λ(xk)‖22

λ(xk − t∇λ(xk))− λ(xk) + t‖∇λ(xk)‖22

and if tnew 6∈ [σ1 t, σ2 t], then we redefine tnew ← t/2, where σ1 = 0.1 and σ2 = 0.9. In practice,
convergence to “singular” points at which the gradient is not well defined prevents the stopping criterion
of Algorithm 1 from being satisfied. Therefore, additional stopping criteria are necessary. The simplest
of all is to set a maximum of iterations kmax ≥ 0 and stop if k ≥ kmax. However, defining a practical value
for kmax is difficult. In practice, when, at iteration k, ∇λ(xk) does not correspond to a true gradient,
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Algorithm 1: Steepest descent.

Input: Initial guess x0 ∈ R2m, algorithmic constants γ ∈ (0, 1), 0 < σ1 ≤ σ2 < 1, and stopping
criterion tolerance εg > 0.

Output: x∗ ∈ R2m.
1 k ← 0

2 while ‖∇λ(xk)‖∞ 6≤ εg do
3 t← 1

4 while λ(xk − t∇λ(xk)) 6≤ λ(xk)− tγ‖∇λ(xk)‖22 do
5 define tnew ∈ [σ1 t, σ2 t] and set t← tnew.

6 xk+1 := xk − t∇λ(xk)
7 k ← k + 1

8 x∗ := xk

9 Return x∗

what is observed is that Armijo’s inner loop (lines 4 and 5) is satisfied only for very small, almost zero,
values of t. When this happens, the consecutive iterates xk and xk+1 are very close. Thus, the reasonable
“lack of progress” stopping criterion becomes δk := ‖xk+1 − xk‖∞/‖xk‖∞ = t ‖∇λ(xk)‖∞/‖xk‖∞ ≤ εx
for some given tolerance εx > 0 or, to be more conservative, if this occurs over several (say 5) consecutive
iterations.

The solutions to problem (3) often display, or are close to, singular geometrical configurations, in
the sense that Assumption 1 is not satisfied. This can be seen in Figure 1 for instance, where non-
empty intersections of three circles occur frequently. In practice this means that the stopping condition
‖∇λ(xk)‖∞ ≤ εg of Algorithm 1 is almost never satisfied and the algorithm stops due to the lack
of progress stopping criterion δk ≤ εx. When that happens, the partial derivatives of λ with respect
to some of the xi’s may not exist or may be different from (11). In such configurations, the partial
derivatives of λ with respect to the xi’s that do not correspond to singularities are still correct, and
this naturally calls for the application of a block coordinate search method. We describe the method we
employ after Algorithm 1 terminates in Algorithm 2. The key point of the algorithm is, at iteration k,
by modifying only a subset Ik ⊆ M of the variables (balls’ centers), to find an xk+1 that improves the
value of the objective function (line 5). That is, what is sought at each iteration is λ(xk+1) < λ(xk).
In our implementation, we search for xk+1 minimizing λ(x) subject to xi = xki for all i 6∈ Ik. More
specifically, we try to just take a step in the direction of minus gradient (restricted to the coordinates
being considered) that reduces the value of λ. If we denote

[∇Ikλ(x)]i =

{
[∇λ(x)]i, if i ∈ Ik,
0, otherwise,

then the calculation of xk+1 consists of a backtracking that starts with t = 1 and while λ(xk −
t∇Ikλ(xk)) ≥ λ(xk), it computes a new step tnew ∈ [σ1t, σ2t] and redefines t = tnew. In practice, a
maximum of 5 reductions of t is allowed. In general, this strategy is well succeeded in finding xk+1 of the
form xk−t∇Ikλ(xk) that satisfies λ(xk+1) < λ(xk) in situations where the calculated partial derivatives
coincide with true derivatives, and it fails in the other cases. If, at the end of a “cycle” (lines 3 to 7), no
ball moved or the largest movement was considered small, the method stops. Of course, all this is just
one possibility developed ad hoc within the many possibilities that the block coordinate search method
encompasses. This algorithm was used as a heuristic method to try to improve the approximate solution
calculated with the Steepest Descent method.

4 Numerical experiments

In this section we describe numerical experiments performed for the purpose of finding good quality
solutions to problem (3) with m varying from 2 to 10. We implemented the computation of the objective
function and its gradient described in Section 3.2 and Algorithms 1 and 2 of Section 3.3 in FreeFEM. All
tests were conducted on a computer with four 2.3 GHz AMD Opteron(tm) 6376 processors and 256GB
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Algorithm 2: Block Coordinate Search.

