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Abstract

This paper addresses the flexible job shop scheduling problem with sequencing flexibility
and position-based learning effect. In this variant of the flexible job shop scheduling prob-
lem, precedence constraints of the operations constituting a job are given by an arbitrary
directed acyclic graph, in opposition to the classical case in which a total order is imposed.
Additionally, it is assumed that the processing time of an operation in a machine is subject
to a learning process such that the larger the position of the operation in the machine, the
faster the operation is processed. Mixed integer programming and constraint programming
models are presented and compared in the present work. In addition, constructive heuris-
tics are introduced to provide an initial solution to the models’ solvers. Sets of benchmark
instances are also introduced. The problem considered corresponds to modern problems of
great relevance in the printing industry. The models and instances presented are intended
to support the development of new heuristic and metaheuristics methods for this problem.

Keywords: flexible job shop scheduling problem, sequencing flexibility, learning effect, mod-
els, instances, constructive heuristics.

1 Introduction

In this work, we consider the flexible job shop (FJS) scheduling problem with sequence flexibility
and position-based learning effect. The problem is NP-hard, as it has the job shop scheduling
problem, known to be NP-hard [13], as a particular case. The sequencing flexibility feature refers
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to the fact that the precedence constraints imposed on the operations of a job are given by an
arbitrary directed acyclic graph instead of the usual linear order enforced in the FJS scheduling.
Many real-life scheduling problems fit into this scope, such as, for example, problems in the
printing industry [4, 21, 22], mold manufacturing industry [11], and glass industry [1]. In [22],
the FJS with sequencing flexibility and several additional features, such as, for example, re-
sumable operations, periods of unavailability of the machines, sequence-dependent setup times,
partial overlapping between operations with precedence constraints, and fixed operations, was
addressed. However, learning effects have not yet been taken into account in the literature re-
garding FJS with sequencing flexibility. The present work is devoted to this problem and presents
the first step towards its effective and efficient resolution. Mixed integer linear programming
(MILP) and constraint programming (CP) models and a relatively large set of instances are
introduced for the purpose of producing a benchmark test set. Since, leaving aside very small
instances, commercial exact solvers alone are hardly even able to find a feasible solution, con-
structive heuristics are proposed with the goal of enhancing their performance. Overall, this
work takes a first step towards solving the proposed problem and provides a solid and robust
basis for the future development of more sophisticated heuristic and metaheuristic methods.

In classical scheduling problems, the processing time of a given operation on a given machine
is a fixed input parameter. However, there are real-life situations in which the manufacturing
process involves repetitive manual tasks and the worker undergoes a learning process that results
in a reduction of the execution time of his/her task. For instance, workers can get proficient at
performing assemblies quickly, or more confident and skillful in manipulating hardware, software,
and/or raw materials. If we consider that the reduction in the operation processing time is
related to the number of times the worker has already performed the operation, we are dealing
with a position-based learning effect. The pioneering works in applying the concept of learning
effect to scheduling problems are [6, 9, 14]. Surveys on the subject can be found in [3, 7, 15].

A brief literature review in chronological order of the FJS with sequencing flexibility follows.
In [12], the problem was addressed by considering non-fixed intervals of machine unavailability
for preventive maintenance. A multi-objective MILP formulation and a hybrid multi-objective
genetic algorithm were proposed. In [11] and [18], process flexibility was also taken into account,
which means that the same result can be obtained with different operation sequences. In [11]
a branch-and-bound algorithm was proposed, while [18] considered a symbiotic evolutionary
algorithm. In [24], where a MILP formulation was presented to minimize the weighted tardiness,
a hybrid bacterial foraging optimization algorithm was developed. Furthermore, the algorithm
was enhanced by a local search method based on the manipulation of critical operations. A
research that addresses the FJS with sequencing flexibility and sequence-dependent setup times
can be found in [8]. The authors proposed a knowledge-based cuckoo search algorithm associated
with a reinforcement learning strategy for self-adjustment. In [17], MILP and CP models and
a hybrid evolutionary algorithm with local search mechanisms were introduced. A variation in
which the processing of each operation requires multiple resources was considered in [16], in
which models are presented and some properties of the problems are analyzed.

In [1], an application in the glass industry was described and a heuristic approach combining
local search and priority rules was proposed to minimize the total cost related to final prod-
uct completion times. Other industrial environments, such as the printing industry, have also
been modeled as an FJS with sequencing flexibility. Regarding this particular application, [23]
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suggested a bi-objective genetic algorithm based on NSGA II to solve the problem. In [4], a
MILP model and a constructive heuristic were presented, while [5] introduced a list scheduling
algorithm and its extension to a beam search method. In [21, 22], formulations using constrained
programming and mixed integer linear programming were established, as well as trajectory and
population metaheuristics were introduced. In [27], it was considered the flight deck schedul-
ing problem, which is an FJS with sequencing flexibility with additional constraints that state
that some operations must be completed before others. The problem was described through its
MILP formulation and instances were solved with a differential evolution type method. In [2],
the scheduling of repair orders and worker assignment in an automotive repair shop was an-
alyzed. The main scheduling problem is a two-resource FJS with sequencing flexibility. The
problem was modeled by extending the formulation introduced in [4] and an iterated greedy
heuristic was presented.

Let us consider an illustrative example of the FJS with sequencing flexibility and position-
based learning effect. The example has 12 operations and 3 machines. Figure 1 shows the
precedence relationships between the operations and the standard processing times of each
operation on each machine. The small table with the standard processing times shows that in
the FJS scheduling problem each operation can be processed by one or more machines (situation
known as routing flexibility), in opposition to the job shop (JS) scheduling problem in which
each operation can be processed by only one machine. The concept of job is implicitly defined
by the directed acyclic graph (DAG) and corresponds to a set of operations that have some
dependency relationship between them. The figure makes it clear that, in the FJS scheduling
problem with sequence flexibility, the dependencies of the operations of a job are given by an
arbitrary acyclic directed graph as opposed to the total order of the FJS scheduling problem.
In this example there are two jobs, one with 6 operations (numbered from 1 to 6) and the other
also with 6 operations (numbered from 7 to 12).

A feasible solution to the instance of Figure 1 can be illustrated by a DAG in which a source
node s and a target node t are added to the DAG that represents the precedence constraints;
see Figure 2. Arcs from s to all operations with no predecessors and from all nodes without
successor to tmust also be added. (For the readers that can see the figure in colors, those arcs are
painted purple.) In addition, dashed arcs represent the sequence (list) in which operations are
processed by each machine. (For the readers that can see the figure in colors, blue corresponds
to machine 1, violet corresponds to machine 2, and orange corresponds to machine 3.) Colored
figures at the top or bottom of the operations correspond to their processing times. In this
directed graph, that we name G = (V,A) from now on1, the longest path from s to t corresponds
to the makespan. In this example, the longest path, with value 80, corresponds to the path
s, 1, 2, 4, 5, 6, t. (Highlighted yellow in the figure for those readers who can see the figure in
color.) The depicted feasible solution corresponds to an optimal solution. Figure 3 shows the
Gantt chart representation of the solution. Note that standard times were used, i.e. in this
example the learning effect was not considered at all.

In the present work, we consider that when an operation i is assigned to a machine k and it
is the rth operation to be processed by the machine, the standard processing time pik is affected

1Note that V = O ∪ {s, t} and A is composed by the given arcs in Â that represent the precedence relations
among operations, plus the mentioned arcs related to the new nodes s and t, plus the mentioned machine arcs.
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Machines
1 2 3

O
p
er
a
ti
o
n
s

1 10 20 15
2 20 15 5
3 10 – 20
4 – 30 –
5 30 40 10
6 20 – 30
7 – 10 20
8 40 10 –
9 – 40 20
10 10 20 10
11 20 10 –
12 – – 15

Figure 1: On the left, representation of operations’ precedence constraints by a directed acyclic
graph D = (O, Â), where O = {1, 2, . . . , 12} represents the set of operations and Â is the set of
arcs that represent the precedence constraints. On the right, standard processing times of the
twelve operations on each of the three machines. In the table cells, “–” means that the machine
cannot process the operation.

by a learning effect and becomes ψα(pik, r), where α > 0 is the learning rate. Following [6],
we might consider ψα(p, r) := p/rα in which, the larger the value of α, the faster the learning.
However, in the present work, a constraint programming model of the problem will be introduced
and instances solved with a commercial solver that requires processing times to assume integer
values only. Thus, we consider ψα(p, r) := ⌊100 p/rα + 1/2⌋. Multiplying by one hundred,
adding 0.5, and taking the floor corresponds to changing the unit of measures (from seconds to
milliseconds, for example) and rounding to the closest integer value. Figures 4 and 5 illustrate
the graph representation and the Gantt chart of an optimal solution in which the learning
function ψα with α = 0.5 is considered. It is worth noting that a different schedule is found,
whose makespan, given by the critical path s, 7, 8, 4, 5, 6, t, is equal to 50.16 in the original units
of time (5016 in the new one).

The rest of this paper is organized as follows. In Section 2, we introduce the integer lin-
ear programming and constraint programming models. In Section 3, we outline the proposed
constructive heuristics. In Section 4, we report the introduced instances. Numerical experi-
ments with the constructive heuristics and exact commercial solvers are reported in Section 5.
Conclusions and lines of future research are presented in the concluding section.

2 Mixed integer and constraint programming models

In this section, we present mixed-integer linear programming (MILP) and constraint program-
ming (CP) formulations for the FJS scheduling problem with sequencing flexibility and position-
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Figure 2: Representation of an optimal solution to the instance in Figure 1.

Figure 3: Gantt chart representation of the optimal solution shown in Figure 2 to the instance
of Figure 1.
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Figure 4: Representation of an optimal solution to the instance in Figure 1 in the presence of
learning effect.

based learning effect.
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Figure 5: Gantt chart representation of the optimal solution shown in Figure 4 to the instance
of Figure 1 in the presence of learning effect.

2.1 Mixed-integer linear programming model

The adoption of position-based decision variables serves as the fundamental approach for mod-
eling problems involving position-based learning effects, as it enables a more natural expression
of constraints related to the change in processing times. The proposed MILP model is derived
from [4] and is built upon the model introduced in [25] that considers position-based decision
variables; see also [26]. Notation below simplifies the presentation of the model.

