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Abstract

This paper considers the flexible job shop scheduling problem with sequencing flexibility,
a production environment with a wide range of relevant practical applications, especially in
today’s on-demand printing industry. In order to approximate the problem of real-world
applications, we consider the influence of a position-based learning effect on the process-
ing time of the operations. In the present work, we are concerned with the development
of effective and efficient methods for its solution. For this purpose, a local search method
and four trajectory metaheuristics are considered. In the local search, we show that the
classical strategy of reallocating only operations that are part of the critical path may miss
better quality neighbors, as opposed to what happens in the case where there is no learning
effect. Consequently, we analyze an alternative type of neighborhood reduction that elimi-
nates only neighbors that are not better than the current solution. In addition, we propose
a neighborhood reduction and experimentally verify that it significantly reduces the size of
the neighborhood, thereby increasing efficiency, with minimal loss of effectiveness. Exten-
sive numerical experiments are performed. Statistical tests confirm that tabu search based
on the reduced neighborhood, when applied to large-sized instances, outperforms the other
three metaheuristics, namely iterated local search, greedy randomized adaptive search, and
simulated annealing. Experiments on classical instances without sequencing flexibility show
that the introduced methods also stand out in relation to methods from the literature. All
methods, instances, and solutions are freely available.

Keywords: Scheduling, flexible job shop, routing flexibility, sequencing flexibility, position-
based learning effect, trajectory metaheuristics.

∗This work has been partially supported by the Brazilian agencies FAPESP (grants 2013/07375-0, 2022/05803-
3, and 2023/08706-1) and CNPq (grants 311536/2020-4 and 302073/2022-1).

†Department of Applied Mathematics, Institute of Mathematics and Statistics, University of São Paulo, Rua
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1 Introduction

The flexible job shop (FJS) with sequencing flexibility is a production environment with a
wide range of relevant practical applications, especially in the nowadays on-demand printing
industry [38, 39]. Today, companies in the print-on-demand business must deal with customized
production and prioritize on-time delivery in an effort to meet their customers’ needs. In this
context, production activities are organized in flexible workshops to better manage the execution
of the wide range of tasks demanded. Other businesses that fit into this production environment
include the glass industry [1], the mold industry [22], the scheduling of aircraft support operations
in flight decks [49], the scheduling of repairing orders in automobile collision repair shops [2], and
the construction of production programs for steelmaking [19]. It is therefore important that the
solving methods are prepared to cope with the most diverse characteristics of the actual problems
encountered in this production environment. One such factor is the learning effect, i.e. how the
processing time of an operation varies with the number of times it is executed. Naturally, using
processing times that are not entirely consistent with reality can lead to inaccurate schedules
and result in significant economic losses.

The FJS scheduling problem is an extension of the classical job shop (JS) scheduling prob-
lem in which each operation can be processed by one within a set of machines instead of a
single machine. This characteristic is known as routing flexibility. Two additional features are
considered in the present work: sequencing flexibility and learning effect. In the FJS without
sequencing flexibility, there exists the concept of a task, which consists of a set of operations
that must respect a sequential order of execution (first the first operation, then the second, then
the third, etc). The sequencing flexibility consists in considering that the precedences between
the operations of a same task are given by an arbitrary directed acyclic graph (DAG). In a clas-
sical scheduling problem, given an operation and a machine that can process this operation, a
fixed processing time is given that corresponds to the time demanded by the machine to process
the operation. The learning effect corresponds to the real-life ingredient that consists in the
fact that a person learns through the execution of a repetitive task and, the more times they
execute it, the faster they do it. In this work we consider a learning function that depends on
the position that an operation occupies within the list of operations executed by a machine, i.e.
a position-based learning effect function.

A recent literature review on the FJS scheduling problem was done in [16], while a recent
review of the FJS with sequencing flexibility was included in [4]. For applications in real-life
problems see [1, 2, 8, 19, 22, 38, 39, 49] and for development of methods for the FJS with
sequencing flexibility and a variety of additional features see [9, 13, 23, 31, 32, 33, 45].

The impact on a worker’s qualification, by repeated processing of an operation, and the
resulting reduction in the operation’s processing time was investigated in [18] in 1957. Since the
publications of the pioneer works [10, 14, 27] that introduced the concept of learning effect in
scheduling problems near two decades ago, a large number of papers has been published devoted
to this subject. Surveys and classifications can be found in [6, 11, 29, 42]. However, few papers,
which are reviewed below, address the FJS scheduling problem with learning effect and, to the
best of our knowledge, none of them consider sequencing flexibility.

In [44] the FJS scheduling problem with sequence-dependent setup times as well as position-
dependent learning and time-dependent deterioration effects is considered. The authors propose
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a hybrid metaheuristic that combines the genetic algorithm and variable neighborhood search
for the purpose of minimizing the makespan. The same problem is considered in [5], where
the problem is modeled as a bilevel optimization problem in which both levels have the same
objective, namely, minimizing the makespan. The proposed method, called evolutionary bilevel
optimization, constructs feasible solutions in a two-stage hierarchical approach that assigns
operations to machines in the first stage and schedules operations in the second stage. In [47]
a dual resource FJS is considered in which a machine and a worker are required to process
an operation. It is also assumed that there is flexibility in the choice of both, and therefore,
for each operation there is a set of machines and a set of workers capable of processing it.
The problem is described using a mathematical model and a hybrid method that combines
genetic algorithms and variable neighborhood search is developed. In [48] an FJS scheduling
problem with operation processing time deterioration effect is considered with the objective
of minimizing a function that combines makespan and energy consumption. The proposed
methodology hybridizes pigeon-inspired optimization and simulated annealing. In [50], the FJS
scheduling problem with time-dependent learning effect is considered. The problem is multi-
objective and the goal is to minimize the makespan, total carbon emissions, and total workers’
cost. A memetic algorithm, based on NSGA-II, associated with a variable neighborhood search
is proposed. Four different neighborhoods are proposed and special attention is given to the
development of constructive heuristics to develop the initial population. In [43] a dual resource
(machine and worker) FJS with position-dependent learning effect is considered. Additionally,
a transportation time between machines is also taken into account. The goal is to minimize
makespan, energy consumption, and noise. Therefore, the problem is multi-objective. All
of these ingredients come from a real-life sand casting problem. To tackle the problem, a
discrete multi-objective imperial competition algorithm is developed in which a local search
based on simulated annealing is used. In [36], a multi-objective FJS scheduling problem with
position-dependent learning effect, in which makespan and total carbon emissions are minimized,
is considered. The problem is modeled as a mixed integer linear multiobjective optimization
problem and an improved multiobjective sparrow search algorithm is developed.

The problem considered in the present work was recently considered in [4], where integer
linear programming and constraint programming models were introduced and compared. To
improve the performance of exact methods applied to small-sized instances of the problem,
constructive heuristics were also developed. In the present work we continue that work by
developing local search strategies and metaheuristics that can compute good quality solutions
to large-sized instances. (It should be noted that the problem is NP-hard since it contains the JS
scheduling problem, knowingly NP-hard [24], as a particular case). In [41] it was introduced, for
the FJS scheduling problem, a neighborhood reduction that eliminates only neighbors that do not
improve the current solution. The reduction is based on the fact that, given a feasible solution,
removing and relocating an operation that is not in the “critical path” has no chance of leading
to a better solution. This idea was extended to the FJS scheduling problem with sequencing
flexibility in [38, 39]. In the present paper, we begin by showing that the fundamental principle
on which this neighborhood reduction is based does not hold when we consider learning effect.
Consequently, a new neighborhood reduction is introduced in the present work. In addition, we
also introduce a neighborhood cutoff that can leave better quality neighbors behind. However,
numerical experiments will show that if on the one hand the neighborhood cutoff is about 90%,
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the solution found gets worse by about 1% on average. Based on the introduced local search,
we then implement four trajectory metaheuristics. With them, we manage to find good quality
solutions for large-sized instances and to find solutions very close to the optimal solutions in
small-sized instances with known optimal solution.

The rest of this paper is organized as follows. In Section 2 we elaborate on how a feasible
solution of the problem can be represented by a DAG. This representation allows us to introduce
in a simple way the concept of neighborhood and, in the sequel, a local search. Still in Section 2,
we analyze different possibilities to reduce the number of neighbors of a current solution to be
inspected. In Section 3 we describe the considered metaheuristics, namely, iterated local search,
greedy randomized adaptive search procedure, tabu search, and simulated annealing. Section 4
is devoted to extensive numerical experiments. Conclusions and lines of future work are stated
in the final section.

2 Local search

The data of an instance of the FJS with sequencing flexibility and position-based learning effect
consists of (a) a set of operations O and a set of machines F ; (b) for each operation i ∈ O, a
subset Fi ⊆ F containing the machines that can process i; (c) for each operation-machine pair
(i, k) with i ∈ O and k ∈ Fi, a standard processing time pik; and (d) a set of arcs Â ⊆ O × O
representing the precedence relations between the operations. The learning effect is given by a
function ψα(p, r) which, given a standard processing time p and a position r, returns the actual
processing time of an operation with standard processing time p when processed at the r-th
position of a machine. The parameter α > 0 represents the learning effect rate. In the current
work, we consider ψα(p, r) = ⌊100 p/rα + 1/2⌋. A simple example of an instance is shown in
Figure 1.

A feasible solution to an instance of the FJS with sequencing flexibility and position-based
learning effect can be represented by a DAG G = (V,A) as depicted in Figure 2a. This graph
is sometimes referred to as a solution graph in the literature. The vertices of G, represented by
the set V , correspond to the operations plus the dummy vertices s and t, i.e. V = O ∪ {s, t}.
The arcs, represented by the set A, correspond to the arcs in Â representing the precedence
relationships between operations (in black in the picture), arcs going from s to operations that
have no predecessors and arcs going to t from operations that do not precede any other operation
(in purple in the picture). Arcs that start from s and arcs that reach t are named dummy arcs.
Furthermore, dashed arcs represent the assignment of operations to machines and the order in
which the operations are processed by each machine. These arcs are named machine arcs. Each
node i ∈ V \{s, t} = O, that is, each operation, has a value wi associated with it that represents
its actual processing time, which is calculated with the learning function using the operation’s
standard processing time and the position that the operation occupies in the machine to which it
was assigned. Nodes s and t are associated with the value zero. The longest path between nodes
s and t is called critical path (highlighted in yellow in the figure), and its length corresponds to
the makespan of the represented solution.

Given a feasible solution and a DAG G = (V,A) representing it, a new feasible solution
can be constructed by removing an operation from the machine to which it was assigned and

4



1 2 3

4 5

Machines
1 2

O
p
er
at
io
n
s 1 1 1

2 1 1
3 1 1
4 10 10
5 1 1

Figure 1: On the left, representation of the operations’ precedence constraints by a DAG D =
(O, Â), where O = {1, 2, . . . , 5} represents the set of operations and Â = {(1, 2), (2, 3), (4, 5)} is
the set of arcs that represents the precedence constraints. In this simple example, precedence
constraints are given by a linear order, i.e. there is no sequencing flexibility. This instance has
two machines and each of the five operations can be processed in any of the two machines, i.e.
F = {1, 2} and Fi = F for all i ∈ O. This means that there is full routing flexibility. The table
on the right shows the standard processing times pik of the five operations on each of the two
machines.
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Figure 2: In this figure we consider the instance in Figure 1 with learning rate α = 1. The
digraph on the left (Figure 2a) represents a feasible solution in which machine 1 (associated
with the cyan color) processes operation 2 only, while machine 2 (associated with the orange
color) processes operations 1, 4, 5, and 3 in that order. The colored numbers represent the
actual processing time of the operations, with the influence of the learning effect. The critical
path, which length corresponds to the makespan, is given by the path s, 1, 4, 5, 3, t (highlighted
in yellow in the picture). The digraph on the right (Figure 2b) represents the feasible solution
obtained by reallocating operation 2, that was not in the critical path, from machine 1 to
machine 2 between operations 1 and 4. The constructed feasible solution, with critical path
given by s, 1, 2, 4, 5, 3, t, has a makespan smaller than the original one (528 versus 658).

reinserting it in the same machine but in another position or in another machine. When an
operation is removed, the machine arcs adjacent to it must be removed and a new arc going
from the operation before the removed one to the one after the removed one (if both exist)
must be created. When the operation is reinserted, a similar reverse operation must also be
done. When reinserting the operation, it is important to verify that a cycle is not produced
in the digraph. Only reinsertions that do not create cycles build a digraph that corresponds
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to a feasible solution. When there is no learning effect, it is known [41] that there are chances
to build a better feasible solution by removing and relocating operations that are part of the
critical path only. If an operation is not part of the critical path, its removal and reinsertion
cannot decrease the length of the critical path. It can increase it or create another even longer
path. This is false when considering learning effect. An example is shown in Figure 2b.

Given a feasible solution, we can define its neighborhood as the set of all feasible solutions
that can be obtained by removing and reinserting a single operation. When there is no learning
effect, just the removal and reinsertion of operations from the critical path may lead to better
neighbors, i.e. neighbors with lower makespan. This fact is widely used to generate just promis-
ing neighbors. The observation in the previous paragraph shows that this reduction cannot be
used in the problem we are considering in the present work. This leads us to analyze whether
every removal and reinsertion that does not generate cycles has the potential to generate a
neighbor with lower makespan or whether any neighborhood reduction is possible. The main
point is to note that when an operation is removed from a machine, the operations that were
scheduled to be processed later on that machine have their position decreased by one unit and,
consequently, their actual processing time increased. Similarly, in the machine where the opera-
tion is inserted, the operations scheduled to be processed after the inserted operation have their
position increased by one and, therefore, their processing time is decreased. These modifications
may change the makespan whether improving or worsening.

Consider a feasible solution represented by a DAG G = (V,A). Let P be a critical path in G,
with length Cmax. Let i ∈ O be an arbitrary operation. We name fi the machine to which i is
assigned. Let k ∈ F be an arbitrary machine. We name Qk = i1, . . . , i|Qk| the ordered list of
operations assigned to machine k. If an operation i is assigned to machine fi and it is in the
γ-th position of Qfi , then its actual processing time is given by wi = ψα(pi,fi , γ). We intend
to compute all neighbors of the solution represented by G, f , Q, and w. The neighbors will be
constructed, for all v ∈ O, by removing v and reinserting v at every possible place that does not
generate a cycle. We want to determine if there are insertions that can be ignored because we
know a priori that they will not lead to a makespan reduction.

Let v ∈ O be an arbitrary operation. The computation of the neighbors of the current
solution (associated with the remotion and reinsertion of v) begins by computing a digraph
G−v = (V −, A−) in which the operation v is removed. Such a graph is sometimes referred to as
a reduced graph in the literature. The quantities f−, Q−, and w− associated with G−v are also
calculated. This digraph with its associated information is an intermediate structure necessary
for the computation of the neighbors and, since the operation v is not assigned to any machine,
it does not represent a feasible solution. This task is described in Algorithm 1. In line 2, the
assignment of operations to machines is copied for all operations other than v. In line 3, the lists
of operations of all machines other than fv are copied, and, in the list of machine fv, operation v
is eliminated. In line 4, the actual processing times of most of the operations are copied, except
for the operations succeeding v in the list Qfv . The actual processing times of these operations,
whose position within the machine was reduced by one, need to be recalculated. The value of
w−v is set to zero. In line 5, machine arcs adjacent to v are removed (if they exist) and a new
machine arc between its predecessor and successor is inserted, unless v is the first or last element
in Qfv . In lines 6 and 7, the set R←v of vertices that reaches v and the set of vertices R→v that are
reached from v in G−v are calculated, which will be useful for detecting cycles in future possible
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reinsertions of v. In line 8, the longest path P− in the digraph G−v is calculated, which will be
useful to determine whether a reinsertion has chances to decrease the makespan or not. We call
ξ the length of P−. (We do not call it C−max because as G−v does not represent a feasible solution,
then the length of the path P− does not represent a makespan.) Along with the computation
of P−, the algorithm also computes, for each machine k, the smallest position τk such that, for
all γ > τk, the γ-th operation processed by machine k is not in P−. (If machine k does not
process any operation in P−, then τk = 0.) The tasks in lines 6, 7, and 8 use auxiliary well-
known algorithms for topological sorting, depth-first search, and an adaptation [15, §22.2] of the
Bellman-Ford algorithm described in Algorithms 2, 3, and 4, respectively, for completeness.

Let G be the digraph, with associated quantities f , Q, and w, representing the current
feasible solution. Let P be the critical path in G, with length Cmax. Let v be the operation
we removed and wish to reinsert. Let G−v be the digraph with v removed and let f−, Q−, and
w− be the quantities associated with G−v . Let P− be the critical path in G−v , with length ξ,
and, for each machine k, let τk be the smallest position in Qk such that every operation in a
position after τk is not in P−. Let κ be a machine and γ be a position in the list Q−κ such
that inserting v at position γ of Q−κ does not generate a cycle. Does such an insertion have a
chance of generating a new digraph whose associated feasible solution has a makespan smaller
than Cmax? If ξ ≥ Cmax and γ > τk, then the answer is “no”. This is because the path P−
with length ξ not smaller than Cmax already exists and the insertion of v in machine κ, at a
position γ later than τk, will not modify the actual processing time of any operation in P−. If
ξ < Cmax or ξ ≥ Cmax but γ ≤ τk, then chances exist.

It should be noted that, strictly speaking, the fact of v being in P or not is not related
to the answer to the question above. But already anticipating something that will come later,
as the neighborhood reduction driven by the answer to the question may be quite small, we
will consider in the experiments, heuristically, v ∈ P as equivalent or strongly correlated to
ξ < Cmax. That is, we will consider that removing an operation from the critical path will most
likely imply that ξ < Cmax. This is very plausible for moderate values of the learning factor α,
with which a possible reduction of one in the machine position of some critical path operations
does not cancel out the benefit of removing an operation from the critical path.

The task of reinserting v in G−v at position γ of machine κ generates a DAG that we name G+
v .

This task is similar to the removing task. The construction of G+
v , its associated quantities f+,

Q+, and w+, and its critical path P+ with length C+
max is described in Algorithm 5. Algorithm 6

implements a best neighbor local search with the neighborhood reduction already discussed. It
corresponds to a classical local search with a best neighbor strategy. The only relevant detail
that remains to be explained is how to determine whether an insertion generates a cycle or not.
A cycle will only be created in G+

v if v is inserted in a position that leaves some u ∈ R←v to be
processed after v in machine κ or some u ∈ R→v to be processed before v in machine κ. The
limits γ and γ̄ such that γ + 1 ≤ γ ≤ γ̄ avoids cycles are calculates in lines 7 and 8. A possible
reduction of this interval is computed in lines 9 and 10, eliminating the possibility of making
insertions after τκ if ξ ≥ Cmax, as already discussed.
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Algorithm 1: Computes G−v = (V −v , A
−
v ), f

−, Q−, and w− by removing operation v
from the solution graph G = (V,A). Then, in G−v , it computes the set R←v of vertices
that reaches v and the set of vertices R→v that are reached from v, the largest path P−
from s to t and its length ξ, and the position τk of the last critical operation in each
machine k ∈ F .
Input: O, F , p, v, f , Q, w, G = (V,A)
Output: f−, Q−, w−, G−v = (V −v , A

−
v ), P−, ξ, R←v , R→v , τ

1 function RemoveOp(O, p, v, f , Q, w, G, f−, Q−, w−, G−v , P−, ξ, R←v , R→v , τ)
2 Define f−i := fi for all i ∈ O \ {v}.
3 Let Qfv be given by the sequence i1, . . . , iγ−1, iγ , iγ+1, . . . , i|Qfv | with iγ = v. Define

Q−k := Qk for all k ∈ F \ {fv} and Q−fv := i1, . . . , iγ−1, iγ+1, . . . , i|Qfv |.

4 Define w−i := wi for all i ∈ O \ {v, iγ+1, . . . , i|Qfv |}, w
−
v := 0, and

w−iℓ := ψα(piℓ,fiℓ , ℓ− 1) for ℓ = γ + 1, . . . , |Qfv |.
5 Define the graph G−v = (V −v , A

−
v ) with V

−
v := V and

A−v := (A \ {(iγ−1, v), (v, iγ+1)}) ∪ {(iγ−1, iγ+1)}.
6 Initialize V ← ∅, U as an empty list, and R←v ← {v}, and compute in U and R←v a

topological sort of the vertices in V −v and the set of vertices i ∈ V −v such that a
path from i to v exists, respectively, by calling TopologicalSort+(G−v , U , s, V, v,
R←v ).

7 Initialize R→v ← ∅ and compute in R→v the set of vertices i ∈ V −v such that a path
from v to i exists, by calling DFS(G−v , v, R→v ).

8 Compute the largest path P− from s to t, its length ξ, and determine the
position τk of the last critical operation at each machine k for all k ∈ F by calling
CriticalPath(F , f−, w−, Q−, G−v = (V −v , A

−
v ), U , P−, ξ, τ).

Algorithm 2: Computes a topological sort U of the vertices of G = (V,A). In addition,
if v and R←v are present as an input parameter, computes the set R←v of vertices that
reaches v in G = (V,A).

Input: G = (V,A), U , i, V, v, R←v
Output: U , V, R←v

1 function TopologicalSort+(G, U , i, V, v, R←v )
2 Set V ← V ∪ {i}.
3 for j such that (i, j) ∈ A do
4 if j /∈ V then
5 TopologicalSort+(G, U , j, V, v, R←v )

6 if i ̸∈ R←v and j ∈ R←v then
7 set R←v ← R←v ∪ {i}.

8 Insert i at the beginning of U .

8



Algorithm 3: Computes the set of vertices R→v as the set of vertices that can be
reached by v in G = (V,A).

Input: G = (V,A), v, R→v
Output: R→v

1 function DFS(G, v, R→v )
2 Set R→v ← R→v ∪ {v}.
3 for j such that (v, j) ∈ A do
4 if j /∈ R→v then
5 DFS(G, j, R→v )

Algorithm 4: Computes a critical path P and its length ξ for a given graph G = (V,A).
In addition, if τ is present as an input parameter, determines the last critical operation
in each machine.
Input: F , f , w, Q, G = (V,A), τ
Output: U , P, ξ, τ

1 function CriticalPath(F , f , w, Q, G, U , P, ξ, τ)
2 Initialize di ← −∞ for all i ∈ V \ {s} and define ds := 0 and πs := 0.
3 Initialize V ← ∅ and U as an empty list and compute in U a topological sort of the

vertices in V , by calling TopologicalSort+(G, U , s, V).
4 for ℓ = 1, . . . , |V | do
5 Let i be the ℓ-th operation in the topological order given by U .
6 for j such that (i, j) ∈ A do
7 if dj < di + wi then
8 dj ← di + wi and πj ← i.

9 ξ := dt
10 Initialize i← πt, P ← ∅, and τk ← 0 for all k ∈ F .
11 do
12 if τfi = 0 then
13 Let Qfi be given by the sequence i1, . . . , iℓ−1, i, iℓ+1, . . . , i|Qfi

|. Define τfi := ℓ.

14 P ← P ∪ {i} and i← πi.

15 while i ̸= s

3 Metaheuristics

It is known that the direct application of a local search as the one introduced in the previous
section suffers from premature convergence to local solutions. Therefore, it is natural to think
of using it in connection with metaheuristics. In particular, trajectory metaheuristics are a
natural choice since they make direct use of local search strategies. In this paper we consider
the well-known metaheuristics iterated local search (ILS), greedy randomized adaptive search
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Algorithm 5: Computes G+
v = (V +

v , A
+
v ), f

+, Q+, and w+ by inserting operation v
at position γ of machine κ in the reduced graph G−v . Then, in G+

v , it computes the
largest path P+ from s to t and its length C+

max.

Input: O, F , p, v, γ, κ, f−, Q−, w−, G−v = (V −v , A
−
v )

Output: f+, Q+, w+, G+
v = (V +

v , A
+
v ), P+, C+

max

1 function InsertOp(O, p, v, γ, κ, f−, Q−, w−, G−v , f+, Q+, w+, G+
v , P+, C+

max)
2 Define f+i := f−i for all i ∈ O \ {v} and f+v := κ.
3 Let Q−κ be given by the sequence i1, i2, . . . , i|Q−

κ |.

4 Define Q+
k := Q−k for all k ∈ F \ {κ} and Q+

κ := i1, . . . , iγ−1, v, iγ , . . . , i|Q−
κ |.

