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ABSTRACT20

This paper deals with the prediction of flows in open channels. For this purpose, models21

based on partial differential equations are used. Such models require the estimation of constitutive22

parameters based on available data. After this estimation, the solution of the equations produces23
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predictions of flux evolution. In this work, we consider that most natural channels may not be24

well represented by deterministic models for many reasons. Therefore, we propose to estimate25

parameters using stochastic variations of the original models. There are two types of parameters26

to be estimated: constitutive parameters (such as roughness coefficients) and the parameters that27

define the stochastic variations. Both types of estimates will be computed using the maximum28

likelihood principle, which determines the objective function to be used. After obtaining the29

parameter estimates, due to the random nature of the stochastic models, we are able to make30

probabilistic predictions of the flow at times or places where no observations are available.31

INTRODUCTION32

The Saint-Venant equations are often used to predict river flows (Ding and Wang 2005; Ayvaz33

2013; Ying et al. 2004). To solve these partial differential equations, one must know the initial state34

of the channel at time 𝑡 = 𝑡0, including the depth, fluid velocity, and/or flow rate at as many points35

as possible in the one-dimensional channel (Emmett et al. 1979). Information about boundary36

conditions, that is, values of the main description variables at the beginning and/or the end of the37

channel, may also be required. Additionally, topographic information such as bed slopes and shapes38

of transversal areas, as well as a roughness parameter, known as Manning’s coefficient (Ding et al.39

2004; Ding and Wang 2005; Pappenberger et al. 2005; Agresta et al. 2021), are needed. With this40

information at hand, we can solve the Saint-Venant equations using numerical methods and we can41

predict the physical characteristics of the flow in unknown positions or in the future.42

If the channel’s geometry is well determined, the Manning coefficients can be accurately es-43

timated using available data. In general, standard least-squares procedures are successful for the44

minimization of differences between real observations and model predictions. Many papers have45

been devoted to the problem of estimating Manning’s parameters using this approach. In Pap-46

penberger et al. (2005) the performance of the HEC-RAS software (Brunner 1994) for predicting47

inundation data was analyzed as a function of Manning’s roughness coefficient and weighting48

discretization parameters to produce dynamic probability maps of flooding during the event. HEC-49

RAS was also used in Agresta et al. (2021), where different heuristic methods were employed50
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for optimizing the Manning coefficient. Ding and Wang (2005) solved the Saint-Venant equa-51

tions to simulate flows in channel networks and used the resulting deterministic model to compute52

the optimal Manning’s coefficient using standard quasi-Newton methods. Askar and Al-Jumaily53

(2008) estimated the Manning coefficient using Saint-Venant equations as predictors and sequential54

quadratic programming for optimization purposes. Ebissa and Prasad (2017) used the GVF (Grad-55

ually Varied Flow) equations for simulations and genetic algorithms for deterministic optimization56

of the roughness parameter. In Birgin and Martínez (2022), a secant derivative-free optimization57

method was developed for determining the Manning coefficient in synthetic experiments. In the58

Data Assimilation approach with joint state parameter estimation (Ziliani et al. 2019), at each time59

level one has estimations of the state variables, the constitutive parameters, and the process noise.60

Using simulation, forecasts of the state variables for the next time level are computed and the61

distribution of noise is updated.62

In this paper we propose a modification of the original one-dimensional shallow water (Saint-63

Venant) deterministic model by introducing stochastic variations in order to add variability to,64

and in some cases also improve, the already proven successful estimations based on least-squares65

minimization of errors. Within this approach, there are two types of parameters to be estimated:66

Manning’s coefficients and parameters that define perturbations of the (Saint-Venant) deterministic67

models (essentially, standard deviations). These parameters are coupled and are computed using68

the maximum likelihood principle.69

Although stochastic modeling is, of course, not new, the idea presented in this paper for70

estimating distribution parameters using simulations and maximal likelihood has not been attempted71

in the past. In many regression problems, it is necessary not only to predict a value but also to give72

confidence or uncertainty intervals. For example, in Gaussian process-based models one looks73

for the type of dependence between two successive states with which a good fit to the available74

data and, sometimes, an adequate satisfaction of a physical law is produced. See Rasmussen and75

Williams (2005). Our approach is different in the sense that we start from the physical law and76

postulate that the observations are the result of a random perturbation of it. The magnitude of such77
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perturbation, in our case, is estimated by maximizing the likelihood function.78

This methodology can be useful for irregular rivers for which a one-dimensional simplification79

roughly corresponds to reality, and the available data are sparse both in time and space. These80

cases are very frequent in Brazil and other Latin American countries. We illustrate with numerical81

experiments that the proposed method works well when the observed data come from laboratory82

tests and in tests that involve a real river reach.83

Related approaches to the one presented in this paper can be found in the Biostatistics literature84

in connection to growth processes (Chao and Huisheng 2016; Delgado-Vences et al. 2023; Jiang85

and Shi 2005; Lillacci and Khammash 2010; Román-Román et al. 2010). For a comprehensive86

treatment of Stochastic Differential Equations, see Panik (2017). Kalman filter and its nonlinear87

variations (Kalman 1960) should also be evoked in this context as they produce stable estimations88

of a system’s present state as a combination of observation and prediction. In Gaussian Processes,89

one models the evolutionary physical phenomenon as a stochastic process whose covariance needs90

to be estimated and where PDE relations are incorporated to feed the estimation process. In some91

sense, our approach is the inverse of the one adopted in the Gaussian Process. In fact, in our case,92

we start from the discretized PDE equation incorporating random variation as an essential part of93

the evolution model.94

The rest of this paper is organized as follows. The Saint-Venant equations, selected as the95

basic model to describe the flux of water in one-dimensional channels, are described in Section 2.96

The proposed model considering inadequacies and the parameters estimation strategy based on a97

likelihood function is introduced in Section 3. In Section 4 we describe the optimization procedure.98

An extensive set of numerical experiments describing different open channel flow scenarios and99

comparing the results obtained from the deterministic and the stochastic models is reported in100

Section 5. This includes the application of the proposed method to a real irregular river. The last101

section presents the conclusions and lines for future research.102

SAINT-VENANT EQUATIONS103

The Saint-Venant equations (Saint-Venant 1871) are usually employed for river-flow simulations.104
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These equations are given by105

𝜕𝐴

𝜕𝑡
+ 𝜕𝑄

𝜕𝑥
= 0 (1)106

and107

𝜕𝑄

𝜕𝑡
+ 𝜕

𝜕𝑥

(
𝑄2

𝐴

)
+ 𝑔𝐴𝜕𝑍

𝜕𝑥
+
𝑛2
𝑔𝑄 |𝑄 |
𝐴𝑅4/3 = 0 (2)108

for 𝑡 ∈ [0, 𝑇] and 𝑥 ∈ [𝑥𝐼 , 𝑥𝐹], with 𝑥𝐼 and 𝑥𝐹 representing the initial and final representative109

points of the analyzed part of the channel. 𝑍 (𝑥, 𝑡) is the water surface elevation, 𝑧𝑏 (𝑥) is the110

channel bed elevation, ℎ(𝑥, 𝑡) = 𝑍 (𝑥, 𝑡) − 𝑧𝑏 (𝑥) is the depth of the river, 𝐴(𝑥, 𝑡) is the transversal111

wetted area, 𝑃(𝑥, 𝑡) is the wetted perimeter, 𝑅(𝑥, 𝑡) = 𝐴(𝑥, 𝑡)/𝑃(𝑥, 𝑡) is the hydraulics radius,112