Input: Initial guess x0 ∈ R2m and stopping criterion tolerance εx > 0.
Output: x∗ ∈ R2m.

1 k ← 0
2 do
3 δ ← 0
4 for ` = 1, . . . ,m do

5 Find xk+1 such that xk+1
i = xki for all i 6∈ Ik ≡ {`} and λ(xk+1) ≤ λ(xk).

6 Set δ ← max(δ, ‖xk+1 − xk‖∞/‖xk‖∞).
7 k ← k + 1

8 while δ > εx
9 x∗ := xk

10 Return x∗

1866 MHz DDR3 RAM memory, running Debian 11. Code was compiled by the FreeFEM compiler
(version 4.1) with the -nw no graphic option enabled.

4.1 Nonlinear approach

Algorithm 1, with exact evaluation of the objective function and its derivatives, enjoys global convergence
to stationary points of problem (3), i.e., independently of the initial guess, every limit point of the
sequence generated by the algorithm nullifies the objective function’s gradient. However, the inaccurate
evaluation of the objective function and the gradient does not allow small values of the gradient to
be observed in practice. Therefore, for both Algorithm 1 and Algorithm 2, the relevant tolerance is
εx. For both algorithms we used εx = 10−4. Moreover, we are indeed interested in global minimizers
of problem (3) and not in stationary points. That is why Algorithm 1 was embedded in a simple
restarting technique in which the algorithm is run ntrials times starting from different initial points. In
the experiments we considered ntrials = 5,000 for m ≤ 8 and ntrials = 50,000 for m = 9 and m = 10.
Preliminary results suggested the increase of ntrials for large m in order for the algorithm to achieve a
reasonable solution. Only the best final point obtained by Algorithm 1 is improved using Algorithm 2.

The calculation of the random initial points used in Algorithm 1 requires an explanation. If in a
configuration a ball does not overlap with any other ball, then the partial derivatives relative to its
center are zero. Therefore, the position of such a ball is unlikely to change throughout the optimization
process and the optimization algorithm will most likely converge to a suboptimal configuration, since
Theorem 2 states that the optimal solution Ω(x?) must be connected. It is therefore recommended
that the starting point x0 generate a connected set Ω(x0). The construction of the initial configuration
considers a square of side L (we arbitrarily used L = 1, 2, 3, 4, 4, 4, 4, 5, 5 for m = 2, 3, . . . , 10, respectively)
within which the centers of the m balls are drawn with uniform distribution. After drawing the m centers,
we check whether the configuration is connected. If it is not, the configuration is discarded and a new
configuration is drawn. The connectivity check can be easily implemented with O(m2) time complexity.
We start by marking the first ball as connected. Next, we calculate the distance from the first ball to
the other balls and mark as connected those whose distance is less than twice the radius of the balls.
Whenever this process marks new balls as connected, we repeat the process for the new balls. The
configuration is connected if, when it stops, all balls were marked as connected.

Figure 2 and Table 1 show the solutions found. In the table, λ̂ corresponds to the solution found under
regular polygonal patterns for comparison (as in Figure 1), λ?1 corresponds to the best λ found for each
m ∈ {2, 3, 4, . . . , 10} after the execution of Algorithm 1, while λ?2 corresponds to the improved value of λ
obtained after the application of Algorithm 2, ‖∇λ?1‖2 and ‖∇λ?2‖2 correspond to the respective gradients’
Euclidean norms, “#trial” indicates which initial guess (among the ntrials = 5,000 or 50,000) was the
one that led to the best solution. Specifically for attempt #trial, “it” corresponds to the number of
iterations of Algorithm 1, “fcnt” corresponds to the total number of evaluations of the objective function
(on average, between 1 and 2 per iteration) and “CPU time” corresponds to the CPU time in seconds.
“Average CPU time” corresponds to the average CPU time, in seconds, in relation to the ntrials attempts
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of Algorithm 1. The last three columns correspond to the number of “cycles”, functional evaluations, and
CPU time in seconds spent by Algorithm 2. By cycle, we mean a set of m iterations in which all xi with
i ∈M are considered (see Algorithm 2). In fact, the number of iterations of Algorithm 2 corresponds to
the number of cycles times m− 1 instead of times m, because in the optimization problem we consider
x1, the center of ball 1, fixed at the origin of the Cartesian plane as well as the first coordinate of x2

null. That is, the optimization problems always have 2m− 3 unknowns instead of 2m. Overall, the total
time of the experiment, which corresponds to adding the average times of Algorithm 1 multiplied by the
corresponding value of ntrials and adding the CPU time of Algorithm 2, is approximately a year of CPU
time, almost entirely spent evaluating the objective function and its gradient. Naturally, in practice, the
experiment was performed in a few days using a computer with multiple processors.