5 Define w+
i := w−i for all i ∈ O \ {v, iγ , . . . , i|Qκ|}, and w

+
iℓ
:= ψ(piℓ,κ, ℓ) for

ℓ = γ, . . . , |Q+
κ |.

6 Define the graph G+
v = (V +

v , A
+
v ) with V

+
v := V −v and

A+
v := (A−v \ {(iγ−1, iγ))} ∪ {(iγ−1, v), (v, iγ)}.

7 Initialize V ← ∅ and U as an empty list and compute in U a topological sort of the
vertices in V +

v , by calling TopologicalSort+(G+
v , U , s, V).

8 Compute the critical path P+ from s to t and its length Cmax by calling
CriticalPath(F , f+, w+, Q+, G+

v = (V +
v , A

+
v ), U , P+, C+

max).

procedure (GRASP), tabu search (TS), and simulating annealing (SA). The basic components
of each of them are presented below.

3.1 Iterated local search

The ILS [37] strategy consists of iteratively running a local search until it converges to a local
solution and perturbing the solution found to be used as the initial solution for the next run of
the local search. For the first run of the local search, it uses as initial solution the best among
the solutions constructed by the constructive heuristics ECT and EST introduced in [4]. The
perturbation consists of a sequence of ℓp modifications, where ℓp is a random number between
ℓpmin and ℓpmax. (ℓpmin and ℓpmax are the only two parameters of the ILS.) Each modification
consists of removing a random operation and relocating it to a random place so that the solution
thus constructed is feasible. Algorithms 7 and 8 describe the ILS completely. They make use
of Algorithm 6 for the local search and Algorithms 1 and 5 for removing and reinserting an
operation, respectively. The random choices at line 12 of Algorithm 7 and lines 2, 4, and 7
of Algorithm 8 follow a discrete uniform distribution within the prescribed range. The same
applies to all the methods described below, which make random choices following discrete or
continuous (depending on the situation) uniform distributions within prescribed ranges.

3.2 Greedy randomized adaptive procedure

The GRASP [21] consists of iteratively generating an initial solution and running a local search
starting from the initial solution just generated. The initial solutions are generated as the best
among the solutions generated by randomized versions of the constructive heuristics ECT and
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Algorithm 6: Best neighbor local search with reduced neighborhood.

Input: O, F , p, G = (V,A), f , w, Q, P, Cmax

Output: G⋆ = (V ⋆, A⋆), f⋆, w⋆, Q⋆, P⋆, C⋆
max

1 function LocalSearch(O, F , p, G, f , w, Q, P, Cmax, G
⋆, f⋆, w⋆, Q⋆, P⋆, C⋆

max)
2 do
3 Cbn

max ← +∞
4 for v ∈ O do
5 RemoveOp(O, p, v, f , Q, w, G, f−, Q−, w−, G−v , P−, ξ, R←v , R→v , τ)
6 for k ∈ Fv do
7 Let γ be the position of the last operation in Q−k = i1, . . . , i|Q−

k |
such that

iγ ∈ R←v and let γ = 0 if iℓ ̸∈ R←v for ℓ = 1, . . . , |Q−k |.
8 Let γ̄ be the position of the first operation in Q−k = i1, . . . , i|Q−

k |
such that

iγ̄ ∈ R→v and let γ̄ = |Q−k |+ 1 if iℓ ̸∈ R→v for ℓ = 1, . . . , |Q−k |.
9 if ξ ≥ Cmax then

10 γ̄ ← min{γ̄, τk}, where τk is such that there is no critical operation
after τk in Q−k (τk = 0 if there is no critical operation in Q−k ).

11 for γ = γ + 1, . . . , γ̄ do

12 InsertOp(O, p, v, γ, k, f−, Q−, w−, G−v , f+, Q+, w+, G+
v , P+, C+

max)

13 if C+
max < Cbn

max then
14 Gbn, fbn, wbn, Qbn,Pbn, Cbn

max ← G+
v , f

+, w+, Q+,P+, C+
max

15 δ ← Cmax − Cbn
max

16 if δ > 0 then
17 G, f,w,Q,P, Cmax ← Gbn, fbn, wbn, Qbn,Pbn, Cbn

max

18 while δ > 0
19 G⋆, f⋆, w⋆, Q⋆,P⋆, C⋆

max ← G, f,w,Q,P, Cmax

EST introduced in [4].
The two constructive heuristics introduced in [4] are based on the earliest starting time (EST)

rule [8] and the earliest completion time (ECT) rule [35]. The heuristics schedule one operation
at a time. In the EST-based constructive heuristic, the instant rmin which is the earliest instant
at which an unscheduled operation could be initiated is computed first. All operation/machine
pairs that could start at that instant are considered and the pair with the shortest processing
time is selected. Since they all would start at instant rmin, selecting the pair with the shortest
processing time is the same as selecting the pair that ends earliest. This idea is taken to the
extreme in the constructive heuristic based on the ECT rule: without limiting the choice to the
operation/machine pairs that could start as soon as possible, the operation/machine pair that
will finish earliest is chosen, even if the processing of the operation does not start as soon as
possible.

In the EST-based constructive heuristic, the randomization is done as follows. First, the
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Algorithm 7: Iterated local search.

Input: O, F , p, Â, ℓpmin, ℓ
p
max

Output: f⋆, w⋆, Q⋆, G⋆, C⋆
max

1 function ILS(O, F , p, Â, ℓpmin, ℓ
p
max, f⋆, w⋆, Q⋆, G⋆, C⋆

max)

2 ECT(O, F , p, Â, f1, w1, Q1, G1, U1, P1, C1
max, τ

1)

3 EST(O, F , p, Â, f2, w2, Q2, G2, U2, P2, C2
max, τ

2)
4 if C1

max < C2
max then

5 f⋆ ← f1, w⋆ ← w1, Q⋆ ← Q1, G⋆ ← G1 and C⋆
max ← C1

max

6 else
7 f⋆ ← f2, w⋆ ← w2, Q⋆ ← Q2, G⋆ ← G2 and C⋆

max ← C2
max

8 while the stopping criterion is not satisfied do
9 LocalSearch(O, F , p, G, f , w, Q, P, Cmax, G

′, f ′, w′, Q′, P ′, C ′max)
10 if C ′max < C⋆

max then
11 f⋆ ← f ′, w⋆ ← w′, Q⋆ ← Q′, G⋆ ← G′ and C⋆

max ← C ′max

12 Set ℓp a random number between ℓpmin and ℓpmax.
13 for i = 1, . . . , ℓp do
14 Perturb(O, F , p, f ′, w′, Q′, G′, f , w, Q, G, P, Cmax)

Algorithm 8: Perturbs a solution.

Input: O, F , p, f , w, Q, G = (V,A)
Output: f ′, w′, Q′, G′ = (V ′, A′), P ′, C ′max

1 function Perturb(O, F , p, f , w, Q, G, f ′, w′, Q′, G′, P ′, C ′max)
2 Let v ∈ V \ {s, t} be a random operation.
3 RemoveOp(O, p, v, f , Q, w, G, f−, Q−, w−, G−v , P−, ξ, R←v , R→v , τ)
4 Let k ∈ Fv be a random machine and let Q−k = i1, . . . , i|Q−

k |
.

5 Let γ be the position of the last operation in Q−k such that iγ ∈ R←v and let γ = 0 if

iℓ ̸∈ R←v for ℓ = 1, . . . , |Q−k |.
6 Let γ̄ be the position of the first operation in Q−k such that iγ̄ ∈ R̄→v and let

γ̄ = |Q−k |+ 1 if iℓ ̸∈ R→v for ℓ = 1, . . . , |Q−k |.
7 Let γ ∈ {γ + 1, . . . , γ̄} be a random feasible position.

8 InsertOp(O, p, v, γ, k, f−, Q−, w−, G−v , f ′, Q′, w′, G′, P ′, C ′max)

earliest time rmin at which an unscheduled operation can be initiated is calculated. Then we
calculate the shortest and the longest processing times a and b associated with the opera-
tion/machine pairs that can start at rmin. Given α ∈ (0, 1], a random pair is chosen from those
whose processing time is between a and a+ α(b− a). In the ECT-based constructive heuristic,
the randomization consists of, from among the unscheduled operations, calculating the lowest
and highest completion instants a and b and drawing an operation/machine pair from among
those that would terminate between a and a+ α(b− a). It is worth noting that the calculation
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of the effective processing time always takes into consideration the learning effect. The only
parameter of the method is α. The GRASP strategy is described in Algorithm 9 and the ran-
domized versions of the constructive heuristics based on the EST and ECT dispatching rules are
described in Algorithms 10 and 11, respectively. Algorithm 9 uses Algorithm 6 to perform the
local search and Algorithms 10 and 11 use Algorithm 4 for the calculation of the critical path
associated with the initial solution, which is a necessary input for the local search. For more
details on the deterministic versions of the constructive heuristics based on the EST and ECT
dispatching rules see [4, Algorithms 1 and 4].

Algorithm 9: Greedy randomized adaptive procedure.

Input: O, F , p, Â, α
Output: f⋆, w⋆, Q⋆, G⋆, C⋆

max

1 function GRASP(O, F , p, Â, α, f⋆, w⋆, Q⋆, G⋆, C⋆
max)

2 Initialize C⋆
max ← +∞

3 while the stopping criterion is not satisfied do

4 RandomizedECT(O, F , p, Â, α, f1, w1, Q1, G1, P1, C1
max)

5 RandomizedEST(O, F , p, Â, α, f2, w2, Q2, G2, P2, C2
max)

6 if C1
max < C2

max then
7 f ← f1, w ← w1, Q← Q1, P ← P1, G← G1, and Cmax ← C1

max

8 else
9 f ← f2, w ← w2, Q← Q2, P ← P2, G← G2, and Cmax ← C2

max

10 LocalSearch(O, F , p, G, f , w, Q, P, Cmax, G
′, f ′, w′, Q′, P ′, C ′max)

11 if C ′max < C⋆
max then

12 f⋆ ← f ′, w⋆ ← w′, Q⋆ ← Q′, G⋆ ← G′ and C⋆
max ← C ′max

3.3 Tabu search

The TS [25, 26] considered consists basically of a local search with a modification in the ac-
ceptance criteria of a neighbor as a new solution. The acceptance depends on a list of tabu
moves. The size tmax of this list is the only parameter of the method. In a given iteration, the
best neighbor is computed, disregarding neighbors constructed with a tabu move unless they
correspond to the best solution already constructed. The way of constructing the neighborhood
follows exactly the same scheme as the local search described in Algorithm 6. The move that
transforms the solution of the current iteration into the solution of the next iteration consists
in relocating a certain operation v at the γ position of a machine k ∈ Fv. We keep in the tabu
list the operation/machine pair (v, k). The complete method is described in Algorithm 12.

3.4 Simulated annealing

In the SA [34], as in the other metaheuristics, the initial solution is given by the best solution
among those provided by the constructive heuristics based on the EST and ECT dispatch rules.
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Algorithm 10: Computes a feasible solution using a randomization of the earliest
starting time (EST) rule.

Input: O, F , p, Â, α
Output: f , w, Q, G, P, Cmax

1 function RandomizedEST(O, F , p, Â, α, f , w, Q, G, P, Cmax)

2 Set A← Â ∪ {(s, j) | (·, j) ̸∈ Â} ∪ {(i, t) | (i, ·) ̸∈ Â} and define V := O ∪ {s, t} and
G = (V,A).

3 Set ropv ← +∞ and define rops := 0, ws := wt := 0, and cs := 0.
4 Set rmac

k ← 0 and gk ← 1 for all k ∈ F .
5 Initialize Π← V \ {s, t} as the set of non-scheduled operations, and Qk as an empty

list for all k ∈ F .
6 while Π ̸= ∅ do
7 for v ∈ Π do
8 if Π ∩ {i | (i, v) ∈ A} = ∅ then
9 ropv ← max{ci | i ∈ V \Π such that (i, v) ∈ A}

10 Set rmin = min
v∈Π,k∈Fv

{max(ropv , r
mac
k )} and let E be the set of pairs (v, k) with

v ∈ Π and k ∈ Fv such that max(ropv , rmac
k ) = rmin.

11 Compute ψ ← min
(v,k)∈E

{ψ(pv,k, gk)} and ψ ← max
(v,k)∈E

{ψ(pv,k, gk)}, set

L ← {(v, k) ∈ E | ψ(pv,k, gk) ≤ ψ + α(ψ − ψ)} and choose (v̂, k̂) ∈ L randomly.

12 Define wv̂ := ψ(pv̂,k̂, gk̂), fv̂ := k̂, cv̂ := cv̂,k̂ and set rmac
k̂
← cv̂ and gk̂ ← gk̂ + 1.

13 if |Qk̂| ≠ 0 then
14 Set A← A ∪ {(i|Qk̂|, v̂)}, where Qk̂ = i1, . . . , i|Qk̂|.

15 Insert v̂ at the end of Qk̂ and set Π← Π \ {v̂}.
16 CriticalPath(F , f , w, Q, G, U , P, Cmax, τ).

The simulating annealing advances from one solution to another by making perturbations of the
solution consisting of a random movement of removal and insertion (described in Algorithm 8).
The main feature is that, for a new solution to be accepted, it need not be better than the
current solution. On the other hand, the probability of accepting a solution that is worse
than the current solution decreases as the method progresses, i.e. as the temperature decreases.
The method has as parameters the initial and final temperatures T0 and Tf . The temperature
decreases as the method progresses being multiplied by a parameter δ ∈ (0, 1). The amount of
perturbations for a fixed temperature is given by a parameter ℓ̄ ∈ N, ℓ̄ ≥ 1. The method as a
whole is described in Algorithm 13.

4 Numerical experiments

In this section, we present numerical experiments with the proposed local search and the con-
sidered metaheuristics. In all experiments, we consider the 60 small-sized instances introduced
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Algorithm 11: Computes a feasible solution using a randomization of the earliest
completion time (ECT) rule.

Input: O, F , p, Â, α
Output: f , w, Q, G, P, Cmax

1 function RandomizedECT(O, F , p, Â, α, f , w, Q, G, P, Cmax)

2 Set A← Â ∪ {(s, j) | (·, j) ̸∈ Â} ∪ {(i, t) | (i, ·) ̸∈ Â} and define V := O ∪ {s, t} and
G = (V,A).

3 Set ropv ← +∞ and define rops := 0, ws := wt := 0, and cs := 0.
4 Set rmac

k ← 0 and gk ← 1 for all k ∈ F .
5 Initialize Π← V \ {s, t} as the set of non-scheduled operations, and Qk as an empty

list for all k ∈ F .
6 while Π ̸= ∅ do
7 for v ∈ Π do
8 if Π ∩ {i | (i, v) ∈ A} = ∅ then
9 ropv ← max{ci | i ∈ V \Π such that (i, v) ∈ A}

10 for v ∈ Π do
11 for k ∈ Fv do
12 cv,k ← max(ropv , rmac

k ) + ψ(pv,k, gk)

13 Set cmin ← min{cv,k | v ∈ Π, k ∈ Fv}, cmax ← max{cv,k | v ∈ Π, k ∈ Fv} and
RCL← {(v, k) | cv,k ≤ cmin + α(cmax − cmin), v ∈ Π, k ∈ Fv}.

14 Choose (v̂, k̂) randomly in RCL.

15 Define wv̂ := ψ(pv̂,k̂, gk̂), fv̂ := k̂, cv̂ := cv̂,k̂ and set rmac
k̂
← cv̂ and gk̂ ← gk̂ + 1.

16 if |Qk̂| ≠ 0 then
17 Let Qk̂ = i1, . . . , i|Qk̂|. Set A← A ∪ {(i|Qk̂|, v̂)}.

18 Insert v̂ at the end of Qk̂ and set Π← Π \ {v̂}.
19 CriticalPath(F , f , w, Q, G, U , P, Cmax, τ).

in [4] and the 50 large-sized instances introduced in [8], with learning rate α ∈ {0.1, 0.2, 0.3},
totaling 330 instances. Small-sized instances have between 5 and 7 machines and between 9 and
24 operations. The operations are divided into up to 6 tasks, which correspond to connected
components of the DAG of precedence relations, and the DAGs have up to 21 edges. The MILP
models [4, p.7, Eq.(1–4)] of the small-sized instances have up to almost 1,000 binary variables
and 12,000 constraints. Large-sized instances have between 5 and 26 machines and between
25 and 289 operations. The operations are divided into up to 17 tasks and the DAGs repre-
senting the precedence relations have up to 272 edges. Their MILP models have up to 73,000
binary variables and 3,800,000 constraints. It is worth recalling that the considered problem
has two types of flexibility: routing flexibility and sequencing flexibility. The first refers to the
fact that an operation can be processed by a machine within a set of machines instead of a
single machine and corresponds to the “flexible” of the FJS. The second corresponds to the fact
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Algorithm 12: Tabu Search.

Input: O, F , p, Â, tmax

Output: f⋆, w⋆, Q⋆, G⋆, C⋆
max

1 function TS(O, F , p, Â, tmax, f
⋆, w⋆, Q⋆, G⋆, C⋆

max)

2 ECT(O, F , p, Â, f1, w1, Q1, G1, U1, P1, C1
max, τ

1)

3 EST(O, F , p, Â, f2, w2, Q2, G2, U2, P2, C2
max, τ

2)
4 if C1

max < C2
max then

5 f⋆ ← f1, w⋆ ← w1, Q⋆ ← Q1, G⋆ ← G1 and C⋆
max ← C1

max

6 else
7 f⋆ ← f2, w⋆ ← w2, Q⋆ ← Q2, G⋆ ← G2 and C⋆

max ← C2
max

8 Initialize T as an empty list.
9 while the stopping criterion is not satisfied do

10 C ′max ← +∞
11 for v ∈ O do
12 RemoveOp(O, p, v, f , Q, w, G, f−, Q−, w−, G−v , P−, ξ, R←v , R→v , τ)
13 for k ∈ Fv do
14 Let γ be the position of the last operation in Q−k = i1, . . . , i|Q−

k |
such that

iγ ∈ R←v and let γ = 0 if iℓ ̸∈ R←v for ℓ = 1, . . . , |Q−k |.
15 Let γ̄ be the position of the first operation in Q−k = i1, . . . , i|Q−

k |
such that

iγ̄ ∈ R̄→v and let γ̄ = |Q−k |+ 1 if iℓ ̸∈ R→v for ℓ = 1, . . . , |Q−k |.
16 if ξ ≥ Cmax then
17 γ̄ ← min{γ̄, τk}, where τk is such that there is no critical operation

after τk in Q−k (τk = 0 if there is no critical operation in Q−k ).

18 for γ = γ + 1, . . . , γ̄ do

19 InsertOp(O, p, v, γ, κ, f−, Q−, w−, G−v , f+, Q+, w+, G+
v , P+, C+

max)
20 if (C+

max < C ′max and (v, k) /∈ T ) orC+
max < min{C ′max, C

⋆
max} then

21 G′ ← G+
v , f

′ ← f+, w′ ← w+, P ′ ← P+ and C ′max ← C+
max

22 v′ ← v, k′ ← k

23 If (v′, k′) ∈ T then remove it from T . Anyhow, insert (v′, k′) at the end of T .
24 if |T | > tmax then
25 Remove the first element of T
26 G← G′v, f ← f ′, w ← w′,P ← P ′ and Cmax ← C ′max

27 if Cmax < C⋆
max then

28 G⋆ ← Gv, f
⋆ ← f , w⋆ ← w′, P⋆ ← P and C⋆

max ← Cmax

that the operations of the same task have their precedences represented by an arbitrary DAG
instead of obeying a linear order. The sum of these two flexibilities causes the problem to have
a large search space and makes it difficult to find a proven optimal solution even in instances
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Algorithm 13: Simulated Annealing.

Input: O, F , p, Â, ℓ̄, δ, T0, Tf
Output: f⋆, w⋆, Q⋆, G⋆, C⋆

max

1 function SA(O, F , p, Â, ℓ̄, δ, T0, Tf , f⋆, w⋆, Q⋆, G⋆, C⋆
max)

2 ECT(O, F , p, Â, f1, w1, Q1, G1, U1, P1, C1
max, τ

1)

3 EST(O, F , p, Â, f2, w2, Q2, G2, U2, P2, C2
max, τ

2)
4 if C1

max < C2
max then

5 f ← f1, w ← w1, Q← Q1, G← G1 and Cmax ← C1
max

6 else
7 f ← f2, w ← w2, Q← Q2, G← G2 and Cmax ← C2

max

8 f⋆ ← f , w⋆ ← w, Q⋆ ← Q, G⋆ ← G and C⋆
max ← Cmax

9 Set T ← T0.
10 while the stopping criterion is not satisfied do
11 for ℓ = 1, . . . , ℓ̄ do
12 Perturb(O, F , p, f , w, Q, G, f ′, w′, Q′, G′, P ′, C ′max)
13 Set ∆C ← (C ′max − Cmax)/Cmax and let r ∈ [0, 1] be a random number.

14 if e−∆C/T ≥ r then
15 Set f ← f ′, w ← w′, Q← Q′, G← G′ and Cmax ← C ′max.
16 if C ′max < C⋆

max then
17 Set f⋆ ← f ′, w⋆ ← w′, Q⋆ ← Q′, G⋆ ← G′ and C⋆

max ← C ′max.

18 T ← max(δ T, Tf )

that may initially appear to be simple. For a more detailed description of the instances and
their characteristics, see [4].

The local search and the metaheuristics were implemented in C++ programming language.
The code was compiled using g++ 10.2.1. To ensure full reproducibility of the results presented
in the present work, as well as future comparisons, the instances, code and solutions found
are available at https://github.com/kennedy94/FJS. The experiments were carried out in an
Intel i9-12900K (12th Gen) processor operating at 5.200GHz and 128 GB of RAM.

4.1 Experiments with local search variations

In this section we evaluate variations of the local search described in Algorithm 6. In [4] two
constructive heuristics are introduced for the same problem being considered in this paper. The
constructive heuristics are different and, while one constructs, in general, better solutions for
instances of type Y, the other constructs better solutions for instances of type DA; see [4] for
details. Either way, the two constructive heuristics take negligible time and, for this reason, in
the present work we use, as the initial solution for the local search, the best among the solutions
constructed by the two constructive heuristics introduced in [4].

As described in Algorithm 6, the local search uses the best neighbor strategy and makes
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use of the neighborhood reduction described in Section 2. Therefore, we call this version of
“local search with the best neighbor strategy and reduced neighborhood”. The neighborhood
reduction is implemented in lines 9 and 10. If we remove those two lines we obtain a version that
we call “local search with the best neighbor and full neighborhood”. The version with reduced
neighborhood does not consider neighbors that are guaranteed to be no better than the current
solution. Therefore, the solution obtained with the reduced neighborhood must be identical to
the solution obtained with the full neighborhood. (In fact all iterates of the two versions must be
identical and not just the final solution). Only a reduction of CPU time is expected. As already
mentioned in Section 2, we decided to consider yet another version that would exhibit a more
drastic reduction in CPU time, albeit with a possible loss of quality in the solution. We call
this version of “local search with the best neighbor and cropped neighborhood”. This version
consists of changing v ∈ O to v ∈ P in line 4 of Algorithm 6. That is, only operations on the
critical path are reallocated, since there is a greater tendency for these reallocations to generate
better quality neighbors. We have then three different versions of the local search with the best
neighbor strategy that are distinguished by the neighborhood used: full neighborhood, reduced
neighborhood and cropped neighborhood. Each of them corresponds to minimal variations of
Algorithm 6 as already described. Furthermore, we consider the same three versions but using
the strategy of interrupting the inspection of the neighborhood when finding the first neighbor
that improves the current solution, i.e. the first-improvement strategy. This change corresponds,
in Algorithm 6, to interrupting the loop of line 4 the first time line 16 is executed.

The results of the six variations of the local search applied to the 330 considered instances are
shown in Tables 1–4. Tables 1 and 2 correspond to the first-improvement strategy while Tables 3
and 4 correspond to the best-improvement strategy. In the tables, we show the makespan of the
obtained solution, the number of iterations that the local search made until finding an iterate
that is better than all its neighbors (this is the stopping criterion as described in Algorithm 6),
and the CPU time in seconds. In the case of the small-sized instances introduced in [4], the
tables do not show the CPU time because it was always less than 1 millisecond. The tables also
do not show anything related to the full neighborhood. What should be said about the use of
the full neighborhood is that, in all instances, as expected, the solution obtained was identical
to the solution obtained with the reduced neighborhood, the number of iterations was also the
same, and the reduced neighborhood promoted a reduction of 52.51% in the CPU time.