𝑉 (𝑥, 𝑡) = 𝑄(𝑥, 𝑡)/𝐴(𝑥, 𝑡) is the average speed of the fluid, and 𝑔 is the acceleration of gravity taken113

as 9.81 m/s2. Equation (1) describes mass conservation and equation (2) represents balance of the114

linear momentum. The coefficient 𝑛𝑔 is known as Yen-Manning roughness coefficient, introduced115

in Yen (1992) and Yen (1993), which has units m1/6 in SI. This parameter relates to the classical116

Manning’s coefficient 𝑛 through the relation 𝑛𝑔 =
√
𝑔 𝑛. Typically, this roughness coefficient117

depends on 𝑥 due to the morphological aspects of the river along its course. Sediment deposition118

can also affect the roughness coefficients over time.119

Other forms of the Saint-Venant equations can be considered as well. For example, in Ding120

and Wang (2005) and Chaudhry (2022) it is considered a more general form of equation (2) in121

order to take into account the non-uniformity of velocity in cross-sections. In their approach, the122

momentum equation takes the form123

𝜕

𝜕𝑡

(
𝑄

𝐴

)
+ 𝜕

𝜕𝑥

(
𝛽𝑄2

2𝐴2

)
+ 𝑔𝜕𝑍

𝜕𝑥
+
𝑛2
𝑔𝑄 |𝑄 |
𝐴2𝑅4/3 = 0, (3)124

where 𝛽 is a momentum correction factor. If we consider that equation (3) represents a more125

accurate representation of the balance of momentum, the employment of (2) may represent an126

“error” in the modeling that persists throughout the time horizon. Our approach is intended to deal127

with all kinds of errors that arise in the description of evolutionary systems. Of course, in general,128

it is better to use the physical model of the phenomena that best corresponds to reality. However,129
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the approach supported in this paper is intended to be applied to “inaccurate” models.130

The development of accurate, efficient, and robust numerical schemes for calculating approxi-131

mate solutions of the hyperbolic systems (1,2) and (1,3) is still a challenging issue that has already132

been extensively investigated (Cockburn 1999; Correa 2017; Khan and Lai 2014; Kurganov 2018;133

Ying et al. 2004). In the present work, we assume that the Saint-Venant system is numerically134

solved using a stable and accurate numerical scheme, for which the discrete in space and time135

formulation can be written as136

®U𝑛+1 = ®F (𝑡𝑛, 𝑡𝑛+1, ®U𝑛, ®𝑛𝑔). (4)137

In (4), ®U𝑛+1 is a vector containing the numerical solution at 𝑡 = 𝑡𝑛+1, ®F is a vector function138

depending on the previous solution ®U𝑛 and on a vector of parameters (𝑛𝑔)𝑖, 𝑖 = 1, . . . , 𝑛𝑛𝑔 ,139

representing different values of the Yen-Manning coefficient 𝑛𝑔 in space and time. The discrete140

form given by equation (4) is typical of explicit numerical schemes.141

RANDOM VARIATION OF A MODEL AND THE ESTIMATION OF ITS PARAMETERS142

The numerical solution of Saint-Venant equations provides state variables (transversal areas143

and flow rates) at a finite number of time instants T = {𝑡1, . . . , 𝑡 |T |}. Our proposal is to perturb (or144

deviate) the computed states at selected time instants 𝑡 ∈ T𝛾 ⊆ T with random values in the way145

described below. More specifically, we postulate that, instead of obeying the evolution dictated by146

the numerical solution of Saint-Venant equations, the actual evolution of channel flows obeys the147

stochastic process148

®U𝑛+1 = ®F (𝑡𝑛, 𝑡𝑛+1, ®U𝑛, ®𝑛𝑔) + 𝛿(𝑡𝑛+1) ®V(𝑡𝑛+1, ®U𝑛, 𝜎). (5)149

In (5), ®F (𝑡𝑛, 𝑡𝑛+1, ®U𝑛, ®𝑛𝑔) represents the state variables computed by the chosen numerical Saint-150

Venant solver at time 𝑡𝑛+1 and ®V(𝑡𝑛+1, ®U𝑛, 𝜎) is a vector whose entries are random variables151

with zero expectation and standard deviation equal to 𝜎 times the modulus of the correspondent152

component of ®F (𝑡𝑛, 𝑡𝑛+1, ®U𝑛, ®𝑛𝑔). Moreover, 𝛿(𝑡𝑛+1) is an indicator function which depends on153

probabilistic parameters to be determined and that takes the values 1 and 0 according to the decision154
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of perturbating the state at time 𝑡𝑛+1 or not. As a result, the state computed by our randomly perturbed155

evolution method is defined by ®U𝑛+1.156

We consider that perturbations are made at time instants in a set T𝛾 =
{
𝑡
𝛾

1 , 𝑡
𝛾

2 , . . . , 𝑡
𝛾
𝑚

}
⊆ T .157

To construct T𝛾, for a given parameter 𝛾, we define 𝑡
𝛾

1 = min {𝑡 ∈ T | 𝑡 − 𝑡1 ≥ 𝛾} and, for 𝑙 > 1,158

𝑡
𝛾

𝑙
= min

{
𝑡 ∈ T | 𝑡 − 𝑡𝛾

𝑙−1 ≥ 𝛾
}
. This means that time instants in the set T𝛾 have intervals of size159

around 𝛾, or, in other words, that perturbations occur with frequency 1/𝛾. Accordingly, for 𝑡 ∈ T ,160

the indicator function 𝛿(𝑡) in (5) is defined as161

𝛿(𝑡) =


1, if 𝑡 ∈ T𝛾

0, otherwise.
162

This means that 𝛿(𝑡) in (5) depends on T𝛾, which in turn depends on the set of instants T determined163

by the method used for the numerical solution of the Saint-Venant equations and on the (unknown164

probabilistic) parameter 𝛾. Moreover, for further reference, we define the vector ®𝜏 ∈ R𝑚 containing165

the time instants 𝑡𝛾1 < 𝑡
𝛾

2 < · · · < 𝑡
𝛾
𝑚 at which the second term in the right-hand side of equation (5)166

is “activated” (i.e., containing all the elements of T𝛾) as 𝜏𝑖 = 𝑡
𝛾

𝑖
for 𝑖 = 1, . . . , 𝑚.167

In summary, the stochastic model (5) differs from the deterministic discretized model (4) due168

to the introduction of zero-mean random perturbations in space, on almost equally-spaced-in-time169

states of the solution. It is important to emphasize that the proposed stochastic model seats upon170

the determination of three parameters that must be estimated using available data, namely, the171

