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Abstract

Inexact Restoration methods have been proved to be effective to solve constrained optimization
problems in which some structure of the feasible set induces a natural way of recovering feasibility
from arbitrary infeasible points. Sometimes natural ways of dealing with minimization over tangent
approximations of the feasible set are also employed. A recent paper [N. Banihashemi and C. Y. Kaya,
Inexact Restoration for Euler discretization of box-constrained optimal control problems, Journal of
Optimization Theory and Applications 156, pp. 726–760, 2013] suggests that the Inexact Restoration
approach can be competitive with well-established nonlinear programming solvers when applied to
certain control problems without any problem-oriented procedure for restoring feasibility. This result
motivated us to revisit the idea of designing general-purpose Inexact Restoration methods, especially
for large-scale problems. In this paper we introduce an affordable algorithm of Inexact Restoration
type for solving arbitrary nonlinear programming problems and we perform the first experiments that
aim to assess its reliability.
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1 Introduction

Inexact Restoration (IR) is an attractive approach for solving Nonlinear Programming problems. See [3,
7, 8, 14, 15, 13, 20, 21, 22, 23, 28, 29]. The idea of IR methods is that, at each iteration, feasibility and
optimality are addressed in different phases. In the Restoration Phase the algorithms aim to improve
feasibility and in the Optimization Phase they aim to improve optimality, preserving a linear approxi-
mation of feasibility. These algorithms have been successfully used in applications in which there exist a
natural way to improve (or even obtain) feasibility (see [3, 13, 22, 23] among others).

In [22, 23] control problems of the following form were considered:

Minimize

∫ tf

t0

f0(s(t), u(t)) dt

subject to ṡ(t) = F (s(t), u(t))

s(t0) = s0,

(1)
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where the state variable is s(t) ∈ IRns , ṡ = ds/dt, the control variable is u(t) ∈ IRnu , t varies between t0
and tf , f0 : IRns × IRnu → IR, and F : IRns × IRnu → IRns . The initial state is given by s0 ∈ IRns . The
time domain [t0, tf ] is subdivided into N intervals with equidistant points ti = ti−1+∆t or, equivalently,
ti = t0 + i ∆t, i = 1, . . . , N , where ∆t = (tf − t0)/N and, hence, tN = tf . Considering the Euler
discretization scheme si+1 = si + ∆tF (si, ui) and approximating the integral in the objective function
of (1) by its Riemann sum, we arrive to the discretized optimal control problem

Minimize ∆t

N−1∑

i=0

f0(si, ui)

subject to si+1 = si +∆tF (si, ui), i = 0, . . . , N − 1,

(2)

where s0 is given, the variables si approximate the states s(ti) for i = 1, . . . , N , and the variables ui

approximate the controls u(ti) for i = 0, . . . , N − 1. The number of variables is n = (ns + nu)N and the
number of (equality) constraints is m = nsN . Higher-order discretization schemes such as the ones in
the Runge-Kutta family of methods can be used. In the case of problem (2), restoration consists of fixing
the control variables and approximately solving the initial value problem. In the Optimization Phase,
IR methods change both the control and the state variables. The restoration procedure is quite natural
and, so, it is not surprising the obtention of good numerical results using IR approaches.

Surprisingly, in a recent paper, Banihashemi and Kaya [5] applied an IR scheme to a family of
control problems for which the natural initial-value restoration procedure cannot be applied anymore and
obtained better results with their method than with a standard well-established nonlinear optimization
software. Although the problems addressed in [5] possess an interesting particular structure, the algorithm
used for recovering feasibility does not exploit that structure at all. Therefore, we found the relative
efficiency reported in [5] surprising. The Banihashemi-Kaya paper motivated us to revisit the application
of IR to general nonlinear programming problems, without regarding any specific structure. The main
question is: Is it worthwhile to develop a universal constrained optimization package based on the IR
idea? In the present paper we wish to report the first steps in the process of answering this question and
developing the corresponding software.

Global convergence theories for modern Inexact Restoration methods were given in [29, 28, 15, 20, 12]
and [9]. In [29] the theory is based in trust regions and a quadratic penalty merit function. The trust-
region approach employing a sharp Lagrangian as merit function was introduced in [28]. In [15] and [20]
global convergence was based on a filter approach. Fischer and Friedlander [12] proved global convergence
theorems based on line searches and exact penalty functions. A global convergence approach that employs
the sharp Lagrangian and line searches was defined in [9]. Local and superlinear convergence of an Inexact
Restoration algorithm for general problems was proved in [7] and a general local framework that includes
composite-step methods was given in [17]. In the present paper we adopt the scheme of [7] that requires
improvement of feasibility with controlled distance to the current point at the feasibility phase. Here this
requirement will be achieved minimizing the distance to the current point subject to the minimization of
the quadratic approximation of infeasibility.

We will define four algorithms. The first one will be a local method, similar to the method introduced
in [7], for which local quadratic convergence will be proved under suitable sufficient conditions. (In [7]
sufficient conditions for the welldefinedness of the algorithm were not provided.) The second method will
be a variation of the local method that aims to improve the global convergence performance and has the
same local convergence properties as the first one. The third method uses the basic tools of the first
two but is globally convergent thanks to the employment of line searches and sharp Lagrangians, as in
[9]. The forth one is a hybrid combination of the second and the third methods, designed to improve its
computational performance.

We wish to provide a practical assessment of the reliability of IR methods on general (potentially
large-scale) Nonlinear Programming. For this purpose some decisions will be taken on the concrete
implementation of each particular IR method, leaving apart the degrees of freedom that the general
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approach provides. In particular, the first trial point for the feasibility phase will come from the solution
of a quadratic box-constrained problem and the first trial point of the optimization phase will come from
the solution of a feasible quadratic programming problem. The implementation of the four algorithms
introduced in this paper will be described and a comparison between them and against well established
Nonlinear Programming solvers will be provided. As a final consequence we will establish a conclusion
about the reliability of using IR ideas for general problems, in which specific characteristics of the feasible
set or the objective function are not used at all.

We will consider the problem

Minimize f(x) subject to h(x) = 0, x ∈ Ω (3)

where f : IRn → IR, h : IRn → IRm, and Ω = {x ∈ IRn | ℓ ≤ x ≤ u}. For all x ∈ Ω and λ ∈ IRm we define
the Lagrangian L(x, λ) by

L(x, λ) = f(x) +
m∑

i=1

λihi(x).

The functions f and hi, i = 1, . . . ,m, will be assumed to admit continuous and bounded second derivatives
for all x ∈ Ω. Moreover, their Hessians will be assumed to be Lipschitz-continuous. Therefore, given
c > 0, there exist Lf , Lh, L, and LL such that for all x, z ∈ Ω and ‖λ‖ ≤ c,

∣∣∣f(z)− f(x)−∇f(x)T (z − x)− 1

2
(z − x)T∇2f(x)(z − x)

∣∣∣ ≤ Lf‖z − x‖3, (4)

‖h(z)− h(x)− h′(x)(z − x)‖ ≤ Lh‖z − x‖2, (5)

‖h(z)− h(x)‖ ≤ L‖z − x‖, (6)

and, ∣∣∣L(z, λ)− L(x, λ)−∇L(x, λ)T (z − x)− 1

2
(z − x)T∇2L(x, λ)(z − x)

∣∣∣ ≤ LL‖z − x‖3. (7)

The rest of this work is organized as follows. Section 2 introduces the local version of the IR algo-
rithm. The semilocal and global IR methods are introduced in Sections 3 and 4, respectively. Section 5
introduces the hybrid IR method and presents the computational experiments. Some final remarks are
given in Section 6.