When we compare the first-improvement and best-improvement strategies (Tables 1 and 2
versus Tables 3 and 4), the results are quite similar, but the best-improvement strategy always
finds better quality solutions using less CPU time. Specifically, the best improvement strategy
returns solutions that are on average 1.02% and 0.70% better than the solutions returned by
the first-improvement strategy, when we consider the reduced and cropped neighborhoods, re-
spectively. Therefore, from now on, we focus on evaluating the reduced neighborhood and the
cropped neighborhood associated with the best-improvement strategy.

The cropped neighborhood eliminates, on average, 90.34% of the neighbors of the reduced
neighborhood, promoting a proportional reduction in CPU time. However, adopting the cropped
neighborhood can lead to a loss of quality in the final solution obtained by the local search
method. On average, when compared to the local search with the reduced neighborhood, the
local search with the cropped neighborhood finds solution with a makespan 0.69% worse. When
we compare the final solution with the initial solution, the local search using the reduced neigh-
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borhood improves the initial solution by, on average, 6.88%, while the local search using the
cropped neighborhood improves the initial solution by 6.11%. In conclusion, the local search
with the cropped neighborhood is significantly faster than the local search with the reduced
neighborhood and finds solutions that are only slightly worse than the solutions found by the
latter.

4.2 Experiments with the metaheuristics in the large-sized instances

In this section we report experiments to evaluate the behavior of the metaheuristics on the 50
large-sized instances, totaling 150 instances as we vary α ∈ {0.1, 0.2, 0.3}. The ILS and GRASP
metaheuristics (Algorithms 7 and 9, respectively) make use of the local search (Algorithm 6).
We analyzed these two metaheuristics in connection with the local search using the reduced
neighborhood (RN) and in connection with the local search using the cropped neighborhood
(CN). We call these versions of ILS-RN, ILS-CN, GRASP-RN and GRASP-CN, respectively,
hereafter. The tabu search metaheuristic was already conceived using the reduced neighborhood
(see lines 16 and 17 of Algorithm 12), and applying to it the concept of cropped neighborhood
corresponds simply to changing in line 11 of Algorithm 12, v ∈ O by v ∈ P. Hereafter we refer to
these two versions as TS-RN and TS-CN, respectively. The simulated annealing metaheuristic
does not use local search and therefore we considered only a single version of it, which we
denote SA hereafter. In all metaheuristics we used the total CPU time as a stopping criterion
and considered a maximum limit of 5 minutes. Additionally, and only during the parameters
calibration phase, we placed an additional stopping criterion, also based on CPU time, which is
satisfied if 5 seconds elapse without improvement of the incumbent solution.

The ILS metaheuristic has as parameters ℓpmin and ℓpmax ∈ N which must satisfy 1 ≤ ℓpmin ≤
ℓpmax. In the calibration experiments, we evaluated ℓpmin, ℓ

p
max ∈ {1, 2, 3, 4, 5}. The GRASP

metaheuristic has as a single parameter α ∈ R which must satisfy 0 ≤ α ≤ 1. In the calibration
experiments we evaluated α ∈ {0.10, 0.11, . . . , 0.99}. The TS metaheuristic has as a single
parameter tmax ∈ N. In the calibration experiments, we evaluated tmax = ⌈(|O|+ |F|)× t⌉ with
t ∈ {0.1, 0.2, . . . , 5.0}. In the SA metaheuristic, the parameters are ℓ̄ ∈ N and T0, Tf , δ ∈ R
and must satisfy 1 ≤ ℓ̄, T0 ≥ Tf > 0 and δ ∈ (0, 1). In the calibration experiments, we
evaluated ℓ̄ ∈ {1,000, 2,000, . . . , 5,000}, T0 = −Tm

0 / ln(T
p
0 ) with T

m
0 ∈ {0.10, 0.11, . . . , 0.99} and

T p
0 ∈ {0.10, 0.11, . . . , 0.99}, Tf ∈ {10−1, 10−3, 10−5}, and δ ∈ {0.80, 0.81, . . . , 0.99}. (See [30]

for details on how to choose the initial temperature in SA). We calibrated the seven methods
independently using the irace package [40]. In irace all default parameters were considered,
except for maxExperiments = 10,000. We considered in the calibration only the 50 large-
sized instances with learning rate α = 0.2. We separated these instances into two sets of 25
instances each, one for training and the other for testing. As a result, irace returned the
following parameters: ILS-RN: ℓpmin = 2 and ℓpmax = 4, ILS-CN: ℓpmin = 1 and ℓpmax = 3, GRASP-
RN: α = 0.38, GRASP-CN: α = 0.59, TS-RN: tmax = ⌈(|O + |F|) × t⌉ with t = 0.9, TS-CN:
tmax = ⌈(|O+ |F|)× t⌉ with t = 0.5, SA: ℓ̄ = 3, Tm

0 = 0.79, T p
0 = 0.78, Tf = 10−3, and δ = 0.82.

With the selected parameters, we ran the metaheuristics on the 50 large instances by varying
the learning rate α ∈ {0.1, 0.2, 0.3}. Since methods ILS-RN, ILS-CN, GRASP-RN, GRASP-
CN, and SA have random components, these methods were applied 5 times to each instance.
The same does not apply for methods TS-RN and TS-CN, which were run only once for each
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instance
α = 0.1 α = 0.2 α = 0.3

Cropped Reduced Cropped Reduced Cropped Reduced
Cmax #it Cmax #it Cmax #it Cmax #it Cmax #it Cmax #it

miniDAFJS01 23,264 1 23,019 2 22,099 3 21,741 4 20,007 4 19,767 7
miniDAFJS02 23,242 1 22,927 4 22,161 1 22,046 2 21,136 2 20,987 2
miniDAFJS03 18,363 1 18,363 1 17,972 1 17,972 1 17,619 2 17,619 2
miniDAFJS04 21,690 1 21,151 4 20,757 2 19,602 5 19,867 2 18,800 5
miniDAFJS05 22,598 1 22,418 2 20,826 1 20,523 2 19,253 1 18,878 2
miniDAFJS06 23,370 1 23,370 1 20,783 2 20,783 2 18,712 3 18,712 3
miniDAFJS07 28,644 1 28,644 1 25,088 1 24,715 2 24,636 2 24,256 4
miniDAFJS08 19,878 1 19,878 1 18,857 1 18,857 1 17,900 2 17,900 2
miniDAFJS09 25,425 1 25,425 1 23,830 1 23,715 2 22,398 1 22,258 2
miniDAFJS10 21,563 1 20,359 4 21,021 1 18,823 6 19,723 2 17,466 6
miniDAFJS11 33,689 2 33,686 3 30,941 2 30,550 5 28,510 2 27,907 6
miniDAFJS12 20,342 1 20,342 1 19,624 1 19,624 1 19,094 1 19,094 1
miniDAFJS13 17,091 2 16,313 3 16,616 2 15,143 3 15,278 2 15,053 2
miniDAFJS14 23,248 4 23,140 5 21,990 5 21,817 5 20,711 5 20,620 5
miniDAFJS15 22,472 1 22,472 1 20,653 4 20,620 5 18,628 3 20,328 2
miniDAFJS16 25,691 1 25,426 2 24,593 1 24,114 2 22,939 3 22,939 3
miniDAFJS17 21,070 1 20,155 3 20,183 2 20,183 2 19,139 2 19,139 2
miniDAFJS18 18,512 3 18,135 7 18,829 1 18,201 4 17,784 1 17,295 2
miniDAFJS19 21,293 1 20,945 3 20,107 1 19,642 3 19,030 1 18,474 3
miniDAFJS20 23,443 2 23,212 3 21,286 1 21,286 1 19,587 1 19,587 1
miniDAFJS21 24,404 3 24,274 4 22,215 2 22,151 6 21,182 3 20,368 5
miniDAFJS22 25,923 4 25,923 4 24,273 4 24,273 4 22,767 3 22,767 3
miniDAFJS23 25,839 2 25,788 3 24,253 2 24,164 3 21,772 5 21,561 6
miniDAFJS24 26,932 1 26,610 4 24,500 1 23,709 3 22,524 1 21,714 4
miniDAFJS25 23,370 1 22,982 2 22,613 1 21,946 2 19,900 3 19,900 3
miniDAFJS26 22,306 6 22,230 9 20,724 5 20,724 7 19,333 5 19,333 7
miniDAFJS27 27,086 3 27,086 3 23,865 6 23,145 9 22,513 3 22,334 4
miniDAFJS28 23,841 10 23,841 11 22,745 7 22,745 7 20,020 2 20,020 2
miniDAFJS29 21,151 1 21,057 2 19,789 1 19,789 1 18,560 1 18,414 3
miniDAFJS30 26,428 2 26,126 5 23,736 2 22,973 5 21,356 2 20,760 5

mean 23,405.60 2.03 23,176.57 3.30 21,897.63 2.17 21,519.20 3.50 20,395.93 2.33 20,141.67 3.47
wins 12 30 10 30 12 19

instance
α = 0.1 α = 0.2 α = 0.3

Cropped Reduced Cropped Reduced Cropped Reduced
Cmax #it Cmax #it Cmax #it Cmax #it Cmax #it Cmax #it

miniYFJS01 35,243 1 35,046 2 34,443 1 33,132 4 33,697 1 32,199 2
miniYFJS02 28,688 1 28,688 1 27,557 1 27,557 1 25,969 1 25,969 1
miniYFJS03 48,141 3 47,391 6 44,195 3 42,896 6 39,880 8 38,935 11
miniYFJS04 25,394 1 25,394 1 24,669 1 24,485 2 24,017 1 23,774 2
miniYFJS05 26,371 2 25,750 3 25,635 3 24,235 3 24,743 1 24,743 1
miniYFJS06 30,952 1 30,952 1 29,080 1 29,080 1 27,366 1 27,366 1
miniYFJS07 46,782 2 45,705 6 43,886 3 42,578 5 41,487 3 39,694 5
miniYFJS08 33,954 2 33,883 7 31,992 2 31,773 7 30,276 2 29,990 6
miniYFJS09 37,049 2 37,049 2 36,098 2 36,098 2 34,357 1 34,357 1
miniYFJS10 29,416 6 29,416 6 30,290 3 29,858 2 27,547 2 27,425 2
miniYFJS11 51,212 1 51,129 2 47,079 1 46,939 2 43,254 1 43,254 1
miniYFJS12 36,343 4 36,343 6 33,404 5 33,404 5 29,989 5 29,989 5
miniYFJS13 32,915 7 32,792 8 30,219 5 30,219 7 25,881 3 25,619 4
miniYFJS14 31,826 7 31,826 9 31,284 4 31,284 4 28,131 6 28,131 6
miniYFJS15 45,901 4 45,442 6 42,828 4 45,903 5 39,862 4 46,387 2
miniYFJS16 33,965 3 33,791 7 32,481 3 32,165 7 30,483 2 30,483 2
miniYFJS17 44,181 5 52,936 3 41,316 5 48,475 4 38,739 5 44,650 3
miniYFJS18 34,133 4 34,044 9 29,883 3 30,201 5 27,944 3 29,698 2
miniYFJS19 39,165 4 36,706 14 33,965 6 33,805 12 31,743 6 31,743 9
miniYFJS20 36,071 9 36,071 11 35,100 4 34,689 8 32,603 4 32,718 5
miniYFJS21 40,994 7 39,978 10 37,414 5 35,570 16 33,355 5 33,355 7
miniYFJS22 35,319 7 34,282 15 32,485 1 32,337 2 30,212 1 29,512 4
miniYFJS23 45,713 9 45,725 10 42,016 3 42,016 7 38,777 4 37,963 9
miniYFJS24 40,291 6 36,367 14 38,144 2 38,144 4 30,173 11 31,054 14
miniYFJS25 43,592 3 43,555 4 40,933 1 40,425 3 34,388 6 34,388 5
miniYFJS26 54,739 2 54,675 3 49,412 1 49,412 1 44,766 8 43,452 18
miniYFJS27 36,899 6 36,765 18 34,359 7 34,943 7 32,539 3 31,749 7
miniYFJS28 41,951 2 41,838 3 38,640 2 33,096 8 35,729 2 35,729 7
miniYFJS29 44,930 9 47,807 4 38,993 3 36,561 9 35,726 3 38,122 5
miniYFJS30 44,038 3 43,725 8 41,290 3 41,640 5 32,238 6 33,215 13

mean 38,538.93 4.10 38,502.37 6.63 35,969.67 2.93 35,764.00 5.13 32,862.37 3.63 33,188.77 5.33
wins 11 27 14 25 19 13

Table 1: Local search results with the first-improvement strategy using the reduced neighborhood
and the cropped neighborhood, applied to the small-sized instances with learning rate α ∈
{0.1, 0.2, 0.3}.
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instance
α = 0.1 α = 0.2 α = 0.3

Cropped Reduced Cropped Reduced Cropped Reduced
Cmax #it Time Cmax #it Time Cmax #it Time Cmax #it Time Cmax #it Time Cmax #it Time

DAFJS01 28,036 4 0.001 26,794 14 0.004 26,371 3 0.000 25,970 19 0.001 21,685 3 0.000 21,439 5 0.000
DAFJS02 28,098 9 0.002 28,098 10 0.001 28,141 2 0.000 27,860 5 0.000 23,672 8 0.000 23,808 7 0.000
DAFJS03 53,688 1 0.001 51,579 15 0.005 47,879 3 0.000 45,458 37 0.011 43,509 3 0.000 42,867 13 0.005
DAFJS04 54,082 1 0.001 52,563 15 0.001 47,778 5 0.000 46,577 8 0.001 41,899 2 0.000 41,697 3 0.000
DAFJS05 40,195 25 0.004 41,604 24 0.002 39,771 16 0.001 37,797 36 0.006 35,610 9 0.000 31,254 47 0.009
DAFJS06 41,271 37 0.006 50,586 10 0.002 38,087 20 0.001 36,252 69 0.014 32,168 29 0.002 31,122 36 0.006
DAFJS07 54,989 7 0.004 54,802 36 0.026 45,737 34 0.006 48,959 29 0.021 40,830 6 0.001 39,662 24 0.024
DAFJS08 58,930 13 0.006 60,359 27 0.026 52,816 5 0.001 50,928 28 0.022 44,590 4 0.001 42,777 43 0.038
DAFJS09 45,139 11 0.001 44,917 17 0.003 36,871 29 0.002 36,735 39 0.009 34,185 19 0.002 34,025 39 0.011
DAFJS10 53,977 6 0.001 51,565 50 0.011 45,971 4 0.000 45,560 12 0.003 36,279 8 0.001 34,289 42 0.010
DAFJS11 66,872 6 0.003 63,878 55 0.052 51,746 37 0.016 54,661 30 0.049 45,657 17 0.006 44,809 46 0.068
DAFJS12 62,198 31 0.014 59,612 157 0.155 53,738 9 0.002 52,467 38 0.040 44,490 8 0.004 43,717 28 0.043
DAFJS13 57,874 16 0.005 57,310 36 0.021 48,847 22 0.004 48,816 29 0.016 41,717 4 0.001 41,960 11 0.006
DAFJS14 70,169 39 0.008 65,321 59 0.029 56,639 35 0.006 55,881 44 0.027 46,392 26 0.006 44,707 54 0.035
DAFJS15 61,882 62 0.032 63,408 124 0.166 53,807 6 0.003 53,686 14 0.031 47,692 10 0.004 47,474 33 0.067
DAFJS16 70,727 40 0.017 70,838 84 0.125 63,277 11 0.005 58,436 107 0.183 55,112 12 0.006 53,095 78 0.172
DAFJS17 68,446 50 0.018 70,306 26 0.016 57,893 41 0.009 57,518 54 0.031 46,340 80 0.026 47,331 96 0.087
DAFJS18 71,871 31 0.006 74,631 21 0.015 58,533 19 0.004 58,907 29 0.019 50,818 7 0.002 48,672 26 0.015
DAFJS19 63,999 12 0.002 63,314 26 0.019 52,824 24 0.006 57,082 10 0.014 41,426 28 0.004 41,865 56 0.029
DAFJS20 64,005 75 0.020 63,841 225 0.207 61,871 5 0.002 57,378 99 0.115 46,868 53 0.018 48,600 40 0.051
DAFJS21 72,142 57 0.020 76,433 31 0.032 61,483 12 0.004 62,677 9 0.009 50,318 15 0.005 49,422 39 0.040
DAFJS22 60,081 132 0.043 60,143 315 0.448 53,248 44 0.014 54,318 42 0.097 43,566 17 0.011 41,615 94 0.235
DAFJS23 48,338 9 0.001 48,054 18 0.012 41,433 17 0.003 44,473 31 0.018 39,105 3 0.000 38,334 12 0.006
DAFJS24 55,507 9 0.004 55,353 33 0.032 47,277 14 0.004 47,656 9 0.007 40,921 17 0.004 42,473 27 0.019
DAFJS25 79,286 26 0.011 76,253 92 0.227 59,672 68 0.033 61,805 92 0.184 48,469 25 0.013 49,390 39 0.098
DAFJS26 73,969 54 0.020 75,329 96 0.190 70,211 8 0.003 65,524 109 0.373 53,944 39 0.023 55,269 39 0.117
DAFJS27 79,234 13 0.004 79,064 23 0.053 62,437 21 0.010 62,596 29 0.079 53,719 46 0.023 55,569 46 0.134
DAFJS28 59,201 18 0.003 54,866 109 0.103 48,414 21 0.004 47,884 46 0.039 41,408 11 0.003 40,097 34 0.050
DAFJS29 68,684 21 0.006 66,929 80 0.106 57,356 16 0.005 57,179 34 0.044 49,819 7 0.005 49,519 24 0.050
DAFJS30 57,350 17 0.005 60,016 13 0.013 51,283 14 0.004 50,961 45 0.052 43,426 3 0.001 42,592 6 0.008

mean 59,008.00 27.73 0.009 58,925.53 61.37 0.070 50,713.70 18.83 0.005 50,400.03 39.40 0.051 42,854.47 17.30 0.006 42,315.00 36.23 0.048
wins 12 19 10 20 9 12

instance
α = 0.1 α = 0.2 α = 0.3

Cropped Reduced Cropped Reduced Cropped Reduced
Cmax #it Time Cmax #it Time Cmax #it Time Cmax #it Time Cmax #it Time Cmax #it Time

YFJS01 79,662 10 0.000 79,737 21 0.003 74,547 9 0.000 70,624 31 0.004 66,246 9 0.000 67,588 10 0.001
YFJS02 76,529 3 0.000 76,813 4 0.000 66,853 1 0.000 66,853 1 0.000 59,211 3 0.000 59,001 4 0.001
YFJS03 38,424 3 0.000 35,936 14 0.000 33,273 5 0.000 33,273 5 0.000 30,995 3 0.000 31,407 2 0.000
YFJS04 45,683 3 0.000 45,533 4 0.000 42,553 4 0.000 42,553 4 0.000 38,092 5 0.000 38,092 5 0.000
YFJS05 45,421 4 0.000 45,421 4 0.000 40,738 2 0.000 40,738 2 0.000 38,324 5 0.000 38,324 9 0.000
YFJS06 44,848 13 0.000 47,384 12 0.001 43,384 15 0.000 42,207 21 0.002 45,370 2 0.000 45,370 2 0.000
YFJS07 48,980 7 0.000 45,722 21 0.001 43,925 12 0.000 45,971 11 0.000 38,453 5 0.000 38,453 5 0.000
YFJS08 43,073 7 0.000 41,658 19 0.001 42,901 3 0.000 41,573 10 0.000 35,429 2 0.000 33,432 17 0.001
YFJS09 25,067 3 0.000 24,350 4 0.000 23,059 3 0.000 22,211 5 0.000 20,916 7 0.000 20,916 7 0.000
YFJS10 42,583 1 0.000 42,278 2 0.000 39,126 5 0.000 38,683 7 0.000 34,487 8 0.000 36,415 7 0.000
YFJS11 55,765 4 0.000 55,416 7 0.001 49,781 2 0.000 49,160 6 0.001 45,051 1 0.000 44,455 4 0.000
YFJS12 56,674 24 0.001 54,852 59 0.007 55,174 11 0.000 53,329 21 0.003 47,092 3 0.000 44,873 12 0.001
YFJS13 44,083 16 0.000 45,844 16 0.001 42,442 10 0.000 39,720 27 0.003 35,776 16 0.000 35,524 19 0.003
YFJS14 119,977 27 0.016 124,518 60 0.141 104,506 19 0.010 105,770 58 0.181 89,687 12 0.007 87,368 61 0.182
YFJS15 126,713 33 0.016 127,073 171 0.481 106,511 28 0.016 108,412 58 0.192 93,075 14 0.007 86,141 166 0.529
YFJS16 116,201 37 0.018 121,141 73 0.196 101,164 13 0.005 99,801 65 0.129 87,351 10 0.005 87,648 48 0.136
YFJS17 104,688 21 0.026 102,614 159 1.134 83,355 18 0.014 82,211 87 0.621 71,201 26 0.036 71,075 65 0.493
YFJS18 126,647 34 0.032 128,529 87 0.752 97,157 15 0.022 94,689 179 2.000 84,518 9 0.015 82,967 77 0.834
YFJS19 93,306 96 0.100 100,855 209 1.353 86,398 21 0.026 85,028 128 1.115 68,792 53 0.054 68,955 135 0.984
YFJS20 96,248 17 0.019 92,240 196 1.205 79,408 85 0.088 80,875 294 1.923 71,676 8 0.009 68,562 123 0.993

mean 71,528.60 18.15 0.011 71,895.70 57.10 0.264 62,812.75 14.05 0.009 62,184.05 51.00 0.309 55,087.10 10.05 0.007 54,328.30 38.90 0.208
wins 10 11 8 16 10 15

Table 2: Local search results with the first-improvement strategy using the reduced neighborhood
and the cropped neighborhood, applied to the large-sized instances proposed in [8] with learning
rate α ∈ {0.1, 0.2, 0.3}.

instance. Tables 5, 6, and 7 show the results associated with the learning rates α ∈ {0.1, 0.2, 0.3},
respectively. In the tables, for each method/instance pair, when applicable, we show the best
makespan (among the five runs) and the CPU time the method needed to achieve it. If a method
reached its best makespan more than once, the indicated CPU time corresponds in fact to the
average CPU time among all the times the method reached the indicated makespan. In the
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instance
α = 0.1 α = 0.2 α = 0.3