Yen-Manning coefficients ®𝑛𝑔, the vector ®𝜏 (that depends by construction on the parameter 𝛾 and172

the set of instants T that is built by the chosen Saint-Venant solver) and the deviation 𝜎. (Notice173

that if 𝛾 = +∞ or 𝜎 = 0, then no deviation is introduced and the stochastic model coincides with174

the deterministic model.) The remainder of this section is devoted to the proposal for estimating175

the parameters of the stochastic model.176

For the sake of simplicity, hereinafter, the description corresponds to the case in which the177

Yen-Manning coefficient is spatially homogeneous and does not change in time. However, there178

are no complications in extending it to the case in which different roughness coefficients are found179
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for different arguments 𝑥 ∈ [𝑥𝐼 , 𝑥𝐹] and 𝑡 ∈ [0, 𝑇]. Moreover, we also assume that the Saint-Venant180

solver was already chosen and parameter 𝛾 is known. Thus, the variables that determine the vector181

®𝜏 are fixed and we focus on the determination of 𝑛𝑔 and 𝜎. As well as in the case of a spatially182

non-homogeneous roughness coefficient, considering ®𝜏, the vector that contains the time instants183

at which perturbations occur, an unknown array (of unknown dimension) fits within the scope of184

the procedure proposed in the present work. In general, an arbitrary number of parameters could185

be considered both in the deterministic part of the model and in the probabilistic part related to186

perturbations. The trade-off would be to have a more difficult optimization problem in the parameter187

adjustment phase.188

We assume that 𝑁obs observations 𝑣obs
𝑘

(𝑣 may be either 𝐴 or 𝑄, or any other related quantity189

such as ℎ or 𝑉) at spatial-time coordinates (𝑥obs
𝑘

, 𝑡obs
𝑘
) ∈ [𝑥𝐼 , 𝑥𝐹] × [0, 𝑇] for 𝑘 = 1, . . . , 𝑁obs are190

given. In addition, we assume that each observation 𝑣obs
𝑘

is associated with a quantity 𝜗𝑘 > 0,191

which typically represents the measurement error of the observation. Roughly speaking, 𝜗𝑘 is the192

absolute value of the difference between the 𝑘th observation and its simulation below which we193

consider that the similarity between both is high. Therefore, 𝜗𝑘 must take into account the intrinsic194

measurement error (due to the precision of the instrument) and, possibly, the intrinsic error of the195

simulation. Of course, in many cases we may consider that the latter is zero, but in other cases it196

is not. We wish to determine 𝑛𝑔 and 𝜎 from available data using the maximization of a likelihood197

function calculated through simulations. To do so, for a given pair (𝑛𝑔, 𝜎), we consider 𝑁sim198

simulations calculated through runs of the process (5). This means that the simulated values are199

calculated on a space-time grid. If any (𝑥obs
𝑘

, 𝑡obs
𝑘
) does not belong to the grid, the corresponding200

simulated value may be calculated with interpolation.201

Let 𝑣sim
𝑘 𝑗

be the simulated value at spatial-time coordinate (𝑥obs
𝑘

, 𝑡obs
𝑘
) for 𝑘 = 1, . . . , 𝑁obs obtained202

at simulation 𝑗 for 𝑗 = 1, . . . , 𝑁sim. The likelihood associated with a pair (𝑛𝑔, 𝜎) is intended to203

represent the probability of the given set of observations to be generated by (5). Roughly speaking,204

the considered likelihood is the ratio of the favorable cases to the total number of simulations 𝑁sim.205

For each simulation 𝑗 , instead of a binary definition of favorability, we propose the smoothed206
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definition given by207

exp
(
−

(
𝑑 (𝑣obs

1 , . . . , 𝑣obs
𝑁obs

, 𝑣sim
1, 𝑗 , . . . , 𝑣

sim
𝑁obs, 𝑗
)
)2

)
, (6)208

where209

𝑑 (𝑣obs
1 , . . . , 𝑣obs

𝑁obs
, 𝑣sim

1, 𝑗 , . . . , 𝑣
sim
𝑁obs, 𝑗
) =

√√√
1

𝑁obs

𝑁obs∑︁
𝑘=1

(
(𝑣obs

𝑘
− 𝑣sim

𝑘, 𝑗
)2

𝜗2
𝑘

)
(7)210

represents the root mean square deviation of simulation 𝑗 with respect to observations. Therefore,211

the favorability of simulation 𝑗 is 1 if 𝑣obs
𝑘

coincides with 𝑣sim
𝑘, 𝑗

for 𝑘 = 1, . . . , 𝑁obs and is equal212

to 1/𝑒 ≈ 0.37 if the distance between 𝑣obs
𝑘

and 𝑣sim
𝑘, 𝑗

is equal to 𝜗𝑘 for 𝑘 = 1, . . . , 𝑁obs. Thus, 𝜗𝑘213

can be chosen in practical cases as a representation (not necessarily a rigorous upper bound) of214

the measurement error of observation 𝑣obs
𝑘

. Consequently, the likelihood associated with the pair215

(𝑛𝑔, 𝜎) is given by216

L𝜗 (𝑛𝑔, 𝜎) =
1

𝑁sim

𝑁sim∑︁
𝑗=1

exp
(
−

(
𝑑 (𝑣obs

1 , . . . , 𝑣obs
𝑁obs

, 𝑣sim
1, 𝑗 , . . . , 𝑣

sim
𝑁obs, 𝑗
)
)2

)
. (8)217

The parameters that are considered optimal for model (5) are the ones that maximize the218

likelihood function (8). A sketch representing at a high level the differences between the usual219

deterministic process and the procedure proposed in the present work is shown in Figure 1.220

OPTIMIZATION PROCEDURE221

Given the observed data 𝑣obs
𝑘

at spatial-time coordinates (𝑥obs
𝑘

, 𝑡obs
𝑘
) for 𝑘 = 1, . . . , 𝑁obs, finding222

optimal 𝑛∗𝑔 and 𝜎∗ consists of maximizing function (8). Evaluating (8) requires to consider 𝑁sim223

simulations. The value of 𝑁sim will be empirically determined for each experiment. Function (8) is224

a function of two variables, stochastic, and nonlinear. Considering that we know a priori intervals225

[𝑛𝑔min, 𝑛𝑔max] and [𝜎min, 𝜎max] within which the optimal values 𝑛∗𝑔 and 𝜎∗ lie, the simplest way226

to find these values is to choose steps Δ𝑛𝑔 and Δ𝜎 and to perform a global search within the227

given bounds. According to the desired accuracy of the optimal values, iterative refinements228

can be performed. A procedure that already includes successive refinements for the computation229

of 𝑛∗𝑔 is detailed in Algorithm 1. In the numerical experiments, the algorithmic parameters230
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𝑛𝑔min, 𝑛𝑔max, 𝜎min and 𝜎max were established using rough estimates of the parameters sought. The231

number of simulations 𝑁sim was decided empirically, starting from a small value and increasing it232

until verifying that increasing it does not significantly modify the results.233

Algorithm 1: Estimation of the stochastic model parameters with successive refinements
Input: The observed data 𝑣obs

𝑘
at spatial-time coordinates (𝑥obs

𝑘
, 𝑡obs

𝑘
) and the measurement

errors 𝜗𝑘 for 𝑖 = 1, . . . , 𝑁obs, the frequency of perturbations 1/𝛾, the number of
simulations 𝑁sim, an initial interval [𝑛𝑔min, 𝑛𝑔max] for the Manning coefficient and
its number of subdivisions 𝑛div,𝑛𝑔 , the precision 𝜀𝑛𝑔 required for the Manning
coefficient, a fixed interval [𝜎min, 𝜎max] for the dispersion parameter and the
number 𝑛div,𝜎 of equidistant trials. In addition, an algorithm to solve
equations (1,2) is given.