Notation. The symbol ‖ · ‖ will denote the 2-norm of vectors and matrices. Given x ∈ IRn, we denote
by X the diagonal matrix whose elements are the entries of x. The canonical basis of IRn will be denoted
e1, . . . , en. We will denote e = e1+ · · ·+en. The symbol IN indicates the set of natural numbers. K1⊂

∞
K

indicates that K is a subsequence of natural numbers and K1 is a subsequence of K. PΩ(x) will denote
the Euclidean projection of x onto Ω.

2 An implementable local algorithm

In order to simplify the notation, we take, from now on in this section,

Ω = {x ∈ IRn | x ≥ 0}.

Therefore, problem (3) becomes

Minimize f(x) subject to h(x) = 0, x ≥ 0. (8)

In the local algorithm introduced in [7] the restoration phase of iteration k establishes that an approx-
imately feasible point yk should be defined satisfying improved infeasibility and controlled distance to
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the current point xk. Analogously, in the optimization phase the new iterate should be chosen decreasing
a linear-constraint KKT residual with bounded distance to yk. No sufficient conditions are given in [7]
on the satisfiability of both requirements. In contrast, in Algorithm 2.1 below, we rigorously define the
computational procedures used in both phases and, later, we prove that, under suitable sufficient condi-
tions, welldefinedness and local quadratic convergence take place.

Algorithm 2.1.

Let ρ≫ 1. Assume that x0 ∈ Ω. Initialize k ← 0.

Step 1. Restoration Phase

Try to solve the problem

Minimize ‖s‖2 subject to h′(xk)s = −h(xk) and xk + s ∈ Ω. (9)

If the feasible region of (9) is empty, solve the problem

Minimize
1

ρ
‖s‖2 + ‖h′(xk)s+ h(xk)‖2 subject to xk + s ∈ Ω. (10)

Let sk be the solution found and define
yk = xk + sk. (11)

Step 2. Initial Multipliers

If k = 0 compute (λ0, µ) ∈ IRm × IRn
+ as the minimum norm solution of the linear least-squares

problem

Minimize

∥∥∥∥
(
∇h(yk) −I

0 Yk

)(
λ
µ

)
+

(
∇f(yk)

0

)∥∥∥∥
2

(12)

and define µ0 = max{µ, 0}. (The vectors µk have no influence in the calculations but are defined in the
algorithm for being used in proofs.)

Step 3. Optimization Phase

Step 3.1. Compute σk ≥ 0 such that for all nonnull d ∈ IRn in the null-space of h′(yk) we have that
dT [∇2L(xk, λk) + σkI]d > 0.

Step 3.2. Solve the Quadratic Programming problem given by

Minimize
1

2
dT [∇2L(yk, λk) + σkI]d+∇f(yk)T d subject to h′(yk)d = 0 and yk + d ∈ Ω. (13)

(Note that the objective function of the problem (13) above is strictly convex on the feasible set defined
by h′(yk)d = 0 and yk + d ∈ Ω.) Let dk be the solution of (13) and let (λk+1, µk+1) ∈ IRm × IRn

+ be a
vector of Lagrange multipliers for problem (13).

Step 3.3. If yk = xk and dk = 0 stop declaring Convergence. Otherwise, compute

xk+1 = yk + dk. (14)

Step 3.4. Set k ← k + 1, and go to Step 1.

Remarks.
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1. If the algorithm declares convergence (yk = xk and dk = 0) then we have that xk is a stationary
point of minimizing ‖h(x)‖2 subject to x ∈ Ω. Moreover, we have that xk is also a stationary point
of minimizing f(x) subject to h(x) = h(xk) and x ∈ Ω. Thus, if xk is feasible, we have that xk is a
stationary point of (8).

2. The condition required for σk at the Optimization Phase reveals our desire of solving a strictly
convex quadratic optimization problem in (13). This requirement is related with the affordability
of the algorithm. Nonconvex global quadratic optimization is a hard optimization problem that we
wish not to address at all. Moreover, even being close to the solution of the problem, the solution
of a nonconvex quadratic programming subproblem could lead us to a point far away from the
solution. Consider, for example the problem

Minimize − (x− 1)2 + x3 subject to x ∈ [0, 10].

In this problem, xk could be arbitrarily close to the solution x∗ = 0 but the nonconvex quadratic
approximation has a global minimizer at d = 10. We could ask for the local minimizer of the
quadratic subproblem which is closest to 0 but finding the minimum norm local minimizer of a
nonconvex quadratic problem is an even more difficult optimization problem that we do not want
to face. Note that, in the example presented above, the minimizer x∗ = 0 satisfies both the Linear
Independence Constraint Qualification (LICQ) and the Second-Order Sufficient condition, and even
the Strong Second-Order Sufficient Condition of Jittorntrum [11, 18, 19].

3. The positive definiteness of ∇2L(xk, λk) + σkI on the null-space of h′(yk) guarantees that the
subproblem (13) is convex and has only one solution. However, such positive definiteness may be
too strong for that purpose. We impose this condition for the sake of implementability, since we
can detect its fulfillment computing an inertia-revealing factorization of the matrix

(
∇2L(yk, λk) + σkI h′(yk)T

h′(yk) 0

)
.

Having this factorization, we may obtain the global minimizer of 1
2d

T [∇2L(yk, λk) + σkI]d +
∇f(yk)T d subject to h′(yk)d = 0, which is quite useful for the process of solving (13). A practical
approach for obtaining σk satisfying the condition required by Step 3 of the algorithm consists of
applying Lanczos’ matrix-free algorithm for computing eigenvalues [24].

2.1 Local Convergence

Assumption KKT. The point x∗ ∈ Ω satisfies the KKT conditions of (8) with multipliers λ∗ ∈ IRm

and µ∗ ∈ IRn
+.

Assumption LICQ. The gradients of the active constraints at x∗ are linearly independent.

Assumption S2. There exists c > 0 such that for all d ∈ IRn such that h′(x∗)d = 0 we have that
dT∇2L(x∗, λ∗)d ≥ c‖d‖2. (This implies that the objective function of the problem

Minimize
1

2
dT∇2L(x∗, λ∗)d+∇f(x∗)T d subject to h′(y∗)d = 0 and y∗ + d ∈ Ω (15)

is strictly convex on the feasible set defined by h′(x∗)d = 0 and x∗ + d ∈ Ω.)

Given a nonsmooth system of equations F (z) = 0, where F : IRp → IRp is Lipschitz-continuous, the
set of points where F is continuously differentiable will be denoted DF . Then for any z ∈ IRp, we define,
as in [25],

∂BF (z) ≡ {lim∇F (zk) | zk → z, zk ∈ DF }.
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If all members in ∂BF (z) are nonsingular, then we say that F is BD-regular at z.
Consider the KKT system associated with (8) in the form

∇f(x) + h(x)Tλ− µ = 0, h(x) = 0, min{xi, µi} = 0 for i = 1, . . . , n. (16)

This system has the form F (z) = 0 with z = (x, λ, µ) and F is semismooth in the sense of [30] and [26].
Moreover, the solution (x∗, λ∗, µ∗) also solves 2ℵ smooth nonlinear systems, where ℵ is the number of
indices j for which x∗

j = µ∗
j = 0. The first n+m equations of those nonlinear systems are given by

∇f(x) + h(x)Tλ− µ = 0 and h(x) = 0. (17)

For each j such that x∗
j = 0 and µ∗

j > 0, the (m+ n+ j)-th equation of all those nonlinear systems is

xj = 0. (18)

Conversely, for each j such that x∗
j > 0 and µ∗

j = 0, the (m + n + j)-th equation of all those nonlinear
systems is

µj = 0. (19)

If x∗
j = µ∗

j = 0 two branches of nonlinear systems are generated, for one of them, the (m + n + j)-th

equation is xj = 0 and for the other branch the (m+ n+ j)-th equation is µj = 0. The set of 2ℵ smooth
nonlinear systems so far described will be denoted

Fν(x, λ, µ) = 0, ν = 1, . . . ,ℵ.

We state the following well known result for the sake of completeness.