Sets:

O: set of operations,

F : set of machines,

Ok: set of operations that can be processed by machine k,

Fi: set of machines that can process operation i,

Â: set of directed arcs that represent operations’ precedence constraints.

Parameters:

pik: standard processing time of operation i in machine k,

ψα(pik, r): position-based learning function.

Decision variables:

xikr: 1 if operation i is the rth operation to be processed in machine k; 0, otherwise,

si: starting time of operation i,

hkr: starting time of the rth operation to be processed in machine k,

p′i: actual processing time of operation i (considering the learning effect).
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The MILP model follows.

Minimize Cmax (1)

subject to∑
k∈Fi

|Ok|∑
r=1

xikr = 1, i ∈ O, (2)

∑
i∈Ok

xikr ≤ 1, k ∈ F , r = 1, . . . , |Ok|, (3)

∑
i∈Ok

xi,k,r+1 ≤
∑
i∈Ok

xikr, k ∈ F , r = 1, . . . , |Ok| − 1, (4)

p′i =
∑
k∈Fi

|Ok|∑
r=1

ψα(pik, r)xikr, i ∈ O, (5)

hkr +
∑
i∈Ok

ψα(pik, r)xikr ≤ hk,r+1, k ∈ F , r = 1, . . . , |Ok| − 1, (6)

hkr +
∑
i∈Ok

ψα(pik, r)xikr ≤ Cmax, k ∈ F , r = |Ok|, (7)

si + p′i ≤ sj , ∀(i, j) ∈ Â, (8)

si + p′i −

2− xikr −
|Ok|∑

t=r+1

xjkt

M ≤ sj ,
∀i, j ∈ {O | i ̸= j},∀k ∈ Fi ∩ Fj ,

r = 1, . . . , |Ok| − 1,
(9)

hkr −M (1− xikr) ≤ si, i ∈ O, k ∈ Fi, r = 1, . . . , |Ok|, (10)

si −M (1− xikr) ≤ hkr, i ∈ O, k ∈ Fi, r = 1, . . . , |Ok|, (11)

si ≥ 0, i ∈ O, (12)

hkr ≥ 0, k ∈ Fi, r = 1, . . . , |Ok|, (13)

xikr ∈ {0, 1}, i ∈ O, k ∈ Fi, r = 1, . . . , |Ok|. (14)

Objective function (1) represents the minimization of the makespan. Constraints (2) state
that each operation must be processed by exactly one machine and occupy exactly one position
on that machine. Constraints (3) state that each position of each machine can be associated
with at most one operation. Constraints (4) say that a position of a machine can be occupied by
an operation only if the previous position is also occupied by another operation. Constraints (5)
define the actual processing time of each operation i in order to simplify the presentation of
the model. Constraints (6) avoid the overlapping of operations assigned to the same machine.
Constraints (7) say that the makespan must be greater than or equal to the completion time of
all operations. Combining these constraints with the minimization of the objective function (1)
makes the makespan to coincide with the completion time of the last operation to be com-
pleted. Constraints (8) impose the given precedence constraints between operations by saying
that if an operation i precedes an operation j then j cannot be started before i is completed.
Constraints (9) state that, if two operations i and j were assigned to the same machine k and
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operation i precedes operation j, then j cannot be started before i is completed. If operation i is
assigned to position r of machine k (i.e. if xikr = 1) then constraints (10) and (11) force hkr (the
starting time of rth operation to be processed by machine k) to be equal to si (the starting time
of operation i). Constraints (12), (13), and (14) determine the decision variables’ domains. M is
a “sufficiently large” number and may assume the value

∑
i∈O

∑
k∈F pik. Function ψα(pik, r) is

the given function that represents the learning effect and computes the actual processing time of
operation i if it is assigned to position r of machine k. This function has the learning rate α ≥ 0
as a parameter and, in the present work, as already mentioned in the introduction, is given by

ψα(p, r) =

⌊
100 r−α p+

1

2

⌋
.

2.2 Constraint Programming model

Constraint Programming (CP) is a potent methodology widely employed for solving schedul-
ing problems in academic and industrial literature. CP Optimizer [19], being an optimization
commercial solver rooted in CP, incorporates specialized concepts of constraints and variables,
significantly facilitating the modeling process for scheduling problems. In this section, we intro-
duce a CP model specifically designed for its utilization in connection with CP Optimizer. The
syntax of CP Optimizer is defined as it arises within the formulation. The model follows below.

Minimize max
i∈O

endOf(oi) (15)

subject to

endBeforeStart(oi, oj), (i, j) ∈ Â, (16)

alternative
(
oi, [aikr]k∈Fi,r=1,...,|Ok|

)
, i ∈ O, (17)

noOverlap
(
[aikr]i∈Ok,r=1,...,|Ok|

)
, k ∈ F , (18)

endBeforeStart(aikr, ajk,r+1),
i, j ∈ O, k ∈ Fi ∩ Fj ,
r = 1, . . . , |Ok| − 1,

(19)

or([presenceOf(aik,r+1)]i∈Ok
) =⇒ or([presenceOf(aikr])i∈Ok

), k ∈ F , r = 1, . . . , |Ok| − 1,
(20)

interval oi, i ∈ O, (21)

interval aikr, opt, size = ψα(pik, r), i ∈ O, k ∈ Fi, r = 1, . . . , |Ok|.
(22)

Interval decision variables of the problem are described in (21) and (22). In (21), an interval
variable oi for each operation i is defined. In (22), an optional interval variable aikr is defined
for each possible assignment of operation i to a machine k ∈ Fi at positions r = 1, . . . , |Ok|.
Optional means that the interval variable may exist or not; and the remaining of the constraint
says that, in case it exists, its size must be given by ψα(pik, r). Constraints (17) state that
each operation i must be allocated to exactly one machine k ∈ Fi in exactly one position
r, that is, one and only one interval variable aikr must be present and the selected interval
aikr must start and end at the same instants as interval oi. The objective function (15) is to
minimize the makespan, given by the maximum end value of all the operations represented by the
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interval variables oi. Precedence constraints between operations are posted as endBeforeStart
constraints between interval variables in constraints (16). Constraints (18) state that, for each
machine k, at most one operation can be assigned to each position and operations assigned to
different positions cannot overlap. Constraints (19) say that, for any machine and any position,
the operation assigned to that position must finish before the operation in the next position
starts. Constraints (20) force that the empty positions of machine k are the last ones, i.e., that
operations are processed in the first positions of the machines without empty positions among
them.

3 Constructive Heuristics

In this section, we propose two constructive heuristics for the FJS scheduling problem with
sequencing flexibility and position-based learning effect. Constructive heuristics are algorithms
that build a feasible solution from scratch by iteratively selecting and sequencing one operation
at a time. The two proposed constructive heuristics are based on the earliest starting time
(EST) rule [4] and the earliest completion time (ECT) rule [20]. The goal is to use them to
provide an initial feasible solution to the exact solver that will be used to attempt to solve a set
of test instances.

Algorithm 1 presents the constructive heuristic based on EST rule. In the algorithm, ropv
refers to the ready time of operation v, wv refers to its actual processing time and cv to its
completion time. On the side of the machines, rmac

k represents the instant in which machine k
is released and gk represents its first free position, which is the one that would be occupied if an
operation were assigned to it (both quantities refer to the partial scheduling being constructed).
fv will indicate to which machine operation v was assigned and each machine k will have an
ordered list Qk with the sequence of operations to be processed. After the initializations (lines 2
to 5) comes the main loop, which is executed as long as there are still unscheduled operations.
Among the not scheduled ones, the ready time is calculated for all those that already have all
the preceding operations scheduled (lines 7 to 9). In line 10, observing the ready times of the
operations and machines, the smallest instant rmin in which an operation could be scheduled
is calculated and the set E of operation/machine pairs that could start at that instant rmin

is constructed. As it was observed in [4], |E| can be quite large and experience shows that a
tie-breaking rule can significantly improve the method’s performance. Thus, in line 11, among
all the operation/machine pairs in E, taking into account the learning effect, the pair (v̂, k̂) with
the shortest processing time is chosen. In line 12, wv̂, fv̂, and cv̂ are defined and the ready time
rmac
k̂

and the free position gk̂ of machine k̂ are updated. In lines 13 and 14 the corresponding

machine arc is inserted in the graph G (the arc must not be inserted if operation v̂ is the
first one of machine k̂). Finally, the list of operations assigned to machine k̂ is updated and
the scheduled operation is removed from the set of operations not yet scheduled. After all
the operations have been scheduled, the critical path in G is calculated (line 16) to determine
the makespan value Cmax. This is done with Algorithm 2. Initializations in lines 2 to 5 of
Algorithm 1 have complexity O(|O|+ |Â|+ |F|). Within the main loop (lines 6 to 15), lines 7–9
have complexity O(|A|) = O(|Â|+|O|+|F|), lines 10–11 have complexity O(|O|+

∑
i∈O |Fi|), and

line 12 has complexity O(|O|). Since the main loop is executed |O| times, its total complexity is
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O(|O|(|Â|+ |F|+
∑

i∈O |Fi|)). As the complexity of the main loop is larger that the complexity
of the initialization as well as the complexity of line 16 (see below), then the complexity of
Algorithm 1 is given by the complexity of its main loop. It is important to note that γ =∑

i∈O |Fi| is between |O| and |O||F|, but we prefer to keep the complexity expressed as a
function of γ because γ is a measure of the size of the input that depends on the sequencing
flexibility of the instance under consideration. It is also important to note that the complexity of
the algorithm depends on the routing flexibility of the operations, i.e., it depends on the number
of dependency relations in Â. Therefore, it is important to represent an instance in such a way
that Â corresponds to a transitive reduction of the precedences’ digraph.

Algorithm 1: Computes a solution graph G = (V,A), f , Q, and w by using EST
dispatching rule. Then, in G, it computes the largest path P from s to t and its
length Cmax.