Output: Optimal values 𝑛∗𝑔 and 𝜎∗ for the Manning parameter and the dispersion
parameter, respectively.

1 Lmax ← 0
2 Δ𝜎 = (𝜎max − 𝜎min)/𝑛div,𝜎
3 while

(
𝑛𝑔max − 𝑛𝑔min

)
> 𝜀𝑛𝑔 do

4 Δ𝑛𝑔 ←
(
𝑛𝑔max − 𝑛𝑔min

)
/𝑛div,𝑛𝑔

5 for 𝑝 = 0, 1, . . . , 𝑛div,𝑛𝑔 do
6 𝑛trial

𝑔 ← 𝑛𝑔min + 𝑝 Δ𝑛𝑔
7 for 𝑞 = 0, 1, . . . , 𝑛div,𝜎 do
8 𝜎trial ← 𝜎min + 𝑞 Δ𝜎
9 for 𝑗 = 1, 2, . . . , 𝑁sim do

10 By solving (5), with 𝑛𝑔 ≡ 𝑛trial
𝑔 , using the algorithm chosen to solve (1,2),

and perturbing with dispersion parameter 𝜎 ≡ 𝜎trial and frequency 1/𝛾,
compute 𝑣sim

𝑘, 𝑗
for 𝑘 = 1, 2, . . . , 𝑁obs.

11 Evaluate the likelihood L𝜗 (𝑛trial
𝑔 , 𝜎trial) defined in (8).

12 if L𝜗 (𝑛trial
𝑔 , 𝜎trial) > Lmax then

13 Lmax ← L𝜗 (𝑛trial
𝑔 , 𝜎trial)

14 𝑛∗𝑔 ← 𝑛trial
𝑔

15 𝜎∗ ← 𝜎trial

16 𝑛𝑔min ← 𝑛∗𝑔 − Δ𝑛𝑔
17 𝑛𝑔max ← 𝑛∗𝑔 + Δ𝑛𝑔

NUMERICAL EXPERIMENTS234

In this section, we present numerical experiments to illustrate the performance of the proposed235

approach. Different open channel scenarios are considered, namely, the formation of a hydraulic236
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jump in a horizontal flume, the simulation of a partial dam break, and simulations of a real river.237

In all experiments, the stochastic process (5), based on equations (1,2), is solved with the upwind238

conservative finite volume scheme proposed inYing et al. (2004). Moreover, the frequency 1/𝛾 of239

the perturbations is assumed to be known and, thus, parameters to be determined from observed240

data are the Yen-Manning coefficient 𝑛𝑔 ∈ R and the deviation parameter 𝜎 ∈ R. It should be241

noted that the ultimate goal of the numerical experiments is not to determine these parameters242

but to deliver predictions and approximations of unavailable data. These predictions will include243

information related to the lack of fidelity with which the model represents reality. For the sake244

of completeness, the estimated values for the parameter 𝑛𝑔 are compared with the values obtained245

using the deterministic model (which corresponds to considering 𝛾 = +∞ and/or 𝜎 = 0 in the246

stochastic model).247

It is important to highlight that Manning’s coefficient may adequately approximate randomness248

in the geometry of channels. Our contribution is not in contradiction with this statement and249

does not seek a better approximation of the Manning coefficients than the ones obtained by other250

methods. What we aim to do is, given a model, a method of resolution and, perhaps, the result251

of a deterministic estimation of constitutive parameters (as the Manning roughness coefficient), to252

determine the probabilistic variation intrinsic either to the model or to the solution method that253

makes it possible probabilistic predictions (for example, confidence intervals) in situations not254

contemplated in the observation data. Although we consider the joint estimation of constitutive255

parameters and probabilistic parameters (dispersion), this is not essential to our approach. In other256

words, we may consider that constitutive parameters are well established by other methods. The257

fact that the calibrated 𝑛𝑔 is, in many cases, the same as the one obtained by other, previously258

stated, methods is not a surprise. Our method may be interpreted in terms of the analysis of the259

error originated in the optimization of parameters of arbitrary models using arbitrary methods.260

Algorithm 1 was implemented in Fortran. The code was compiled by the GFortran compiler261

of GCC (version 9.3.0) with the -O3 optimization directive enabled. Tests were conducted on a262

computer with a 4.5 GHz Intel Core i7-9750H processor and 16GB 1600 DDR4 2666 MHz RAM263
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memory, running Ubuntu 20.04.264

Hydraulic jump in a rectangular channel265

In this first experiment, we study the formation of a hydraulic jump by taking as reference the266

experiment reported in Gharangik and Chaudhry (1991). There, the authors performed experimental267

investigations of the steady-state location of the hydraulic jump in a horizontal 14.0 m long and268

0.46 m wide flume, for different Froude numbers Fr = 𝑉/
√︁
𝑔ℎ, by starting from a supercritical flow269

in the entire channel and then controlling the tailwater depth by an adjustable downstream gate. The270

bottom of the flume is made up of metal and the walls are made up of glass for 0 m ≤ 𝑥 ≤ 3.05 m271

and of metal for 3.05 m < 𝑥 ≤ 14 m. The Saint-Venant equations were then solved in uniform272

meshes of 𝑛𝑥 = 50 cells with Courant number Cr = 0.1 in the CFL-type condition that defines the273

time scale parameter 𝜏 (Ying et al. 2004) and 𝛾 = 0.5 s. Empirically, we considered 𝑁sim = 100 in274

the evaluation of (8) and Fr = 4.23.275

The initial condition is a steady-state flow with water height ℎ(𝑥, 0) = 0.043 m and velocity276

𝑉 (𝑥, 0) = 2.737 m/s for all 𝑥. The upstream boundary condition is given by these same values,277

while the downstream boundary condition for the water depth changes according to ℎ(14, 𝑡) =278

min{0.222, 0.043 + 0.00358 𝑡}. The observed values ℎobs
𝑘

at the points 𝑥obs
𝑘

, 𝑘 = 1, . . . , 𝑁obs were279

selected from the experimental measurements of Gharangik and Chaudhry (1991). According to280