Lemma 2.1. Assume that the LICQ condition holds. Then, there exist i1, . . . , im such that x∗
i1
, . . . , x∗

im
>

0 and the columns i1, . . . , im of h′(x∗) are linearly independent.

Lemma 2.2. Assume that (x∗, λ∗, µ∗) satisfies assumptions LICQ and S2. Then, the nonsmooth sys-
tem (16) is BD-regular at (x∗, λ∗, µ∗). Equivalently, all the Jacobians F ′

ν(x
∗, λ∗, µ∗), ν = 1, . . . ,ℵ are

nonsingular.

Proof. Consider first the case in which x∗
j > 0 for all j = 1, . . . , n. Then, µ∗

j = 0 for j = 1, . . . , n, F is
differentiable at (x∗, λ∗, µ∗), and the only element of ∂BF (x∗, λ∗, µ∗) is the matrix

A =



∇2L(x∗, λ∗) ∇h(x∗) 0

h′(x∗) 0 0
0 0 In×n


 . (20)

By assumptions LICQ and S2, matrix (20) is nonsingular. Therefore, x∗ is BD-regular in this case.
In the general case, by assumption LICQ, h′(x∗) contains m linearly independent columns that cor-

respond to variables x∗
j > 0. Without loss of generality, assume that the last m columns of h′(x∗) are

linearly independent and x∗
j > 0 for j = n−m+ 1, . . . , n.

Assume now that x∗
1 = 0 and x∗

j > 0, j = 2, . . . , n. Now we have two possibilities: µ∗
1 > 0 and µ∗

1 = 0.
In the first case ∂BF (x∗, λ∗, µ∗) also contains a single element, given by

A1 =




∇2L(x∗, λ∗) ∇h(x∗) e1 0
h′(x∗) 0 0 0
(e1)T 0 0 0
0 0 0 In−1×n−1


 .
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By assumptions LICQ and S2 the matrix A1 is also nonsingular. In the second case we have that
∂BF (x∗, λ∗, µ∗) = {A,A1}. Therefore, (x∗, λ∗, µ∗) is BD-regular also in this case. We may continue
this procedure inductively in order to generate, for j = 1, . . . , n − m, all the possibilities for x∗

j being
null or positive, the first of which has two possibilities µ∗

j > 0 and µ∗
j = 0. In all the steps, employing

assumptions LICQ and S2, we verify that all the generated matrices are nonsingular. �

Assumption S2, together with the KKT assumption, provides a second-order sufficient condition for x∗

being a local minimizer. There are much weaker sufficient second-order conditions, so the reasons why we
use S2 should be clarified. In Unconstrained Optimization, the classical second-order sufficient condition
(positive definiteness of the Hessian) guarantees (with the annihilation of the gradient), not only that
the point under consideration is a strict local minimizer but also that the quadratic model based on
this condition has a sole global minimizer at x∗. Analogously, in equality constrained optimization, if the
Hessian of the Lagrangian is positive definite restricted to the null-space of the Jacobian of the constraints
at x∗, and the KKT condition holds, we have, not only that the point is a strict local minimizer, but
also that the quadratic model defined by the Hessian of the Lagrangian has a sole global minimizer
at the solution. Sufficient conditions for general (with inequalities) constrained optimization obviously
guarantee that the critical point is a local minimizer but they do not guarantee that the quadratic
model has a global minimizer or that a global minimizer (provided that it exists) is close to the solution.
Therefore, when the classical second-order sufficient conditions take place, the minimizer of the quadratic
model may be far away from the true solution. Since we generally wish to mimic the quadratic model
at the solution when we approximate the problem, this is a serious inconvenient. Therefore, we prefer
here to derive the theoretical properties of the algorithm on a neighborhood of a solution that satisfies
a stronger second-order sufficient condition, which obviously guarantees that the quadratic model has a
global minimizer and that this global minimizer is close to the current point.

If we have a good initial primal estimate x0 we can obtain a good estimate for the multipliers λ0

solving the linear least squares problem (12). If the columns of the (2n)× (m+ n) matrix
(
∇h(y0) −I

0 Y0

)

are linearly independent, problem (12) has only one solution. Therefore, one may obtain good estimates
of the Lagrange multipliers if y0 is close to a solution x∗ and the columns of

(
∇h(x∗) −I

0 X∗

)
(21)

are linearly independent. This corresponds to the case in which assumption LICQ is fulfilled. If the LICQ
assumption is relaxed, the columns of (21) may be linearly dependent and, consequently, the problem (12)
may be ill-conditioned and the numerically obtained solution of this problem may be unreliable.

Lemma 2.3. Suppose that assumption LICQ holds. Then, there exists β > 0 and ε > 0 such that,
whenever ‖x− x∗‖ ≤ ε and x ≥ 0, the problem

Minimize ‖s‖2 subject to h′(x)s+ h(x) = 0 and x+ s ≥ 0 (22)

is feasible, has a sole solution s̄, and satisfies the LICQ condition for problem (22). Moreover, we have
that

‖s̄‖ ≤ β‖h(x)‖, (23)

‖h(x+ s̄)‖ ≤ Lh‖s̄‖2 ≤ Lhβ‖h(x)‖2, (24)

and
‖x+ s̄− x∗‖ ≤ (1 + Lβ)‖x− x∗‖. (25)
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Proof. By Lemma 2.1, there exist i1, . . . , im such that x∗
i1
, . . . , x∗

im
> 0 and the columns i1, . . . , im of

h′(x∗) are linearly independent. Without loss of generality, suppose that i1 = 1, . . . , im = m. Then, we
can write

h′(x∗) = (B(x∗) | N(x∗)),

where B(x∗) ∈ IRm×m is nonsingular and N(x∗) ∈ IRm×(n−m).
Define c = min{x∗

1, . . . , x
∗
m}/3. By the continuity and nonsingularity of B(x∗), since h(x∗) = 0, there

exist ε1 > 0 such that, whenever ‖x− x∗‖ ≤ ε1 one has

(i) xj ≥ 2c for all j = 1, . . . ,m,

(ii) B(x) is nonsingular,

(iii) ‖B(x)−1‖ ≤ 2‖B(x∗)−1‖,

(iv) |[B(x)−1h(x)]i| ≤ c for all j = 1, . . . ,m.

Define, for all x ∈ Ω such that ‖x− x∗‖ ≤ ε1,

y = x−
(
B(x)−1h(x)

0

)
.

Clearly, y is well defined becauseB(x) is nonsingular. By construction we have that h′(x)(y−x)+h(x) = 0.
Moreover, since xj ≥ 2c and |[B(x)−1h(x)]i| ≤ c for all j = 1, . . . ,m, we have that yi ≥ c > 0 for all
i = 1, . . . ,m. Thus, since yj = xj for all j = m + 1, . . . , n, we have that y ≥ 0. Therefore, y − x is a
feasible point of (22).

Since the feasible set of (22) is nonempty and the objective function is strictly convex, we have
that (22) has a sole solution s̄ for every x ≥ 0 such that ‖x−x∗‖ ≤ ε1. By the definition of (22) it follows
that

‖s̄‖ ≤ ‖y − x‖ = ‖B(x)−1h(x)‖ ≤ 2‖B(x∗)−1‖‖h(x)‖. (26)

Therefore, (23) holds with β = 2‖B(x∗)−1‖. Now, taking ε ∈ (0, ε1] in such a way that xj + s̄j > 0 for
all j = 1, . . . ,m, the LICQ condition of (22) at x+ s̄ follows from the nonsingularity of B(x).