(a) m = 2, λ? ≈ 4.0070 (b) m = 3, λ? ≈ 2.7030 (c) m = 4, λ? ≈ 1.9433

(d) m = 5, λ? ≈ 1.5998 (e) m = 6, λ? ≈ 1.3822 (f) m = 7, λ? ≈ 1.0743

(g) m = 8, λ? ≈ 0.9299 (h) m = 9, λ? ≈ 0.8858 (i) m = 10, λ? ≈ 0.7758

Figure 2: Solution obtained by the application of Algorithm 2 starting from the best solution obtained
by Algorithm 1 with ntrials = 5,000 for m ∈ {2, 3, 4, 5, 6, 7, 8} and ntrials = 50,000 for m ∈ {9, 10}.

It is clear from Table 1 that for m = 4, m = 5, and m = 10 the solutions found by the application of
Algorithms 1 and 2 are considerably better than the ones obtained by regular polygonal patterns, while
the solutions are similar for the other values of m, with the exception of m = 9. For m = 4, m = 5, and
m = 10, guided by the solutions found by the algorithm, we are able to foresee other regular patterns
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m λ̂

Algorithm 1 Algorithm 2

λ?1 ‖∇λ?1‖2 #trial it fcnt CPU time
Average

λ?2 ‖∇λ?2‖2 cycles fcnt CPU time
CPU time

2 4.0070 4.0070 2.1E−01 632 7 43 13.54 17.09 4.0070 2.3E−01 1 1 0.32
3 2.7030 2.7030 2.0E−01 3621 22 47 28.88 63.93 2.7030 2.1E−01 1 2 1.21
4 1.9835 1.9433 2.5E−01 702 24 38 58.33 146.66 1.9433 2.6E−01 1 3 6.33
5 1.7380 1.6009 3.0E−01 2461 30 54 128.08 175.80 1.5998 2.9E−01 15 50 32.97
6 1.3803 1.3824 1.0E−01 2517 58 73 96.65 206.35 1.3822 1.1E−01 6 16 23.92
7 1.0645 1.1031 1.6E−01 719 67 77 181.41 232.49 1.0743 1.4E−00 71 255 1535.33
8 0.9118 0.9785 1.7E−01 811 85 105 274.15 261.23 0.9299 1.0E−00 97 352 2332.39
9 0.8313 0.9042 1.3E−01 48378 94 108 278.21 313.15 0.8858 1.2E−01 96 292 1130.68
10 0.7829 0.8205 1.2E−01 8356 112 123 366.08 355.88 0.7758 1.0E−01 284 766 7268.30

Table 1: Details of the application of Algorithm 1 followed by the application of Algorithm 2 starting
from the best solution found by Algorithm 1 only. In instances with m ≤ 8, ntrials = 5,000 initial guesses
were considered for Algorithm 1, while, in instances with m = 9, 10, ntrials = 50,000. Values in bold
correspond to solutions that improve the solutions based on regular polygons.

that could provide better solutions, as we describe next.

4.2 Symmetric solutions inspired by nonlinear programming solutions

The solutions for m ∈ {2, 3, 6, 7, 8} shown in Figure 2 suggest that the solutions following regular polyg-
onal patterns illustrated in Figure 1 for those values of m are optimal. The solutions for m ∈ {4, 5, 10}
displayed in Figure 2 suggest that different types of solutions displaying regular patterns could be con-
structed by hand to improve on the solutions following regular polygonal patterns shown in Figure 1.
For m = 9 the algorithm could not recover a solution which is comparable with the regular polygonal
pattern, and we were not able to improve this solution by hand. However, since the best solution was
found at trial 48,378, this suggests that a better solution could be found by the algorithm by increasing
ntrials. Also, the solutions found in Figure 1(h) and Figure 2(h) contain one and two balls in the inner
layer, respectively. This indicates that the minimizer might actually feature two balls in the inner layer,
but the algorithm is unable to get sufficiently close to this minimizer, due to the fact that the partial
derivatives of λ with respect to the centers of the balls in the inner layer vanish.