Gharangik and Chaudhry (1991) these values correspond to the steady state of the system. However,281

it is not clear for which value of 𝑡obs
𝑘

they are obtained. Therefore, in our experiments we consider282

two possibilities for 𝑡obs
𝑘

: (i) 𝑡obs
𝑖

= 60 s for 𝑘 = 1, . . . , 𝑁obs and (ii) 𝑡obs
𝑘

= 180 s for 𝑘 = 1, . . . , 𝑁obs.283

The variation of the water depth at the downstream boundary ceases at 50 s. Thus, we may expect284

that in case (i) the solution is still transient, while the simulation for case (ii) is more likely to match285

the observed values.286

In this experiment, as in all the others that follow, we considered that 𝜗𝑘 = 𝜗 for all 𝑘 , i.e., that287

all observations were measured with the same instrument. Table 1 shows the results for different288

values of 𝜗 ∈ {0.05, 0.01, 0.005, 0.001}. These values were chosen because they were considered289

to represent plausible values for the error of the observation-measuring instrument. (The units290
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of 𝜗 correspond to the observations’ units of measurement.) In the table, column 𝑛∗𝑔 shows the291

optimal value found for the Yen-Manning coefficient 𝑛𝑔, column 𝜎∗ shows the optimal value found292

for the deviation 𝜎 of the random effect, and L𝜗 (𝜎∗, 𝑛∗𝑔) corresponds to the optimal likelihood.293

As a reference, the table also includes (in the column named 𝑛𝑔 |𝜎=0) the optimal value of 𝑛𝑔294

that is obtained when the condition 𝜎 = 0 is imposed, as well as the corresponding likelihood295

L𝜗 (0, 𝑛𝑔 |𝜎=0). These values correspond to the least-squares approximation of 𝑛𝑔. The smaller296

likelihood values obtained for 𝑡 = 60 s can be explained by the fact that the solution is still transient297

at this instant, as expected. In the four scenarios on 𝜗, the probability that the observed data was298

generated by the distribution defined by 𝜎∗ and 𝑛∗𝑔 was higher when 𝑡obs = 180 s, compared to299

the case where 𝑡obs = 60 s. So, it is sensible to conclude that the published data were obtained at300

𝑡obs = 180 s or later.301

Let us concentrate on the case defined by 𝑡obs = 180 s. As we mentioned above, we made302

four assumptions on the precision with which the observations were obtained. Note that the303

estimated 𝜎∗ increases when 𝜗 decreases. This means that, as expected, if the observations304

are made with maximal precision (𝜗 = 0.001 in this case) their probability in the case of the305

deterministic model (𝜎 = 0) is smaller than the probability in the case of the stochastic model with306

𝜎∗ = 0.022. On the other hand, the probability L𝜗 (𝜎∗, 𝑛∗𝑔) decreases very quickly with 𝜗. Again,307

this is the expected behavior as far as the assumption of extremely good precision in observations308

decreases the probability that observations come from mathematical (obviously inexact) models.309

These results are illustrated in Figure 2, for 𝜗 = 0.005 and 𝜗 = 0.001, where we compare the310

results of the deterministic case (𝜎 = 0) with the superposition of all the (𝑁sim = 100) simulations311

obtained for the optimal parameter 𝜎∗. As an illustration, in this figure we also plot the ensemble312

mean of the 𝑁sim simulations. The total CPU time required for the determination of the roughness313

coefficient 𝑛∗𝑔 = 0.03959 and the dispersion parameter 𝜎∗ = 0.022 for 𝜗 = 0.001 with 𝑛sim = 100,314

𝑇 = 180 s, 𝑛𝑔min = 0.039, 𝑛𝑔max = 0.040, 𝑛div,𝑛𝑔 = 100, 𝜎min = 0.00, 𝜎max = 0.025, and 𝑛div,𝜎 = 25315

was 13,099 s.316
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Partial dam break317

In this numerical experiment, we evaluate the performance of the proposed methodology in a318

scenario of a partial dam break. In this case, we take as reference the experimental investigation319

performed by the U.S. Army Corps of Engineers in 1960 (USACE 1960), where it was studied the320

extent and magnitude of floods induced by the breaching of a 0.305 m (1 ft) high dam, located in the321

middle of a 121.92 m (400 ft) long and 1.219 m (4 ft) wide model flume with a bed slope of 0.005322

and rectangular cross-section. From this investigation, we took the stage-time measurements of323

Test Condition 11.1, which is characterized by an initial state with the upstream side of the channel324

full of water and the downstream dry, and by the sudden opening of a 0.732 m (2.4 ft) wide and325

0.183 m (0.6 ft) breach, from the top of the dam, at 𝑡 = 0. This test was also used in Ying et al.326

(2004), in order to verify the robustness of their Upwind scheme, which is employed in this paper.327

From the experimental measurements given in Test Condition 11.1 of USACE (1960), we328

selected a set of observed values of the water height that represents a stage-time hydrograph placed329

at 𝑥 = 68.58 m, consisting of 𝑁obs = 10 observations for 𝑡 ≤ 20 s. As a reference, the center of330

the dam is located at 𝑥 = 60.96 m. In all the simulations, we adopted a uniform mesh of 𝑛𝑥 = 400331

cells, Courant number Cr = 0.1 in the CFL-type condition and 𝛾 = 0.5 s. In this experiment,332

we considered 𝑁sim = 400 in the evaluation of (8). The treatment of the dry bed was done as333

described in Ying et al. (2004), with ℎdry = 10−5 m. Also, due to the sensitivity of the numerical334

model to the dry bed treatment, in this numerical experiment we only consider perturbations due335

to the parameter 𝜎 on the flow rate 𝑄 (obviously, the water height ℎ is indirectly affected by these336

perturbations).337

The results are shown in Table 2. They indicate that the uncertainties associated with the data338

are small. The optimal Yen-Manning’s coefficient was 𝑛∗𝑔 = 0.02931 m1/6 with zero deviation339

parameter 𝜎∗ for 𝜗 ≥ 0.005, indicating a behavior identical to the deterministic one. For 𝜗 =340

0.001, however, the methodology returned 𝑛∗𝑔 = 0.02927 m1/6 with 𝜎∗ = 0.050. The plots of the341

solutions obtained for 𝜗 = 0.001, compared with the observed data, are shown in Figure 3. This342

figure is a nice illustration of a situation in which the superposition of the simulations provides343

14 Birgin, June 13, 2024



a better representation of the known (and potentially also the unknown) data when compared to344

the prediction provided by the deterministic model or by the average of the simulations. Finally,345

in Figure 4, we show the simulations for 𝑡 = 30 s and 𝑡 = 60 s, compared with the measured data346

also taken from the Test Condition 11.1 of USACE (1960). These results show that the simulations347

performed with the parameters calculated with the time-stage information obtained at a single348

spatial point, for 𝑡 ≤ 20 s, can provide a good prediction of the flood induced by the dam break, at349

future time instants. The total CPU time required for the determination of the roughness coefficient350

𝑛∗𝑔 = 0.02927 and the dispersion parameter 𝜎∗ = 0.050 for 𝜗 = 0.001 with 𝑛sim = 400, 𝑇 = 20 s,351

𝑛𝑔min = 0.0290, 𝑛𝑔max = 0.0295, 𝑛div,𝑛𝑔 = 50, 𝜎min = 0.040, 𝜎max = 0.050, and 𝑛div,𝜎 = 10 was352