Cropped Reduced Cropped Reduced Cropped Reduced
Cmax #it Cmax #it Cmax #it Cmax #it Cmax #it Cmax #it

miniDAFJS01 23,264 1 23,019 2 21,588 3 21,546 4 20,007 4 19,848 4
miniDAFJS02 23,242 1 22,927 3 22,161 1 22,046 2 21,136 2 20,987 2
miniDAFJS03 18,363 1 18,363 1 17,972 1 17,972 1 17,619 2 17,619 2
miniDAFJS04 21,690 1 21,151 4 20,691 2 19,602 4 19,867 2 18,800 4
miniDAFJS05 22,598 1 22,418 2 20,826 1 20,523 2 19,253 1 18,878 2
miniDAFJS06 23,370 1 23,370 1 20,783 2 20,783 2 19,605 2 19,605 2
miniDAFJS07 28,644 1 28,644 1 25,088 1 24,715 2 24,636 2 24,256 2
miniDAFJS08 19,878 1 19,878 1 18,857 1 18,857 1 17,900 2 17,900 2
miniDAFJS09 25,425 1 25,425 1 23,830 1 23,715 2 22,398 1 22,258 2
miniDAFJS10 21,563 1 20,359 4 21,021 1 18,823 5 19,723 2 17,466 5
miniDAFJS11 33,689 2 33,585 4 30,941 2 30,550 5 28,510 2 28,342 2
miniDAFJS12 20,342 1 20,342 1 19,624 1 19,624 1 19,094 1 19,094 1
miniDAFJS13 17,091 2 16,313 3 16,616 2 15,143 3 15,278 2 15,053 2
miniDAFJS14 23,248 4 23,140 5 21,990 5 21,817 5 20,711 5 20,620 5
miniDAFJS15 22,472 1 22,472 1 20,620 3 20,620 3 18,628 3 18,628 3
miniDAFJS16 25,691 1 25,426 2 24,593 1 24,114 2 22,939 3 22,939 3
miniDAFJS17 21,070 1 20,155 3 20,183 2 20,183 2 19,139 2 19,139 2
miniDAFJS18 18,445 2 18,135 4 18,829 1 18,201 4 17,784 1 17,295 2
miniDAFJS19 21,293 1 20,945 3 20,107 1 19,642 3 19,030 1 18,474 3
miniDAFJS20 23,443 2 23,212 3 21,286 1 21,286 1 19,587 1 19,587 1
miniDAFJS21 24,404 3 24,274 4 22,215 2 22,151 4 21,182 3 20,368 4
miniDAFJS22 25,923 3 25,923 3 24,273 3 24,273 3 22,767 3 22,767 3
miniDAFJS23 25,839 2 25,788 3 24,253 2 24,164 3 21,772 5 22,710 3
miniDAFJS24 26,932 1 26,610 4 24,500 1 23,709 3 22,524 1 21,714 4
miniDAFJS25 23,370 1 22,982 2 22,613 1 21,946 2 18,472 6 20,834 3
miniDAFJS26 22,306 3 22,230 4 20,273 4 20,273 4 18,921 4 18,921 4
miniDAFJS27 27,086 3 27,086 3 23,145 5 23,145 5 22,513 3 22,334 4
miniDAFJS28 23,841 6 23,841 6 21,927 7 21,927 7 20,020 2 20,020 2
miniDAFJS29 21,151 1 21,057 2 19,789 1 19,789 1 18,560 1 18,414 2
miniDAFJS30 26,428 2 26,126 4 23,736 2 22,973 4 21,356 2 20,760 3

mean 23,403.37 1.73 23,173.20 2.80 21,811.00 2.03 21,470.40 3.00 20,364.37 2.37 20,187.67 2.77
wins 12 30 12 30 13 18

instance
α = 0.1 α = 0.2 α = 0.3

Cropped Reduced Cropped Reduced Cropped Reduced
Cmax #it Cmax #it Cmax #it Cmax #it Cmax #it Cmax #it

miniYFJS01 35,243 1 35,046 2 34,443 1 33,132 4 33,697 1 32,199 2
miniYFJS02 28,688 1 28,688 1 27,557 1 27,557 1 25,969 1 25,969 1
miniYFJS03 53,381 2 52,098 3 49,111 2 46,806 3 42,787 3 42,787 3
miniYFJS04 25,394 1 25,394 1 24,669 1 24,485 2 24,017 1 23,774 2
miniYFJS05 26,371 2 25,750 3 25,635 3 24,235 3 24,743 1 24,743 1
miniYFJS06 30,952 1 30,952 1 29,080 1 29,080 1 27,366 1 27,366 1
miniYFJS07 46,782 2 46,089 4 44,137 2 42,578 5 41,737 2 39,229 5
miniYFJS08 33,954 2 33,883 3 31,992 2 31,597 4 30,276 2 29,631 4
miniYFJS09 37,049 2 37,049 2 36,098 2 36,098 2 34,357 1 34,357 1
miniYFJS10 29,416 5 29,416 5 27,604 4 29,858 2 27,547 2 27,425 2
miniYFJS11 51,212 1 51,129 2 47,079 1 46,939 2 43,254 1 43,254 1
miniYFJS12 36,343 4 36,343 4 33,404 5 33,404 5 29,989 5 29,989 5
miniYFJS13 32,915 5 32,792 5 30,219 4 30,219 4 25,881 3 25,619 4
miniYFJS14 31,826 6 31,826 6 31,284 4 31,284 4 28,131 6 28,131 6
miniYFJS15 45,597 3 45,442 4 42,306 3 41,893 4 39,187 3 38,619 4
miniYFJS16 33,965 3 33,791 7 32,481 3 32,165 6 30,483 2 30,483 2
miniYFJS17 44,181 5 44,044 7 41,316 5 41,199 5 38,739 5 38,584 5
miniYFJS18 34,133 3 34,044 4 29,883 2 29,883 2 27,944 2 27,944 2
miniYFJS19 39,165 3 39,046 4 33,965 6 33,805 7 31,743 6 31,082 8
miniYFJS20 30,837 6 30,837 6 31,304 6 31,304 6 29,599 4 29,599 4
miniYFJS21 40,523 6 40,523 6 35,570 9 35,570 9 33,355 5 33,355 5
miniYFJS22 35,019 4 35,019 4 32,485 1 31,946 2 30,212 1 29,498 2
miniYFJS23 45,725 4 45,725 4 42,446 2 42,016 3 38,777 4 37,963 5
miniYFJS24 40,291 5 40,291 6 38,144 2 38,144 2 30,173 7 31,572 9
miniYFJS25 43,592 3 43,555 3 40,933 1 40,425 3 34,388 3 34,388 3
miniYFJS26 54,739 2 54,675 3 49,412 1 49,412 1 44,633 3 44,207 6
miniYFJS27 36,765 4 36,765 4 34,125 4 34,225 6 31,749 4 31,571 6
miniYFJS28 41,951 2 41,838 3 38,640 2 38,450 3 35,729 2 35,729 2
miniYFJS29 44,930 5 44,930 5 38,993 3 38,586 4 34,330 4 34,604 3
miniYFJS30 44,038 3 43,725 4 41,290 3 40,744 4 31,093 7 31,093 7

mean 38,499.23 3.20 38,356.83 3.87 35,853.50 2.87 35,567.97 3.63 32,729.50 3.07 32,492.13 3.70
wins 14 30 13 28 17 18

Table 3: Local search results with the best-improvement strategy using the reduced neighbor-
hood and the cropped neighborhood, applied to the small-sized instances with learning rate
α ∈ {0.1, 0.2, 0.3}.
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instance
α = 0.1 α = 0.2 α = 0.3

Cropped Reduced Cropped Reduced Cropped Reduced
Cmax #it Time Cmax #it Time Cmax #it Time Cmax #it Time Cmax #it Time Cmax #it Time

DAFJS01 26,465 4 0.000 26,203 7 0.004 26,371 3 0.000 24,993 8 0.001 21,685 3 0.000 21,685 3 0.000
DAFJS02 28,098 3 0.000 28,098 3 0.001 27,949 2 0.000 27,727 4 0.000 23,021 3 0.000 23,021 3 0.000
DAFJS03 53,688 1 0.000 51,580 14 0.009 47,879 2 0.000 45,916 15 0.011 43,509 2 0.000 42,258 8 0.006
DAFJS04 54,082 1 0.000 52,494 11 0.004 47,571 4 0.000 46,502 7 0.003 41,899 2 0.000 41,533 4 0.001
DAFJS05 40,723 10 0.006 40,723 12 0.005 37,118 15 0.002 38,484 12 0.005 33,331 12 0.001 33,813 7 0.003
DAFJS06 45,234 11 0.007 44,877 15 0.009 41,995 6 0.001 41,909 9 0.005 33,956 5 0.001 30,556 20 0.011
DAFJS07 54,937 5 0.006 53,651 15 0.032 44,414 16 0.009 44,147 21 0.046 40,442 5 0.002 40,057 13 0.027
DAFJS08 58,941 10 0.009 56,561 14 0.031 52,803 3 0.001 51,128 16 0.038 44,590 4 0.001 43,737 16 0.034
DAFJS09 43,032 9 0.003 45,796 5 0.002 38,062 12 0.002 37,876 12 0.007 36,488 5 0.001 36,303 10 0.008
DAFJS10 54,858 5 0.002 51,277 24 0.025 45,971 4 0.001 45,868 3 0.002 35,273 8 0.002 35,023 9 0.009
DAFJS11 63,795 8 0.010 64,796 20 0.066 53,770 7 0.007 52,845 17 0.061 44,701 7 0.005 44,599 11 0.035
DAFJS12 62,433 15 0.024 61,533 28 0.128 54,073 5 0.007 52,355 17 0.080 44,051 5 0.004 43,449 11 0.045
DAFJS13 58,902 6 0.004 56,453 22 0.027 48,838 13 0.007 49,179 10 0.011 41,717 4 0.001 41,717 4 0.005
DAFJS14 62,637 42 0.029 70,357 8 0.014 55,503 19 0.012 54,609 25 0.040 44,777 16 0.008 44,646 23 0.042
DAFJS15 64,527 21 0.032 62,030 39 0.205 52,115 9 0.011 53,677 7 0.035 46,921 12 0.012 47,268 15 0.071
DAFJS16 69,300 21 0.029 66,153 71 0.358 61,676 8 0.011 60,010 20 0.093 54,072 15 0.015 49,031 46 0.260
DAFJS17 70,803 9 0.011 69,975 22 0.054 55,294 6 0.006 54,456 18 0.045 45,667 17 0.016 47,550 28 0.103
DAFJS18 67,984 27 0.022 71,052 10 0.031 57,965 16 0.012 57,274 25 0.042 48,351 7 0.004 49,753 5 0.013
DAFJS19 57,786 16 0.014 57,471 22 0.046 51,065 8 0.004 51,065 8 0.019 43,998 9 0.003 40,678 26 0.053
DAFJS20 67,045 22 0.021 66,674 30 0.115 57,271 27 0.027 55,355 47 0.180 45,160 23 0.024 49,481 14 0.055
DAFJS21 72,979 17 0.025 71,913 23 0.103 58,044 14 0.018 57,787 20 0.070 48,693 16 0.023 48,912 16 0.064
DAFJS22 60,238 46 0.068 62,189 29 0.196 54,147 11 0.017 53,728 15 0.088 41,480 28 0.040 42,035 25 0.156
DAFJS23 47,719 9 0.004 47,520 15 0.022 42,480 8 0.003 42,943 11 0.014 39,105 3 0.001 38,185 8 0.011
DAFJS24 54,427 13 0.009 55,115 12 0.033 46,797 15 0.012 46,985 12 0.024 41,832 4 0.005 39,979 21 0.063
DAFJS25 74,359 37 0.049 73,353 48 0.301 58,767 31 0.043 61,465 29 0.165 49,919 9 0.013 49,527 14 0.059
DAFJS26 68,577 50 0.076 76,328 12 0.080 63,243 36 0.049 68,469 18 0.142 51,544 16 0.021 50,829 31 0.219
DAFJS27 79,254 2 0.004 78,967 6 0.036 62,520 12 0.020 62,359 18 0.120 51,382 29 0.041 53,010 23 0.168
DAFJS28 58,564 4 0.004 53,505 41 0.100 48,593 12 0.012 48,941 9 0.029 41,206 4 0.004 40,923 7 0.019
DAFJS29 70,450 6 0.005 65,758 36 0.120 56,387 20 0.014 57,708 14 0.054 49,906 5 0.005 48,412 18 0.074
DAFJS30 57,326 6 0.004 56,839 13 0.032 49,649 17 0.012 49,312 30 0.092 42,819 2 0.002 42,592 4 0.011

mean 58,305.43 14.53 0.016 57,974.70 20.90 0.073 49,944.33 12.03 0.011 49,835.73 15.90 0.051 42,383.17 9.33 0.009 42,018.73 14.77 0.054
wins 9 23 10 21 11 13

instance
α = 0.1 α = 0.2 α = 0.3

Cropped Reduced Cropped Reduced Cropped Reduced
Cmax #it Time Cmax #it Time Cmax #it Time Cmax #it Time Cmax #it Time Cmax #it Time

YFJS01 80,167 6 0.000 79,657 8 0.002 71,592 9 0.001 68,822 14 0.004 66,246 6 0.000 60,208 15 0.005
YFJS02 76,529 3 0.000 76,529 3 0.000 66,853 1 0.000 66,853 1 0.000 59,001 2 0.000 59,001 2 0.000
YFJS03 34,166 5 0.000 36,409 4 0.000 32,864 5 0.000 32,864 5 0.000 30,995 3 0.000 31,407 2 0.000
YFJS04 45,683 3 0.000 45,533 4 0.000 42,553 4 0.000 42,553 4 0.000 38,092 3 0.000 38,092 3 0.000
YFJS05 45,421 3 0.000 45,421 3 0.000 40,738 2 0.000 40,738 2 0.000 38,324 4 0.000 38,324 8 0.001
YFJS06 44,936 10 0.001 44,936 10 0.002 40,272 9 0.000 43,744 6 0.001 43,123 6 0.000 43,099 7 0.001
YFJS07 48,491 9 0.000 48,355 10 0.002 40,941 12 0.001 40,941 12 0.002 38,453 2 0.000 38,453 2 0.000
YFJS08 47,429 3 0.000 41,754 9 0.001 41,994 3 0.000 37,681 10 0.001 35,429 2 0.000 33,392 5 0.000
YFJS09 24,413 2 0.000 23,944 4 0.000 23,059 2 0.000 22,211 4 0.000 20,916 7 0.000 20,916 7 0.001
YFJS10 42,583 1 0.000 42,278 2 0.000 39,126 4 0.000 39,361 4 0.000 34,487 7 0.000 34,487 10 0.001
YFJS11 52,815 4 0.000 52,196 8 0.002 49,781 2 0.000 49,206 4 0.001 45,051 1 0.000 44,729 2 0.000
YFJS12 53,094 11 0.001 52,650 12 0.004 56,022 7 0.000 54,186 12 0.004 46,471 5 0.000 43,150 9 0.003
YFJS13 47,064 4 0.000 46,578 9 0.003 41,618 5 0.000 41,498 6 0.002 36,962 4 0.000 35,800 11 0.003
YFJS14 119,792 13 0.016 118,731 27 0.202 97,201 18 0.022 100,177 23 0.161 89,371 6 0.008 87,518 21 0.162
YFJS15 121,960 14 0.020 125,754 66 0.553 110,858 8 0.011 109,314 33 0.284 90,041 15 0.019 88,664 28 0.220
YFJS16 116,033 19 0.024 115,312 31 0.204 101,073 7 0.008 98,976 34 0.238 88,521 5 0.006 85,252 27 0.176
YFJS17 104,862 9 0.025 104,466 18 0.396 83,240 14 0.042 82,167 42 0.895 71,114 9 0.027 70,851 46 1.004
YFJS18 124,738 13 0.043 119,224 84 1.872 97,366 9 0.027 94,472 45 1.123 83,681 9 0.030 82,795 27 0.639
YFJS19 98,795 24 0.072 100,158 38 0.847 86,289 9 0.031 83,530 48 1.159 70,454 22 0.061 68,592 69 1.435
YFJS20 95,573 10 0.030 94,201 42 0.764 79,653 24 0.062 79,638 35 0.630 70,928 9 0.028 70,253 19 0.365

mean 71,227.20 8.30 0.012 70,704.30 19.60 0.243 62,154.65 7.70 0.010 61,446.60 17.20 0.225 54,883.00 6.35 0.009 53,749.15 16.00 0.201
wins 6 17 8 17 7 19

Table 4: Local search results with the best-improvement strategy using the reduced neighbor-
hood and the cropped neighborhood, applied to the large-sized instances proposed in [8] with
learning rate α ∈ {0.1, 0.2, 0.3}.

tables, additional lines show some statistics. The line named C̄max shows the average of the
makespans found by each method (for each instance, the average considers the best over the
five runs, when applicable). The line named #best shows, for each method, the number of
instances in which the method found the best solution among the solutions found by the seven
methods being considered. The line named gap(%), shows, for each method, the average gap
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when, for each instance, the solution found is compared with the best solution found by the
seven methods. If the seven methods applied to the same instance found makespans c1, . . . , c7,
the gap of method i in the considered instance corresponds to 100% × (ci − cmin)/cmin, where
cmin = min{c1, . . . , c7}. The gap reported in line gap(%) for each method corresponds to the
average over all instances in the table. In the previous sentence, if a method i is run five
times per instance, the value ci made reference to the best over the five runs. So the value
reported in line gap(%) does not refer to what happened in “the other four runs”. In these
other cases, does each method find something close to its best makespan or something much
worse? To answer this question, let us now consider that the values c̄1, . . . , c̄7 correspond to
the average of the makespans found in the five runs. The line gap(%) shows the same as line
gap(%) but considering c̄1, . . . , c̄7 instead of c1, . . . , c7. Both lines coincide for the case of TS-
RN and TS-CN which have no random components and are therefore only executed once per
instance. Thus, when TS-RN or TS-CN is compared with other method, it is the value of
gap(%) that must be compared. Otherwise, we would be comparing a method that is run only
once against a method that is run five times and keeps the best solution found only. Statistics,
consolidating the individual statistics for the DA-type and Y-type instances and the learning
rates α ∈ {0.1, 0.2, 0.3}, appear at the top of Table 13.
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Figure 3: This figure shows the value of C̄max as a function of the CPU time for each of the
seven methods applied to the large-sized instances. The average makespan shown in the graphic
is the average of the different values shown in Tables 5, 6, and 7, that separate the instances by
DA type, Y type and learning rates α ∈ {0.1, 0.2, 0.3}.

Figure 3 shows, for each method, the average value of C̄max as a function of the CPU time.
As mentioned above, the considered average is the average of the makespans shown in Tables 5,
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instance
ILS-RN ILS-CN GRASP-RN GRASP-CN TS-RN TS-CN SA

Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time

DAFJS01 23,460 12.29 23,460 3.39 24,172 90.48 23,961 131.52 24,424 0.05 24,661 0.01 23,992 46.48
DAFJS02 26,432 60.95 26,432 25.84 26,989 0.01 26,869 0.28 26,432 0.32 27,620 0.00 27,577 0.55
DAFJS03 50,343 164.37 50,462 34.55 50,424 241.44 51,028 156.99 50,343 7.20 51,612 0.26 50,458 261.30
DAFJS04 51,872 62.24 51,992 181.28 51,927 30.24 52,358 275.80 52,291 0.11 53,348 0.00 51,927 151.36
DAFJS05 34,660 167.91 34,660 45.10 37,081 35.04 36,883 80.14 35,278 1.96 36,009 0.26 36,141 139.08
DAFJS06 35,435 111.76 35,302 176.69 37,023 122.84 36,338 98.55 35,636 15.04 37,854 0.05 35,697 256.36
DAFJS07 45,805 240.68 45,306 72.33 46,624 107.20 46,791 57.95 44,281 158.67 45,060 297.79 44,219 241.82
DAFJS08 53,202 52.07 53,463 41.54 53,575 174.57 54,129 129.70 53,002 261.88 54,018 0.69 53,292 276.00
DAFJS09 40,573 145.06 40,537 166.88 41,066 119.76 40,759 184.35 41,123 4.34 42,241 0.09 41,265 4.00
DAFJS10 44,523 99.32 44,058 254.61 44,917 217.73 44,735 277.52 45,820 10.28 47,438 0.32 44,851 70.25
DAFJS11 55,180 121.71 55,393 151.06 58,257 219.22 58,527 228.89 54,351 260.24 55,337 158.73 54,708 264.50
DAFJS12 54,035 227.92 53,175 20.54 56,670 237.70 56,495 79.61 51,432 238.43 51,794 224.88 51,067 234.61
DAFJS13 54,654 35.35 54,371 0.05 54,392 277.63 54,583 107.84 53,340 233.35 53,792 0.10 54,502 93.52
DAFJS14 61,500 133.79 60,882 169.24 61,487 185.43 61,641 265.85 59,668 196.33 61,524 0.74 59,573 254.00
DAFJS15 57,552 111.67 57,554 216.92 59,362 201.70 59,997 220.71 55,086 253.37 55,381 115.31 55,164 197.01
DAFJS16 58,828 213.11 58,327 98.92 63,365 189.53 62,494 242.24 55,927 242.72 56,758 115.48 55,868 208.74
DAFJS17 65,252 138.93 65,121 1.17 64,804 269.21 65,643 74.78 64,262 283.76 65,525 1.33 65,602 55.29
DAFJS18 66,429 288.91 65,889 271.51 66,633 179.15 66,419 214.60 64,916 134.40 67,040 0.23 64,820 219.02
DAFJS19 45,416 136.34 44,744 95.28 46,757 147.62 46,301 76.22 44,633 121.09 45,602 1.30 44,086 144.96
DAFJS20 59,190 298.29 58,137 241.93 59,670 43.48 59,323 79.25 56,432 155.97 57,141 9.73 57,245 290.79
DAFJS21 65,432 83.75 66,006 217.22 66,547 87.71 66,752 277.45 64,563 264.94 64,902 13.37 64,059 124.80
DAFJS22 58,025 2.64 57,426 227.59 59,477 62.55 59,086 30.34 55,246 269.80 55,038 24.67 55,624 283.70
DAFJS23 42,818 226.75 42,255 149.85 43,565 66.68 43,426 150.96 41,941 57.87 42,426 1.56 41,286 227.89
DAFJS24 48,266 207.07 48,911 123.21 51,313 127.05 51,532 43.92 47,443 139.28 47,365 281.95 46,945 217.47
DAFJS25 62,813 127.68 63,039 16.33 65,321 147.01 65,866 65.19 60,824 205.95 60,308 248.14 60,187 270.84
DAFJS26 62,389 131.50 61,645 158.57 65,982 299.75 65,951 196.11 58,995 185.68 58,749 67.28 59,450 297.29
DAFJS27 69,386 73.63 68,795 254.71 70,375 231.60 70,762 6.13 66,539 245.31 66,003 148.50 66,070 204.00
DAFJS28 48,091 133.90 47,738 187.43 48,669 164.03 49,309 294.79 47,428 164.05 47,551 75.18 46,569 268.66
DAFJS29 57,824 58.01 57,384 259.73 59,825 173.11 59,564 234.87 55,820 10.14 56,122 37.45 54,686 296.94
DAFJS30 48,572 292.30 48,329 137.76 50,395 59.47 50,593 18.06 47,140 237.35 47,307 76.44 46,344 232.86

C̄max 51,598.57 51,359.77 52,888.80 52,937.17 50,487.20 51,184.20 50,442.47
#best 5 6 0 0 8 3 13
gap(%) 2.79 2.33 5.46 5.48 0.91 2.45 0.84
gap(%) 3.43 2.94 6.23 6.14 0.91 2.45 1.87

instance
ILS-RN ILS-CN GRASP-RN GRASP-CN TS-RN TS-CN SA

Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time

YFJS01 68,714 0.51 68,714 0.80 68,714 0.12 69,189 0.02 68,714 0.34 75,595 0.03 68,714 0.81
YFJS02 72,465 1.40 72,465 2.82 73,053 0.12 73,149 0.44 72,465 0.02 73,053 0.04 72,465 1.79
YFJS03 32,538 0.03 32,538 0.02 32,538 254.14 32,538 0.08 32,538 0.10 33,174 0.00 32,538 0.47
YFJS04 35,883 1.73 35,883 0.17 36,946 0.15 35,883 0.10 35,883 1.25 37,340 0.02 35,883 0.59
YFJS05 40,186 9.99 40,186 1.76 41,034 160.74 41,034 0.52 40,186 4.42 41,034 0.03 41,034 0.74
YFJS06 40,441 218.75 40,441 122.67 41,123 3.28 41,174 59.04 40,522 13.18 41,123 0.61 40,784 0.76
YFJS07 40,887 131.61 40,887 37.21 41,625 54.84 41,354 11.63 40,887 38.15 41,394 0.17 40,887 16.55
YFJS08 32,573 0.69 32,573 0.88 32,623 0.09 32,655 29.50 32,573 0.91 34,452 0.00 32,573 63.60
YFJS09 22,681 2.68 22,681 0.54 22,681 6.30 22,681 56.94 22,681 0.01 22,681 0.24 22,681 2.03
YFJS10 37,372 11.63 37,372 19.65 37,685 1.92 37,685 0.62 39,621 0.03 37,482 0.00 37,372 3.04
YFJS11 47,800 12.50 47,800 94.06 49,493 174.55 49,208 41.96 48,195 4.95 49,721 0.04 47,800 85.90
YFJS12 46,728 26.81 46,728 15.79 49,411 13.84 48,774 92.81 46,728 149.42 48,608 0.02 46,728 63.09
YFJS13 36,911 12.30 36,911 13.38 38,042 2.35 37,361 108.86 36,926 33.80 39,207 0.02 36,911 76.79
YFJS14 110,185 216.19 110,558 269.22 112,062 221.06 113,009 59.06 110,625 9.33 117,667 0.03 111,282 147.69
YFJS15 105,935 192.42 106,221 189.75 108,296 17.04 111,374 226.73 105,837 259.22 116,525 0.19 106,892 149.18
YFJS16 105,003 56.50 105,423 119.50 111,439 107.53 111,432 284.88 105,905 197.45 115,417 0.07 105,112 56.87
YFJS17 93,469 198.07 94,558 174.10 99,912 159.01 101,069 107.68 96,737 226.68 98,329 0.99 94,950 112.29
YFJS18 101,013 215.24 101,517 63.58 109,763 247.62 107,336 230.38 103,359 239.97 115,332 0.48 102,477 184.95
YFJS19 82,879 221.94 81,172 115.47 94,020 109.95 92,172 67.18 86,500 242.82 88,400 2.14 81,946 93.62
YFJS20 83,689 233.90 83,731 259.71 94,228 280.03 93,689 13.39 85,867 282.07 88,516 3.63 84,707 200.84