Finally, by the Lipschitz condition,

h(x+ s̄) = h(x) + h′(x)s̄+ r(s̄),

where ‖r(s̄)‖ ≤ Lh‖s̄‖2. Since h′(x)s̄ + h(x) = 0 this completes the proof of (24), while (25) follows
trivially from (23). �

Lemma 2.4. Suppose that assumptions LICQ and S2 hold. Suppose that the sequence {(yk, λk)} ⊂
Ω× IRm converges to (x∗, λ∗). Consider the problem

Minimize
1

2
(z − yk)THk(z − yk) +∇f(yk)T (z − yk) subject to h′(yk)(z − yk) = vk, z ≥ 0, (27)

with Hk = ∇2L(yk, λk) and ‖vk‖ = O(‖yk−x∗‖). Then, for k large enough we have that (i) problem (27)

has a sole solution zk associated with sole Lagrange multipliers λ̂k ∈ IRm and µ̂k ∈ IRn
+, and that (ii)

limk→∞(zk, λ̂k, µ̂k) = (x∗, λ∗, µ∗).

Proof. Define, for all z ∈ IRn,

Qk(z) =
1

2
(z − yk)THk(z − yk) +∇f(yk)T (z − yk)
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and
H∗ = ∇2L(x∗, λ∗).

By assumptions LICQ and S2 and the convergence of yk and λk, problem (27) is strictly convex for k
large enough, the solution zk and the multipliers are sole, and {zk} is bounded. By the definition of zk

we have that
Qk(z

k) ≤ Qk(y
k), h′(yk)(zk − yk) = vk, and zk ≥ 0. (28)

Let z∗ be a limit point of {zk}. Taking limits in (28) we obtain that

1

2
(z∗ − x∗)TH∗(z

∗ − x∗) +∇f(x∗)T (z∗ − x∗) ≤ 0, h′(x∗)(z∗ − x∗) = 0, and z∗ ≥ 0.

But, by the KKT assumption and the positive definiteness of H∗, x
∗ is the only global minimizer of

1
2 (z−x∗)TH∗(z−x∗)+∇f(x∗)T (z−x∗) subject to h′(x∗)(z−x∗) = 0 and z ≥ 0. Therefore, z∗ = x∗. So,
every limit point of the bounded sequence {zk} is equal to x∗, which implies that {zk} converges to x∗.

Therefore, for k large enough, x∗
i > 0 implies that zki > 0 and, consequently, µ̂k

i = 0. So, for k large
enough, zki = 0 implies that x∗

i = 0. Roughly speaking, the set of active constraints of problem (27) at
zk is contained in the set of active constraints of problem (8) at x∗. Thus, by the LICQ, the system

∇Qk(z
k) +∇h′(yk)λ−

∑

i∈I∗

µie
i = 0, (29)

where I∗ = {i ∈ {1, . . . , n} | x∗
i = 0}, as only solution λ̂k and µ̂k

i , i ∈ I∗.
Taking limits and using the linear independence of the gradients of active constraints in a neighbor-

hood of the solution, since zk → x∗, we get that λ̂k → λ∗ and µ̂k → µ∗. In particular, µ̂k
i > 0 if µ∗

i > 0
and k is large enough. �

Lemma 2.5. Suppose that assumptions LICQ and S2 hold. Let ε > 0. Then, there exists δ > 0 such
that ‖(xk − x∗, λk − λ∗)‖ ≤ δ implies that xk+1 is well defined by Algorithm 2.1 and ‖(xk+1 − x∗, λk+1 −
λ∗, µk+1 − µ∗)‖ ≤ ε.

Proof. By Lemma 2.4 (with vk = 0) there exists ε1 > 0 such that ‖(yk − y∗, λk − λ∗)‖ ≤ ε1 implies that
xk+1 is well defined by Algorithm 2.1 and ‖(xk+1 − x∗, λk+1 − λ∗, µk+1 − µ∗)‖ ≤ ε. By (23) and (25),
taking ε2 ≤ ε1/[2(1 +Lβ)] and ‖xk − x∗‖ ≤ ε2, we have that ‖yk − y∗‖ ≤ ε1/2. Therefore, taking δ ≤ ε2
we obtain the desired result. �

Lemma 2.6. Suppose that assumptions LICQ and S2 hold. Then, there exists δ > 0 such that, whenever
‖(xk − x∗, λk − λ∗)‖ ≤ δ we have that

xk
i = 0 ⇒ x∗

i = 0, (30)

[∇f(xk) +∇h(xk)λk]i = 0 ⇒ µ∗
i ≡ [∇f(x∗) +∇h(x∗)λ∗]i = 0, (31)

xk+1
i = 0 ⇒ x∗

i = 0, (32)

µk+1
i = 0 ⇒ µ∗

i ≡ [∇f(x∗) +∇h(x∗)λ∗]i = 0, (33)

µ∗
i > 0 and x∗

i = 0 ⇒ µk+1
i > 0 and xk+1

i = 0, (34)

µ∗
i = 0 and x∗

i > 0 ⇒ µk+1
i = 0 and xk+1

i > 0. (35)

Proof. (30) and (31) follow by continuity. (32), (33), (34), and (35) follow from Lemma 2.5 and the
complementarity of the solution of the subproblem (xk+1

i µk+1
i = 0), taking δ sufficiently small. �
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Let us briefly recall the convergence theory for Brown-Brent methods given in [27] in a suitable form
for our local convergence purposes. Assume that w∗ ∈ IRq satisfies ℵ nonlinear systems Fν(w) = 0, where
all the functions Fν , ν = 1, . . . ,ℵ are sufficiently smooth. In addition, we will assume that each system
is of the form

Fν,1(w) = 0, Fν,2(w) = 0,

where Fν,1 and Fν,2 are blocks of equations. In addition, all the Jacobians F ′
ν(w

∗) are nonsingular
with a common bound for the norms of the Jacobian inverses and Lipschitz constants. The General-
ized Brown-Brent (GBB) iteration consists of, given wk ∈ IRn, choose ν ∈ {1, . . . ,ℵ}, take wk,1 such
that F ′

ν,1(w
k,1)(wk,1 − wk) + Fν,1(w

k,1) = 0 and ‖wk,1 − wk‖ ≤ β‖Fν,1(w
k)‖, and wk+1 such that

F ′
ν,1(w

k,1)(wk+1 − wk,1) = 0 and F ′
ν,2(w

k,1)(wk+1 − wk,1) + Fν,2(w
k,1) = 0. The theory in [27] has an

option for avoiding derivatives, includes several blocks (more than 2), employs a family of factorizations
to find the sub-iterations, and is restricted to ℵ = 1. However, to adapt the arguments for proving local
quadratic convergence to the case of arbitrary ℵ is mere routine. The method so far defined is quadrati-
cally convergent to w∗ if one takes ‖w0 − w∗‖ sufficiently small. Here we will apply this classical result
to Algorithm 2.1.

Lemma 2.7. Consider Algorithm 2.1 skipping Step 2. Suppose that assumptions LICQ and S2 hold.
Then, there exists ε > 0 such that, if max{‖x0 − x∗‖, ‖λ0 − λ∗‖} ≤ ε, the sequence {(xk, λk)} is well
defined and converges quadratically to (x∗, λ∗).

Proof. We denote w = (x, λ) and q = m + n. We will define a family of nonlinear systems Fν(w) = 0
with Fν = (Fν,1, Fν,2), where

Fν : IRq → IRq, Fν,1 : IRq → IRm, and Fν,2 : IRq → IRn.

Assume, without loss of generality, that nx, nu, and nb with n = nx + nu + nb are such that




x∗
i = 0 and µ∗

i > 0 for all i = 1, . . . , nx,
x∗
i > 0 and µ∗

i = 0 for all i = nx + 1, . . . , nx + nu,
x∗
i = 0 and µ∗

i = 0 for all i = nx + nu + 1, . . . , nx + nu + nb.