For the case m = 4 we considered a configuration with the centers of the balls at the vertices of a
diamond of side L and acute angle θ. Analogously to what was described in Section 3.1, we tested all
values of L ∈ [Lmin, Lmax] of the form L = Lmin + kh(Lmax − Lmin), h = 1/(N − 1), combined with
all values of θ ∈ (0, π/2] of the form θ = ` (π/2)/N for k = 0, 1, . . . , N − 1 and ` = 1, . . . , N , with
N = 10,000. Figure 3(a) shows the result, and we observe a slight improvement compared to the result
of Figure 2(c), which suggests optimality of this configuration.

For the case m = 5 we considered a configuration with the centers of four balls at the vertices of
a diamond of side L and acute angle θ plus a fifth ball at the vertex of a coupled equilateral triangle.
Figure 3(b) shows the result of varying L and θ as in the case m = 4. The figure and the associated
value of λ improves with respect to the regular polygonal pattern of Figure 1(d), however the solution
found with the nonlinear optimization process remains the best one.

As m increases, more balls will be placed in an internal layer and be surrounded by an external
layer of balls in the optimal configuration. Hence, determining for which values of m an additional
ball appears in the internal layer is an interesting question. Comparing the results of Figure 1(i) and
Figure 2(i) suggests that a configuration with two balls instead of one in the internal layer could be
better. Figure 2(i) also suggests that a better solution could be constructed for the case m = 10 by
considering a subset of the hexagonal lattice

Lr := {kvr + `wr | (k, `) ∈ Z2} (20)

with vr := r
2 (3,
√

3), wr := r
2 (3,−

√
3), and r = 1; see [7, Fig.1]. We considered a configuration with an

initial row with 3 balls, a second row with 4 balls and a third row with the remaining 3 balls. Figure 3(c)
shows the configuration. The comparison with the value reported for a regular polygonal pattern in
Figure 1 shows that the eigenvalue corresponding to the hexagonal lattice is slightly smaller, but still
larger than the solution found by the algorithm in Figure 2(i). As a curious fact, the value of λ for
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a configuration with m = 5 balls based on a hexagonal lattice is λ ≈ 1.7037; see Figure 3(d). That
value improves on the value associated with the regular pentagon (Figure 1(d)) but is worse than that
associated with the diamond plus equilateral triangle (Figure 3(b)) and also worse than that found by
the optimization process (Figure 2(d)), which continues to be the best.

(a) m = 4, λ ≈ 1.9392 (b) m = 5, λ ≈ 1.6449

(c) m = 10, λ ≈ 0.7786 (d) m = 5, λ ≈ 1.7037

Figure 3: Ad hoc symmetric solutions for m ∈ {4, 5, 10}. The case m = 4 corresponds to a diamond
with L ≈ 1.5408 and θ ≈ 1.3509. The case m = 5 depicted in (b) corresponds to a “combination” of
the solutions for m = 3 and m = 4, i.e., a diamond with L ≈ 1.5408 ad θ ≈ 1.3509 and the fifth ball’s
center in the vertex of an equilateral triangle. The case m = 10 corresponds to a subset of the regular
hexagonal lattice with L = 1. The case m = 5 depicted in (d) also corresponds to a subset of the same
lattice.

To summarize our results, our analysis suggests the following best candidates for a solution of the
problem for m ∈ {2, . . . , 10}:
m = 2: The solution found with the balls centered at the extremes of a segment of length L ≈ 1.1212

depicted in Figure 1(a).
m = 3: The solution associated with the equilateral triangle of side L ≈ 1.5015 depicted in Figure 1(b).
m = 4: The solution associated with a diamond shape of side L ≈ 1.5408 and acute angle θ ≈ 1.3509

depicted in Figure 3(a).
m = 5: The non-regular solution found by applying Algorithms 1 and 2, depicted in Figure 2(d), with

centers

(0, 0), (0, 1.83912168353), (−1.29145209709, 1.35732348664),

(−1.65126893885,−0.162712427424), (1.36903341977, 0.960875323247).