C̄max 61,867.60 61,917.95 64,734.40 64,638.30 62,637.45 65,752.50 62,186.80
#best 18 14 3 3 10 1 11
gap(%) 0.11 0.14 3.84 3.51 1.17 5.15 0.51
gap(%) 0.40 0.23 4.59 4.02 1.17 5.15 0.97

Table 5: Results of applying the metaheuristics to the large-sized instances with learning rate
α = 0.1.
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instance
ILS-RN ILS-CN GRASP-RN GRASP-CN TS-RN TS-CN SA

Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time

DAFJS01 21,683 17.45 21,683 7.46 21,861 8.41 21,861 136.04 22,286 0.03 22,703 0.01 21,936 0.38
DAFJS02 24,235 48.48 24,235 55.62 24,618 0.05 24,571 4.00 24,875 0.14 24,477 0.00 25,141 0.51
DAFJS03 44,266 213.30 44,453 208.60 44,481 211.71 45,079 169.49 44,419 12.80 45,275 0.37 44,266 147.45
DAFJS04 44,713 54.08 44,938 53.17 44,713 298.64 45,644 29.88 44,821 1.41 46,807 0.28 44,816 239.37
DAFJS05 30,904 28.28 30,773 144.29 31,848 54.88 32,065 22.88 32,028 0.92 31,772 0.66 31,295 61.32
DAFJS06 30,602 65.94 30,553 16.14 31,994 90.56 31,768 145.27 31,521 5.17 31,039 0.52 31,216 44.70
DAFJS07 40,343 46.23 39,788 223.54 40,321 121.98 40,891 84.05 38,731 37.49 39,488 223.99 38,833 112.43
DAFJS08 45,636 273.46 45,784 218.76 45,955 9.16 46,589 7.49 45,162 133.36 46,129 119.13 45,302 128.92
DAFJS09 35,098 25.22 35,244 74.17 35,759 18.62 35,507 224.49 35,161 5.16 36,004 0.20 35,418 193.84
DAFJS10 37,326 238.28 37,172 198.27 37,736 257.38 37,856 76.13 36,791 293.02 38,453 0.75 37,183 11.88
DAFJS11 47,417 203.56 47,221 248.85 49,271 182.94 49,049 30.18 45,861 300.00 46,470 169.13 45,822 242.59
DAFJS12 45,613 256.81 45,394 45.36 48,195 14.33 47,896 195.90 44,167 232.32 43,932 259.97 43,227 261.22
DAFJS13 45,230 112.83 45,187 255.42 45,154 195.56 45,422 200.48 44,180 128.30 46,329 0.17 45,309 154.25
DAFJS14 50,958 250.28 50,897 103.42 51,082 235.59 50,954 267.23 49,611 171.05 51,800 0.36 50,555 271.75
DAFJS15 49,326 277.73 49,120 158.41 50,696 137.86 50,910 95.17 47,211 221.78 47,414 152.93 47,151 282.47
DAFJS16 50,300 40.01 49,896 227.89 53,242 121.42 54,087 243.46 48,972 297.39 48,312 169.85 47,661 169.18
DAFJS17 53,388 122.05 52,783 157.04 52,905 171.59 53,513 237.27 51,715 55.57 52,459 2.64 52,081 94.05
DAFJS18 54,313 275.00 54,237 103.14 54,569 292.99 55,154 147.54 52,624 164.38 54,008 1.39 53,942 183.68
DAFJS19 39,480 94.81 39,312 77.07 41,046 124.48 40,931 162.08 38,740 130.01 38,941 6.77 38,012 150.83
DAFJS20 49,099 259.17 49,226 160.00 49,290 184.19 50,041 197.61 48,088 230.79 49,274 0.55 47,680 282.84
DAFJS21 54,311 5.09 54,163 118.65 54,851 216.71 55,002 20.65 52,681 264.76 53,996 9.95 53,196 291.79
DAFJS22 46,679 213.56 46,468 161.65 48,169 285.94 47,938 42.82 46,088 288.61 44,851 59.63 45,011 251.83
DAFJS23 37,459 248.79 36,733 262.51 38,106 230.28 38,487 243.86 36,137 166.72 36,190 13.53 36,373 49.89
DAFJS24 42,129 124.24 41,596 275.85 43,617 113.82 43,693 295.60 40,079 216.52 41,307 26.26 40,453 297.11
DAFJS25 53,096 203.63 52,727 274.34 54,913 107.96 55,011 220.93 52,604 264.38 50,965 248.46 50,887 116.74
DAFJS26 52,492 211.10 52,147 218.93 54,563 21.44 54,439 241.66 50,006 140.87 50,465 74.69 50,062 110.48
DAFJS27 57,249 244.03 56,428 299.00 58,674 259.45 59,078 30.84 55,599 293.44 55,398 29.41 55,291 270.23
DAFJS28 41,928 91.85 42,013 119.00 42,847 90.69 43,197 208.33 40,686 26.31 41,780 30.78 40,431 212.68
DAFJS29 49,863 282.73 49,538 162.49 51,391 213.00 51,881 188.89 48,953 155.28 48,942 2.58 47,091 293.59
DAFJS30 42,001 145.84 42,138 130.38 43,276 119.87 43,617 4.51 40,839 246.80 40,746 63.14 40,325 137.56

C̄max 43,904.57 43,728.23 44,838.10 45,071.03 43,021.20 43,524.20 42,865.53
#best 5 4 1 0 11 1 12
gap(%) 2.91 2.52 5.12 5.62 1.13 2.27 0.74
gap(%) 3.49 3.15 5.99 6.30 1.13 2.27 1.69

instance
ILS-RN ILS-CN GRASP-RN GRASP-CN TS-RN TS-CN SA

Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time

YFJS01 61,606 1.10 61,606 1.12 64,456 0.19 62,327 9.05 61,606 3.43 62,366 0.05 62,124 2.24
YFJS02 64,172 0.59 64,172 1.35 65,967 0.99 66,394 0.87 64,172 1.65 64,805 0.16 64,172 28.72
YFJS03 30,073 0.36 30,073 0.26 30,073 0.08 30,073 0.02 30,073 0.01 30,073 0.00 30,073 0.59
YFJS04 32,670 0.51 32,670 0.37 33,302 226.25 32,802 166.10 32,670 1.53 33,302 0.01 32,670 0.65
YFJS05 37,182 7.66 37,182 6.16 37,670 0.33 37,255 0.79 37,182 4.32 38,682 0.01 37,682 0.68
YFJS06 36,749 68.53 36,749 11.18 37,293 94.00 36,812 17.99 36,749 137.03 37,943 0.17 37,107 1.01
YFJS07 36,611 102.75 36,611 57.41 37,159 3.75 37,159 8.11 36,611 77.85 37,159 0.34 36,611 1.07
YFJS08 30,184 0.23 30,184 0.51 30,267 0.46 30,384 227.80 30,267 1.93 32,595 0.00 30,184 1.10
YFJS09 21,363 12.05 21,363 1.63 21,363 130.79 21,363 141.45 21,363 10.87 21,363 0.89 21,450 2.64
YFJS10 34,364 10.57 34,364 8.30 35,389 0.03 34,689 11.28 35,251 0.14 35,116 0.00 34,364 38.75
YFJS11 43,454 158.07 43,544 164.27 45,613 12.83 45,649 33.90 44,094 0.53 46,983 0.00 43,454 81.93
YFJS12 42,232 177.44 42,397 131.72 45,207 91.71 44,084 69.04 42,597 221.30 46,047 0.01 42,232 4.28
YFJS13 33,875 34.01 33,875 18.97 34,401 4.99 34,240 50.77 33,875 34.33 34,335 0.20 33,875 3.48
YFJS14 92,522 58.55 93,435 164.41 96,665 218.81 96,415 81.18 93,409 43.69 97,155 0.11 93,812 117.48
YFJS15 91,555 188.91 91,006 203.20 96,697 210.91 97,126 71.71 90,801 216.11 95,840 0.40 91,216 253.51
YFJS16 90,957 133.94 90,591 138.68 95,294 289.35 96,871 283.70 91,357 103.88 100,478 0.11 90,266 150.82
YFJS17 78,747 203.06 78,585 294.38 85,736 0.00 85,736 0.00 78,982 276.75 83,631 0.18 79,177 283.88
YFJS18 85,415 255.16 85,191 56.76 92,382 86.94 94,410 189.36 92,710 70.33 97,864 0.04 86,119 263.05
YFJS19 70,527 299.05 68,718 122.25 78,364 245.26 79,427 14.98 74,284 184.84 71,701 8.45 69,662 57.52
YFJS20 72,991 221.56 70,286 170.65 80,074 29.02 81,808 36.17 71,131 268.24 74,652 0.97 73,215 138.10

C̄max 54,362.45 54,130.10 57,168.60 57,251.20 54,959.20 57,104.50 54,473.25
#best 14 15 2 2 10 2 10
gap(%) 0.43 0.11 4.63 4.47 1.30 4.77 0.64
gap(%) 0.80 0.26 5.67 4.97 1.30 4.77 1.36

Table 6: Results of applying the metaheuristics to the large-sized instances with learning rate
α = 0.2.
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instance
ILS-RN ILS-CN GRASP-RN GRASP-CN TS-RN TS-CN SA

Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time

DAFJS01 19,716 42.15 19,716 93.26 19,969 181.01 19,994 1.14 20,137 0.35 21,082 0.01 20,092 0.59
DAFJS02 22,147 44.81 22,147 33.01 22,404 1.20 22,236 0.04 22,191 0.44 22,429 0.00 22,695 25.70
DAFJS03 38,916 229.98 38,994 282.80 39,280 94.82 40,454 111.31 38,928 105.79 40,724 7.17 38,853 42.33
DAFJS04 39,117 275.95 39,492 39.94 39,358 60.46 39,943 283.63 39,347 1.53 40,425 0.53 39,285 246.66
DAFJS05 27,192 175.00 27,221 266.61 27,438 55.27 28,152 92.66 27,401 0.83 28,767 0.14 27,453 0.86
DAFJS06 26,565 224.96 26,552 138.78 27,706 107.01 27,111 240.56 26,535 10.26 28,134 0.06 26,763 23.70
DAFJS07 35,287 15.78 35,262 252.14 36,318 168.90 36,309 197.95 35,735 8.84 35,074 74.05 34,493 271.96
DAFJS08 39,120 225.81 39,413 106.90 39,394 121.44 40,345 135.78 38,629 192.08 39,620 201.57 38,605 53.16
DAFJS09 30,627 93.31 30,945 4.12 31,421 14.02 31,004 255.55 30,353 79.14 32,242 0.11 30,833 46.92
DAFJS10 30,880 131.80 31,191 202.19 31,544 192.89 31,802 279.43 30,983 182.18 31,853 1.87 31,252 197.99
DAFJS11 40,212 68.69 40,549 187.16 41,870 242.15 42,027 84.21 39,227 253.69 39,751 124.91 38,537 252.92
DAFJS12 38,128 83.41 38,671 61.78 40,625 271.43 40,937 93.63 37,351 174.33 37,394 263.18 37,030 286.43
DAFJS13 37,672 48.20 37,699 163.35 37,806 244.56 38,010 273.30 37,324 59.41 38,811 0.32 37,197 242.77
DAFJS14 42,469 275.82 42,260 88.40 42,350 198.57 42,507 278.76 41,203 164.66 41,969 0.43 41,854 234.65
DAFJS15 42,125 156.71 42,172 190.76 43,215 186.52 43,776 40.58 40,092 252.92 40,345 40.70 40,465 180.67
DAFJS16 43,378 39.90 42,572 191.37 45,354 201.36 45,439 214.16 41,337 298.16 41,201 18.64 40,487 102.62
DAFJS17 43,350 289.76 43,143 193.23 43,698 248.64 43,121 173.83 42,367 156.85 42,622 6.69 43,083 219.02
DAFJS18 44,635 0.79 45,043 140.76 45,611 263.32 45,211 76.37 43,899 105.90 43,981 0.84 44,417 250.00
DAFJS19 34,218 89.09 34,104 52.36 35,401 198.41 35,425 94.86 33,501 43.82 34,187 0.66 33,250 238.49
DAFJS20 41,035 31.13 41,242 196.95 41,550 118.66 42,268 165.12 40,059 214.87 40,245 8.86 39,812 262.00
DAFJS21 45,000 50.80 44,519 215.72 45,409 141.46 44,883 249.15 44,190 297.58 43,840 25.11 43,684 173.57
DAFJS22 37,634 290.20 37,610 55.93 38,705 135.46 39,392 124.86 37,083 120.04 36,276 131.71 36,866 124.16
DAFJS23 33,077 95.58 32,960 10.78 33,756 107.08 33,543 44.93 31,860 39.67 32,412 15.90 32,017 188.80
DAFJS24 36,252 239.59 36,121 68.70 37,838 92.47 37,964 29.84 35,122 299.58 35,273 54.63 34,422 268.69
DAFJS25 44,698 215.09 45,061 277.98 46,361 44.37 47,007 1.62 43,654 198.69 43,176 115.77 43,050 244.18
DAFJS26 44,105 263.42 43,877 72.88 47,208 44.13 46,799 79.24 43,025 189.92 42,082 249.03 42,080 211.51
DAFJS27 47,643 81.38 47,648 269.30 48,748 188.12 49,400 275.14 46,192 284.20 46,887 17.37 46,510 204.55
DAFJS28 36,496 246.88 36,494 299.25 37,703 157.63 37,808 192.62 35,694 31.02 36,285 31.11 35,637 191.18
DAFJS29 42,923 148.58 43,334 244.96 45,174 110.20 44,735 40.40 42,218 267.02 42,648 22.61 41,410 281.11
DAFJS30 37,051 148.59 37,006 190.53 38,067 194.66 37,421 258.42 35,609 250.85 35,593 14.62 35,242 283.70

C̄max 37,388.93 37,433.93 38,376.03 38,500.77 36,708.20 37,177.60 36,579.13
#best 5 2 0 0 8 1 16
gap(%) 2.58 2.71 5.26 5.57 0.89 2.38 0.59
gap(%) 3.31 3.17 6.04 6.23 0.89 2.38 1.53

instance
ILS-RN ILS-CN GRASP-RN GRASP-CN TS-RN TS-CN SA

Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time

YFJS01 55,128 1.60 55,128 1.29 55,458 0.18 56,790 2.84 55,693 0.92 57,900 0.02 55,128 0.73
YFJS02 57,187 1.20 57,187 2.25 59,000 0.32 58,470 0.21 57,187 1.60 57,634 0.18 57,187 10.48
YFJS03 27,686 0.03 27,686 0.03 27,686 0.00 27,686 0.01 27,686 0.02 28,772 0.00 27,686 0.47
YFJS04 29,692 0.29 29,692 1.66 29,692 23.14 30,683 160.12 29,692 0.20 29,692 0.05 29,692 0.49
YFJS05 33,736 2.48 33,736 3.45 34,430 2.41 33,856 182.52 33,736 12.59 35,577 0.01 33,736 0.90
YFJS06 33,276 35.79 33,276 111.43 33,557 23.84 33,557 6.56 33,276 32.04 33,892 0.09 33,892 0.78
YFJS07 33,011 91.58 33,011 82.50 33,352 30.98 33,059 126.97 33,092 4.76 33,317 0.01 33,092 0.55
YFJS08 28,192 0.35 28,192 0.62 28,597 0.07 28,355 0.14 28,192 0.09 28,638 0.00 28,192 0.82
YFJS09 20,077 3.69 20,077 2.38 20,077 33.66 20,077 22.83 20,077 9.58 20,077 0.23 20,121 165.05
YFJS10 31,559 33.20 31,559 119.22 32,582 0.72 32,159 0.57 31,998 0.77 33,111 0.00 31,559 74.40
YFJS11 40,204 102.14 40,103 105.15 41,079 136.76 40,619 20.45 40,350 6.53 41,547 0.00 40,319 2.58
YFJS12 38,003 173.04 38,003 154.12 39,993 21.82 38,618 35.05 38,392 268.63 41,620 0.02 38,392 103.93
YFJS13 30,711 88.73 30,711 89.29 31,823 1.59 31,518 55.89 30,714 180.10 33,449 0.01 30,874 1.20
YFJS14 79,051 186.80 79,386 200.32 81,558 137.18 84,481 176.28 78,762 142.02 83,816 0.18 79,486 38.18
YFJS15 79,374 139.96 78,660 198.52 84,181 133.33 84,277 230.45 79,092 191.45 87,555 0.10 78,545 69.16
YFJS16 78,426 106.57 78,333 198.20 83,753 2.48 85,453 284.11 78,491 112.32 83,317 0.43 78,004 83.92
YFJS17 66,188 295.79 66,029 82.47 73,682 0.00 73,682 0.00 66,802 275.82 71,161 0.04 66,388 158.14
YFJS18 73,732 298.52 71,791 115.35 80,279 246.11 82,201 17.58 76,031 298.20 77,670 1.43 73,078 243.24
YFJS19 61,283 149.66 58,933 123.03 70,115 118.17 68,545 185.31 60,919 297.73 61,788 4.36 59,633 299.10
YFJS20 60,960 148.73 59,846 186.72 68,963 197.07 71,916 244.37 60,137 237.53 62,668 1.26 61,277 170.47

C̄max 47,873.80 47,566.95 50,492.85 50,800.10 48,015.95 50,160.05 47,814.05
#best 12 17 3 2 8 2 9
gap(%) 0.55 0.07 4.97 5.23 0.83 4.84 0.56
gap(%) 0.94 0.25 5.87 5.98 0.83 4.84 1.39

Table 7: Results of applying the metaheuristics to the large-sized instances with learning rate
α = 0.3.
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6, and 7, i.e., it is the average of the best makespan over the five runs for each method/instance
pair. Using this value in the comparison is harmful for the TS-RN and TS-CN methods. Note
that if, we consider five minutes of CPU time, the TN-RN method is the second best, even using
this unfair measure in the comparison. Figure 4 shows the same thing except that, for methods
that solve each instance five times, instead of considering the best of the five makespan, we
consider the average of the five makespan. With this measure, and considering that we have five
minutes of CPU time available, the TS-RN method appears as the best. The ranking of all the
other methods, considering the five-minutes CPU time budget, remains the same.
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Figure 4: This figure is similar to Figure 3. The difference is that, for methods that solve each
instance five times, instead of considering the best of the five makespan, we consider the average
of the five makespan. This measure is more fair when in the comparison there are methods that
do not posses a random ingredient and, therefore, are run only one time per instance.

Figures 3 and 4 show that the ranking of the methods in relation to the average quality of the
solutions found is affected by the time limit used in the stopping criterion, since shorter times
would yield a different ranking. On the other hand, the figures also show that longer times would
have little effect on the comparison. (Note that the time axis in the figures is in logarithmic
scale and that the methods almost stabilize at five minutes). Figures 3 and 4 and Table 13
clearly show that GRASP-RN, GRASP-CN and TS-CN were the worst performing methods.
There seems to be an explanation for that: lack of diversification. In the case of TS-CN, the
difference in efficacy is remarkable when compared to TS-RN. It is worth noting that the cropped
neighborhood is radically smaller than the reduced neighborhood and this fact limits the ability
of the tabu search to escape from local solutions. Something similar occurs in the two versions
of GRASP, in which local searches are initiated from solutions constructed by a randomized
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version of the constructive heuristics ECT and EST. Apparently, the randomization of these
constructive heuristics was not able to generate sufficiently diverse solutions and repeated runs
of the local search ended up repeatedly converging to the same local solutions. On the other
side of the spectrum, TS-RN and SA performed outstandingly well, followed closely by the
two versions of ILS. The fact that SA (see Figures 3 and 4) takes a little longer to get good
quality solutions is entirely expected, since it is the method that less explores the neighborhood
of the current solution in the search for a new solution. Regardless of anything else, it is
important to note that all metaheuristics substantially improved the solutions delivered by the
constructive heuristics and found by the local search. The constructive heuristics EST and ECT
deliver solutions that are, on average, 32.36% and 33.01% worse than the best solutions found,
respectively. The local search with the reduced neighborhood, which considered as a stand-alone
method finds solutions of better quality than the local search with the cropped neighborhood,
provides solutions that are on average 16.18% worse than the best solutions found. On the
other hand, all metaheuristics deliver solutions that are, on average, at no more than 6% of the
best solutions found. If we discard the three worst performing methods, this number drops to
approximately 2%. The highlight is for TS-RN and SA, which deliver solutions, on average,
at approximately 1% and 1.5% of the best solutions found. The two versions of ILS deliver
solutions that at approximately 2% of the best solutions found, in average. SA also stands out
for the number of best solutions obtained, 71 out of a total of 150, followed closely by ILS-RN
and ILS-CN, with 59 and 58, respectively. TS-RN finds 55 best solutions with the merit of
having run only once for each instance, while the others run five times and the best of the five
is considered in these statistics.

In order to strengthen the comparison between the methods, we applied the Wilcoxon [46]
test for each pair of methods, with a significance level of α = 0.05, to accept or reject the null
hypothesis “the samples of the two methods come from the same distribution” or, equivalently,
“the difference between the samples of the two methods follows a symmetrical distribution
around zero”. In this test we left out the GRASP-RN and GRASP-CN methods, which clearly
performed worse than all the others. Table 8 shows the results. Suppose that two methods
M1 and M2 are compared and that these methods, when applied to a set of N instances, find
solutions with makespan c1i and c2i, respectively, for i = 1, . . . , N . Instances i with c2i = c1i are
eliminated from the test. For simplicity, let’s assume that N already represents the number of
instances in which the methods found different makespans. The test assigns each instance i a
weight Ri which corresponds to the position of the instance when they are ordered from lowest
to highest by the value of |c2i − c1i|. In the case of ties, Ri corresponds to the average of the
positions of the tied values. With the values of Ri for each instance, we calculate the statistic

W = R+ −R−, where R+ =
∑

{i | c2i>c1i}

Ri and R
− =

∑
{i | c1i>c2i}

Ri.

Under the null hypothesis and for large values of N , the value of W is divided by its variance
N(N + 1)(2N + 1)/6 to obtain z. In a two-tailed test, the null hypothesis is rejected if |z| >
zcritical(α/2) or, equivalently, if p < α. The table shows, for each pair of methods compared,
the values of R+, R−, and the p-value of z. The comparison considering a CPU time limit of
10 seconds shows that ILS-RN is worse than the other four methods compared and that the
other four methods are equivalent to each other. This coincides with Figure 4, which uses the
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average makespan as a measure of comparison. The comparison considering a CPU time limit
of 5 minutes shows that all the methods are different. Furthermore, the two-by-two comparison
makes it possible to construct a ranking between the methods in which TS-RN is the best of all,
followed by SA, ILS-CN, ILS-RN and TS-CN in that order. This ranking also coincides with
that shown on the right-hand side of Figure 4, which uses the average makespan as a criterion.

comparison
10 seconds of CPU time limit 5 minutes of CPU time limit
R+ R− p-value R+ R− p-value

ILS-RN versus ILS-CN 804 7,974 0.000 1,402 5,385 0.000
ILS-RN versus TS-RN 2,544 6,636 0.000 1,692 6,437 0.000
ILS-RN versus TS-CN 3,844 6,887 0.003 6,311 4,274 0.044
ILS-RN versus SA 3,579 7,006 0.001 3,221 7,075 0.000

ILS-CN versus TS-RN 5,036 4,009 0.254 1,996 5,879 0.000
ILS-CN versus TS-CN 5,296 5,289 0.994 6,777 3,808 0.003
ILS-CN versus SA 5,624 4,961 0.513 4,102 6,051 0.047

TS-RN versus TS-CN 5,015 5,570 0.584 9,533 1,052 0.000
TS-RN versus SA 5,623 4,962 0.514 7,142 3,443 0.000
TS-CN versus SA 6,452 4,724 0.102 1,939 9,236 0.000

Table 8: Details of the Wilcoxon test comparing each pair of methods, when applied to the
large-sized instances, to accept or reject the null hypothesis “the difference between the two
methods follows a symmetrical distribution around zero”.