11,536 s.353

It must be emphasized that in this experiment the estimates of Yen-Manning’s coefficient and354

variance were obtained using data from a single hydrograph at 𝑥 = 68.58 m. Despite this, the355

forecasts (including uncertainty) shown in Figure 4 were very good at predicting actual data that,356

in the estimation process, were considered unknown.357

East Fork River358

In this experiment, we simulate the flood in the 3.3 km flow reach of East Fork River, Wyoming,359

USA during a part of the high-flow season in late May of 1979, by using the randomly supported360

one-dimensional shallow water model and several data from the technical reports Emmett et al.361

(1979) and Meade et al. (1979). A total of 41 sections, ranging from section 0000 to section 3295,362

were considered. These numbers indicate their center-line distance upstream from 𝑥 = 0.0 m. For363

more details, see Emmett et al. (1979, Fig.1 therein). Thus, in our numerical model, we considered364

a non-uniform mesh in which each section represents the center of a cell. The simulation period365

was from 1AM on May 20 to 1PM on May 31, and we considered the mean bed elevations and366

the mean cross-sections (assumed to be rectangular) measured at 1AM on May 20, taken from367

Meade et al. (1979, Tables 41 and 42 therein). The discharge values at section 3295, measured at368

1AM and 1PM of each day, were used as inflow boundary condition Emmett et al. (1979, Table 7369

therein). As outflow boundary condition, we considered the water surface values at section 0000370
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taken from Emmett et al. (1979, Table 1 therein), also measured at 1AM and 1PM of each day. The371

water surface measured at 1AM on May 20 was used to set the initial wetted area and the initial372

flow was assumed to be 8.76 m3/s throughout the entire river. In all simulations (𝑁sim = 100),373

the Courant number was set to Cr = 0.1 and 𝛾 = 256 s. In what follows, we consider that the374

Yen-Manning coefficient 𝑛𝑔 is homogeneous in space, even though the geometric characteristics of375

the river (width and bed elevation, for example) are heterogeneous.376

From Emmett et al. (1979, Table 2 therein) we collected 𝑛obs = 22 values of the water surface377

at section 2505 measured at 1AM and 1PM, from May 21 to May 31. These data, illustrated in378

Figure 5, represent a stage-time hydrograph at section 2505 and are used as the set of observations379

in the experiments. We considered two main cases of study: Case A, with one value of 𝑛𝑔 for the380

whole simulation period and Case B, with time-varying 𝑛𝑔. These two cases are described below:381

Case A: In this simulation, we proceeded as in the previous experiments and used the set of 22382

observations to find the optimal Yen-Manning’s coefficient 𝑛∗𝑔 = 0.07749 m1/6 with𝜎∗ = 0.05383

for 𝜗 = 0.01.384

Case B: As reported in Emmett et al. (1979), the width and the bed elevation of the river change385

in time. Taking this observation into account, in this simulation we subdivide the set of386

observations in four subsets and we found the optimal Yen-Manning’s coefficient for each387

one of these subsets. The optimal values obtained are: 𝑛𝑔1 = 0.09258 m1/6 for observations388

from 1AM on May 21 to 1PM on May 23; 𝑛𝑔2 = 0.07895 m1/6 for 1AM/May 24 to 1PM/May389

26; 𝑛𝑔3 = 0.06971 m1/6 for 1AM/May 27 to 1PM/May 29; 𝑛𝑔4 = 0.07916 m1/6 for 1AM/May390

30 to 1PM/May 31. With these values, we compose a time-varying Yen-Manning’ coefficient,391

as illustrated in Figure 6. In this case, the optimal deviation parameter so far obtained was392

𝜎∗ = 0.033 for 𝜗 = 0.01. Notice that, in this case, we assume an abrupt change in393

the values of 𝑛𝑔 on May 23, 26, and 29. The consequences of such an assumption can394

be appreciated in terms of the random variations estimated by our method in this case. An395

adequate interpolation in time of the data may be used to describe the sedimentation process’s396

time-varying physics accurately.397
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Figure 7 displays the results of these experiments. Recall that the elevation data at 𝑥 = 2505 m398

were used to estimate the parameters 𝑛∗𝑔 and 𝜎∗. Therefore these data represent the “training set”399

of our study. On the other hand, the surface elevation data at 𝑥 = 3295 m were not employed at400

all in the process of parameter estimation. So, using the machine learning terminology, these data401

play the role of a “test set” or “validation set”.402

It is remarkable that in Cases A and B the data from the validation set are recovered with403

an accuracy similar to that of the training sets. This indicates that training our model using404

a single hydrograph is enough for obtaining good predictions over all the domain of interest.405

Moreover, the simulation clouds around deterministic solutions of the Saint-Venant equations seem406

to provide adequate uncertainty regions for the purpose of taking decisions. As expected, data407

were better recovered in Case B than in Case A, although the difference between both cases is not408

very impressive. Finally, the symmetric distribution of random variations involving observations409

probably indicates that systematic errors in the model are not meaningful in these two cases.410

The results for the water surface are shown in Figure 8. Once determined the Yen-Manning’s411

coefficients, the total CPU time required for the evaluation of the dispersion parameter 𝜎, with412

𝑇 = 11.5 days, 𝑛sim = 100, 𝜎min = 0.00, 𝜎max = 0.06, and 𝑛div,𝜎 = 60 was 23,426 s for Case A and413

13,887 s for Case B.414

The proposed stochastic model has the potential to deliver better results than the underlying415

deterministic model in situations where there are no constitutive parameters with which the ob-416

served data can be accurately produced by the deterministic model. This may occur because the417

deterministic model does not adequately describe the real problem or because the observed data418

contain measurement errors. The non-occurrence of either of these situations would correspond419

to obtaining an optimal dispersion 𝜎 equal to zero. When the optimal 𝜎 is strictly positive, the420

stochastic model is saying that an overlap of simulations better represents the observed data than the421

deterministic model solution. And the higher the value of the optimal dispersion, the less reliability422

should be attributed to the deterministic model solution. Graphically, in situations like that, for423

each 𝑥, the deterministic model predicts a value while the stochastic model predicts an interval424

17 Birgin, June 13, 2024



within which the predicted value may lie. The fact that, as shown in Figure 7, the known observa-425

tions (both in the training and the test set) are within the predicted interval gives credibility to the426

prediction. To summarize, the advantage of the stochastic model is to deliver an interval within427

which the unknown value lies, instead of returning a single prediction without any information428

about its plausibility.429

Spatially heterogeneous roughness430

In this last experiment, we proceed as in Ding et al. (2004) and identify the distribution of the431

Manning coefficient according to a partition of the computation domain of the Fork River into five432

stretches. The Manning coefficients are assumed to be homogeneous inside each stretch. Thus the433

roughness parameter structure of the study reach is known, and we aim to identify the roughness434

values within each partition. A similar study was done in Ayvaz (2013), using equations (1,2).435

Unlike the previous example, here we assume steady-state flow and use the cross sections,436

stream-bed elevations, and water surface elevations on June 28 (discharge at inlet equals to 2.37 m3/s437

and water level at the downstream section equals to 5.41 m) obtained from the reports Emmett et al.438