Define ℵ = 2nb ,
[Fν,1(w)]i = [h(x)]i for all i = 1, . . . ,m and all ν ∈ {0, 1}nb ,

and

[Fν,2(w)]i =





xi for all i = 1, . . . , nx and all ν ∈ {0, 1}nb ,

[∇f(x) +∇h(x)λ]i for all i = nx + 1, nx + nu and all ν ∈ {0, 1}nb ,

xi for all i = nx + nu + 1, . . . , nx + nu + nb such that νi−nx−nu
= 0,

[∇f(x) +∇h(x)λ]i for all i = nx + nu + 1, . . . , nx + nu + nb such that νi−nx−nu
= 1.

In this way, ℵ systems are defined and, by assumption KKT, (x∗, λ∗) is a solution for all of them.
Moreover, as in Lemma 2.2, we may prove that the Jacobian F ′

ν(x
∗, λ∗) is nonsingular for all ν ∈ {0, 1}nb .

The solution zk = yk + dk associated with (13) satisfies zki = 0 or µk+1
i = 0. By Lemma 2.5, if

‖(xk, λk) − (x∗, λ∗)‖ is small enough we have that zki = 0 only if x∗
i = 0 and µk+1

i = 0 only if µ∗
i = 0.

This implies that, if ‖(yk, λk)− (x∗, λ∗)‖ is small enough, the process that computes (xk+1, λk+1) given
by Algorithm 2.1 is a GBB iteration corresponding to one of the systems Fν(w) = 0. Taking ε > 0
small enough and using an inductive argument, this implies, firstly, that ‖(xk+1, λk+1) − (x∗, λ∗)‖ ≤
(1/2)‖(xk, λk)− (x∗, λ∗)‖ and, secondly, that the convergence is quadratic. �
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Theorem 2.1. Suppose that assumptions LICQ and S2 hold. Then, there exists ε > 0 such that, if
‖x0 − x∗‖ ≤ ε, the sequence {(xk, λk)} defined by Algorithm 2.1 is well defined and converges quadrati-
cally to (x∗, λ∗).

Proof. By (12), taking x0 close enough to x∗, we have that ‖λ0 − λ∗‖ is as small as desired. Then, the
proof follows from Lemma 2.7. �

3 A Semilocal Algorithm

Algorithm 3.1. In this algorithm, we proceed as in Algorithm 2.1 except that, instead of (11), we define
yk = xk + tyks

k where tyk ≤ 1 is obtained by backtracking in order to guarantee that ‖h(yk)‖ ≤ ‖h(xk)‖,
and, instead of (14), we define xk+1 = yk + txkd

k where txk ≤ 1 is obtained by backtracking in order to
guarantee that L(xk+1, λk) ≤ L(yk, λk).

Since sk is a descent direction for ‖h(·)‖2 at xk and dk is a descent direction for L(·, λk) at yk, we
have that Algorithm 3.1 is well defined. Moreover, if the assumptions LICQ, KKT, and S2 hold, then,
for (xk, λk) close to (x∗, λ∗), we have that there exists t̄ > 0 such that txk ≥ t̄.

Theorem 3.1. Assume that the sequence (xk, λk) is generated by Algorithm 3.1 and converges to (x∗, λ∗).
Suppose that assumptions LICQ, KKT, and S2 hold. Then, for k large enough we have that ‖h(xk+sk)‖ ≤
‖h(xk)‖ and L(yk + dk, λk) ≤ L(yk, λk).

Proof. By Theorem 2.1 and assumptions LICQ and S2, we have that σk = 0 for k large enough. By
Lemma 2.3 we have that ‖h(xk + sk)‖ ≤ Lhβ‖h(xk)‖2. Therefore, ‖h(xk + sk)‖ ≤ ‖h(xk)‖ for k large
enough.

If dk = 0 there is nothing to prove. So, let us consider the case that dk 6= 0. By (23) we have that
‖yk − xk‖ tends to zero. By the hypothesis, ‖xk+1 − xk‖ also tends to zero and, since xk+1 = yk + txkd

k

and txk > t̄ > 0, we deduce that
lim
k→∞

‖dk‖ = 0. (36)

Let wk be the unconstrained minimizer of the quadratic

1

2
(w − yk)T∇2L(yk, λk)(w − yk) +∇L(yk, λk)T (w − yk) (37)

along the line w = yk + t dk, t ∈ IR. By the definition of yk + dk, it is the minimizer of (37) along the
same line but restricted to w ≥ 0. So we have that

yk + dk = yk + ξk(w
k − yk), (38)

for some ξk ∈ [0, 1]. Let us denote

uk =
wk − yk

‖wk − yk‖ ,

ϕk(t) = L(yk + tuk, λk)− L(yk, λk),

and

Qk(t) =
1

2
(tuk)T∇2L(yk, λk)(tuk) +∇L(yk, λk)T (tuk).

Then,
Qk(t) = ϕ′

k(0)t+ ϕ′′
k(0)t

2/2.

11



By continuity, (36), and assumptions LICQ and S2, we have that there is c > 0 such that ϕ′′
k(0) ≥ c > 0

for k large enough. By the definition of wk we have that ‖wk − yk‖ is the minimizer of Qk(t). Therefore,

‖wk − yk‖ = −ϕ′
k(0)/ϕ

′′
k(0).

By Taylor’s formula (7), the continuity assumptions, and the convergence of the sequence, there exists
LL > 0 such that

ϕk(ξk‖wk − yk‖) ≤ Qk(ξk‖wk − yk‖) + LL(ξk‖wk − yk‖)3. (39)

We wish to prove that the right-hand side of (39) is nonpositive if k is large enough. We have that

Qk(ξk‖wk − yk‖) = ϕ′
k(0)ξk‖wk − yk‖+ ϕ′′

k(0)(ξk‖wk − yk‖)2/2
= −ϕ′

k(0)
2ξk/ϕ

′′
k(0) + ϕ′′

k(0)(ξkϕ
′
k(0)/ϕ

′′
k(0))

2/2

= −ϕ′

k(0)
2

ϕ′′

k
(0) (ξk − ξ2k/2)

= −‖wk − yk‖2ϕ′′
k(0)(ξk − ξ2k/2).

Therefore, the right-hand side of (39) is

−‖wk − yk‖2ϕ′′
k(0)(ξk − ξ2k/2) + LL(ξk‖wk − yk‖)3.

This quantity is nonpositive if, and only if,

− ϕ′′
k(0)(1− ξk/2) + LLξ

2
k‖wk − yk‖ ≤ 0. (40)

For k large enough, by (38) and the fact that ξ ∈ [0, 1], and ϕ′′
k(0) ≥ c > 0, we have that

− ϕ′′
k(0)(1− ξk/2) + LLξ

2
k‖wk − yk‖ = −ϕ′′

k(0)(1− ξk/2) + LLξk‖dk‖ ≤ −c(1− 1/2) + LL‖dk‖. (41)

So, by (36) and (41), we conclude that (40) holds. This completes the proof. �

4 Global Algorithm

The next algorithm is essentially the “Flexible Inexact Restoration Algorithm with Sharp Lagrangian”
introduced in [9], with the particular choices of Algorithm 3.1 for the restoration procedure and for the
computation of the optimization direction. The only difference between the algorithm proposed in [9]
and the algorithm below is that in the line search of the latter one we ask for a sufficient decrease of the
Lagrangian instead of the simple decrease required in [9]. Note that in [9] the algorithm was introduced
with the specific purpose of minimizing an objective functions with multiobjective constraints.

Given a penalty parameter θ ∈ [0, 1], we consider, for all x ∈ Ω and λ ∈ IRm, the merit function [28]
given by

Φ(x, λ, θ) = θL(x, λ) + (1− θ)‖h(x)‖. (42)

Algorithm 4.1.

Let x0 ∈ Ω be an arbitrary initial point, cbig ≥ 0, and α ∈ (0, 1
2 ). We initialize θ−1 ∈ (0, 1) and k ← 0.