We close this section by analyzing the behavior of the seven methods in the seven large-sized
instances for which proved optimal solutions were reported in [4]. Table 9 shows the results.
The table shows the instance name and instance learning rate for the seven instances for which
the optimal value C⋆

max is known. Then, for each method, it shows, as in the previous tables,
when applicable, the best makespan found over the five runs in each of these instances. It can
be seen that ILS-RN, ILS-CN and SA found the optimal solutions in all the seven instances,
followed by TS-RN that found six out of the seven optimal solutions. Independently of finding
the optimal solutions, appart from TS-CN, the methods found solutions with an average gap to
the optimal solution smaller than 1%. It must be highlighted that ILS-RN and ILS-CN found
the optimal solutions in all the five runs of each instance. An evidence of this is the line “gap
to optimal” that exhibits a 0.0% gap.

4.3 Experiments with the metaheuristics in the small-sized instances

In this section we analyze the behavior of the metaheuristics on the small-sized instances. It
is important to note that for all metaheuristics we considered their parameters exactly as de-
fined in the previous section, i.e., with the calibration done for the large-sized instances. Ta-
bles A1, A2, and A3 in the Appendix show the results for the instances with learning effect rate
α ∈ {0.1, 0.2, 0.3}, respectively. As in the case of the large-sized instances, a summary consoli-
dating the data of Tables A1, A2, and A3 can be seen in the middle of Table 13. Unlike in the
large-sized instances, the ILS-RN, ILS-CN, GRASP-RN, GRASP-CN, GRASP-CN, TS-RN and
SA methods stand out in terms of performance, while only TS-CN underperforms. Of partic-
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instance α C⋆
max ILS-RN ILS-CN GRASP-RN GRASP-CN TS-RN TS-CN SA

YFJS03 0.1 32,538 32,538 32,538 32,538 32,538 32,538 33,174 32,538
YFJS04 0.1 35,883 35,883 35,883 36,946 35,883 35,883 37,340 35,883
YFJS08 0.1 32,573 32,573 32,573 32,623 32,655 32,573 34,452 32,573
YFJS03 0.2 30,073 30,073 30,073 30,073 30,073 30,073 30,073 30,073
YFJS08 0.2 30,184 30,184 30,184 30,267 30,384 30,267 32,595 30,184
YFJS03 0.3 27,686 27,686 27,686 27,686 27,686 27,686 28,772 27,686
YFJS08 0.3 28,192 28,192 28,192 28,597 28,355 28,192 28,638 28,192

#optimal 7 7 3 4 6 1 7
gap to optimal (%) 0.00 0.00 0.69 0.21 0.04 3.61 0.00
gap to optimal (%) 0.00 0.00 0.73 0.31 0.04 3.61 0.24

Table 9: Performance of the metaheuristics in the seven large-sized instances for which proved
optimal solutions are known.

ular interest is the comparison of the performance of the metaheuristics in the 173 small-sized
instances, out of a total of 180, for which optimal solutions were reported in [4]. Table 10 shows
this comparison. In the table, for each method, we show the number of instances in which the
method found an optimal solution (#optimal). We also show the average gap in relation to the
optimal solution when, for each method and instance, we consider the best solution of those
found in the five runs of that method/instance pair (line “gap to optimal”). Finally, in another
line of the table we show the gap in relation to the optimal solution when, for a method/instance
pair, we consider the average makespan of the five runs of that pair (line “gap to optimal”). The
numbers in the table show that ILS-RN and ILS-CN found optimal solutions in all 173 instances
and, moreover, in all five runs of each method in each instance. Leaving aside TS-CN, the other
methods also perform well, finding a large number of optimal solutions and with average gaps
relative to the optimal solution of less than 1%.

4.4 Experiments with classical instances without sequencing flexibility

To the authors’ knowledge, no other method has been developed so far that applies to the exact
problem considered in this paper. For this reason, in order to be able to relate the developed
methods with those existing in the literature, we decided to apply them to a problem that is
a particular case of the problem considered. We are referring to the FJS with position-based
learning effect but without sequencing flexibility. A method that also applies to this problem
and minimizes the makespan was developed in [44]. The developed method is a hybrid meta-
heuristic that mixes genetic algorithms with variable neighborhood search with affinity function,
thus named GVNSWAF. This method was chosen because, its careful and detailed description
allowed us to reimplement it in C++, the same language in which the introduced methods
were implemented. In [44], for lack of a better option, random instances were considered, and
the Taguchi’s robust design method was used to determine the best method’s parameters. In
our experiments, we considered the parameters determined in [44]. In that respect, the com-
parison is fair, since neither method was specifically calibrated for the instances that were
considered in this section. Our implementation of GVNSWAF is also available for download at
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ILS-RN ILS-CN GRASP-RN GRASP-CN TS-RN TS-CN SA

α
=

0.
1 DA-type

#optimal 30 30 28 29 22 7 27
gap to optimal (%) 0.00 0.00 0.14 0.13 0.95 2.61 0.10
gap to optimal (%) 0.00 0.00 0.18 0.17 0.95 2.61 0.35

Y-type
#optimal 30 30 28 29 25 10 29

gap to optimal (%) 0.00 0.00 0.03 0.02 0.67 2.92 0.02
gap to optimal (%) 0.00 0.00 0.39 0.06 0.67 2.92 0.18

α
=

0.
2 DA-type

#optimal 28 28 26 27 20 6 26
gap to optimal (%) 0.00 0.00 0.04 0.03 1.13 2.63 0.02
gap to optimal (%) 0.00 0.00 0.13 0.16 1.13 2.63 0.31

Y-type
#optimal 30 30 29 28 24 7 30

gap to optimal (%) 0.00 0.00 0.15 0.05 0.54 3.36 0.00
gap to optimal (%) 0.00 0.00 0.43 0.17 0.54 3.36 0.24

α
=

0.
3 DA-type

#optimal 27 27 27 27 19 5 26
gap to optimal (%) 0.00 0.00 0.00 0.00 0.81 2.99 0.03
gap to optimal (%) 0.00 0.00 0.13 0.11 0.81 2.99 0.48

Y-type
#optimal 28 28 25 28 25 4 28

gap to optimal (%) 0.00 0.00 0.11 0.00 0.37 3.58 0.00
gap to optimal (%) 0.00 0.00 0.29 0.14 0.37 3.58 0.13

#optimal 173 173 163 168 135 39 166
Summary gap to optimal (%) 0.00 0.00 0.08 0.04 0.74 3.01 0.03

gap to optimal (%) 0.00 0.00 0.26 0.13 0.74 3.01 0.28

Table 10: Behavior of the seven metaheuristics on the 173 small-sized instances for which a
proven optimal solution is known.

https://github.com/kennedy94/FJS.
In the experiments of this section, we consider 35 instances of the classic FJS from the litera-

ture [12, 20], without sequencing flexibility, to which we added the position-based learning effect.
As we considered learning effect rates α ∈ {0.1, 0.2, 0.3}, we have in total 105 instances. On
this set of instances, we compared the methods introduced in the present work with the method
introduced in [44], which we denote GVNSWAF hereafter. Since the method has random com-
ponents, it was run five times on each instance, as well as the methods introduced in the present
work that contain random components as well. Tables A4, A5, and A6 in the Appendix show
the results. A summary of the results from these tables can be seen at the bottom of Table 13.
Table 13 shows that the methods that stand out are ILS-RN and ILS-CN. It also shows that the
ILS-RN, ILS-CN and SA methods have superior performance to the GVNSWAF method. The
GVNSWAF method has a performance similar to the performance of GRASP-RN, GRASP-CN
and TS-RN methods and only outperforms the TS-CN methods which already showed the worst
performance among all the considered methods. The Wilcoxon test, details of which are shown
in the Table 11 shows that, with a CPU time limit of 10 seconds, the performance of GVN-
SWAF is equal to the performance of TS-CN, and GVNSWAF is outperformed by all the other
six methods. With the CPU time limit of 5 minutes, GVNSWAF outperforms only TS-CN and
is equal to GRASP-RN, but is outperformed by all the other five methods.

As a final experiment, we tried to solve with an exact commercial solver models of these
classical instances to obtain proven optimal solutions. We were able to obtain proven optimal
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solutions for 47 instances, out of the total of 105 instances. Table 12 compares the solutions
obtained by the eight methods in relation to the known optima on that set of 47 instances.
Again, the ILS-RN and ILS-CN methods found all optimal solutions in all five runs of each
method/instance pair. The GVNSWAF method also achieved the same result. Apart from
TS-CN, all others found solutions with average gap less than 1%.

comparison
10 seconds of CPU time limit 5 minutes of CPU time limit
R+ R− p-value R+ R− p-value

ILS-RN versus GVNSWAF 2,262 153 0.000 2,004 12 0.000
ILS-CN versus GVNSWAF 2,415 0 0.000 2,016 0 0.000

GRASP-RN versus GVNSWAF 1,792 623 0.000 1,016 1,064 0.872
GRASP-CN versus GVNSWAF 2,193 222 0.000 1,327 689 0.029

TS-RN versus GVNSWAF 2,132 718 0.000 1,628 787 0.012
TS-CN versus GVNSWAF 1,991 1,412 0.181 1,081 2,079 0.015
SA versus GVNSWAF 2,187 228 0.000 1,953 532 0.000

Table 11: Details of the Wilcoxon test comparing each introduced method versus GVNSWAF,
when applied to classical instances of the FJS with learning effect but without sequencing flex-
ibility, to accept or reject the null hypothesis “the difference between the two methods follows
a symmetrical distribution around zero”.

In addition to the tests described above, we tested 168 additional instances of the classical
FJS from the literature [7, 17, 28] which, considering α ∈ {0.1, 0.2, 0.3}, amounted to 504. The
results essentially confirmed what we have already shown. For more details, see [3].

5 Conclusions

In this paper we introduced a local search and four trajectory metaheuristics for the flexible
job shop scheduling problem with sequencing flexibility and position-based learning effect. For
the local search, we showed that, in the presence of learning effect, the classical approach of
considering reallocations of operations in the critical path only fails to consider potentially
better neighbors than the current solution. Consequently, we proposed a new neighborhood
reduction that does not eliminate potentially better neighbors and cuts the neighborhood by
approximately 50%. We further proposed a neighborhood cutoff that reduces the neighborhood
size significantly (by about an order of magnitude) and finds solutions that are at most 1%
worse. The introduced local searches and/or neighborhoods were used in the development of
four trajectory metaheuristics. We performed extensive numerical experiments and showed that
variants of ILS, TS, and SA stands out for its effectiveness and efficiency. As a whole, we build
a test suite that can be used in the development of future work. The methods introduced and
the solutions found are freely available.

As future work, we intend to consider different learning effects, which do not depend only
on the position of the operation in the machine to which it was attributed. We also intend to
consider objective functions that take into account the energy consumption (green scheduling).
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Instance α C⋆
max ILS-RN ILS-CN GRASP-RN GRASP-CN TS-RN TS-CN SA GVNSWAF

mfjs01 0.10 45,306 45,306 45,306 45,306 45,306 46,264 46,264 45,306 45,306
mfjs02 0.10 42,986 42,986 42,986 42,986 42,986 42,986 42,986 42,986 42,986
mfjs03 0.10 45,331 45,331 45,331 45,331 45,331 45,331 45,331 45,331 45,331
mfjs04 0.10 52,012 52,012 52,012 52,480 52,012 52,012 54,075 52,630 52,012
mfjs05 0.10 47,630 47,630 47,630 47,630 47,630 47,630 47,630 49,988 47,630
mfjs06 0.10 59,523 59,523 59,523 59,523 59,523 59,523 60,854 60,402 59,523
sfjs01 0.10 6,459 6,459 6,459 6,459 6,459 6,459 6,459 6,459 6,459
sfjs02 0.10 10,271 10,271 10,271 10,271 10,271 10,271 10,271 10,271 10,271
sfjs03 0.10 20,623 20,623 20,623 20,623 20,623 20,623 21,716 20,623 20,623
sfjs04 0.10 33,429 33,429 33,429 33,429 33,429 33,429 34,483 33,429 33,429
sfjs05 0.10 11,006 11,006 11,006 11,006 11,006 11,006 12,107 11,006 11,006
sfjs06 0.10 29,926 29,926 29,926 29,926 29,926 31,835 32,057 29,926 29,926
sfjs07 0.10 37,824 37,824 37,824 37,824 37,824 37,824 37,824 37,824 37,824
sfjs08 0.10 23,842 23,842 23,842 23,842 23,842 23,842 23,842 23,842 23,842
sfjs09 0.10 19,406 19,406 19,406 19,406 19,406 19,406 19,406 19,406 19,406
sfjs10 0.10 49,368 49,368 49,368 49,368 49,368 49,368 49,368 49,368 49,368

#optimal 16 16 15 16 14 9 13 16
gap to optimal (%) 0.00 0.00 0.06 0.00 0.53 2.12 0.48 0.00
gap to optimal (%) 0.00 0.00 0.32 0.18 0.53 2.12 0.69 0.00

Instance α C⋆
max ILS-RN ILS-CN GRASP-RN GRASP-CN TS-RN TS-CN SA GVNSWAF

mfjs01 0.20 43,208 43,208 43,208 43,208 43,208 43,208 44,880 43,208 43,208
mfjs02 0.20 41,273 41,273 41,273 41,273 41,273 41,273 45,208 41,273 41,273
mfjs03 0.20 43,412 43,412 43,412 43,412 43,412 43,412 43,412 43,412 43,412
mfjs04 0.20 47,717 47,717 47,717 49,024 49,024 47,717 47,717 49,921 47,717
mfjs05 0.20 45,670 45,670 45,670 45,670 45,670 45,670 45,670 45,670 45,670
mfjs06 0.20 56,743 56,743 56,743 56,743 57,005 57,093 57,889 57,055 56,743
sfjs01 0.20 6,328 6,328 6,328 6,328 6,328 6,328 6,328 6,328 6,328
sfjs02 0.20 9,872 9,872 9,872 9,872 9,872 9,872 9,872 9,872 9,872
sfjs03 0.20 19,281 19,281 19,281 19,281 19,281 19,281 20,027 19,281 19,281
sfjs04 0.20 31,553 31,553 31,553 31,553 31,553 32,472 32,472 31,553 31,553
sfjs05 0.20 10,198 10,198 10,198 10,198 10,198 10,198 11,209 10,198 10,198
sfjs06 0.20 28,024 28,024 28,024 28,024 28,024 28,024 28,024 28,024 28,024
sfjs07 0.20 36,075 36,075 36,075 36,075 36,075 36,075 36,075 36,075 36,075
sfjs08 0.20 22,515 22,515 22,515 22,515 22,515 22,515 22,515 22,515 22,515
sfjs09 0.20 17,552 17,552 17,552 17,552 17,552 17,552 17,552 17,552 17,552
sfjs10 0.20 47,323 47,323 47,323 47,323 47,323 47,323 47,323 47,323 47,323

#optimal 16 16 15 14 14 10 14 16
gap to optimal (%) 0.00 0.00 0.17 0.20 0.22 2.01 0.32 0.00
gap to optimal (%) 0.00 0.00 0.28 0.21 0.22 2.01 0.74 0.00

Instance α C⋆
max ILS-RN ILS-CN GRASP-RN GRASP-CN TS-RN TS-CN SA GVNSWAF

mfjs01 0.30 40,508 40,508 40,508 40,508 40,508 42,562 41,785 40,508 40,508
mfjs02 0.30 38,996 38,996 38,996 38,996 38,996 38,996 39,834 38,996 38,996
mfjs03 0.30 41,318 41,318 41,318 41,318 41,318 41,318 44,254 41,318 41,318
mfjs04 0.30 44,869 44,869 44,869 44,869 46,048 46,048 46,558 46,048 44,869
mfjs05 0.30 44,376 44,376 44,376 44,376 44,738 44,376 44,738 44,376 44,376
sfjs01 0.30 6,206 6,206 6,206 6,206 6,206 6,206 6,206 6,206 6,206
sfjs02 0.30 9,498 9,498 9,498 9,498 9,498 9,498 9,498 9,498 9,498
sfjs03 0.30 18,062 18,062 18,062 18,062 18,062 18,062 18,062 18,062 18,062
sfjs04 0.30 29,852 29,852 29,852 29,852 29,852 30,648 30,648 29,852 29,852
sfjs05 0.30 9,465 9,465 9,465 9,465 9,465 9,465 10,288 9,465 9,465
sfjs06 0.30 26,281 26,281 26,281 26,281 26,281 26,281 26,281 26,281 26,281
sfjs07 0.30 34,443 34,443 34,443 34,443 34,443 34,443 34,443 34,443 34,443
sfjs08 0.30 21,309 21,309 21,309 21,309 21,309 21,715 21,309 21,309 21,309
sfjs09 0.30 15,973 15,973 15,973 15,973 15,973 15,973 15,973 15,973 15,973
sfjs10 0.30 45,450 45,450 45,450 45,450 45,450 45,450 45,450 45,450 45,450

#optimal 15 15 15 13 11 8 14 15
gap to optimal (%) 0.00 0.00 0.00 0.23 0.82 1.89 0.18 0.00
gap to optimal (%) 0.00 0.00 0.18 0.26 0.82 1.89 0.33 0.00

#optimal 47 47 45 43 39 27 41 47
gap to optimal (%) 0.00 0.00 0.08 0.14 0.52 2.01 0.33 0.00
gap to optimal (%) 0.00 0.00 0.26 0.21 0.52 2.01 0.59 0.00

Table 12: Performance of the metaheuristics and GVNSWAF in the 47 classical instances for
which proved optimal solutions are known.
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instance
group

metric ILS-RN ILS-CN GRASP-RN GRASP-CN TS-RN TS-CN SA GVNSWAF

large-sized

C̄max 48,458.93 48,319.72 50,206.70 50,327.07 48,125.00 49,446.14 47,907.31 –
#best 59 58 9 7 55 10 71 –
gap(%) 1.80 1.55 4.96 5.10 1.02 3.39 0.66 –
gap(%) 2.33 1.95 5.80 5.73 1.02 3.39 1.51 –

small-sized

C̄max 26,756.48 26,756.48 26,783.73 26,778.00 26,977.45 27,570.54 26,768.89 –
#best 180 180 168 170 140 39 169 –
gap(%) 0.00 0.00 0.11 0.09 0.75 2.99 0.05 –
gap(%) 0.00 0.00 0.30 0.19 0.75 2.99 0.32 –

classical

C̄max 31,989.65 31,915.34 32,565.66 32,480.55 32,362.34 32,975.85 32,122.78 32,288.28
#best 64 88 49 46 52 30 63 53
gap(%) 0.40 0.15 2.10 1.88 1.81 3.78 0.54 1.78
gap(%) 0.74 0.31 2.63 2.26 1.81 3.78 1.06 2.97

Table 13: Summary of the performance of the seven methods analyzed on the 150 large-sized
instances, the 180 small-sized instances, and the 105 classical instances from the literature, the
latter without sequencing flexibility.
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Appendix

instance
ILS-RN ILS-CN GRASP-RN GRASP-CN TS-RN TS-CN SA

Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time

miniDAFJS01 22,875 0.01 22,875 0.05 22,875 8.09 22,875 16.21 22,875 0.00 23,264 0.00 22,875 0.40
miniDAFJS02 22,708 0.00 22,708 0.00 22,708 0.03 22,708 0.04 22,708 0.00 23,242 0.00 22,708 0.14
miniDAFJS03 18,363 0.00 18,363 0.00 18,363 0.00 18,363 0.00 18,363 0.00 18,363 0.00 18,363 0.00
miniDAFJS04 20,498 0.00 20,498 0.00 20,498 0.00 20,498 0.00 20,498 0.00 21,172 0.00 20,498 0.10
miniDAFJS05 20,593 0.01 20,593 0.00 20,593 2.01 20,593 6.26 20,593 0.01 21,324 0.00 20,593 0.32
miniDAFJS06 22,867 0.01 22,867 0.00 22,867 0.69 22,867 1.04 23,370 0.00 23,370 0.00 22,867 0.33
miniDAFJS07 25,715 0.01 25,715 0.01 25,715 0.15 25,715 0.31 25,715 0.00 26,978 0.00 25,715 0.18
miniDAFJS08 19,878 0.00 19,878 0.00 19,878 0.00 19,878 0.00 19,878 0.00 19,878 0.00 19,878 0.00
miniDAFJS09 24,267 0.03 24,267 0.16 24,267 1.30 24,267 8.19 24,267 0.00 24,304 0.00 24,267 0.41
miniDAFJS10 20,336 0.00 20,336 0.00 20,336 0.00 20,336 0.00 20,359 0.00 20,873 0.00 20,336 0.24
miniDAFJS11 29,968 0.01 29,968 0.02 29,968 1.11 29,968 0.00 33,263 0.00 33,689 0.00 29,968 0.42
miniDAFJS12 18,670 0.01 18,670 0.01 18,670 0.00 18,670 2.87 20,222 0.00 20,342 0.00 18,670 0.26
miniDAFJS13 16,313 0.00 16,313 0.00 16,313 0.00 16,313 0.00 16,313 0.00 17,091 0.00 16,313 0.01
miniDAFJS14 23,140 0.00 23,140 0.00 23,140 0.00 23,140 3.36 23,140 0.00 23,140 0.00 23,140 0.30
miniDAFJS15 21,715 0.00 21,715 0.00 21,715 0.00 21,715 0.24 21,715 0.00 21,882 0.00 21,715 0.16
miniDAFJS16 25,426 0.00 25,426 0.00 25,426 0.00 25,426 0.00 25,426 0.00 25,691 0.00 25,426 0.26
miniDAFJS17 20,155 0.00 20,155 0.00 20,155 0.00 20,155 0.00 20,155 0.00 20,155 0.00 20,155 0.19
miniDAFJS18 18,135 0.00 18,135 0.00 18,135 0.00 18,135 0.00 18,135 0.00 18,445 0.00 18,135 0.25
miniDAFJS19 20,945 0.00 20,945 0.00 20,945 0.00 20,945 0.00 20,945 0.00 21,293 0.00 20,945 0.18
miniDAFJS20 21,838 0.02 21,838 0.01 21,838 12.83 21,838 0.60 21,838 0.00 22,675 0.00 21,838 0.30
miniDAFJS21 23,344 0.60 23,344 0.14 23,344 50.28 23,344 74.78 23,456 0.02 24,554 0.00 23,563 35.44
miniDAFJS22 25,923 0.00 25,923 0.00 25,923 0.00 25,923 0.03 25,923 0.00 25,923 0.00 25,923 0.41
miniDAFJS23 24,038 3.23 24,038 0.85 24,998 0.03 24,998 0.01 24,585 0.11 24,438 0.00 24,438 0.49
miniDAFJS24 24,579 0.04 24,579 0.01 24,579 0.01 24,579 0.02 25,521 0.01 25,694 0.00 24,579 0.43
miniDAFJS25 21,143 0.01 21,143 0.00 21,143 23.97 21,143 0.00 21,143 0.00 22,682 0.00 21,143 0.33
miniDAFJS26 21,120 0.16 21,120 0.11 21,120 42.71 21,120 43.64 21,120 0.00 21,468 0.00 21,120 0.57
miniDAFJS27 22,050 0.14 22,050 0.20 22,106 0.12 22,050 0.24 22,106 0.03 22,106 0.00 22,106 0.41
miniDAFJS28 22,708 0.03 22,708 0.02 22,708 0.00 22,708 0.00 22,708 0.00 23,120 0.00 22,708 0.33
miniDAFJS29 20,278 0.01 20,278 0.01 20,278 0.01 20,278 0.00 20,278 0.00 20,278 0.00 20,278 0.33
miniDAFJS30 23,558 0.05 23,558 0.03 23,558 33.60 23,558 48.64 23,558 0.09 23,558 0.01 23,558 0.44