(1979) and Meade et al. (1979). The set of observations was subdivided into sections, and the439

respective optimal Yen-Manning coefficients were calculated using each one of these subsets. The440

sections and the optimal coefficients are: Sections 3168 to 3256, 𝑛𝑔1 = 0.07560 m1/6; Sections441

2961 to 3108, 𝑛𝑔2 = 0.08755 m1/6; Sections 0898 to 2874, 𝑛𝑔3 = 0.10698 m1/6; Sections 0220442

to 0808, 𝑛𝑔4 = 0.08965 m1/6; Sections 0075 to 0137, 𝑛𝑔5 = 0.16700 m1/6. The total CPU time443

required for the evaluation of the dispersion parameter 𝜎, with 𝑇 = 1 day, 𝑛sim = 100, 𝜎min = 0.00,444

𝜎max = 0.05, and 𝑛div,𝜎 = 50 was 727 s. The results for the water surface, shown in Figure 9,445

are in good agreement with the observed data. The comparison with the equivalent Yen-Manning446

coefficients 𝑛𝑔 =
√
𝑔𝑛 from Ding et al. (2004) and Ayvaz (2013) (𝑛 are their original values of the447

Manning coefficients) is presented in Table 3. The results are plausible, and two possible reasons448

for the differences are the collected data and the simplified cross-sectional geometry (rectangular)449

used in our modeling.450

CONCLUSIONS451
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One of the most common reasons for using mathematical models is to extract information not452

directly contained in the data. Except in very rare circumstances, mathematical models, cannot453

provide such knowledge with absolute certainty. Putting too much faith in model predictions,454

regardless of their flaws, can lead to fatal judgments. Therefore, models that suggest alternative455

possibilities for the predicted variables along with the associated probabilities can be useful.456

In the fundamental fields of physics, deterministic models are widely known for their accurate457

predictions. These models often consist of systems of partial differential equations, the numerical458

solution of which has been the subject of extensive research in the literature. Therefore, it is sensible459

to rely on these models to generate stochastic counterparts that allow us to make reasonable predic-460

tions while accounting for fluctuations and uncertainties. The physical problem under examination461

in this study was water flux in channels, and the Saint-Venant equations provided the deterministic462

model on which we built the stochastic counterpart.463

Examples from the hydraulic literature were examined to verify the reliability of our approach.464

These examples demonstrate how effective Saint-Venant equations were in defining a trustworthy465

underlying deterministic model. Moreover, the stochastic approach’s simulations were able to create466

reasonable bundles of possibilities for unknown variables, including useful confidence intervals467

and probabilities. In addition, the examples involving Fork River indicated the availability of468

reasonable bed elevation data is crucial for obtaining reliable predictions. Due to nonlinearity and469

theoretical intrinsic difficulties, we are not able to determine theoretical properties of the estimators470

introduced in this paper. Concerning the Probability Density Function, further formalization is471

necessary which is beyond our present objectives. We plan to address this issue in future research.472

In this paper we considered that the model that deserves random perturbation is defined by473

the discretization of the Saint-Venant differential equations. A different alternative should be474

to incorporate random perturbations directly on the differential equations employing, perhaps,475

different methods for their solution. See, for example Man and Tsai (2007). This alternative will476

be subject of future research. The extension of our approach to 2-D open channel flow and, in fact,477

to every process governed by evolution equations does not seem to offer specific complications and478
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should be the subject of future research as well.479

In the present work, we illustrated the application of the proposed method with stochastic models480

that had only one constitutive parameter (Manning’s coefficient) and one probabilistic parameter481

(dispersion). The fact that the adjustment of these parameters consisted in solving an optimization482

problem with only two variables led us to opt for a simple coordinate search algorithm, which turned483

out to be somewhat costly in terms of computational time. Parallelism (which was not used in this484

research) could be fully employed with obvious advantage, since simulations could be conducted485

independently. Its use could decrease the computational time of the presented experiments by at486

least two orders of magnitude. Besides that, for problems with more than two parameters to be487

adjusted, the use of more sophisticated optimization algorithms would be recommended. This will488

be a line of future work.489

Finally, it is important to remark that, in the proposed model, the errors due to the numerical490

solution of the Saint-Venant equations are treated as part of the overall error, with the grid size491

acting as a constitutive parameter of the model. Thus, the estimated parameters and uncertainty492

of predictions are related to the discretization and may change with mesh refinement. Numerical493

results (not presented in the paper) indicate that the likelihood increases with mesh refinement due494

to the reduction of the approximation error.495
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FIGURES SECTION (ONE PER PAGE AS REQUIRED)584

Process governed by
evolution equations

PDE deterministic
model with unknown

constitutive parameters

Numerical methods
for solving PDE

PDE deterministic
model with unknown

constitutive parameters

Numerical methods
for solving PDE

Random variations
probabilistic model with
unknown parameters

Determination of the
constitutive parameters
that make the deter-
ministic model fitting
the observed data in
the best possible way
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make the stochastic model
fitting the observed data
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Deterministic predic-
tion of unknown data

Probabilistic prediction
of unknown data as a su-
perposition of simulations

modeling

optimal parameters determination

prediction

Fig. 1. Sketch representing at a high level the differences between the usual deterministic process
and the procedure proposed in the present work. On the left side, the main stages of the usual
deterministic procedure are described. On the right side of the figure, the proposed procedure,
highlighting the main differences in red, is presented.
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Fig. 2. Simulations of the hydraulic jump problem constructed with the optimal parameters that
were obtained with 𝜗 = 0.005 (left) and 𝜗 = 0.001 (right), assuming that 𝑡obs = 180 s. The
graphics display the superposition of all the 𝑁sim = 100 simulations associated with the optimal
Yen-Manning’s roughness coefficient 𝑛∗𝑔 and deviation parameter 𝜎∗. The pictures also show
the least-squares solution, that corresponds to the case 𝜎 = 0, and the ensemble mean of the
simulations. The Yen-Manning coefficients have units m1/6.
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Fig. 3. Simulations of the partial dam break constructed with the optimal parameters that were
obtained with 𝜗 = 0.001. The graphic displays the superposition of all the 𝑁sim = 400 simulations
associated with the optimal Yen-Manning’s roughness coefficient 𝑛∗𝑔 and deviation parameter 𝜎∗.
The pictures also show the deterministic solution, that corresponds to the case 𝜎 = 0 and the
ensemble mean of the simulations. In this case the graphic represents an hydrograph at 𝑥 = 68.58 m
for 𝑡obs ≤ 20 s. The Yen-Manning coefficients have units m1/6.
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Fig. 4. Simulations of the partial dam break at 𝑡 = 30 s (top) and 𝑡 = 60 s (bottom), constructed with
the optimal parameters that were obtained with 𝜗 = 0.001. The graphics display the superposition
of the water level 𝑍 = ℎ + 𝑧𝑏 of all the 𝑁sim = 400 simulations associated with the optimal
Yen-Manning’s roughness coefficient 𝑛∗𝑔 and deviation parameter 𝜎∗. The pictures also show the
deterministic solution, that corresponds to the case 𝜎 = 0. In this case, simulations represent
predictions, since observed data correspond to 𝑡 ≤ 20 s and simulations correspond to 𝑡 = 30 s (top)
and 𝑡 = 60 s (bottom). The Yen-Manning coefficients have units m1/6.
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Fig. 5. Water surface at section 2505 measured at 1AM and 1PM, from May 21 to May 31. These
𝑛obs = 22 values were used as the set of observations in the experiments.
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Fig. 7. Simulations of stage-time hydrographs for the Fork river for 𝜗 = 0.01. The left column
contains the computed water surfaces at station 2505 for Cases A (top) and B (bottom) and the
observed data. The right column contains predictions at station 3295 for the two cases, compared
with measured data (not used for estimating 𝑛𝑔 and 𝜎).
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Fig. 8. Cases A and B: Computed and measured water surface around 3PM on May 27 and 1PM
on May 31.
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Fig. 9. Heterogeneous case: Computed steady-state solution and measured water surface with
the data from June 28. The graphic in blue is the superposition of the water surface of all the
𝑁sim = 100 simulations associated with deviation parameter 𝜎∗ = 0.04 and 𝛾 = 200 s.
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TABLES SECTION (ONE PER PAGE AS REQUIRED)585