Input: O, F , p, Â
Output: f , w, Q, G = (V,A), U , P, Cmax, τ

1 function EST(O, F , p, Â, f , w, Q, G, U , P, Cmax, τ)

2 Set A← Â ∪ {(s, j) | (·, j) ̸∈ Â} ∪ {(i, t) | (i, ·) ̸∈ Â} and define V := O ∪ {s, t} and
G = (V,A).

3 Set ropv ← +∞ for all v ∈ V and define rops := 0, ws := wt := 0, and cs := 0.
4 Set rmac

k ← 0 and gk ← 1 for all k ∈ F .
5 Initialize Π← V \ {s, t} as the set of non-scheduled operations, and Qk as an empty

list for all k ∈ F .
6 while Π ̸= ∅ do
7 for v ∈ Π do
8 if Π ∩ {i | (i, v) ∈ A} = ∅ then
9 ropv ← max{ci | i ∈ V \Π such that (i, v) ∈ A}

10 Set rmin = min{max(ropv , rmac
k ) | v ∈ Π, k ∈ Fv} and let E be the set of pairs

(v, k) with v ∈ Π and k ∈ Fv such that max(ropv , rmac
k ) = rmin.

11 (v̂, k̂)← argmin{rmin + ψα(pv,k, gk) | (v, k) ∈ E}.
12 Define wv̂ := ψα(pv̂,k̂, gk̂), fv̂ := k̂ and cv̂ := max(ropv̂ , r

mac
k̂

) + wv̂, and set

rmac
k̂
← cv̂ and gk̂ ← gk̂ + 1.

13 if |Qk̂| ≠ 0 then
14 Let Qk̂ = i1, . . . , i|Qk̂|. Set A← A ∪ {(i|Qk̂|, v̂)}.

15 Insert v̂ at the end of Qk̂ and set Π← Π \ {v̂}.
16 CriticalPath(F , f , w, Q, G, U , P, Cmax, τ).

The critical path in the directed graph G = (V,A) can be computed with an adaptation [10,
§22.2] of the Bellman-Ford algorithm; see Algorithm 2. In addition to the critical path P, the
algorithm returns a topological order U of the vertices of G and a vector τ of dimension |F|. The
vector τ stores, in element τk, the largest position in the list Qk (list of operations assigned to
machine k) that contains an operation in the critical path. These two elements are not used in

10



the context of the present work, but they are useful information for developing neighborhoods
in local search algorithms. Algorithm 2 has worst case time complexity O(|V | + |A|). Since
|V | = O(|O|) and |A| = O(|Â|+|O|+|F|), this complexity translates into O(|O|+|Â|+|F|). The
topological order of Algorithm 2 is calculated with the help of Algorithm 3, which implements
a depth-first search. Algorithm 3 computes, optionally, for each v ∈ V , the set R←v formed by
the vertices w such that there exists in G a path from w to v, i.e. the vertices that can reach v.
Algorithm 3 is recursive and its complexity is O(|V | + |Â|). The sets R←v are not used in the
context of the present work, but, again, they contain valuable information for the development
of local search strategies.

Algorithm 2: Computes a critical path P and its length ξ for a given graph G = (V,A).
In addition, if τ is present as an input parameter, determines the last critical operation
in each machine.
Input: F , f , w, Q, G = (V,A), τ
Output: U , P, ξ, τ

1 function CriticalPath(F , f , w, Q, G, U , P, ξ, τ)
2 Initialize di ← −∞ for all i ∈ V \ {s} and define ds := 0 and πs := 0.
3 Initialize V ← ∅ and U as an empty list and compute in U a topological sort of the

vertices in V , by calling TopologicalSort+(G, U , s, V).
4 for ℓ = 1, . . . , |V | do
5 Let i be the ℓ-th operation in the topological order given by U .
6 for j such that (i, j) ∈ A do
7 if dj < di + wi then
8 dj ← di + wi and πj ← i.

9 ξ := dt
10 Initialize i← πt, P ← ∅, and τk ← 0 for all k ∈ F .
11 do
12 if τfi = 0 then
13 Let Qfi be given by the sequence i1, . . . , iℓ−1, i, iℓ+1, . . . , i|Qfi

|. Define τfi := ℓ.

14 P ← P ∪ {i} and i← πi.

15 while i ̸= s

Algorithm 4 presents the constructive heuristic based on the ECT rule. The algorithm
is very similar to Algorithm 1, except for one detail. In the constructive heuristic based on
EST, we first compute the instant rmin which is the earliest instant at which an unscheduled
operation could be initiated. All operation/machine pairs that could start at that instant are
considered and the pair with the shortest processing time is selected. But since they would all
start at instant rmin, saying that the pair with the shortest processing time is chosen is the
same as saying that the pair that ends earliest is selected. This is the idea that is taken to the
extreme in the constructive heuristic based on the ECT rule: without limiting the choice to the
operation/machine pairs that could start as early as possible, the operation/machine pair that
will finish earliest is chosen, even if the processing of the operation does not start as early as
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Algorithm 3: Computes a topological sort U of the vertices of G = (V,A). In addition,
if v and R←v are present as an input parameter, computes the set R←v of vertices that
reaches v in G = (V,A).

Input: G = (V,A), U , i, V, v, R←v
Output: U , V, R←v

1 function TopologicalSort+(G, U , i, V, v, R←v )
2 Set V ← V ∪ {i}.
3 for j such that (i, j) ∈ A do
4 if j /∈ V then
5 TopologicalSort+(G, U , j, V, v, R←v )

6 if i ̸∈ R←v and j ∈ R←v then
7 set R←v ← R←v ∪ {i}.

8 Insert i at the beginning of U .

possible. The worst case time complexity of Algorithm 4 is the same as that of Algorithm 1.
The EST-based heuristic gives priority to those pairs operations/machines that can start the

earliest. At the beginning of the construction, this corresponds, roughly, to giving priority to
all the first operations of each job, which are operations that have no precedents (operations 1,
3 and 7 in the example of Figure 1). Still, due to the intention of scheduling operations as early
as possible, it is possible that preference is given to empty machines, building solutions that use
several machines. By rapidly scheduling the first operations of each job, more operations come
to have their precedents scheduled, increasing the number of possibilities (search space) in future
iterations of the method. On the other hand, the heuristic based on the ECT rule chooses the
operation/machine pairs that terminate the earliest, regardless of whether they are the ones that
can start the earliest or not. Such a strategy can limit the number of operation/machine pairs
available in future iterations, reducing the search space of the method. Moreover, the choice
for the operation/machine pair that can finish earliest, combined with the learning effect, leads
the method to schedule operations on machines that already have several operations assigned
to them, since the higher the position in the machine, the shortest de processing (reduced by
the positioned-based learning effect). This leads to the construction of solutions in which not
all machines are used. Depending on the learning rate α considered and the density of the DAG
of precedences of the instance at hand, one heuristic may be better than the other.

4 Benchmark instances

Tractability of the introduced models and performance of the proposed constructive heuristics
will be evaluated with the 50 large-sized instances proposed in [4], that were introduced for the
FJS scheduling problem with sequence flexibility but without learning effect. In addition to
these large-sized instances, a new set with 60 smaller instances, using the generator described
in [4], was generated. Instances whose name starts with “Y” correspond to instances in which
DAGs that represent the operations’ precedences are Y-shaped (like the DAG in the top of
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Algorithm 4: Computes the solution graph G = (V,A), f , Q, and w by using ECT
dispatching rule. Then, in G, it computes the largest path P from s to t and its
length Cmax.

Input: O, F , p, Â
Output: f , w, Q, G = (V,A), U , P, Cmax, τ

1 function ECT(O, F , p, Â, f , w, Q, G, U , P, Cmax, τ)

2 Set A← Â ∪ {(s, j) | (·, j) ̸∈ Â} ∪ {(i, t) | (i, ·) ̸∈ Â} and define V := O ∪ {s, t} and
G = (V,A).

3 Set ropv ← +∞ and define rops := 0, ws := wt := 0, and cs := 0.
4 Set rmac

k ← 0 and gk ← 1 for all k ∈ F .
5 Initialize Π← V \ {s, t} as the set of non-scheduled operations, and Qk as an empty

list for all k ∈ F .
6 while Π ̸= ∅ do
7 for v ∈ Π do
8 if Π ∩ {i | (i, v) ∈ A} = ∅ then
9 ropv ← max{ci | i ∈ V \Π such that (i, v) ∈ A}

10 (v̂, k̂)← argmin{max(ropv , rmac
k ) + ψα(pv,k, gk) | v ∈ Π, k ∈ Fv}.

11 Define wv̂ := ψα(pv̂,k̂, gk̂), fv̂ := k̂ and cv̂ := max(ropv̂ , r
mac
k̂

) + wv̂ and set

rmac
k̂
← cv̂ and gk̂ ← gk̂ + 1.

12 if |Qk̂| ≠ 0 then
13 Let Qk̂ = i1, . . . , i|Qk̂|. Set A← A ∪ {(i|Qk̂|, v̂)}.

14 Insert v̂ at the end of Qk̂ and set Π← Π \ {v̂}.
15 CriticalPath(F , f , w, Q, G, U , P, Cmax, τ).

Figure 1); while instances whose name starts with “DA” correspond to instances in which DAGs
that represent the operations precedences are arbitrary DAGs (like the DAG in the bottom of
Figure 1). The former will be called instances of Y-type and the latter will be called instances
of DA-type from now on.

For a given instance, we define measures ω1 and ω2 of the sequencing flexibility and the
routing flexibility, respectively. Both measures are between 0 and 1 and, the larger their values,
the larger the flexibility they represent. Moreover, the larger the flexibility, the larger the search
space and, in consequence, the harder the instance. Let D+ = (O, Â+) be the transitive closure
of the precedences DAG D = (O, Â). Let nκ be the number of operations of job κ and let aκ
the number of arcs in the D+ among them. Then, amin

κ ≤ aκ ≤ amax
κ , where amin(nκ) = nκ − 1

and amax(nκ) = nκ(nκ − 1)/2. Therefore

ωκ
1 := 1− aκ − amin(nκ)

amax(nκ)− amin(nκ)
,

is such that ωκ
1 ∈ [0, 1] represents the sequencing flexibility of the operations of job κ. The
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arithmetic mean among all n jobs of the instance, given by

ω1 =
1

n

n∑
κ=1

ωκ
1 ,

is also between 0 and 1 and represent the degree of the instance sequencing flexibility. The
larger ω1, the larger the search space and, therefore, the more difficult the instance. (Of course,
any other type of average could be used in the definition of ω1.)