Step 1. Restoration step

Step 1.1. Compute sk and yk as in Algorithm 3.1. (Note that yk = xk if h(xk) = 0.)
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Step 1.2. If ‖h(xk)‖ = ‖h(yk)‖ = 0, take 0 < r′k < rk < 1, else, define

0 < r′k < rk ∈
[‖h(yk)‖
‖h(xk)‖ , 1

)
. (43)

Step 2. Estimation of Lagrange multipliers

Step 2.1. If k = 0 compute λ0 as in Algorithm 3.1 and define λ−1 = λ0.

Step 2.2. If ‖λk‖ 6≤ cbig, redefine λk ← 0 (also redefine λ−1 ← 0 if k = 0).

Step 3. Penalty parameter computation

Compute θk as the supremum of the values of θ ∈ [0, θk−1] such that

Φ(yk, λk, θ) ≤ Φ(xk, λk−1, θ) +
1− r′k

2

(
‖h(yk)‖ − ‖h(xk)‖

)
. (44)

Step 4. Quadratic subproblem

Compute dk as in Algorithm 3.1 and let λk+1 be the vector of Lagrange multipliers associated with
the subproblem (13).

Step 5. Line search and iteration update

Step 5.1. Compute tk ∈ {1, 1/2, 1/4, . . . } as large as possible, such that

L(yk + tkd
k, λk) ≤ L(yk, λk) + αtk∇L(yk, λk)T dk (45)

and

Φ(yk + tkd
k, λk, θk) ≤ Φ(xk, λk−1, θk) +

1− rk
2

(
‖h(yk‖ − ‖h(xk)‖

)
. (46)

Step 5.2. Set
xk+1 = yk + tkd

k, (47)

update k ← k + 1 and go to Step 1.

Remark. The Restoration step (Step 1) of Algorithm 4.1 is deemed successfully computed in the itera-
tion k if h(xk) = 0 or h(yk) < h(xk).

Theorem 4.1. For all xk ∈ Ω, if the point yk at Step 1 of Algorithm 4.1 is successfully computed, then
the iterate xk+1 is well defined.

Proof. By the well definiteness of the algorithm introduced in [9], we just have to prove that condition (45)
can be satisfied in finite number of attempts. However, since dk is a descent direction for L(·, λk) at yk,
the result follows from the classical theory of the Armijo line search rule. �

Assumption P1. There exists σmax > 0 such that

dT∇2L(x, λ)d ≤ σmax‖d‖2, (48)

for all d ∈ IRn, x ∈ Ω, and ‖λ‖ ≤ cbig.
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Assumption A1. For all k ∈ IN , Step 1 of the Algorithm is successful and there exist r ∈ [0, 1) and
β > 0 such that

rk ≤ r (49)

and
‖yk − xk‖ ≤ β‖h(xk)‖. (50)

Assumption A2. For all k ∈ IN , σk is chosen in such way that there exist σmin > 0 and σmax > 0 such
that

σmin‖dk‖2 ≤ (dk)T [∇2L(yk, λk) + σkI]d
k ≤ σmax‖dk‖2. (51)

Note that there is no loss of generality in considering the same σmax in Assumptions A1 and A2.

Theorem 4.2. Suppose that Assumptions P1, A1, and A2 hold. Then

1. For all k ∈ IN , xk is well defined.

2. There exists θ̄ > 0 such that θk ≥ θ̄ for all k ∈ IN .

3. limk→∞ ‖h(xk)‖ = limk→∞ ‖h(yk)‖ = 0 and any cluster point of {xk} or {yk} is feasible.

4. There exists t̄ > 0 such that tk ≥ t̄ for all k ∈ IN .

5. limk→∞ ‖dk‖ = 0.

6. limk→∞ ‖yk − xk‖ = 0.

7. The sequences {xk} and {yk} admit the same cluster points.

8. Limit points of {xk} satisfy the L-AGP optimality condition.

9. If a limit point x∗ of {xk} satisfies the Constant Positive Generators (CPG) constraint qualifica-
tion [4] then the KKT conditions hold at x∗.

10. If a limit point x∗ of {xk} satisfies the Mangasarian-Fromovitz constraint qualification and ‖λk‖ ≤
cbig for k large enough then the sequence {λk} admits a limit point λ∗ which is a Lagrange multiplier
associated with ∇h(x∗).

Proof. By the general hypothesis of the original problem (3), the algorithmic choices of the optimization
direction dk, the Lagrange multiplier estimates λk, and Assumptions A1 and A2, it is straightforward
that assumptions 3.1, 3.2, 3.3 and 3.5 of [9] hold. So, items 1–3 follow from Theorem 3.1 of [9].

By Assumptions A2 we have that, for all k ∈ IN ,

∇L(yk + td, λk)T dk ≤ −σmin

2
‖dk‖2. (52)

If t ≤ (1− α)σmin/σmax, by the Taylor’s formula, and Assumptions P1 and A2, we have that

L(yk + tdk, λk) ≤ L(yk, λk) + t∇L(yk, λk)T dk + σmaxt
2‖dk‖2/2

≤ L(yk, λk) + t
(
∇L(yk, λk)T dk + (1− α)σmin‖dk‖2/2

)

≤ L(yk, λk) + t
(
∇L(yk, λk)T dk − (1− α)∇L(yk, λk)T dk

)

≤ L(yk, λk) + tα∇L(yk + td, λk)T dk.
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Thus we have that condition (45) is satisfied with tk bounded way from zero. By Lemma 3.3 of [9], we
have that condition (46) can also be satisfied with tk bounded way from zero, therefore we conclude the
proof of item 4.

Let us define now

γk = −α∇L(y
k + td, λk)T dk

‖dk‖2 ,

if dk 6= 0. By (52) we have that
γk ≥ ασmin/2.

So, by (45), we have that

L(yk + tkd
k, λk) ≤ L(yk, λk) + αtk∇L(yk, λk)T dk

≤ L(yk, λk)− tkγk‖dk‖2

≤ L(yk, λk)− tkασmin‖dk‖2/2.

Therefore we have that Assumption 3.4 of [9] also holds. So items 5–9 follow directly from Theorem 3.1
of [9]. Finally, if ‖λk‖ ≤ cbig for k large enough, we also have that Assumption 3.6 of [9] holds. Therefore
item 10 also follows from Theorem 3.1 of [9], and so the proof is complete. �

5 Numerical Experiments

Many general purpose constrained optimization methods have been defined in the last 60 years. Few of
of them have been seriously implemented and only a small group can be considered to be practical for
solving real-life problems. Here we adopted the point of view that if a Nonlinear Programming algorithm
deserves to be considered “promising” for solving optimization problems, it should be competitive with
well-established implemented algorithms when applied to problems with only equality constraints. This
means that the new algorithm should either be superior to the competitors on average, considering some
adequate collection of problems, or it should outperform the other algorithms regarding some specific
measure of performance or some specific difficulty on the problems. For this reason we initially tested
the algorithms described in this paper in the case of equality constrained problems.

5.1 Implementation details and hybrid alternative

We will describe the main features of the implementation of Algorithms 2.1, 3.1, and 4.1 for the case
in which, in problem (3), we have Ω ≡ IRn. Algorithms were written in Fortran 90. At Step 1 of
Algorithm 2.1, we compute sk by solving the linear system

(
I ∇h(xk)

∇h(xk)T −ξI

)(
s
w

)
=

(
0

−h(xk)

)
, (53)

where w is an auxiliary variable to be discarded and ξ ∈ {0,√εmach, 3
√
εmach, 9

√
εmach, . . . } is the smallest

value such that the coefficients’ matrix in (53) is numerically non-singular. Note that, if ξ 6= 0, 1/ξ “plays
the role” of parameter ρ ≫ 1 of Algorithm 2.1. At Step 2 of Algorithm 2.1, the initial estimation λ0 of
the Lagrange multipliers is computed by solving the linear system

(
I ∇h(y0)T

∇h(y0) −ξI

)(
λ
w

)
=

(
0

−∇f(y0)

)
, (54)
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where w is an auxiliary variable to be discarded and ξ ∈ {0,√εmach, 3
√
εmach, 9

√
εmach, . . . } is the smallest

value such that the coefficients’ matrix in (54) is numerically non-singular. This means that λ0 is the
solution of the problem

Minimize
1

2
‖∇h(y0)λ+∇f(y0)‖22 + ξ

1

2
‖λ‖22.