C̄max 22,104.87 22,104.87 22,138.73 22,136.87 22,339.20 22,699.73 22,127.37
#best 30 30 28 29 22 7 27
gap(%) 0.00 0.00 0.14 0.13 0.95 2.61 0.10
gap(%) 0.00 0.00 0.18 0.17 0.95 2.61 0.35

instance
ILS-RN ILS-CN GRASP-RN GRASP-CN TS-RN TS-CN SA

Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time

miniYFJS01 35,046 0.00 35,046 0.00 35,046 0.00 35,046 0.00 35,046 0.00 35,243 0.00 35,046 0.20
miniYFJS02 24,359 0.01 24,359 0.01 24,359 0.00 24,359 0.00 24,359 0.00 25,654 0.00 24,359 0.29
miniYFJS03 47,391 0.00 47,391 0.01 47,391 0.00 47,391 0.14 52,098 0.00 53,381 0.00 47,391 0.35
miniYFJS04 25,394 0.00 25,394 0.00 25,394 0.00 25,394 0.00 25,394 0.00 25,394 0.00 25,394 0.00
miniYFJS05 23,985 0.00 23,985 0.00 23,985 0.00 23,985 0.00 23,985 0.00 26,371 0.00 23,985 0.24
miniYFJS06 29,469 0.01 29,469 0.01 29,469 0.35 29,469 0.25 30,508 0.00 30,952 0.00 29,469 0.30
miniYFJS07 45,705 0.01 45,705 0.05 45,705 0.01 45,705 14.81 45,705 0.01 47,524 0.00 45,705 0.43
miniYFJS08 33,829 0.01 33,829 0.03 33,829 0.00 33,829 0.16 33,883 0.00 34,338 0.00 33,829 0.38
miniYFJS09 37,049 0.00 37,049 0.00 37,049 0.00 37,049 0.00 37,049 0.00 37,354 0.00 37,049 0.30
miniYFJS10 27,310 0.01 27,310 0.00 27,310 0.01 27,310 0.00 27,310 0.00 27,310 0.00 27,310 0.33
miniYFJS11 41,300 0.00 41,300 0.01 41,300 0.00 41,300 0.05 41,300 0.00 41,423 0.00 41,300 0.39
miniYFJS12 30,145 0.11 30,145 0.06 30,145 55.26 30,145 64.48 30,145 0.03 33,329 0.00 30,145 0.54
miniYFJS13 30,962 0.01 30,962 0.00 30,962 0.00 30,962 0.01 30,962 0.01 30,962 0.00 30,962 0.35
miniYFJS14 31,398 0.01 31,398 0.01 31,398 0.00 31,398 0.00 31,398 0.00 31,398 0.00 31,398 0.38
miniYFJS15 45,442 0.00 45,442 0.00 45,442 0.00 45,442 0.00 45,442 0.00 45,442 0.00 45,442 0.39
miniYFJS16 33,791 0.00 33,791 0.02 33,791 0.00 33,791 19.85 33,791 0.00 33,791 0.00 33,791 0.41
miniYFJS17 42,838 0.02 42,838 0.02 42,838 0.00 42,838 13.56 42,838 0.00 44,181 0.00 42,838 0.46
miniYFJS18 28,247 0.01 28,247 0.01 28,247 0.01 28,247 0.00 28,247 0.00 28,247 0.00 28,247 0.41
miniYFJS19 33,601 0.04 33,601 0.05 33,601 0.00 33,601 0.01 33,601 0.01 36,706 0.00 33,601 0.45
miniYFJS20 30,837 0.00 30,837 0.00 30,837 0.00 30,837 0.00 30,837 0.02 33,385 0.00 30,837 0.41
miniYFJS21 37,096 0.74 37,096 0.34 37,308 0.03 37,275 0.23 37,096 0.41 37,275 0.02 37,308 70.41
miniYFJS22 34,282 0.03 34,282 0.03 34,282 0.01 34,282 0.08 34,282 0.00 34,917 0.00 34,282 0.48
miniYFJS23 42,079 0.04 42,079 0.02 42,079 0.07 42,079 38.95 42,079 0.01 42,079 0.00 42,079 0.51
miniYFJS24 30,905 0.11 30,905 0.08 30,965 69.07 30,905 53.76 30,905 0.14 33,144 0.00 30,905 0.56
miniYFJS25 36,170 0.10 36,170 0.13 36,170 76.58 36,170 1.25 36,170 0.11 37,251 0.00 36,170 0.94
miniYFJS26 51,466 0.01 51,466 0.02 51,466 0.83 51,466 1.23 54,534 0.03 51,793 0.00 51,466 0.49
miniYFJS27 36,719 0.01 36,719 0.01 36,719 0.00 36,719 0.02 36,719 0.01 36,823 0.00 36,719 0.47
miniYFJS28 34,509 0.04 34,509 0.03 34,509 87.68 34,509 52.00 34,509 0.04 34,509 0.02 34,509 31.22
miniYFJS29 39,798 0.06 39,798 0.14 39,798 0.07 39,798 0.05 39,949 0.01 40,891 0.00 39,798 0.63
miniYFJS30 33,974 0.03 33,974 0.06 33,974 0.05 33,974 0.08 33,974 0.12 33,974 0.00 33,974 0.52

C̄max 35,169.87 35,169.87 35,178.93 35,175.83 35,470.50 36,168.03 35,176.93
#best 30 30 28 29 25 10 29
gap(%) 0.00 0.00 0.03 0.02 0.67 2.92 0.02
gap(%) 0.00 0.00 0.39 0.06 0.67 2.92 0.18

Table A1: Results of applying the metaheuristics to the small-sized instances with learning rate
α = 0.1.
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instance
ILS-RN ILS-CN GRASP-RN GRASP-CN TS-RN TS-CN SA

Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time

miniDAFJS01 21,327 0.02 21,327 0.03 21,327 0.03 21,327 28.07 21,546 0.00 21,546 0.00 21,327 0.33
miniDAFJS02 20,635 0.01 20,635 0.01 20,635 0.05 20,635 0.04 20,635 0.00 22,161 0.00 20,635 0.19
miniDAFJS03 17,972 0.00 17,972 0.00 17,972 0.00 17,972 0.00 17,972 0.00 17,972 0.00 17,972 0.00
miniDAFJS04 19,602 0.00 19,602 0.00 19,602 0.00 19,602 0.00 19,602 0.00 20,691 0.00 19,602 0.11
miniDAFJS05 18,803 0.00 18,803 0.01 18,803 3.57 18,803 4.21 18,803 0.01 18,803 0.00 18,803 0.28
miniDAFJS06 20,568 0.04 20,568 0.04 20,568 0.01 20,568 0.01 20,783 0.00 20,783 0.00 20,568 0.31
miniDAFJS07 24,715 0.00 24,715 0.01 24,715 0.10 24,715 0.63 24,715 0.00 24,715 0.00 24,715 0.22
miniDAFJS08 18,857 0.00 18,857 0.00 18,857 0.00 18,857 0.00 18,857 0.00 18,857 0.00 18,857 0.00
miniDAFJS09 22,660 0.02 22,660 0.05 22,660 4.57 22,660 2.76 22,730 0.01 22,730 0.00 22,660 0.31
miniDAFJS10 18,823 0.00 18,823 0.00 18,823 0.00 18,823 0.00 18,823 0.00 20,180 0.00 18,823 0.18
miniDAFJS11 27,455 0.02 27,455 0.01 27,455 2.05 27,455 0.00 30,550 0.00 30,941 0.00 27,455 0.35
miniDAFJS12 17,874 0.01 17,874 0.01 17,874 0.92 17,874 1.47 19,624 0.00 18,974 0.00 17,874 0.24
miniDAFJS13 15,143 0.00 15,143 0.00 15,143 0.00 15,143 0.00 15,143 0.00 16,593 0.00 15,143 0.01
miniDAFJS14 21,817 0.00 21,817 0.00 21,817 0.00 21,817 3.31 21,817 0.00 21,990 0.00 21,817 0.27
miniDAFJS15 20,236 0.00 20,236 0.00 20,236 0.00 20,236 0.00 20,236 0.00 20,236 0.00 20,236 0.14
miniDAFJS16 24,114 0.00 24,114 0.00 24,114 0.00 24,114 0.01 24,114 0.00 24,593 0.00 24,114 0.27
miniDAFJS17 19,145 0.00 19,145 0.00 19,145 0.00 19,145 0.00 19,145 0.00 19,145 0.00 19,145 0.15
miniDAFJS18+ 17,270 0.00 17,270 0.00 17,270 0.00 17,270 0.00 17,270 0.00 17,966 0.00 17,270 0.25
miniDAFJS19 19,642 0.00 19,642 0.00 19,642 0.00 19,642 0.00 19,642 0.00 20,107 0.00 19,642 0.16
miniDAFJS20 20,086 0.04 20,086 0.01 20,086 24.76 20,086 1.87 21,286 0.00 20,646 0.00 20,086 0.28
miniDAFJS21 21,352 0.21 21,352 0.92 21,433 43.93 21,536 93.99 21,352 0.04 21,783 0.01 21,433 1.51
miniDAFJS22 23,852 0.01 23,852 0.02 23,852 38.91 23,852 24.30 24,273 0.00 24,273 0.00 23,852 0.41
miniDAFJS23+ 22,390 2.60 22,390 0.82 23,228 0.02 23,300 0.02 22,390 0.31 22,491 0.02 23,120 0.49
miniDAFJS24 22,521 0.07 22,521 0.07 22,521 19.38 22,521 44.36 22,521 0.03 22,551 0.00 22,521 0.40
miniDAFJS25 19,809 0.01 19,809 0.03 19,809 38.66 19,809 0.00 19,913 0.01 19,913 0.00 19,809 0.35
miniDAFJS26 19,724 0.20 19,724 0.23 19,724 24.84 19,724 48.07 19,724 0.00 19,994 0.00 19,773 0.33
miniDAFJS27 20,245 0.13 20,245 0.03 20,245 0.07 20,245 35.36 20,245 0.02 20,646 0.00 20,245 0.47
miniDAFJS28 20,635 0.02 20,635 0.04 20,635 0.00 20,635 0.00 20,635 0.00 21,693 0.00 20,635 0.38
miniDAFJS29 19,201 0.01 19,201 0.00 19,201 1.39 19,201 0.00 19,201 0.00 19,448 0.00 19,201 0.31
miniDAFJS30 21,552 0.06 21,552 0.21 21,698 46.08 21,552 63.33 21,552 0.15 21,645 0.00 21,552 0.45

C̄max 20,600.83 20,600.83 20,636.33 20,637.30 20,836.63 21,135.53 20,629.50
#best 30 30 27 28 22 6 27
gap(%) 0.00 0.00 0.16 0.16 1.06 2.60 0.13
gap(%) 0.00 0.00 0.24 0.28 1.06 2.60 0.42

instance
ILS–RN ILS–CN GRASP–RN GRASP–CN TS–RN TS–CN SA

Cmax time Cmax time Cmax time Cmax time Cmax time Cmax time Cmax time

miniYFJS01 33,132 0.00 33,132 0.00 33,132 0.00 33,132 4.67 33,132 0.00 34,443 0.00 33,132 0.28
miniYFJS02 23,100 0.00 23,100 0.01 23,100 0.00 23,100 0.00 23,100 0.00 25,032 0.00 23,100 0.30
miniYFJS03 42,896 0.00 42,896 0.01 42,896 0.00 42,896 0.01 46,806 0.00 49,111 0.00 42,896 0.34
miniYFJS04 24,485 0.00 24,485 0.00 24,485 0.00 24,485 0.00 24,485 0.00 24,485 0.00 24,485 0.31
miniYFJS05 23,597 0.00 23,597 0.00 23,597 0.00 23,597 0.00 23,597 0.00 23,597 0.00 23,597 0.25
miniYFJS06 28,655 0.01 28,655 0.01 28,655 0.00 28,655 0.00 28,655 0.01 28,750 0.01 28,655 0.32
miniYFJS07 42,239 0.00 42,239 0.05 42,239 0.01 42,239 7.75 42,239 0.00 45,493 0.00 42,239 0.40
miniYFJS08 31,471 0.02 31,471 0.15 31,471 0.00 31,471 22.11 31,597 0.00 32,669 0.00 31,471 0.42
miniYFJS09 35,250 0.02 35,250 0.01 35,250 4.98 35,250 0.01 35,794 0.00 36,098 0.00 35,250 0.32
miniYFJS10 26,145 0.01 26,145 0.00 26,145 5.41 26,145 0.00 26,145 0.00 26,145 0.00 26,145 0.32
miniYFJS11 38,545 0.01 38,545 0.02 38,545 3.71 38,545 7.90 38,545 0.00 38,756 0.00 38,545 0.44
miniYFJS12 27,895 0.15 27,895 0.09 27,895 48.02 28,281 0.01 27,895 0.10 30,851 0.00 27,895 7.80
miniYFJS13 28,120 0.01 28,120 0.00 28,120 0.00 28,120 0.02 28,120 0.00 28,120 0.00 28,120 0.38
miniYFJS14 29,682 0.02 29,682 0.00 29,682 0.00 29,682 0.00 29,682 0.00 29,682 0.00 29,682 0.37
miniYFJS15 41,619 0.00 41,619 0.00 41,619 0.00 41,619 0.01 41,619 0.00 42,415 0.00 41,619 0.41
miniYFJS16 31,280 0.02 31,280 0.02 31,280 0.00 31,280 0.00 31,280 0.05 32,366 0.00 31,280 0.48
miniYFJS17 40,388 0.01 40,388 0.03 40,388 0.00 40,388 10.05 40,388 0.01 41,316 0.00 40,388 0.44
miniYFJS18 26,297 0.00 26,297 0.01 26,297 0.00 26,297 0.01 26,297 0.01 26,297 0.00 26,297 0.38
miniYFJS19 30,717 0.02 30,717 0.06 30,717 0.01 30,717 0.01 30,717 0.02 33,965 0.00 30,717 0.47
miniYFJS20 28,832 0.03 28,832 0.02 28,832 0.04 28,832 0.03 28,832 0.03 31,304 0.00 28,832 0.38
miniYFJS21 34,811 0.13 34,811 0.09 34,811 0.07 34,811 0.06 34,876 0.00 34,811 0.05 34,811 24.18
miniYFJS22 31,702 0.01 31,702 0.03 31,702 0.03 31,747 0.17 31,702 0.03 31,946 0.00 31,702 0.54
miniYFJS23 38,639 0.08 38,639 0.14 38,639 33.88 38,639 39.04 38,639 0.04 39,721 0.00 38,639 0.50
miniYFJS24 28,884 0.05 28,884 0.05 30,200 21.84 28,884 46.64 28,884 0.06 30,568 0.00 28,884 0.53
miniYFJS25 34,231 0.04 34,231 0.04 34,231 26.59 34,231 41.59 34,231 0.01 35,256 0.00 34,231 0.46
miniYFJS26 47,519 0.01 47,519 0.01 47,519 1.48 47,519 5.00 49,202 0.04 48,066 0.00 47,519 0.50
miniYFJS27 34,042 0.08 34,042 0.09 34,042 0.03 34,042 1.61 34,042 0.01 34,225 0.00 34,042 0.55
miniYFJS28 32,080 0.04 32,080 0.04 32,080 69.04 32,080 43.21 32,080 0.02 32,852 0.00 32,080 0.60
miniYFJS29 36,093 0.11 36,093 0.31 36,093 0.13 36,093 0.03 36,561 0.00 36,561 0.00 36,093 0.47
miniYFJS30 31,888 0.53 31,888 0.42 31,888 59.15 31,888 46.43 31,888 0.26 33,118 0.00 31,888 1.15

C̄max 32,807.80 32,807.80 32,851.67 32,822.17 33,034.33 33,933.97 32,807.80
#best 30 30 29 28 24 7 30
gap(%) 0.00 0.00 0.15 0.05 0.54 3.36 0.00
gap(%) 0.00 0.00 0.43 0.17 0.54 3.36 0.24

Table A2: Results of applying the metaheuristics to the small-sized instances with learning rate
α = 0.2.
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instance
ILS-RN ILS-CN GRASP-RN GRASP-CN TS-RN TS-CN SA

Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time

miniDAFJS01 19,443 0.03 19,443 0.06 19,443 24.05 19,443 54.44 19,652 0.00 19,702 0.00 19,443 0.34
miniDAFJS02 18,916 0.00 18,916 0.02 18,916 0.02 18,916 0.05 18,916 0.00 21,136 0.00 18,916 0.25
miniDAFJS03 17,419 0.00 17,419 0.00 17,419 0.00 17,419 0.00 17,419 0.00 17,619 0.00 17,419 0.16
miniDAFJS04 18,800 0.00 18,800 0.00 18,800 0.00 18,800 0.00 18,800 0.00 20,124 0.00 18,800 0.13
miniDAFJS05 17,596 0.05 17,596 0.07 17,596 3.01 17,596 35.51 17,657 0.02 17,657 0.00 17,596 0.30
miniDAFJS06 18,692 0.03 18,692 0.05 18,692 0.00 18,692 0.04 18,692 0.00 18,952 0.00 18,692 0.33
miniDAFJS07 24,256 0.00 24,256 0.01 24,256 0.11 24,256 0.43 24,256 0.00 24,636 0.00 24,256 0.23
miniDAFJS08 17,900 0.00 17,900 0.00 17,900 0.00 17,900 0.00 17,900 0.00 17,900 0.00 17,900 0.03
miniDAFJS09 20,797 0.01 20,797 0.05 20,797 0.05 20,797 0.00 20,797 0.00 21,298 0.00 20,797 0.32
miniDAFJS10 17,395 0.00 17,395 0.00 17,395 0.00 17,395 0.10 17,395 0.00 19,472 0.00 17,395 0.22
miniDAFJS11 25,304 0.02 25,304 0.01 25,304 1.06 25,304 0.00 27,387 0.00 25,554 0.00 25,304 0.37
miniDAFJS12 17,105 0.01 17,105 0.01 17,105 1.01 17,105 1.98 17,105 0.00 17,745 0.00 17,105 0.25
miniDAFJS13 14,077 0.00 14,077 0.00 14,077 0.00 14,077 0.00 14,077 0.00 14,077 0.00 14,077 0.01
miniDAFJS14 20,620 0.00 20,620 0.00 20,620 0.00 20,620 7.65 20,620 0.00 20,711 0.00 20,620 0.28
miniDAFJS15 18,625 0.00 18,625 0.00 18,625 0.00 18,625 0.00 18,625 0.00 18,625 0.00 18,625 0.18
miniDAFJS16 22,734 0.01 22,734 0.01 22,734 0.00 22,734 4.24 22,939 0.00 22,939 0.00 22,734 0.29
miniDAFJS17 18,253 0.00 18,253 0.00 18,253 0.00 18,253 0.00 18,253 0.00 18,253 0.00 18,253 0.09
miniDAFJS18 16,495 0.00 16,495 0.00 16,495 0.00 16,495 0.01 16,495 0.00 17,270 0.00 16,495 0.24
miniDAFJS19 18,474 0.00 18,474 0.00 18,474 0.00 18,474 0.00 18,474 0.00 19,030 0.00 18,474 0.14
miniDAFJS20 18,521 0.04 18,521 0.03 18,521 7.15 18,521 0.64 19,587 0.00 18,602 0.00 18,521 0.27
miniDAFJS21+ 19,430 0.34 19,430 0.52 19,430 40.61 19,448 49.57 20,368 0.00 20,624 0.00 19,550 0.45
miniDAFJS22 22,322 0.04 22,322 0.22 22,322 56.51 22,322 84.04 22,396 0.01 22,767 0.00 22,322 0.42
miniDAFJS23+ 20,932 1.75 20,932 0.63 21,372 0.02 21,372 0.02 21,176 0.01 21,540 0.01 21,031 0.27
miniDAFJS24 20,389 0.03 20,389 0.04 20,389 0.01 20,389 0.02 20,938 0.00 20,389 0.01 20,389 0.39
miniDAFJS25 18,400 0.01 18,400 0.00 18,400 0.00 18,400 35.30 18,400 0.01 18,472 0.00 18,400 0.36
miniDAFJS26 18,396 0.04 18,396 0.02 18,396 17.47 18,396 55.17 18,870 0.01 19,427 0.00 18,396 0.37
miniDAFJS27 18,501 0.12 18,501 0.04 18,501 79.26 18,501 22.10 18,501 0.02 20,586 0.00 18,501 0.38
miniDAFJS28 18,762 0.11 18,762 0.06 18,762 0.00 18,762 3.62 18,762 0.01 20,020 0.00 18,916 0.35
miniDAFJS29 18,253 0.01 18,253 0.00 18,253 1.39 18,253 0.01 18,253 0.00 18,560 0.00 18,253 0.31
miniDAFJS30+ 19,504 0.14 19,504 0.46 19,504 31.31 20,137 30.57 19,504 0.27 19,659 0.00 19,618 0.38

C̄max 19,210.37 19,210.37 19,225.03 19,246.73 19,407.13 19,778.20 19,226.60
#best 30 30 29 27 20 5 26
gap(%) 0.00 0.00 0.07 0.18 0.93 3.02 0.08
gap(%) 0.00 0.00 0.24 0.32 0.93 3.02 0.61

instance
ILS–RN ILS–CN GRASP–RN GRASP–CN TS–RN TS–CN SA

Cmax time Cmax time Cmax time Cmax time Cmax time Cmax time Cmax time

miniYFJS01 31,008 0.00 31,008 0.00 31,008 0.00 31,008 13.25 31,008 0.00 32,506 0.00 31,008 0.25
miniYFJS02 22,010 0.00 22,010 0.02 22,010 0.00 22,010 0.00 22,010 0.01 24,146 0.00 22,010 0.28
miniYFJS03 38,935 0.00 38,935 0.00 38,935 0.00 38,935 0.00 41,699 0.00 42,339 0.00 38,935 0.34
miniYFJS04 23,774 0.00 23,774 0.00 23,774 0.00 23,774 0.00 23,774 0.00 24,017 0.00 23,774 0.28
miniYFJS05 22,843 0.00 22,843 0.00 22,843 0.00 22,843 0.00 22,843 0.00 23,236 0.00 22,843 0.24
miniYFJS06 27,366 0.00 27,366 0.00 27,366 0.00 27,366 0.00 27,366 0.00 27,366 0.00 27,366 0.00
miniYFJS07 38,932 0.00 38,932 0.06 38,932 0.24 38,932 13.11 38,932 0.01 41,487 0.00 38,932 0.39
miniYFJS08 29,464 0.02 29,464 0.04 29,464 18.16 29,464 9.52 29,898 0.00 30,276 0.00 29,464 0.43
miniYFJS09 33,763 0.01 33,763 0.01 33,763 0.00 33,763 0.00 33,763 0.04 34,357 0.00 33,763 0.30
miniYFJS10 25,072 0.15 25,072 0.10 25,072 30.31 25,072 49.47 25,072 0.00 25,093 0.00 25,072 6.20
miniYFJS11 36,307 0.02 36,307 0.05 36,307 2.55 36,307 9.76 36,307 0.01 39,637 0.00 36,307 0.44
miniYFJS12 26,219 0.04 26,219 0.06 26,571 0.01 26,219 0.09 26,219 0.22 27,829 0.00 26,219 0.44
miniYFJS13 25,619 0.00 25,619 0.01 25,619 0.00 25,619 0.02 25,619 0.00 25,881 0.00 25,619 0.36
miniYFJS14 27,428 0.03 27,428 0.04 27,428 0.86 27,428 0.09 27,428 0.05 27,428 0.00 27,428 0.52
miniYFJS15 38,256 0.01 38,256 0.03 38,256 0.00 38,256 7.91 38,256 0.01 39,294 0.00 38,256 0.50
miniYFJS16 29,442 0.01 29,442 0.01 29,442 0.01 29,442 0.00 29,442 0.01 30,386 0.00 29,442 0.41
miniYFJS17 37,465 0.02 37,465 0.02 37,465 0.00 37,465 0.10 37,465 0.12 38,739 0.00 37,465 0.39
miniYFJS18 25,067 0.02 25,067 0.00 25,067 0.00 25,067 0.00 25,067 0.00 25,067 0.00 25,067 0.41
miniYFJS19 29,207 0.01 29,207 0.02 29,207 0.06 29,207 0.29 29,207 0.04 30,218 0.00 29,207 0.45
miniYFJS20 27,091 0.07 27,091 0.03 27,091 0.12 27,091 0.22 27,091 0.04 28,590 0.00 27,091 0.42
miniYFJS21 32,166 0.30 32,166 0.16 32,238 0.06 32,166 0.04 32,166 0.01 33,027 0.00 32,166 0.59
miniYFJS22 28,985 0.06 28,985 0.06 28,985 0.04 28,985 1.07 28,985 0.00 29,154 0.00 28,985 0.54
miniYFJS23+ 35,441 0.14 35,441 0.18 35,441 15.36 35,441 33.00 35,441 0.20 35,961 0.00 35,441 0.61
miniYFJS24 27,023 0.09 27,023 0.03 27,395 52.85 27,023 53.26 27,023 0.10 31,200 0.00 27,023 0.48
miniYFJS25+ 32,346 0.07 32,346 0.07 32,346 0.38 32,465 0.55 32,346 0.02 32,513 0.00 32,346 3.21
miniYFJS26 43,452 0.01 43,452 0.05 43,452 0.14 43,452 25.93 44,207 0.00 44,633 0.00 43,452 0.54
miniYFJS27 31,571 0.00 31,571 0.01 31,571 0.01 31,571 0.49 31,571 0.01 31,877 0.00 31,571 0.51
miniYFJS28 30,428 0.01 30,428 0.01 30,428 74.61 30,428 28.22 30,428 0.04 30,428 0.00 30,428 0.47
miniYFJS29 32,826 0.26 32,826 0.36 32,826 0.31 32,826 11.23 32,826 0.45 33,455 0.00 32,826 0.48
miniYFJS30 29,848 0.20 29,848 0.12 29,848 5.38 29,848 54.66 29,848 0.04 31,093 0.00 29,848 0.76