In a similar way, we define the routing flexibility measure ω2. It is easy to see that |O| ≤∑
i∈O |Fi| =

∑
k∈F |Ok| ≤ |O||F|. Therefore,

ω2 =

∑
i∈O |Fi| − |O|
|O||F| − |O|

,

is between 0 and 1. The closer to 1, the larger the search space and, therefore, the harder the
instance.

Tables 1 and 2 provide a comprehensive overview of the instances main characteristics. In
the tables, |O| is the number of operations, |F| is the number of machines, n is the number of
jobs (connected components in the precedence constraints DAG D = (O, Â)), |Â| is the number
of precedence constraints,

∑
i∈O |Fi| is the number of “true” entries in the logical matrix of

dimension |O| × |F| whose (i, k) says whether operation i can be processed by machine k, and
ω1 and ω2 are the measures of the sequencing and routing flexibility described in the previous
paragraph. In addition, for the MILP and the CP models, the tables show the number of
variables and constraints.

In the small-sized instances of Table 1, the number of binary variables of the MILP models
and the number of interval variables of the CP models go up to almost 1,000; while in both
models the number of constraints goes up to 13,000. On the other hand, in the large-sized
instances of Table 2, the number of binary variables of the MILP models and the number of
interval variables of the CP models go up to almost 73,000; while in both models the number of
constraints goes up to 4,000,000. Moreover, for each instance, the number of binary variables in
its MILP model is very similar to the number of interval variables in its CP model and the two
models also have a very similar number of constraints.

5 Numerical experiments

In this section we present numerical experiments. First, we wish to evaluate the two introduced
constructive heuristics. Second, we wish to assess the correctness of the MILP and CP models
and attempt to infer which of the two, or rather which of the exact commercial solvers applied to
each of them, is more effective in finding proven optimal solutions. Third, we wish to determine
the usefulness of providing a feasible solution to the exact solvers. It should be noted that
all efforts are to build a set of test instances with proven optimal solutions. The models and
constructive heuristics presented in this paper are intended to contribute in that respect and are
not intended to construct a solution method per se, for a known difficult problem. In all cases
we considered the 110 instances introduced in Section 4 with the learning rate α ∈ {0.1, 0.2, 0.3}
for a total of 330 instances.
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Main instance characteristics MILP formulation CP Optimizer formulation

Instance |F| |O| n |Â|
∑

i∈O Fi ω1 ω2
#binary
variables

#continous
variables

#constraints
#interval
variables

#constraints

miniDAFJS01 5 14 2 14 44 0.54 0.54 392 78 3,754 406 3,564
miniDAFJS02 5 11 2 9 35 0.57 0.55 251 63 2,018 262 1,867
miniDAFJS03 5 10 2 12 31 0.50 0.53 197 57 1,435 207 1,301
miniDAFJS04 5 9 2 9 29 0.25 0.56 175 53 1,234 184 1,109
miniDAFJS05 5 15 2 15 38 0.39 0.38 310 74 2,881 325 2,714
miniDAFJS06 5 14 2 14 46 0.20 0.57 448 80 4,742 462 4,544
miniDAFJS07 5 11 2 10 34 0.23 0.52 240 62 1,924 251 1,777
miniDAFJS08 5 9 2 8 24 0.42 0.42 122 48 770 131 665
miniDAFJS09 5 15 2 13 47 0.63 0.53 465 83 5,018 480 4,815
miniDAFJS10 5 11 2 10 32 0.28 0.48 208 60 1,530 219 1,391
miniDAFJS11 5 18 2 16 43 0.45 0.35 409 85 4,371 427 4,181
miniDAFJS12 5 12 2 12 38 0.55 0.54 298 68 2,602 310 2,438
miniDAFJS13 5 10 2 8 27 0.58 0.43 149 53 979 159 861
miniDAFJS14 5 14 2 12 44 0.50 0.54 394 78 3,800 408 3,610
miniDAFJS15 5 11 2 11 35 0.40 0.55 261 63 2,242 272 2,091
miniDAFJS16 5 13 2 12 42 0.18 0.56 358 74 3,302 371 3,121
miniDAFJS17 5 11 2 11 30 0.13 0.43 194 58 1,491 205 1,360
miniDAFJS18 5 11 2 10 34 0.38 0.52 234 62 1,798 245 1,651
miniDAFJS19 5 12 2 10 36 0.30 0.50 272 66 2,338 284 2,182
miniDAFJS20 5 13 2 11 40 0.54 0.52 350 72 3,447 363 3,274
miniDAFJS21 5 19 3 20 60 0.52 0.54 730 104 9,298 749 9,039
miniDAFJS22 5 18 3 18 57 0.22 0.54 665 99 8,223 683 7,977
miniDAFJS23 5 21 3 18 66 0.53 0.54 874 114 11,934 895 11,649
miniDAFJS24 5 18 3 17 56 0.36 0.53 642 98 7,809 660 7,567
miniDAFJS25 5 17 3 17 51 0.12 0.50 535 91 6,024 552 5,803
miniDAFJS26 5 17 3 15 53 0.36 0.53 573 93 6,560 590 6,331
miniDAFJS27 5 19 3 16 57 0.46 0.50 721 101 10,155 740 9,908
miniDAFJS28 5 16 3 15 48 0.54 0.50 468 86 4,871 484 4,663
miniDAFJS29 5 14 3 15 47 0.33 0.59 451 81 4,634 465 4,432
miniDAFJS30 5 22 3 21 61 0.32 0.44 791 111 11,020 813 10,754

miniYFJS01 7 16 4 12 54 0.25 0.40 420 94 3,554 436 3,322
miniYFJS02 7 16 4 12 44 0.33 0.29 294 84 2,298 310 2,106
miniYFJS03 7 16 4 12 45 0.08 0.30 333 85 2,915 349 2,719
miniYFJS04 7 16 4 12 53 0.25 0.39 439 93 4,083 455 3,855
miniYFJS05 7 16 4 12 55 0.50 0.41 457 95 4,249 473 4,013
miniYFJS06 7 16 4 12 51 0.42 0.36 407 91 3,773 423 3,553
miniYFJS07 7 16 4 12 48 0.17 0.33 350 88 2,912 366 2,704
miniYFJS08 7 16 4 12 49 0.50 0.34 363 89 3,037 379 2,825
miniYFJS09 7 16 4 12 51 0.33 0.36 399 91 3,569 415 3,349
miniYFJS10 7 16 4 12 59 0.17 0.45 509 99 4,767 525 4,515
miniYFJS11 7 20 5 15 56 0.13 0.30 464 104 4,241 484 3,997
miniYFJS12 7 20 5 15 68 0.13 0.40 716 116 8,363 736 8,071
miniYFJS13 7 20 5 15 69 0.40 0.41 723 117 8,272 743 7,976
miniYFJS14 7 20 5 15 59 0.60 0.33 509 107 4,772 529 4,516
miniYFJS15 7 20 5 15 53 0.33 0.28 429 101 3,944 449 3,712
miniYFJS16 7 20 5 15 63 0.40 0.36 617 111 6,838 637 6,566
miniYFJS17 7 20 5 15 57 0.27 0.31 485 105 4,576 505 4,328
miniYFJS18 7 20 5 15 51 0.07 0.26 395 99 3,514 415 3,290
miniYFJS19 7 20 5 15 58 0.47 0.32 512 106 5,031 532 4,779
miniYFJS20 7 20 5 15 62 0.53 0.35 638 110 7,295 658 7,027
miniYFJS21 7 24 6 18 72 0.28 0.33 756 128 8,466 780 8,154
miniYFJS22 7 24 6 18 82 0.28 0.40 996 138 12,962 1,020 12,610
miniYFJS23 7 24 6 18 78 0.17 0.38 908 134 11,280 932 10,944
miniYFJS24 7 24 6 18 62 0.28 0.26 588 118 6,136 612 5,864
miniYFJS25 7 24 6 18 76 0.17 0.36 836 132 9,686 860 9,358
miniYFJS26 7 24 6 18 67 0.33 0.30 693 123 7,841 717 7,549
miniYFJS27 7 24 6 18 81 0.39 0.40 951 137 11,709 975 11,361
miniYFJS28 7 24 6 18 67 0.22 0.30 661 123 7,001 685 6,709
miniYFJS29 7 24 6 18 80 0.39 0.39 934 136 11,536 958 11,192
miniYFJS30 7 24 6 18 72 0.44 0.33 800 128 9,756 824 9,444

Table 1: Main features of the proposed sixty small-sized instances.