m = 6,7,8,9: The regular (m − 1)-gon with a single ball in the inner layer and with side L ≈ 1.7878,
1.7238, 1.5625, 1.4138, respectively; see Figures 1(e,f,g,h).

m = 10: The non-regular solution found by applying Algorithms 1 and 2, depicted in Figure 2(i), with
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centers:

(0, 0), (0, 1.80125448879),

(1.07646612984,−2.3856843472), (−1.43149832049,−1.09446805145),

(−0.308292621733,−1.87884265359), (2.43012959985,−1.27436971318),

(1.04596189888,−0.596401635114), (2.4823402281, 0.522706233573),

(−1.41569186399, 0.696839479126), (1.21471563231, 1.24472165911).

5 Conclusions and future works

In this work we have investigated the problem of minimizing the first Dirichlet Laplacian eigenvalue with
respect to a union of balls with fixed identical radii and varying centers. We have shown that this problem
presents interesting challenges and open questions. In addition to contributing to the field of eigenvalue
optimization by investigating a new type of geometrical constraint, the techniques developed in this work
constitute a basis for the study of other shape optimization problems involving PDEs where the set is
defined as a union of moving components, a topic of growing interest as shown by the recent developments
of the method of Moving Morphable Component/Void [22, 38]. Unlike shape optimization problems with
moving components where no PDEs are involved, such as covering problems, the singularities appearing
in the solution of the PDE due to the nonsmoothness and nonconvexness of Ω(x) play a fundamental
role for the mathematical analysis of the problem and for the numerical approximation of solutions, as
the gradient of the solution may become unbounded close to singular configurations. From the numerical
point of view, we observed that the singularities preclude the apparition of small holes in Ω(x) during
the optimization process, which limits the possible evolutions of Ω(x) and makes reaching a minimizer
difficult. The singularities in this problem are particularly strong due to the Dirichlet conditions, and
milder singularities can be expected for other type of PDEs such as problems involving a piecewise
constant conductivity.

Further investigations should therefore be focused on proposing alternatives to the numerical al-
gorithms in order to deal with these strong singularities. This could be achieved in several ways, by
relaxation of the PDE as in [13] for instance, or by regularization of the shape. Improving the precision
for the calculation of the eigenvalue and of its gradient as well as providing error estimates with guar-
anteed accuracy should be a primary task in order to obtain better approximations of the minimizers.
From the theoretical point of view, proving the existence of second-order derivatives of x 7→ λ(x) is an
interesting problem, for which the techniques developed in [32] could be used. The Hessian of x 7→ λ(x)
could then be employed to certify that some candidates are local minimizers. This approach has been
successfully applied recently for the minimization of the first Dirichlet eigenvalue in the class of n-gons
in [11]. For problem (3), the existence of a boundary expression for the second-order shape derivative of
Ω 7→ λ(Ω) is not always guaranteed, as shown in [32] for a similar problem, due to the fact that Ω(x) is
nonsmooth and nonconvex.

For m ≤ 10, we have produced a list of plausible candidates for minimizers that can be used as a
reference for future investigations, either to mathematically prove that they are indeed local or global
minimizers, or to propose better candidates via numerical experiments. Determining minimizers for
m ≥ 11 seems challenging, as numerical experiments show that the inner layer of the minimizer contains
two or more balls, which tend to stay motionless due to the occurence of singularities when small gaps
appear in Ω(x). In this case, sets that are close to, or equal to a subset of the regular hexagonal lattice
seem to provide good candidates, as shown by the case m = 10.
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Série, 109:147–181, 2018.

[20] M. C. Delfour and J.-P. Zolésio. Shapes and geometries, volume 22 of Advances in Design and
Control. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, second edition,
2011. Metrics, analysis, differential calculus, and optimization.

19



[21] H. Edelsbrunner. The union of balls and its dual shape. Discrete & Computational Geometry. An
International Journal of Mathematics and Computer Science, 13(3-4):415–440, 1995.

[22] X. Guo, W. Zhang, J. Zhang, and J. Yuan. Explicit structural topology optimization based on mov-
ing morphable components (MMC) with curved skeletons. Computer Methods in Applied Mechanics
and Engineering, 310:711–748, 2016.

[23] F. Hecht. New development in freefem++. J. Numer. Math., 20(3-4):251–265, 2012.

[24] A. Henrot. Extremum problems for eigenvalues of elliptic operators. Frontiers in Mathematics.
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