C̄max 30,645.13 30,645.13 30,671.67 30,649.10 30,776.90 31,707.77 30,645.13
#best 30 30 27 29 27 4 30
gap(%) 0.00 0.00 0.10 0.01 0.34 3.41 0.00
gap(%) 0.00 0.00 0.28 0.16 0.34 3.41 0.12

Table A3: Results of applying the metaheuristics to the small-sized instances with learning rate
α = 0.3.
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instance
ILS-RN ILS-CN GRASP-RN GRASP-CN TS-RN TS-CN SA GVNSWAF

Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time

mfjs01 45,306 0.01 45,306 0.00 45,306 0.50 45,306 0.02 46,264 0.00 46,264 0.00 45,306 0.25 45,306 0.01
mfjs02 42,986 0.04 42,986 0.01 42,986 4.43 42,986 4.89 42,986 0.01 42,986 0.00 42,986 0.26 42,986 4.13
mfjs03 45,331 0.03 45,331 0.02 45,331 0.90 45,331 0.68 45,331 0.01 45,331 0.00 45,331 0.74 45,331 0.08
mfjs04 52,012 1.23 52,012 1.20 52,480 116.49 52,012 197.36 52,012 0.30 54,075 0.01 52,630 75.60 52,012 65.89
mfjs05 47,630 0.23 47,630 0.12 47,630 133.82 47,630 0.22 47,630 0.02 47,630 0.02 49,988 0.47 47,630 0.34
mfjs06 59,523 18.24 59,523 3.35 59,523 124.16 59,523 226.29 59,523 1.41 60,854 0.01 60,402 0.43 59,523 0.40
mfjs07 80,877 76.04 80,877 36.62 82,438 24.41 81,453 28.70 80,877 14.62 82,686 0.06 81,371 3.15 81,364 40.51
mfjs08 80,687 205.78 80,305 70.59 82,481 140.18 83,273 76.08 80,305 216.74 83,095 0.06 82,031 1.98 82,842 7.91
mfjs09 96,922 28.84 96,236 110.23 100,332 90.60 99,159 160.79 98,028 93.66 99,576 0.58 97,358 4.42 98,417 76.61
mfjs10 109,183 149.45 107,489 227.23 115,762 271.38 114,670 38.10 110,314 165.43 110,721 0.28 109,326 25.97 114,495 11.20

C̄max 66,045.70 65,769.50 67,426.90 67,134.30 66,327.00 67,321.80 66,672.90 66,990.60
#best 7 10 5 6 7 3 3 6
gap(%) 0.28 0.00 1.75 1.41 0.66 2.05 1.33 1.25
gap(%) 0.48 0.19 2.32 1.86 0.66 2.05 2.26 2.22

instance
ILS-RN ILS-CN GRASP-RN GRASP-CN TS-RN TS-CN SA GVNSWAF

Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time

MK01 3,507 173.24 3,507 81.29 3,529 19.87 3,530 62.29 3,529 0.68 3,714 0.00 3,529 3.50 3,714 0.28
MK02 2,347 38.47 2,327 176.39 2,348 147.70 2,404 203.40 2,332 17.24 2,372 0.09 2,305 84.67 2,348 31.99
MK03 17,316 5.97 17,316 1.31 17,316 1.61 17,316 0.07 17,316 1.78 17,665 0.05 17,316 2.83 17,316 8.31
MK04 5,173 112.01 5,173 49.49 5,255 189.35 5,187 197.41 5,665 0.79 5,792 0.05 5,173 11.75 5,725 3.24
MK05 13,674 260.60 13,666 187.22 13,747 291.55 13,648 72.05 13,657 38.48 13,877 0.27 13,627 94.51 13,710 119.96
MK06 5,045 183.79 5,040 114.41 5,360 129.50 5,429 59.20 5,055 287.61 4,982 23.00 4,982 184.62 5,380 61.45
MK07 11,589 173.35 11,551 259.27 11,950 291.84 12,055 162.89 11,488 266.54 11,612 14.97 11,220 256.56 11,551 42.73
MK08 39,002 263.25 38,999 245.98 39,213 198.56 39,181 135.52 39,660 1.29 39,307 0.51 39,177 49.61 39,026 265.08
MK09 25,263 237.96 24,919 43.07 27,103 135.39 26,211 180.98 28,421 278.25 30,456 0.06 24,970 200.21 25,545 253.28
MK10 16,913 153.92 16,802 218.45 19,141 204.30 19,186 202.84 16,855 255.05 18,605 3.03 17,060 171.62 18,359 131.33
MK11 46,820 208.18 46,708 144.04 47,161 54.49 47,180 78.61 46,599 44.05 46,800 5.82 46,602 133.49 47,091 203.88
MK12 39,877 128.22 39,869 32.84 39,955 190.20 39,911 120.55 42,093 0.56 42,232 0.05 39,949 63.10 39,907 104.38
MK13 32,585 216.79 32,410 234.61 35,149 185.28 34,757 284.68 32,349 221.11 31,960 109.03 32,954 218.41 32,967 299.84
MK14 52,376 209.56 52,349 165.80 53,269 1.04 52,514 212.09 56,617 6.21 56,143 0.90 52,531 271.72 52,406 109.93
MK15 28,343 223.43 28,069 98.35 30,525 275.34 30,278 186.99 28,313 279.37 31,336 1.18 28,916 204.11 29,577 299.38

C̄max 22,655.33 22,580.33 23,401.40 23,252.47 23,329.93 23,790.20 22,687.40 22,974.80
#best 3 9 1 1 2 2 6 1
gap(%) 0.82 0.47 4.28 3.99 3.15 5.81 0.63 3.44
gap(%) 1.52 0.78 5.25 4.69 3.15 5.81 1.19 5.44

instance
ILS-RN ILS-CN GRASP-RN GRASP-CN TS-RN TS-CN SA GVNSWAF

Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time

sfjs01 6,459 0.00 6,459 0.00 6,459 0.00 6,459 0.00 6,459 0.00 6,459 0.00 6,459 0.00 6,459 0.00
sfjs02 10,271 0.00 10,271 0.00 10,271 0.00 10,271 0.00 10,271 0.00 10,271 0.00 10,271 0.00 10,271 0.00
sfjs03 20,623 0.00 20,623 0.00 20,623 0.00 20,623 0.00 20,623 0.00 21,716 0.00 20,623 0.00 20,623 0.00
sfjs04 33,429 0.00 33,429 0.00 33,429 0.00 33,429 0.00 33,429 0.00 34,483 0.00 33,429 0.00 33,429 0.00
sfjs05 11,006 0.00 11,006 0.00 11,006 0.00 11,006 0.00 11,006 0.00 12,107 0.00 11,006 0.00 11,006 0.00
sfjs06 29,926 0.00 29,926 0.00 29,926 0.00 29,926 0.00 31,835 0.00 32,057 0.00 29,926 0.00 29,926 0.00
sfjs07 37,824 0.00 37,824 0.00 37,824 0.00 37,824 0.00 37,824 0.00 37,824 0.00 37,824 0.00 37,824 0.00
sfjs08 23,842 0.00 23,842 0.00 23,842 0.00 23,842 0.00 23,842 0.00 23,842 0.00 23,842 0.01 23,842 0.00
sfjs09 19,406 0.00 19,406 0.00 19,406 0.00 19,406 0.00 19,406 0.00 19,406 0.00 19,406 0.01 19,406 0.00
sfjs10 49,368 0.00 49,368 0.00 49,368 0.00 49,368 0.00 49,368 0.00 49,368 0.00 49,368 0.06 49,368 0.00

C̄max 24,215.40 24,215.40 24,215.40 24,215.40 24,406.30 24,753.30 24,215.40 24,215.40
#best 10 10 10 10 9 6 10 10
gap(%) 0.00 0.00 0.00 0.00 0.64 2.56 0.00 0.00
gap(%) 0.00 0.00 0.00 0.00 0.64 2.56 0.00 0.00

Table A4: Results of applying the metaheuristics and the method introduced in [44] to classical
instances of the FJS with learning effect and without sequencing flexibility, with learning effect
rate α = 0.1.
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instance
ILS-RN ILS-CN GRASP-RN GRASP-CN TS-RN TS-CN SA GVNSWAF

Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time

mfjs01 43,208 0.01 43,208 0.01 43,208 2.14 43,208 1.04 43,208 0.01 44,880 0.00 43,208 0.33 43,208 0.01
mfjs02 41,273 0.07 41,273 0.08 41,273 5.09 41,273 0.00 41,273 0.01 45,208 0.00 41,273 0.30 41,273 47.06
mfjs03 43,412 0.11 43,412 0.12 43,412 0.31 43,412 0.16 43,412 0.05 43,412 0.00 43,412 0.39 43,412 4.23
mfjs04 47,717 2.80 47,717 0.90 49,024 78.72 49,024 0.19 47,717 0.74 47,717 0.09 49,921 0.50 47,717 1.16
mfjs05 45,670 0.13 45,670 0.06 45,670 0.09 45,670 0.04 45,670 0.18 45,670 0.00 45,670 0.44 45,670 1.88
mfjs06 56,743 3.25 56,743 6.66 56,743 135.74 57,005 281.92 57,093 4.14 57,889 0.00 57,055 178.01 56,743 3.24
mfjs07 73,865 11.61 73,865 6.71 75,640 262.56 74,821 50.66 73,865 0.60 77,533 0.01 74,646 70.58 73,865 0.73
mfjs08 74,561 165.80 74,359 246.39 76,148 275.69 76,815 3.04 75,880 7.06 78,362 0.17 75,032 1.54 75,032 269.43
mfjs09 88,457 180.68 87,676 9.06 92,100 219.33 90,970 63.40 89,991 137.38 90,853 0.54 87,676 57.99 91,006 7.48
mfjs10 97,980 129.30 97,929 206.55 100,069 164.40 102,337 214.69 97,780 90.39 98,459 0.31 98,058 158.98 99,630 38.54

C̄max 61,288.60 61,185.20 62,328.70 62,453.50 61,588.90 62,998.30 61,595.10 61,755.60
#best 7 9 5 4 7 3 5 7
gap(%) 0.14 0.02 1.49 1.62 0.53 3.01 0.74 0.66
gap(%) 0.21 0.10 2.14 1.72 0.53 3.01 2.15 2.38

instance
ILS-RN ILS-CN GRASP-RN GRASP-CN TS-RN TS-CN SA GVNSWAF

Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time

MK01 3,041 65.31 3,041 85.94 3,047 64.27 3,048 141.02 3,052 8.72 3,179 0.01 3,041 26.52 3,201 0.72
MK02 2,118 28.65 2,118 37.89 2,120 92.83 2,129 97.06 2,118 6.64 2,134 0.13 2,118 8.97 2,129 9.10
MK03 14,781 2.17 14,781 0.33 14,781 1.71 14,781 0.16 14,781 2.68 14,908 0.09 14,781 3.08 14,781 2.68
MK04 4,483 53.69 4,483 94.48 4,484 184.38 4,484 192.52 4,738 9.04 4,983 0.03 4,483 5.74 4,853 1.24
MK05 10,885 160.49 10,892 266.12 10,945 189.24 10,894 220.20 10,875 61.39 10,902 3.61 10,818 272.66 10,940 210.49
MK06 4,377 149.74 4,243 83.62 4,499 266.52 4,592 58.84 4,958 30.18 4,255 20.77 4,134 289.16 4,591 32.71
MK07 9,469 222.13 9,393 23.84 9,642 153.59 9,728 87.87 9,427 21.45 9,857 0.14 9,393 22.45 9,531 20.83
MK08 29,784 217.05 29,758 98.74 30,184 181.23 29,841 159.05 30,962 4.87 31,816 0.20 29,868 242.44 29,895 290.79
MK09 20,641 295.19 20,359 206.55 21,454 148.53 21,176 13.41 23,186 55.94 23,806 0.52 20,435 127.97 20,939 284.25
MK10 13,648 275.95 13,694 185.13 15,879 145.53 15,179 81.71 14,079 231.51 13,770 16.78 14,246 217.07 14,974 145.47
MK11 35,747 185.40 35,680 212.31 36,110 49.28 36,238 181.46 36,093 1.58 35,813 16.15 35,756 25.72 35,893 284.24
MK12 31,539 218.99 31,512 181.46 31,654 169.42 31,592 258.89 32,605 2.07 33,358 0.23 31,625 11.56 31,586 144.52
MK13 26,428 290.21 26,238 292.55 28,472 129.83 27,598 58.96 25,764 197.92 26,690 8.26 26,471 45.26 27,285 122.26
MK14 39,864 299.22 39,829 148.40 40,464 277.76 40,047 263.88 41,968 7.49 43,123 0.23 40,030 70.85 39,891 222.06
MK15 23,815 300.52 23,442 141.00 24,740 285.86 24,859 46.53 23,472 146.44 25,612 0.71 23,862 148.48 24,466 245.22

C̄max 18,041.33 17,964.20 18,565.00 18,412.40 18,538.53 18,947.07 18,070.73 18,330.33
#best 5 11 1 1 3 0 7 1
gap(%) 0.89 0.37 3.69 3.14 3.87 5.20 0.72 3.46
gap(%) 1.58 0.63 4.53 3.88 3.87 5.20 1.18 5.03

instance
ILS-RN ILS-CN GRASP-RN GRASP-CN TS-RN TS-CN SA GVNSWAF

Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time

sfjs01 6,328 0.00 6,328 0.00 6,328 0.00 6,328 0.00 6,328 0.00 6,328 0.00 6,328 0.00 6,328 0.00
sfjs02 9,872 0.00 9,872 0.00 9,872 0.00 9,872 0.00 9,872 0.00 9,872 0.00 9,872 0.00 9,872 0.00
sfjs03 19,281 0.00 19,281 0.00 19,281 0.00 19,281 0.00 19,281 0.00 20,027 0.00 19,281 0.00 19,281 0.00
sfjs04 31,553 0.00 31,553 0.00 31,553 0.00 31,553 0.00 32,472 0.00 32,472 0.00 31,553 0.00 31,553 0.00
sfjs05 10,198 0.00 10,198 0.00 10,198 0.00 10,198 0.00 10,198 0.00 11,209 0.00 10,198 0.00 10,198 0.00
sfjs06 28,024 0.00 28,024 0.00 28,024 0.00 28,024 0.00 28,024 0.00 28,024 0.00 28,024 0.00 28,024 0.00
sfjs07 36,075 0.00 36,075 0.00 36,075 0.00 36,075 0.00 36,075 0.00 36,075 0.00 36,075 0.00 36,075 0.00
sfjs08 22,515 0.00 22,515 0.00 22,515 0.00 22,515 0.00 22,515 0.00 22,515 0.00 22,515 0.03 22,515 0.01
sfjs09 17,552 0.00 17,552 0.00 17,552 0.00 17,552 0.00 17,552 0.00 17,552 0.00 17,552 0.01 17,552 0.00
sfjs10 47,323 0.00 47,323 0.00 47,323 0.00 47,323 0.00 47,323 0.00 47,323 0.00 47,323 0.09 47,323 0.00

C̄max 22,872.10 22,872.10 22,872.10 22,872.10 22,964.00 23,139.70 22,872.10 22,872.10
#best 10 10 10 10 9 7 10 10
gap(%) 0.00 0.00 0.00 0.00 0.29 1.67 0.00 0.00
gap(%) 0.00 0.00 0.00 0.00 0.29 1.67 0.00 0.00

Table A5: Results of applying the metaheuristics and the method introduced in [44] to classical
instances of the FJS with learning effect and without sequencing flexibility, with learning effect
rate α = 0.2.
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instance
ILS-RN ILS-CN GRASP-RN GRASP-CN TS-RN TS-CN SA GVNSWAF

Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time

mfjs01 40,508 0.02 40,508 0.03 40,508 3.74 40,508 1.20 42,562 0.00 41,785 0.00 40,508 0.37 40,508 0.18
mfjs02 38,996 0.05 38,996 0.05 38,996 2.80 38,996 1.60 38,996 0.00 39,834 0.00 38,996 0.29 38,996 4.26
mfjs03 41,318 0.06 41,318 0.04 41,318 72.50 41,318 14.85 41,318 0.00 44,254 0.00 41,318 0.26 41,318 7.82
mfjs04 44,869 2.16 44,869 0.60 44,869 79.94 46,048 61.15 46,048 0.03 46,558 0.01 46,048 25.11 44,869 101.21
mfjs05 44,376 0.21 44,376 0.06 44,376 90.04 44,738 20.87 44,376 0.33 44,738 0.00 44,376 28.30 44,376 0.29
mfjs06 53,618 2.31 53,618 10.19 53,760 84.79 53,760 37.32 53,760 0.39 57,329 0.00 53,618 184.69 53,618 184.69
mfjs07 69,086 9.26 69,086 4.61 70,577 192.72 70,523 80.50 69,086 12.88 74,941 0.01 69,086 0.84 70,583 0.02
mfjs08 68,053 152.28 68,053 188.36 71,413 4.05 70,333 154.93 69,845 12.97 70,333 0.26 68,362 11.09 68,053 74.29
mfjs09 79,947 3.22 80,277 249.67 83,975 92.83 82,272 203.95 80,983 27.37 81,939 0.83 80,897 1.69 81,411 40.30
mfjs10 89,188 217.74 88,515 195.67 91,930 114.34 91,477 158.34 89,644 41.99 90,178 1.03 90,419 7.67 90,144 117.97

C̄max 56,995.90 56,961.60 58,172.20 57,997.30 57,661.80 59,188.90 57,362.80 57,387.60
#best 9 9 5 3 4 0 6 7
gap(%) 0.08 0.04 1.63 1.54 1.32 4.01 0.64 0.58
gap(%) 0.21 0.16 2.09 1.97 1.32 4.01 1.89 2.64

instance
ILS-RN ILS-CN GRASP-RN GRASP-CN TS-RN TS-CN SA GVNSWAF

Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time

MK01 2,618 111.30 2,618 79.93 2,669 26.88 2,668 40.52 2,669 38.63 2,793 0.00 2,618 10.59 2,714 1.38
MK02 1,920 7.79 1,920 3.27 1,920 80.62 1,921 89.79 1,920 1.45 1,932 0.03 1,920 1.90 1,921 1.74
MK03 12,439 3.89 12,439 9.44 12,439 3.27 12,439 2.08 12,439 11.02 12,669 0.03 12,439 3.99 12,481 2.88
MK04 3,877 296.61 3,885 298.13 3,904 117.29 3,917 237.10 3,917 6.97 4,282 0.08 3,872 253.43 4,246 4.82
MK05 8,693 256.96 8,692 246.56 8,736 276.98 8,716 163.93 8,708 56.12 8,688 3.02 8,678 63.11 8,675 266.29
MK06 3,609 168.58 3,611 232.13 3,830 266.93 3,784 120.00 3,866 188.73 3,556 40.62 3,556 148.27 4,183 267.07
MK07 7,913 46.15 7,914 224.48 8,055 103.05 8,015 216.96 7,938 19.54 8,036 0.17 7,879 54.92 7,938 7.96
MK08 23,265 117.12 23,240 198.23 23,413 30.22 23,442 246.91 23,813 12.18 24,437 0.21 23,333 44.37 23,385 172.23
MK09 16,983 219.10 16,761 121.54 17,571 206.91 17,332 260.19 18,955 47.76 19,508 0.22 16,833 61.28 17,214 48.30
MK10 11,576 263.74 11,172 130.85 12,995 278.38 12,732 234.83 11,828 297.77 12,504 2.51 11,625 155.35 12,039 220.25
MK11 27,604 208.94 27,542 125.25 27,786 235.45 27,990 57.88 27,692 81.59 27,644 10.97 27,694 74.08 27,757 275.70
MK12 25,138 187.88 25,097 127.56 25,301 30.19 25,197 72.47 25,882 2.39 26,101 0.28 25,207 44.11 25,188 268.75
MK13 21,633 143.11 21,150 227.99 22,728 141.57 22,682 15.97 21,020 133.81 21,773 3.22 21,466 47.61 22,182 214.19
MK14 30,597 134.76 30,550 94.94 31,067 283.03 30,815 124.47 31,674 131.73 31,223 1.77 30,778 88.62 30,672 280.78
MK15 19,882 260.19 19,775 196.63 20,792 10.26 20,570 79.55 20,477 266.85 24,081 0.19 19,900 269.25 21,345 56.19

C̄max 14,516.47 14,424.40 14,880.40 14,814.67 14,853.20 15,281.80 14,519.87 14,796.00
#best 3 10 2 1 3 1 6 1
gap(%) 0.75 0.21 3.46 2.99 3.02 5.82 0.63 3.88
gap(%) 1.50 0.49 4.23 3.54 3.02 5.82 0.89 5.50

instance
ILS-RN ILS-CN GRASP-RN GRASP-CN TS-RN TS-CN SA GVNSWAF

Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time Cmax Time

sfjs01 6,206 0.00 6,206 0.00 6,206 0.00 6,206 0.00 6,206 0.00 6,206 0.00 6,206 0.00 6,206 0.00
sfjs02 9,498 0.00 9,498 0.00 9,498 0.00 9,498 0.00 9,498 0.00 9,498 0.00 9,498 0.00 9,498 0.00
sfjs03 18,062 0.00 18,062 0.00 18,062 0.00 18,062 0.00 18,062 0.00 18,062 0.00 18,062 0.00 18,062 0.00
sfjs04 29,852 0.00 29,852 0.00 29,852 0.00 29,852 0.00 30,648 0.00 30,648 0.00 29,852 0.00 29,852 0.00
sfjs05 9,465 0.00 9,465 0.00 9,465 0.00 9,465 0.00 9,465 0.00 10,288 0.00 9,465 0.00 9,465 0.00
sfjs06 26,281 0.00 26,281 0.00 26,281 0.00 26,281 0.00 26,281 0.00 26,281 0.00 26,281 0.00 26,281 0.00
sfjs07 34,443 0.00 34,443 0.00 34,443 0.00 34,443 0.00 34,443 0.00 34,443 0.00 34,443 0.00 34,443 0.00
sfjs08 21,309 0.00 21,309 0.00 21,309 0.00 21,309 0.00 21,715 0.00 21,309 0.00 21,309 0.02 21,309 0.00
sfjs09 15,973 0.00 15,973 0.00 15,973 0.00 15,973 0.00 15,973 0.00 15,973 0.00 15,973 0.01 15,973 0.00
sfjs10 45,450 0.00 45,450 0.00 45,450 0.00 45,450 0.00 45,450 0.00 45,450 0.00 45,450 0.01 45,450 0.00

C̄max 21,653.90 21,653.90 21,653.90 21,653.90 21,774.10 21,815.80 21,653.90 21,653.90
#best 10 10 10 10 8 8 10 10
gap(%) 0.00 0.00 0.00 0.00 0.46 1.14 0.00 0.00
gap(%) 0.00 0.00 0.00 0.00 0.46 1.14 0.00 0.00

Table A6: Results of applying the metaheuristics and the method introduced in [44] to classical
instances of the FJS with learning effect and without sequencing flexibility, with learning effect
rate α = 0.3.
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