The experiments were carried out in an Intel i9-12900K (12th Gen) processor operating at
5.200GHz and 128 GB of RAM. The constructive heuristics were implemented in C++ program-
ming language. Models were solved using IBM ILOG CPLEX Optimization Studio version 22.1,
using default parameters, with concert library and C++. The code was compiled using g++
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Main instance characteristics MILP formulation CP Optimizer formulation

Instance |F| |O| n |Â|
∑

i∈O Fi ω1 ω2
#binary
variables

#continous
variables

#constraints
#interval
variables

#constraints

DAFJS01 5 26 4 26 82 0.54 0.54 1,358 140 23,102 1,384 22,748
DAFJS02 5 25 4 23 79 0.45 0.54 1,273 135 21,348 1,298 21,007
DAFJS03 10 55 4 52 279 0.32 0.45 7,849 400 223,911 7,904 222,740
DAFJS04 10 43 4 40 220 0.25 0.46 4,960 317 115,208 5,003 114,285
DAFJS05 5 39 6 34 104 0.35 0.42 2,242 188 50,228 2,281 49,773
DAFJS06 5 44 6 41 136 0.38 0.52 3,724 230 103,253 3,768 102,665
DAFJS07 10 85 6 82 431 0.30 0.45 18,695 612 817,681 18,780 815,872
DAFJS08 10 85 6 82 403 0.31 0.42 16,357 584 670,739 16,442 669,042
DAFJS09 5 45 8 42 135 0.40 0.50 3,755 231 107,667 3,800 107,082
DAFJS10 5 58 8 52 168 0.40 0.47 5,764 290 201,720 5,822 200,990
DAFJS11 10 113 8 108 534 0.40 0.41 28,648 771 1,546,720 28,761 1,544,471
DAFJS12 10 117 8 114 603 0.49 0.46 36,513 848 2,223,141 36,630 2,220,612
DAFJS13 5 62 10 55 193 0.41 0.53 7,511 323 295,582 7,573 294,748
DAFJS14 5 69 10 62 206 0.37 0.50 8,578 350 361,926 8,647 361,033
DAFJS15 10 120 10 117 595 0.32 0.44 35,811 846 2,184,302 35,931 2,181,802
DAFJS16 10 120 10 114 602 0.33 0.45 36,344 853 2,203,066 36,464 2,200,538
DAFJS17 5 82 12 77 246 0.43 0.50 12,244 416 617,041 12,326 615,975
DAFJS18 5 74 12 64 231 0.41 0.53 10,785 385 509,435 10,859 508,437
DAFJS19 7 70 8 66 283 0.34 0.51 11,507 431 471,949 11,577 470,747
DAFJS20 7 92 10 87 361 0.36 0.49 18,709 553 976,026 18,801 974,490
DAFJS21 7 107 12 102 425 0.38 0.50 25,853 647 1,577,783 25,960 1,575,976
DAFJS22 7 116 12 109 450 0.39 0.48 29,296 690 1,932,281 29,412 1,930,365
DAFJS23 9 76 8 71 367 0.31 0.48 15,103 529 628,938 15,179 627,394
DAFJS24 9 92 8 87 463 0.31 0.50 23,893 657 1,238,922 23,985 1,236,978
DAFJS25 9 123 10 119 619 0.31 0.50 42,753 875 2,967,430 42,876 2,964,831
DAFJS26 9 119 10 116 606 0.34 0.51 41,026 854 2,794,800 41,145 2,792,257
DAFJS27 9 127 12 118 625 0.27 0.49 43,461 889 3,029,045 43,588 3,026,418
DAFJS28 10 91 8 89 457 0.32 0.45 21,065 650 980,790 21,156 978,871
DAFJS29 10 95 8 94 468 0.34 0.44 22,450 669 1,109,378 22,545 1,107,411
DAFJS30 10 98 10 94 509 0.20 0.47 26,059 716 1,344,045 26,157 1,341,911

YFJS01 7 40 4 36 104 0.10 0.27 1,824 192 38,286 1,864 37,830
YFJS02 7 40 4 36 104 0.17 0.27 1,568 192 24,498 1,608 24,042
YFJS03 7 24 6 18 63 0.28 0.27 611 119 6,561 635 6,285
YFJS04 7 28 7 21 71 0.19 0.26 813 135 10,260 841 9,948
YFJS05 7 32 8 24 81 0.33 0.26 1,003 153 13,417 1,035 13,061
YFJS06 7 36 9 27 95 0.19 0.27 1,365 175 21,214 1,401 20,798
YFJS07 7 36 9 27 93 0.26 0.26 1,279 173 18,588 1,315 18,180
YFJS08 12 36 9 27 100 0.26 0.16 888 185 8,879 924 8,443
YFJS09 12 36 9 27 219 0.22 0.46 4,079 304 78,474 4,115 77,562
YFJS10 12 40 10 30 113 0.17 0.17 1,169 206 13,593 1,209 13,101
YFJS11 10 50 10 40 134 0.22 0.19 1,860 245 27,378 1,910 26,792
YFJS12 10 50 10 40 133 0.12 0.18 1,915 244 30,085 1,965 29,503
YFJS13 10 50 10 40 137 0.15 0.19 1,895 248 27,177 1,945 26,579
YFJS14 26 221 13 208 641 0.24 0.08 16,603 1,110 454,179 16,824 451,394
YFJS15 26 221 13 208 648 0.23 0.08 16,620 1,117 441,752 16,841 438,939
YFJS16 26 221 13 208 633 0.13 0.07 16,037 1,102 424,253 16,258 421,500
YFJS17 26 289 17 272 1328 0.15 0.14 68,502 1,933 3,572,342 68,791 3,566,741
YFJS18 26 289 17 272 1362 0.15 0.15 72,354 1,967 3,901,378 72,643 3,895,641
YFJS19 26 289 17 272 1347 0.20 0.15 70,527 1,952 3,737,737 70,816 3,732,060
YFJS20 26 289 17 272 1343 0.12 0.15 70,371 1,948 3,742,757 70,660 3,737,096

Table 2: Main features of the fifty large-sized instances from [4].

10.2.1. Benchmark instances and code are available at https://github.com/kennedy94/FJS.

5.1 Experiments with the constructive heuristics

In this subsection, we evaluate the two constructive heuristics. Tables 3 and 4 show the results.
For each instance, the lowest makespan, among the solutions found by the two constructive
heuristics, is shown in bold. In all instances, the constructive heuristics take less than 0.001
seconds of CPU time to build a solution. Considering the small-sized instances in Table 3,
depending on the instance, there may be a significant difference between the solutions found
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by one and the other constructive heuristic. However, on average, the two heuristics behave
basically indistinguishably. For the large-sized instances in Table 4 the comparison is a bit
different: there is a clear advantage of the EST constructive heuristic in the DA-type instances,
while on the other hand there is a clear advantage of the ECT constructive heuristic in the Y-type
instances. It is worth noting that in the small-sized instances there is no clear differentiation
between the sequencing flexibility sparsity measure ω1 of the DA-type and the Y-type instances
(see Table 1). On the other hand, in the large-sized instances, Y-type instances have a value
of ω1 clearly lower than the value of ω1 of DA-type instances. Summarizing, as mentioned
at the end of Section 3, the greedy strategy of ECT of choosing the operation/machine pair
that terminates first seems to compensate in situations where, because there is already little
sequencing flexibility, the greedy choice does not cause a large decrease of the search space.

5.2 Solving the proposed models with a commercial solver

In this section, we apply an exact solver to the 330 instances considered and evaluate the
quality of the solutions found within a given CPU time limit, depending on whether we provide
the solution found by the constructive heuristics as an initial solution or not. Since there is no
clear winner between the two constructive heuristics and their execution time is negligible, we
run both and give the best of the two as initial solution to the exact solver. In the tables and
figures, the solvers’ runs that receive as input a solution computed by one of the constructive
heuristics are identified with the expression “warm start”.

A solution is reported as optimal by the solvers when

absolute gap = best feasible solution− best lower bound ≤ ϵabs (23)

or

relative gap =
|best feasible solution− best lower bound|

10−10 + |best feasible solution|
≤ ϵrel, (24)

where, by default, ϵabs = 10−6 and ϵrel = 10−4, and “best feasible solution” means the smallest
value of the makespan related to a feasible solution generated by the method. Since the optimal
makespan of the instances considered in this work always assumes an integer value, we choose
to use ϵabs = 1 − 10−6 and ϵrel = 0. The choice ϵrel = 0 avoids premature stops in a solution
that may not be optimal. The choice ϵabs = 1 − 10−6 allows to stop early when a relative gap
smaller than 1 clearly indicates that the optimal solution has already been found. A CPU time
limit of 1 hour was imposed. All other solvers parameters were used with their default values.

Tables 5, 6, 7, 8, 9, and 10 show the results in detail when the warm start is not taken into
account. Tables 5, 6, and 7 correspond to the small-sized instances with α equal to 0.1, 0.2, and
0.3, respectively; while Tables 8, 9, and 10 show the same thing for the large-sized instances.
Tables 11–16 show the results when the warm start is taken into account. The tables show the
information related to the resolution of the MILP and CP models. When a single number appears
in the “makespan” column, it means that a provably optimal solution with that makespan value
was found. When instead of a number an expression of the form [A,B]C% appears, it means
that a feasible solution was found with value B for the makespan, value A for a lower bound
on the makespan, and gap C equal to 100(B − A)/B. As measures of computational effort,
for the MILP solver the tables show the number of iterations, the number of nodes explored in
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the branch-and-bound search tree, and the CPU time in seconds. For the CP solver, the tables
show the number of branches and the CPU time in seconds. If no information is displayed for
a particular instance, it means that the solver was unable to find a feasible solution within the
specified CPU time limit. In Tables 11–16, which show results with warm start, the symbol †
next to the optimal or best value found means that the exact method returned exactly the same
solution computed with the constructive heuristic and given as initial solution. The information
from Tables 5–16 is presented graphically in Figure 6.

Let’s look at the small-sized instances first. Without warm start, the exact methods found
provably optimal solutions for 168 instances of the MILP model and 169 instances of the CP
model (out of a total of 180 small-sized instances). In the remaining cases, the gaps for the MILP
model instances were between 0.17% and 23.32%, while for the CP model instances the gaps were
between 29.44% and 47.55%. It is worth noting that in the few cases without a proven optimal
solution, there is a slight advantage in the best solution found for the CP model instances and
a slight advantage in the lower bounds found for the MILP model instances. In the instances
where a proven solution was found by solving both the MILP model and the CP model, the CP
solver was on average 12.09% faster than the MILP solver. When the constructive heuristics
solution is made available to the exact solvers, the number of proven optimal solutions found
hardly changes (still the same number for MILP model instances and one less for CP model
instances, not necessarily the same as those solved without the warm start). However, for MILP
model instances where a proven optimal solution is found both with and without warm start,
the use of warm start reduces the solution time by 32.52% in average. This reduction is 4.44%
for the CP model solver. One way or another, whether using the MILP model or the CP model,
with or without warm start, it was possible to find provably optimal solutions in 176 (out of
180) small-sized instances.