At Step 3 of Algorithm 2.1, we compute, simultaneously, σk and (dk, λk+1) by solving the linear system
(
∇2L(yk, λk) + σI ∇h(yk)
∇h(yk)T −ξI

)(
d
λ

)
=

(
−∇f(yk)

0

)
. (55)

In the process of solving (55), the matrix of coefficients is decomposed using an inertia-revealing factor-
ization. We start trying σ = 0 and ξ = 0, unless m > n in which case we start trying with ξ =

√
εmach.

Let M(σ, ξ) be the decomposed matrix whose inertia is known. If its number of negative eigenvalues is
smaller than m then we set ξ ← max{√εmach, 3ξ}. If its number of positive eigenvalues is smaller than n
then we set σ ← max{√εmach, 3σ}. If σ or ξ was updated then matrix M(σ, ξ) is decomposed and its
inertia checked. It is not hard to see that this process is finite (see [31, Theorem 16.6, p. 476]). At the end,
we set σk = σ and (dk, λk+1) as the solution of system (55) with the final computed values of σ and ξ. In
all cases we considered εmach = 10−16 and subroutine MA57 from HSL [33] was used to solve the linear
systems. In the two backtracking processes of Algorithm 3.1, we start trying the unitary step and we
halve it until the desired descent property is satisfied. In Algorithm 4.1, we arbitrarily set cbig = 1020,
α = 10−4, and θ−1 = 1 − εmach. The selection rule for r′k and rk at Step 1.2 of Algorithm 4.1 was the
subject of some numerical experimentation described below. At Step 3 of Algorithm 4.1, it is easy to see
that the desired value for θk is given by θk = θk−1 if L(yk, λk)− ‖h(yk)‖ ≤ L(xk, λk−1)− ‖h(xk)‖, and

θk = min

{
θk−1,

1 + r′k
2

‖h(xk)‖ − ‖h(yk)‖
[L(yk, λk)− ‖h(yk)‖]− [L(xk, λk−1)− ‖h(xk)‖]

}
,

otherwise.
In addition to Algorithms 2.1, 3.1, and 4.1, a supplementary hybrid algorithm (named Algorithm 5.1

from now on) will also be considered in the numerical experiments. Let {Nk
loc} be a sequence of nonnega-

tive integer numbers. In the hybrid algorithm, at each iteration k, we proceed as in Algorithm 4.1 (global)
except that, previous to the execution of Step 1, and starting from (xk, λk), we execute at most Nk

loc

iterations of Algorithm 3.1 (semilocal). Let (xk,ℓ, λk,ℓ) for ℓ = 0, . . . , Nk
loc be the iterates of Algorithm 3.1.

Define
γk,ℓ = max{‖PΩ[x

k,ℓ −∇L(xk,ℓ, λk,ℓ)]− xk,ℓ‖∞, ‖h(xk,ℓ)‖∞}
and let ℓ̄ be such that γk,ℓ̄ = min{γk,1, . . . , γk,Nk

loc
}. If γk,ℓ̄ < γk,0 then we redefine (xk, λk)← (xk,ℓ̄, λk,ℓ̄).

Note that Algorithm 5.1 coincides with Algorithm 4.1 ifNk
loc = 0 for all k and coincides with Algorithm 3.1

if N1
loc =∞. In particular, in this numerical experiments, we will consider one of the most trivial instances

of the hybrid Algorithm 5.1 that consists of taking N1
loc = 100 and Nk

loc = 0 for all k > 1. This choice
coincides with applying first Algorithm 3.1 with a maximum number of iterations kmax = N1

loc = 100
and then, if a solution was not found (the stopping criterion associated with success is described below),
applying Algorithm 4.1 with a potentially improved initial guess.

5.2 Stopping criterion and comparison

We assume that the original problem is given by

Minimize f̂(x) subject to ĥ(x) = 0 (56)

and that, given the initial point x0, in problem (3) we have f(x) ≡ sf f̂(x) and h(x) ≡ Shĥ(x), where
sf = 1/max{1, ‖∇f(x0)‖∞}, [sh]j = 1/max{1, ‖∇hj(x

0)‖∞} for j = 1, . . . ,m, and Sh = diag(sh). This
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means that we are solving a scaled version of problem (56). On the one hand, the optimality tolerance
to declare that a solution of problem (56) was found is based on the scaled problem and is given by
‖f(x) +∇h(x)λ‖∞ ≤ εopt. On the other hand, the feasibility tolerance is based on the original problem

and is given by ‖ĥ(x)‖∞ ≤ εfeas. This means that, in Algorithms 2.1, 3.1, 4.1, and 5.1 the stopping
criterion is given by

‖f(x) +∇h(x)λ‖∞ ≤ εopt
‖ĥ(x)‖∞ ≤ εfeas.

(57)

This criterion is tested for the pair (yk, λk) after the restoration phase and also for the pair (xk+1, λk+1)
after the optimization phase. In the numerical experiments, we considered εfeas = εopt = 10−8. For
comparison purposes, it is worth noting that this stopping criterion is identical to the one adopted by
Algencan [1, 6], while it is also very similar to the one adopted by Ipopt [32]. In Ipopt, the same criterion is
used for feasibility, while a relaxed criterion is used for optimality since, in the right-hand-side of (57), εopt
appears multiplied by max{smax, ‖λ‖1/m}/smax with smax = 100. A very detailed analysis, that is out of
the scope of the present work, might be done in order to determine the influence of this difference between
the stopping criteria of the evaluated methods in their numerical performance. Moreover, Algencan and
Ipopt have additional stopping criteria that, in different ways, detect, for example, “lack of progress”.
These criteria may help to improve the efficiency of a method by detecting that a solution (to a bad
scaled problem) has been found when the conventional stopping criteria associated with success fail. The
algorithms implemented in this work have no additional stopping criteria.

We used performance profiles [10] to compare the methods evaluated in the present study. Consider q
methods M1, . . . ,Mq and p problems P1, . . . , Pp and let tij be a metric of the effort that method Mi

made in problem Pj in order to arrive to a point x∗ with functional value f(x∗) = fij and feasibility
‖h(x∗)‖∞ = hij . It is assumed that the metric tij is such that the smaller its value, the higher the perfor-
mance of method Mi on problem Pj . Moreover, let tmin

j denote the smallest among all the performance
measurements required by each method that “found a solution” for problem Pj . In performance profiles,
each method Mi is related to a curve

Γi(τ) =
#{j ∈ {1, . . . , p} |Mi found a solution for Pj with tij ≤ τ tmin

j }
p

,

where #S denotes the cardinality of set S. Let

fmin
j = min

1≤i≤q
{fij | hij ≤ εfeas}

and consider

εij =
fij − fmin

j

max{1, |fmin
j |} . (58)

For a given tolerance εf > 0, we say that method Mi found a solution to problem Pj if

hij ≤ εfeas and εij ≤ εf . (59)

In addition, we also say that method Mi found a solution to problem Pj if

hij ≤ εfeas and fij ≤ −f∞,

where f∞ is a very large positive number. In this case, we assume the objective function is unbounded
from below within the feasible region and any value of fij ≤ −f∞ is considered a solution. In the
numerical comparison, we considered the CPU time that a method Mi took on a problem Pj to find a
point x∗ that satisfies the method’s stopping criterion as the performance measurement tij . We arbitrarily
set εf = 10−4 and f∞ = 1010 (and εfeas = 10−8).
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5.3 Preliminary numerical experiments

In a first set of experiments, we aimed (a) to evaluate different choices for r′k and rk in Algorithm 4.1
and (b) to perform a comparison between Algorithms 2.1, 3.1, 4.1, and 5.1. We considered all the 162
problems with only equality constraints from the CUTEst collection [16] (version 1.10000) with their
default dimensions. In this preliminary experiments we considered a CPU time limit of 1 minute. All
tests were conducted on a 2.4GHz Intel Core 2 Quad Q6600 with 8GB of RAM memory and running
GNU/Linux operating system (Ubuntu/Linaro 4.6.3-1ubuntu5, kernel 3.2.0-58). Codes were compiled by
the GFortran Fortran compiler of GCC (version 4.6.3) with the -O3 optimization directive enabled.