𝜗 𝜎∗ 𝑛∗𝑔 𝑛𝑔 |𝜎=0 L𝜗 (𝜎∗, 𝑛∗𝑔) L𝜗 (0, 𝑛𝑔 |𝜎=0)

𝑡 o
bs
=

60 0.050 0.000 0.04352 0.04352 9.414×10−1 –
0.010 0.000 0.04352 0.04352 2.211×10−1 –
0.005 0.049 0.04330 0.04352 1.570×10−2 2.389×10−3

0.001 0.048 0.04324 0.04352 1.340×10−15 2.840×10−66

𝑡 o
bs
=

18
0 0.050 0.000 0.03819 0.03819 9.881×10−1 –

0.010 0.000 0.03819 0.03819 7.417×10−1 –
0.005 0.017 0.03975 0.03819 3.139×10−1 3.026×10−1

0.001 0.022 0.03959 0.03819 1.553×10−4 1.053×10−13

TABLE 1. Optimal deviation parameter 𝜎∗, Yen-Manning’s coefficient 𝑛∗𝑔 (m1/6), and likelihood
L𝜗 obtained for varying values of the precision-related parameter 𝜗 in the hydraulic jump problem.
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𝜗 𝜎∗ 𝑛∗𝑔 𝑛𝑔
��
𝜎=0 L𝜗 (𝜎∗, 𝑛∗𝑔) L𝜗 (0, 𝑛𝑔

��
𝜎=0)

0.050 0.000 0.02931 0.02931 9.941×10−1 –
0.010 0.000 0.02931 0.02931 8.627×10−1 –
0.005 0.000 0.02931 0.02931 5.540×10−1 –
0.001 0.050 0.02927 0.02931 3.575×10−5 3.872×10−7

TABLE 2. Optimal deviation parameter 𝜎∗, Yen-Manning’s coefficient 𝑛∗𝑔 (m1/6), and likeli-
hood L𝜗 obtained for varying values of the precision-related parameter 𝜗 in the partial dam break
problem.
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Methodology 𝑛𝑔1 𝑛𝑔2 𝑛𝑔3 𝑛𝑔4 𝑛𝑔5
Ding et al. (2004) 0.18288 0.01532 0.07909 0.12513 0.27923
Ayvaz (2013) 0.12344 0.01854 0.08109 0.13240 0.27882
Present 0.07560 0.08755 0.10698 0.08965 0.16700

TABLE 3. Comparison of optimal Yen-Manning’s coefficients 𝑛𝑔 =
√
𝑔𝑛 (m1/6) reported in the

literature and in the present work.
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FIGURE CAPTIONS LIST586

Caption of Figure 1: Sketch representing at a high level the differences between the usual587

deterministic process and the procedure proposed in the present work. On the left side, the main588

stages of the usual deterministic procedure are described. On the right side of the figure, the589

proposed procedure, highlighting the main differences in red, is presented.590

Caption of Figure 2: Simulations of the hydraulic jump problem constructed with the optimal591

parameters that were obtained with 𝜗 = 0.005 (left) and 𝜗 = 0.001 (right), assuming that 𝑡obs =592

180 s. The graphics display the superposition of all the 𝑁sim = 100 simulations associated with the593

optimal Yen-Manning’s roughness coefficient 𝑛∗𝑔 and deviation parameter 𝜎∗. The pictures also594

show the least-squares solution, that corresponds to the case 𝜎 = 0, and the ensemble mean of the595

simulations. The Yen-Manning coefficients have units m1/6.596

Caption of Figure 3: Simulations of the partial dam break constructed with the optimal parameters597

that were obtained with 𝜗 = 0.001. The graphic displays the superposition of all the 𝑁sim = 400598

simulations associated with the optimal Yen-Manning’s roughness coefficient 𝑛∗𝑔 and deviation599

parameter 𝜎∗. The pictures also show the deterministic solution, that corresponds to the case 𝜎 = 0600

and the ensemble mean of the simulations. In this case the graphic represents an hydrograph at601

𝑥 = 68.58 m for 𝑡obs ≤ 20 s. The Yen-Manning coefficients have units m1/6.602

Caption of Figure 4: Simulations of the partial dam break at 𝑡 = 30 s (top) and 𝑡 = 60 s (bottom),603

constructed with the optimal parameters that were obtained with 𝜗 = 0.001. The graphics display604

the superposition of the water level 𝑍 = ℎ + 𝑧𝑏 of all the 𝑁sim = 400 simulations associated with605

the optimal Yen-Manning’s roughness coefficient 𝑛∗𝑔 and deviation parameter 𝜎∗. The pictures606

also show the deterministic solution, that corresponds to the case 𝜎 = 0. In this case, simulations607

represent predictions, since observed data correspond to 𝑡 ≤ 20 s and simulations correspond to608

𝑡 = 30 s (top) and 𝑡 = 60 s (bottom). The Yen-Manning coefficients have units m1/6.609

Caption of Figure 5: Water surface at section 2505 measured at 1AM and 1PM, from May 21 to610

May 31. These 𝑛obs = 22 values were used as the set of observations in the experiments.611

Caption of Figure 6: Yen-Manning’s coefficients for the Cases A and B.612
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Caption of Figure 7: Simulations of stage-time hydrographs for the Fork river for 𝜗 = 0.01. The613

left column contains the computed water surfaces at station 2505 for Cases A (top) and B (bottom)614

and the observed data. The right column contains predictions at station 3295 for the two cases,615

compared with measured data (not used for estimating 𝑛𝑔 and 𝜎).616

Caption of Figure 8: Cases A and B: Computed and measured water surface around 3PM on May617

27 and 1PM on May 31.618

Caption of Figure 9: Heterogeneous case: Computed steady-state solution and measured water619

surface with the data from June 28. The graphic in blue is the superposition of the water surface of620

all the 𝑁sim = 100 simulations associated with deviation parameter 𝜎∗ = 0.04 and 𝛾 = 200 s.621
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