The analysis of the 150 large-sized instances is a little different. Without a warm start, the
exact methods were able to find proven optimal solutions for only 7 instances of the MILP model
and 5 instances of the CP model. In 70 MILP model instances it was possible to find feasible
solutions with gaps between 13.94% and 90.47%, while feasible solutions with gaps between
9.30% and 86.10% were found in 145 instances of the CP model. In 73 instances of the MILP
model, not a single feasible solution was found. In the 70 instances in which feasible solutions
from both the MILP and CP models were found, the solutions found using the CP model were
on average 68.85% better. It was after observing these results that the idea arose to develop
constructive heuristics to test the warm start and consider a set of smaller instances.

When the solution of the constructive heuristics is fed to the exact solver, 6 provably optimal
solutions and 144 feasible solutions are obtained with gaps between 5.65% and 64.36% for MILP
model instances. For the CP model instances, the same number of provably optimal and feasible
solutions are found, with gaps between 15.43% and 81.06% for the feasible ones. In those
instances where a proven optimal solution is found without and with warm start, warm start
increases the computational cost of solving the MILP and CP models by 9.69% and 25.99%,
respectively. On the other hand, in the MILP model instances in which a feasible solution was
found without the use of warm start, the use of warm start improved the quality of the feasible
solution found by 49.46%. For the CP model instances, this improvement was 11.53%. In the
144 instances in which feasible solutions from both the MILP and CP models were found, the
solutions found using the CP model were on average 6.82% better. The question remains as
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to whether the exact methods are able to improve the solution provided by the constructive
heuristics or whether the statistics improve only because the solvers return the solution they
received as input. In the case of the MILP model instances, the initial solution is improved in
33 problems, while in the CP model instances the initial solution is improved in 134 problems.
Without a warm start, in the instances where it is possible to find a provably optimal solution
for both the MILP model and the CP model (5 instances), the cost of solving the CP models is
70.81% lower. In the case where provably optimal solutions are found in both cases using warm
start (6 instances), the cost of solving the CP models is 41.86% lower. In short, it is challenging
to find a proven optimal solution for large-sized instances, solving CP model instances costs less,
CP models provide better quality feasible solutions when it is not possible to find a provably
optimal solution, and solving MILP models provides better quality lower bounds. One way or
another, whether using the MILP model or the CP model, with or without warm start, it was
possible to find provably optimal solutions in only 7 large-sized instances and feasible solutions
in all the remaining 143 large-sized instances.

6 Conclusions

In this work, we addressed the FJS scheduling problem with sequencing flexibility and position-
based learning effect. To the authors’ knowledge, this combination, with potential application
in a wide range of real-world industrial environments, has never been addressed in the literature.
As a first step towards its efficient and effective solution, we introduced a set of 110 instances
that transform into 330 instances by varying the learning rate α ∈ {0.1, 0.2, 0.3}. By introducing
MILP and CP models, an exact solver aided by constructive heuristics was able to provide 183
proven optimal solutions. Instances, their solutions, models and constructive heuristics are all
available for download at https://github.com/kennedy94/FJS. We expect this benchmark
test-set to guide the introduction and evaluation of new effective heuristic and metaheuristic
approaches for the considered problem. In fact, this is the current line of research of the authors.
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α = 0.1 α = 0.2 α = 0.3
instance

EST ECT EST ECT EST ECT
miniDAFJS01 23,264 23,948 22,156 23,199 20,757 21,535
miniDAFJS02 23,242 23,860 22,161 22,775 21,152 21,461
miniDAFJS03 18,363 18,363 17,972 17,972 17,621 17,621
miniDAFJS04 21,690 21,690 21,233 21,121 20,824 20,391
miniDAFJS05 24,279 22,598 21,815 20,826 20,623 19,253
miniDAFJS06 23,726 23,370 23,781 22,193 21,148 21,480
miniDAFJS07 28,644 33,413 27,551 25,088 26,600 24,767
miniDAFJS08 19,878 25,100 18,857 22,921 17,927 20,943
miniDAFJS09 25,425 27,806 23,830 25,400 22,398 23,295
miniDAFJS10 22,847 21,563 21,730 21,021 20,349 20,176
miniDAFJS11 35,166 33,911 32,214 31,269 29,739 28,718
miniDAFJS12 20,342 21,435 19,624 20,370 19,094 19,394
miniDAFJS13 18,313 18,681 17,143 17,181 16,077 15,425
miniDAFJS14 26,503 27,525 24,958 25,919 23,552 24,467
miniDAFJS15 24,961 22,472 23,710 21,969 22,545 20,524
miniDAFJS16 25,845 25,691 24,699 24,593 26,750 23,797
miniDAFJS17 21,070 21,144 20,519 20,519 19,941 19,941
miniDAFJS18 19,716 19,308 18,829 19,133 17,784 18,395
miniDAFJS19 21,293 21,329 20,107 20,340 19,030 19,426
miniDAFJS20 23,570 26,421 21,759 21,286 20,140 19,587
miniDAFJS21 25,764 25,020 24,040 22,689 23,171 21,299
miniDAFJS22 28,122 31,892 26,289 29,188 24,671 26,829
miniDAFJS23 27,566 33,389 25,592 30,242 23,847 28,000
miniDAFJS24 26,932 27,581 29,407 24,500 27,040 22,524
miniDAFJS25 23,370 25,879 22,613 24,209 21,923 22,976
miniDAFJS26 26,408 25,974 24,476 23,630 22,771 21,613
miniDAFJS27 28,084 31,060 25,429 26,652 23,089 23,595
miniDAFJS28 28,836 30,947 26,587 27,477 26,831 24,429
miniDAFJS29 27,569 21,151 25,923 19,789 24,444 18,560
miniDAFJS30 27,870 27,249 25,318 24,491 21,421 22,071

wins 19 13 16 16 16 16
mean 24,621.93 25,325.67 23,344.07 23,265.40 22,108.63 21,749.73

α = 0.1 α = 0.2 α = 0.3
instance

EST ECT EST ECT EST ECT
miniYFJS01 40,456 35,243 38,132 34,443 36,008 33,697
miniYFJS02 34,009 28,688 31,940 27,557 27,987 25,969
miniYFJS03 62,704 69,005 57,950 60,302 53,679 52,865
miniYFJS04 32,133 25,394 30,048 24,669 24,428 24,017
miniYFJS05 29,009 27,650 26,828 26,135 27,047 24,743
miniYFJS06 49,001 30,952 43,387 29,080 40,871 27,366
miniYFJS07 51,782 57,652 47,743 53,702 44,128 50,110
miniYFJS08 35,336 51,013 33,178 40,884 31,133 40,567
miniYFJS09 38,626 39,463 40,411 37,593 38,480 34,357
miniYFJS10 32,975 34,363 30,651 31,742 28,513 29,397
miniYFJS11 51,600 51,212 48,172 47,079 45,079 43,254
miniYFJS12 38,889 39,024 36,036 36,691 33,495 35,223
miniYFJS13 38,448 35,177 34,046 31,720 26,536 28,751
miniYFJS14 41,560 42,764 39,254 39,862 37,157 37,177
miniYFJS15 57,017 58,693 51,504 51,504 46,583 46,583
miniYFJS16 39,097 35,831 36,810 33,285 34,799 30,576
miniYFJS17 53,052 62,576 48,745 57,600 44,916 50,137
miniYFJS18 37,217 39,284 34,053 31,911 31,154 29,764
miniYFJS19 46,640 46,478 41,729 41,451 42,825 37,034
miniYFJS20 42,408 42,465 39,852 39,600 37,509 37,063
miniYFJS21 50,076 44,016 45,541 40,765 40,884 35,905
miniYFJS22 43,722 47,389 40,428 32,485 31,887 30,212
miniYFJS23 53,046 59,584 49,209 52,628 45,823 46,589
miniYFJS24 42,268 45,974 39,883 41,759 37,651 37,998
miniYFJS25 46,936 68,698 40,933 61,260 35,966 54,247
miniYFJS26 55,031 55,022 49,428 49,412 53,604 54,006
miniYFJS27 43,319 41,060 39,256 36,561 35,655 33,799
miniYFJS28 46,385 43,232 42,230 40,325 39,363 37,547
miniYFJS29 48,806 55,473 43,757 41,834 39,279 39,146
miniYFJS30 49,458 52,043 45,051 46,003 41,116 40,752

wins 17 13 12 19 12 19
mean 44,366.87 45,513.93 40,872.83 40,661.40 37,785.17 37,628.37

Table 3: Makespan values for the small-sized set of instance solved by constructive heuristics.
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α = 0.1 α = 0.2 α = 0.3
instance

EST ECT EST ECT EST ECT
DAFJS01 29,769 41,358 28,920 31,657 22,616 28,222
DAFJS02 32,467 33,155 29,089 28,154 26,183 26,949
DAFJS03 53,688 53,834 48,555 51,717 43,964 45,501
DAFJS04 54,082 54,150 48,461 48,503 43,281 44,094
DAFJS05 52,651 45,862 44,790 44,919 38,237 38,457
DAFJS06 51,925 56,012 44,228 46,403 38,007 41,229
DAFJS07 57,193 59,491 51,019 50,802 41,285 44,518
DAFJS08 62,159 67,107 53,998 53,439 46,323 47,173
DAFJS09 48,680 60,565 48,833 42,537 41,418 42,518
DAFJS10 58,695 60,374 46,257 49,140 38,771 41,125
DAFJS11 67,594 92,639 56,847 75,992 47,805 56,547
DAFJS12 70,287 68,322 58,100 55,575 45,735 49,991
DAFJS13 63,386 61,794 51,317 53,486 42,319 44,724
DAFJS14 83,362 76,862 62,724 63,887 49,459 50,737
DAFJS15 78,413 72,288 54,353 69,279 49,206 54,179
DAFJS16 78,289 76,204 65,550 72,885 57,213 56,727
DAFJS17 73,219 84,719 63,177 65,307 54,527 54,887
DAFJS18 82,129 78,862 61,831 67,753 51,823 52,325
DAFJS19 66,412 67,169 58,001 63,933 49,746 46,880
DAFJS20 78,778 80,562 63,588 68,034 51,686 54,531
DAFJS21 78,320 83,933 63,202 66,878 53,010 54,906
DAFJS22 77,853 70,892 56,115 62,199 45,005 49,723
DAFJS23 49,969 53,123 47,616 50,639 39,249 41,475
DAFJS24 57,411 62,038 49,019 50,345 44,851 46,119
DAFJS25 89,248 82,055 66,262 67,533 51,964 60,266
DAFJS26 81,480 83,635 75,230 72,226 57,182 60,803
DAFJS27 81,470 88,629 64,797 71,903 58,138 58,145
DAFJS28 62,568 64,560 52,639 53,110 42,898 46,294
DAFJS29 74,841 72,938 59,792 66,900 51,606 58,809
DAFJS30 61,147 70,062 55,015 67,245 43,859 47,605

wins 20 10 24 6 28 2
mean 65,249.50 67,439.80 54,310.83 57,746.00 45,578.87 48,181.97