Given constants c1, c2 ∈ (0, 1), at Step 1.2 of Algorithm 4.1, if ‖h(xk)‖ = ‖h(yk)‖, we take rk = c1
and r′k = c2rk. Otherwise, we take

rk = max

{
c1,
‖h(yk)‖
‖h(xk)‖

}

and r′k = c2rk. To determine the values of c1 and c2, we run numerical experiments with all nine
combinations of c1 ∈ {0.1, 0.5, 0.9} and c2 ∈ {0.1, 0.5, 0.9}. Figure 1 and Table 1 show the results, the
best combination being c1 = 0.9 and c2 = 0.5. In the table, “efficiency” of method Mi is the value
of Γi(1), “robustness” is the value of Γi(∞), and “# convergence” is the number of times method Mi

satisfied its convergence criterion (i.e. criterion (57) for the case of Algorithms 2.1, 3.1, 4.1, and 5.1)
within the imposed CPU time limit.

Having determined the way of choosing r′k and rk in Algorithm 4.1, we are ready to compare the
local, semilocal, global, and hybrid versions of the IR method given by Algorithms 2.1, 3.1, 4.1, and 5.1,
respectively. Figure 2 and Table 2 show the results. On the one hand, the figures appear to show that the
global algorithm would solve more problems than the others if a very short limit on the CPU time were
imposed (since it has the largest efficiency measure). However, this advantage is only in appearance (recall
that we defined the efficiency measure of a method Mi as the value of Γi(1)). Noting that Γ(1.1) ≈ 0.55
for the local method, Γ(1.1) ≈ 0.64 for the semilocal method, and Γ(1.1) ≈ 0.65 for the global and
the hybrid method, we may conclude that the last three methods are equivalently efficient and that
the relatively large difference among the values of Γ(1) for the different methods might be related to
the measurement error of the elapsed CPU times. On the other hand, on the robustness side, with no
CPU time limit (or with a very large CPU time limit), the hybrid algorithm is the one that solves more
problems. Considering robustness as a criterion more relevant than efficiency, we opted by considering
Algorithm 5.1 as the one to be compared against other well-known optimization software.

c1 = 0.1 c1 = 0.5 c1 = 0.9

c2 = 0.1 c2 = 0.5 c2 = 0.9 c2 = 0.1 c2 = 0.5 c2 = 0.9 c2 = 0.1 c2 = 0.5 c2 = 0.9

efficiency 0.45 0.48 0.43 0.48 0.46 0.45 0.47 0.51 0.48
robustness 0.69 0.70 0.69 0.70 0.71 0.71 0.72 0.73 0.73

# convergence 101 102 102 101 102 103 104 105 104

Table 1: Comparison between the different choices for rk and r′k in Algorithm 4.1.

5.4 Comparison against well-established software

In this section we show the results of comparing the hybrid version of IR (Algorithm 5.1) against Algencan
and Ipopt. Again, we considered all the 162 problems with only equality constraints from the CUTEst
collection [16] (version 1.10000) with their default dimensions and a CPU time limit of one minute.
Figure 3 an Table 3 present the results and a few remarks are in order.
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Figure 1: Comparison between the different choices for rk and r′k in Algorithm 4.1.

Algorithm 2.1 Algorithm 3.1 Algorithm 4.1 Algorithm 5.1
(local) (semilocal) (global) (hybrid)

efficiency 0.46 0.42 0.52 0.48
robustness 0.63 0.70 0.70 0.72

# convergence 103 108 105 113

Table 2: Comparison between Algorithms 2.1, 3.1, 4.1, and 5.1.

Due to the difficulty of measuring small CPU times when running third party codes, each pair prob-
lem/method was run only once. For small and simple problems, the measured CPU time may be null. In
those cases, the elapsed CPU time was considered as being 0.01 second. It is worth noting that for Al-
gencan, Ipopt, and the IR approach, the number of measured null times was 51, 29, and 39, respectively.
The number of times Algencan, Ipopt, and the IR approach exceeded the CPU time limit of one minute
was 32, 41, and 26, respectively. In 7 problems Ipopt was not applicable because m > n. In 38 out of
the 41 problems in which Ipopt exceeded the CPU time limit, the final iterate was infeasible (considering
the sup-norm tolerance εfeas = 10−8 as mentioned above). In one case Ipopt was able to perfom a single
iteration preserving the feasibility of the initial point and in the other 2 cases no iteration was done and
the “final” iterate was in fact the initial (feasible) guess. In those 3 cases (in which the CPU time limit
was reached but the final reported iterate was feasible) the objective function was compared according
to (58,59) to determine whether a solution was found.

Algencan, Ipopt, and the IR algorithm delivered a final feasible iterate in 122, 123, and 122 problems,
respectively. Algencan was the only one to find a feasible point in 9 problems and Ipopt was the only one
to find a feasible point in 5 problems. In 4 problems the IR method was the only one to find a feasible
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Figure 2: Comparison between Algorithms 2.1, 3.1, 4.1, and 5.1.

point. The three methods found a feasible point in 95 problems. In 83 out of the these 95 problems,
the three methods found a solution. In the remaining 12 problems, at least one of the methods delivered
a feasible final iterate with an objetive function value that, according to (58,59) was not considered a
solution. Those cases were considered as failures. In the case of failure of a method, due to an infeasible
final iterate or an objective function value that does not classify the final iterate as a solution, the
performance measure (CPU time in this case) is considered to be infinity. For this reason, the value of
the performance profile curves does not reach the value 1 at the right-hand-side of the graphic.

Summing up, while Ipopt appears to be the most efficient method, the Inexact Restoration method
appears to be the most robust one (see Table 3). However, differences are small and, at least for the
considered set of problems and the evaluation procedure adopted in the present numerical experiments,
the performances of the three evaluated methods are very similar. This means that the hybrid version
of the Inexact Restoration method performs very similar to the other two well-established nonlinear
programming software.

Algencan Inexact Restoration (hybrid) Ipopt

efficiency 0.41 0.46 0.57
robustness 0.69 0.71 0.69

# convergence 122 113 127

Table 3: Comparison between Algencan, Inexact Restoration (hybrid), and Ipopt.
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Figure 3: Comparison between Algencan, Inexact Restoration (hybrid), and Ipopt.

6 Conclusions

From the theoretical point of view the algorithms presented in this paper have several desirable char-
acteristics. The local algorithm is locally and quadratically convergent under suitable assumptions, the
semilocal algorithm improves the local algorithm preserving fast local behavior, and the global and the
hybrid algorithms converge starting from arbitrary initial points (although this global convergence does
not seem to be associated with the local properties.)

The hybrid algorithm seems to be the best of the four algorithms implemented from the point of
view of efficiency and robustness. Moreover, only one very simple alternative of hybridization among a
wide range of choices was considered. In the numerical experiments, it was possible to observe that there
were some problems for which only the pure local version of the IR method was able to find a KKT
point. Since the pure local version does not take part of the hybrid IR method, it seems to be even more
room for improvement of the hybrid IR algorithm. These experiments suggest that it is worthwhile to
implement the Inexact Restoration idea in the way given in this paper for general problems.
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