α = 0.1 α = 0.2 α = 0.3
instance

EST ECT EST ECT EST ECT
YFJS01 87,203 106,117 84,152 92,107 70,402 80,419
YFJS02 87,462 81,579 73,957 66,853 68,075 61,111
YFJS03 42,457 40,197 35,380 37,159 31,680 33,077
YFJS04 47,467 50,724 43,614 44,467 39,249 38,898
YFJS05 46,138 55,871 40,851 49,893 41,586 45,012
YFJS06 53,210 52,487 48,564 54,660 46,811 47,173
YFJS07 63,320 54,457 56,313 51,261 39,896 44,004
YFJS08 51,818 49,626 47,218 44,074 39,325 39,469
YFJS09 38,836 28,354 36,123 26,072 32,120 24,027
YFJS10 42,583 59,808 40,658 52,811 39,607 48,821
YFJS11 65,011 59,356 58,106 51,469 51,943 45,051
YFJS12 70,830 74,978 59,898 62,299 53,275 52,398
YFJS13 53,601 50,805 48,729 45,084 41,303 40,119
YFJS14 151,365 129,428 116,157 109,469 111,313 92,457
YFJS15 152,375 138,196 120,600 112,424 107,006 96,547
YFJS16 144,976 127,055 131,230 106,855 118,515 92,811
YFJS17 133,982 109,112 110,203 85,736 98,045 73,682
YFJS18 154,214 133,703 121,563 99,429 104,338 87,059
YFJS19 133,142 107,055 110,125 89,561 91,287 74,431
YFJS20 137,326 97,868 104,036 91,958 91,229 72,481

wins 5 15 7 13 7 13
mean 87,865.80 80,338.80 74,373.85 68,682.05 65,850.25 59,452.35

Table 4: Makespan values for the testbed set of instance solved by constructive heuristics.
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instance
IBM ILOG CPLEX IBM ILOG CP Optimizer

makespan
Effort measurement

makespan
Effort measurement

#iterations #B&B Nodes CPU #branches CPU
miniDAFJS01 22,875 278,358 2,630 20.9 22,875 134,773 5.5
miniDAFJS02 22,708 42,653 579 1.7 22,708 22,910 1.1
miniDAFJS03 18,363 10,016 153 0.9 18,363 14,385 0.3
miniDAFJS04 20,498 4,002 133 0.3 20,498 5,579 0.2
miniDAFJS05 20,593 44,305 555 2.7 20,593 66,626 3.0
miniDAFJS06 22,867 180,943 1,070 12.0 22,867 80,813 5.5
miniDAFJS07 25,715 18,460 197 1.1 25,715 29,313 0.5
miniDAFJS08 19,878 2,120 21 0.1 19,878 3,003 0.0
miniDAFJS09 24,267 225,648 1,247 13.6 24,267 362,021 11.1
miniDAFJS10 20,336 15,969 352 1.3 20,336 18,971 0.9
miniDAFJS11 29,968 599,704 2,896 39.0 29,968 151,381 6.8
miniDAFJS12 18,670 18,022 400 2.0 18,670 37,514 1.3
miniDAFJS13 16,313 2,056 83 0.2 16,313 4,632 0.1
miniDAFJS14 23,140 109,787 994 7.6 23,140 28,584 2.2
miniDAFJS15 21,715 15,342 251 0.8 21,715 66,937 2.3
miniDAFJS16 25,426 183,188 2,074 9.3 25,426 35,825 2.3
miniDAFJS17 20,155 1,930 57 0.5 20,155 20,812 0.5
miniDAFJS18 18,135 26,554 493 1.3 18,135 19,711 0.4
miniDAFJS19 20,945 50,938 518 2.5 20,945 25,219 1.0
miniDAFJS20 21,838 96,605 660 4.9 21,838 32,301 2.0
miniDAFJS21 23,344 4,518,198 19,262 903.1 23,344 10,098,509 247.3
miniDAFJS22 25,923 1,997,133 10,147 630.9 25,923 746,476 27.5
miniDAFJS23 [22,852, 24,038] 4.93% 11,686,580 73,981 3600.0 24,038 16,261,135 379.0
miniDAFJS24 24,579 653,031 2,661 137.0 24,579 692,014 25.1
miniDAFJS25 21,143 677,724 5,764 156.6 21,143 63,828 5.4
miniDAFJS26 21,120 689,121 4,229 167.5 21,120 428,531 13.8
miniDAFJS27 22,050 3,185,201 15,802 664.3 22,050 2,589,763 73.0
miniDAFJS28 22,708 559,433 3,820 62.6 22,708 376,604 12.6
miniDAFJS29 20,278 56,304 407 10.3 20,278 45,095 3.0
miniDAFJS30 23,558 2,493,830 11,954 595.6 23,558 15,254,029 393.1

miniYFJS01 35,046 26,991 188 4.1 35,046 14,319 1.2
miniYFJS02 24,359 13,715 130 1.6 24,359 44,947 1.0
miniYFJS03 47,391 18,760 149 2.0 47,391 157,935 11.2
miniYFJS04 25,394 116,336 935 15.3 25,394 19,814 2.1
miniYFJS05 23,985 31,811 260 5.4 23,985 15,639 1.7
miniYFJS06 29,469 84,139 673 10.1 29,469 67,644 4.3
miniYFJS07 45,705 40,428 529 4.9 45,705 62,037 5.2
miniYFJS08 33,829 114,680 1,115 12.5 33,829 51,730 3.7
miniYFJS09 37,049 138,409 873 13.8 37,049 41,927 4.8
miniYFJS10 27,310 55,973 399 14.4 27,310 40,806 4.9
miniYFJS11 41,300 79,689 610 11.4 41,300 53,650 5.9
miniYFJS12 30,145 385,442 1,258 50.1 30,145 337,290 27.9
miniYFJS13 30,962 124,224 1,000 23.5 30,962 547,241 39.0
miniYFJS14 31,398 154,413 1,533 26.0 31,398 246,142 18.5
miniYFJS15 45,442 94,003 579 16.8 45,442 135,017 11.4
miniYFJS16 33,791 348,128 2,685 49.9 33,791 252,980 22.5
miniYFJS17 42,838 419,682 1,831 58.4 42,838 323,005 21.2
miniYFJS18 28,247 89,973 788 12.9 28,247 26,872 2.0
miniYFJS19 33,601 406,894 2,149 56.8 33,601 411,937 25.6
miniYFJS20 30,837 125,514 667 21.0 30,837 169,871 20.7
miniYFJS21 37,096 983,262 5,014 186.9 37,096 1,617,533 52.9
miniYFJS22 34,282 1,387,123 6,197 345.3 34,282 2,042,029 99.3
miniYFJS23 42,079 10,588,545 35,879 1859.2 42,079 17,113,272 448.5
miniYFJS24 30,905 475,817 2,710 122.2 30,905 697,688 58.3
miniYFJS25 36,170 2,998,188 12,325 575.1 36,170 8,015,071 261.3
miniYFJS26 51,466 459,386 2,098 160.8 51,466 3,051,373 154.1
miniYFJS27 36,719 1,953,628 3,841 394.0 36,719 915,979 91.6
miniYFJS28 34,509 662,474 2,390 157.7 34,509 328,493 32.9
miniYFJS29 39,798 1,762,678 7,366 407.1 39,798 4,576,379 239.8
miniYFJS30 33,974 903,909 4,828 221.4 33,974 271,588 44.0

Table 5: Solutions found and computational cost of solving the small-sized instances with learn-
ing rate α = 0.1 using CPLEX and CP Optimizer with no warm start.
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instance
IBM ILOG CPLEX IBM ILOG CP Optimizer

makespan
Effort measurement

makespan
Effort measurement

#iterations #B&B Nodes CPU #branches CPU
miniDAFJS01 21,327 546,297 4,285 31.5 21,327 953,712 51.7
miniDAFJS02 20,635 81,821 640 3.3 20,635 62,089 1.8
miniDAFJS03 17,972 19,340 305 0.9 17,972 22,808 0.5
miniDAFJS04 19,602 7,746 226 0.3 19,602 13,297 0.9
miniDAFJS05 18,803 98,953 1,120 5.1 18,803 151,224 7.9
miniDAFJS06 20,568 450,187 2,639 38.2 20,568 275,011 19.3
miniDAFJS07 24,715 52,190 642 2.0 24,715 24,272 1.5
miniDAFJS08 18,857 3,493 50 0.1 18,857 4,021 0.2
miniDAFJS09 22,660 1,001,850 6,554 70.8 22,660 784,419 40.0
miniDAFJS10 18,823 10,901 169 0.6 18,823 26,604 0.9
miniDAFJS11 27,455 672,082 3,718 48.2 27,455 416,554 27.4
miniDAFJS12 17,874 70,638 1,078 4.0 17,874 90,535 5.0
miniDAFJS13 15,143 6,291 160 0.3 15,143 15,663 0.5
miniDAFJS14 21,817 332,619 2,896 25.1 21,817 81,858 6.5
miniDAFJS15 20,236 69,714 883 5.5 20,236 116,417 6.4
miniDAFJS16 24,114 357,217 3,894 30.4 24,114 124,890 9.9
miniDAFJS17 19,145 19,035 378 0.8 19,145 16,328 0.7
miniDAFJS18 17,270 32,161 673 1.6 17,270 18,067 0.9
miniDAFJS19 19,642 71,718 942 3.6 19,642 54,772 3.0
miniDAFJS20 20,086 190,012 2,064 14.4 20,086 205,967 19.1
miniDAFJS21 21,352 8,846,059 32,459 1695.1 21,352 45,309,269 2118.7
miniDAFJS22 23,852 3,465,482 19,189 692.6 23,852 5,986,205 571.9
miniDAFJS23 [19,423, 23,228] 16.38% 16,816,032 52,962 3600.0 [14,739, 22,390] 34.17% 112,195,507 3600.0
miniDAFJS24 22,521 2,377,420 12,640 424.6 22,521 12,623,368 836.0
miniDAFJS25 19,809 1,886,995 12,894 394.3 19,809 491,120 69.0
miniDAFJS26 19,724 2,518,201 12,034 343.9 19,724 4,903,993 345.1
miniDAFJS27 [18,804, 20,245] 7.12% 18,924,978 90,951 3600.0 20,245 25,178,221 1289.9
miniDAFJS28 20,635 934,303 6,462 106.2 20,635 688,089 75.9
miniDAFJS29 19,201 217,357 1,998 50.7 19,201 231,066 19.8
miniDAFJS30 21,552 15,710,174 43,128 2940.1 [15,207, 21,552] 29.44% 103,436,263 3600.0

miniYFJS01 33,132 48,887 325 7.4 33,132 46,701 5.4
miniYFJS02 23,100 24,831 219 2.6 23,100 29,314 1.8
miniYFJS03 42,896 98,915 1,106 8.9 42,896 543,066 36.7
miniYFJS04 24,485 58,780 370 5.9 24,485 47,787 4.4
miniYFJS05 23,597 104,135 634 14.4 23,597 46,049 4.6
miniYFJS06 28,655 44,226 318 5.3 28,655 166,757 14.7
miniYFJS07 42,239 37,239 321 3.3 42,239 79,123 7.5
miniYFJS08 31,471 60,079 724 6.1 31,471 120,482 11.0
miniYFJS09 35,250 182,095 1,770 22.8 35,250 129,652 12.5
miniYFJS10 26,145 190,450 1,068 28.0 26,145 230,577 26.2
miniYFJS11 38,545 374,613 1,492 47.9 38,545 103,811 12.1
miniYFJS12 27,895 1,092,118 5,688 230.2 27,895 1,112,993 86.2
miniYFJS13 28,120 401,361 1,771 102.8 28,120 878,304 85.1
miniYFJS14 29,682 598,499 4,869 83.6 29,682 652,854 51.0
miniYFJS15 41,619 55,926 407 9.2 41,619 335,750 31.5
miniYFJS16 31,280 541,733 1,770 83.6 31,280 465,765 57.3
miniYFJS17 40,388 323,307 1,758 76.1 40,388 618,155 51.3
miniYFJS18 26,297 388,013 2,147 37.3 26,297 92,394 8.3
miniYFJS19 30,717 1,063,227 3,558 179.5 30,717 536,931 61.1
miniYFJS20 28,832 579,799 3,548 233.2 28,832 302,287 52.9
miniYFJS21 34,811 5,105,642 17,961 902.4 34,811 3,302,342 307.5
miniYFJS22 31,702 2,121,952 10,758 786.7 31,702 33,812,020 1463.8
miniYFJS23 [34,163, 38,639] 11.58% 19,942,344 52,670 3600.0 [23,930, 38,639] 38.07% 117,925,287 3600.0
miniYFJS24 28,884 739,079 2,875 195.4 28,884 2,439,716 193.4
miniYFJS25 [31,325, 34,231] 8.49% 21,007,500 75,116 3600.0 34,231 45,932,610 1559.7
miniYFJS26 47,519 3,021,164 10,804 646.7 47,519 5,662,793 383.2
miniYFJS27 [33,984, 34,042] 0.17% 10,487,220 76,842 3600.0 34,042 1,256,566 232.8
miniYFJS28 32,080 1,009,471 3,669 268.1 32,080 798,521 109.2
miniYFJS29 36,093 5,412,055 20,761 1095.4 36,093 101,550,404 3074.0
miniYFJS30 31,888 2,077,134 5,979 530.3 31,888 8,395,618 641.4

Table 6: Solutions found and computational cost of solving the small-sized instances with learn-
ing rate α = 0.2 using CPLEX and CP Optimizer with no warm start.
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IBM ILOG CPLEX IBM ILOG CP Optimizer

makespan
Effort measurement

makespan
Effort measurement

#iterations #B&B Nodes CPU #branches CPU
miniDAFJS01 19,443 2,072,668 16,713 114.7 19,443 2,800,465 77.8
miniDAFJS02 18,916 53,092 696 2.5 18,916 59,859 2.2
miniDAFJS03 17,419 17,807 254 1.1 17,419 36,788 0.9
miniDAFJS04 18,800 5,444 141 0.4 18,800 19,010 0.7
miniDAFJS05 17,596 149,857 1,357 26.4 17,596 354,775 19.2
miniDAFJS06 18,692 1,036,732 8,974 91.7 18,692 1,030,013 66.3
miniDAFJS07 24,256 223,460 2,563 12.5 24,256 44,462 1.6
miniDAFJS08 17,900 2,439 36 0.2 17,900 7,001 0.1
miniDAFJS09 20,797 1,352,796 6,759 102.3 20,797 5,140,894 148.1
miniDAFJS10 17,395 14,964 318 0.9 17,395 56,602 3.0
miniDAFJS11 25,304 1,300,871 6,954 89.5 25,304 830,064 56.3
miniDAFJS12 17,105 102,571 2,392 6.4 17,105 193,005 9.0
miniDAFJS13 14,077 4,468 83 0.4 14,077 11,633 0.5
miniDAFJS14 20,620 274,434 2,260 33.2 20,620 174,644 11.7
miniDAFJS15 18,625 108,476 1,319 4.5 18,625 231,276 9.8
miniDAFJS16 22,734 688,457 4,387 51.0 22,734 358,341 24.1
miniDAFJS17 18,253 63,437 1,442 2.3 18,253 27,487 1.1
miniDAFJS18 16,495 69,463 1,219 3.1 16,495 24,166 0.8
miniDAFJS19 18,474 50,222 395 2.7 18,474 40,228 2.2
miniDAFJS20 18,521 366,551 3,183 30.0 18,521 448,174 21.7
miniDAFJS21 [16,580, 19,473] 14.86% 23,716,918 114,428 3600.0 [11,665, 19,430] 39.96% 121,044,033 3600.0
miniDAFJS22 22,322 15,610,815 69,887 2530.2 22,322 31,598,705 896.9
miniDAFJS23 [18,647, 20,932] 10.92% 18,939,366 75,870 3600.0 [11,409, 21,031] 45.75% 126,864,753 3600.0
miniDAFJS24 20,389 7,740,688 34,546 997.4 20,389 74,334,372 2170.9
miniDAFJS25 18,400 4,081,716 27,290 695.1 18,400 3,375,974 121.3
miniDAFJS26 18,396 12,778,269 84,472 1781.5 18,396 35,270,716 833.3
miniDAFJS27 18,501 15,343,283 50,257 2684.3 [10,545, 18,501] 43.00% 125,141,223 3600.0
miniDAFJS28 18,762 4,953,263 28,751 430.6 18,762 2,597,465 87.9
miniDAFJS29 18,253 339,168 2,281 53.3 18,253 926,251 58.8
miniDAFJS30 [16,858, 20,137] 16.28% 24,986,837 64,214 3600.0 [11,670, 19,504] 40.17% 119,413,749 3600.0

miniYFJS01 31,008 144,169 1,697 19.6 31,008 58,142 6.7
miniYFJS02 22,010 47,592 623 5.8 22,010 58,225 3.7
miniYFJS03 38,935 48,719 350 6.4 38,935 789,672 57.0
miniYFJS04 23,774 125,088 2,363 25.0 23,774 57,239 7.0
miniYFJS05 22,843 166,373 2,320 21.9 22,843 49,347 6.3
miniYFJS06 27,366 92,146 965 11.1 27,366 222,286 18.5
miniYFJS07 38,932 37,562 391 4.2 38,932 119,422 13.0
miniYFJS08 29,464 189,028 2,554 29.8 29,464 161,280 15.7
miniYFJS09 33,763 478,771 3,515 68.6 33,763 352,444 36.2
miniYFJS10 25,072 544,968 2,549 85.2 25,072 593,197 69.8
miniYFJS11 36,307 318,588 2,654 51.5 36,307 172,185 16.4
miniYFJS12 26,219 887,339 4,393 402.1 26,219 1,005,626 194.1
miniYFJS13 25,619 156,044 1,210 37.1 25,619 5,355,875 539.7
miniYFJS14 27,428 765,456 3,252 112.1 27,428 1,890,640 143.6
miniYFJS15 38,256 92,806 556 12.8 38,256 720,998 79.9
miniYFJS16 29,442 841,644 3,226 235.4 29,442 948,799 183.4
miniYFJS17 37,465 688,837 4,042 179.9 37,465 2,123,022 203.6
miniYFJS18 25,067 472,503 2,385 62.8 25,067 156,755 15.8
miniYFJS19 29,207 1,139,515 3,644 187.3 29,207 1,685,954 190.8
miniYFJS20 27,091 726,398 3,982 288.1 27,091 2,476,745 323.9
miniYFJS21 [31,599, 32,166] 1.76% 20,680,874 61,929 3600.0 32,166 13,121,393 1009.8
miniYFJS22 28,985 7,719,748 18,201 2445.2 [17,383, 28,985] 40.03% 81,047,313 3600.0
miniYFJS23 [28,463, 37,117] 23.32% 17,784,252 31,743 3600.0 [18,601, 35,441] 47.52% 102,566,851 3600.0
miniYFJS24 27,023 1,614,894 6,496 358.3 27,023 1,258,664 175.7
miniYFJS25 32,346 13,267,205 60,508 2580.0 [17,438, 32,346] 46.09% 112,250,946 3600.0
miniYFJS26 43,452 835,404 4,571 299.4 43,452 17,463,308 1453.5
miniYFJS27 31,571 1,946,497 6,451 685.6 31,571 1,567,754 398.8
miniYFJS28 30,428 2,509,256 6,433 490.1 30,428 1,762,797 262.3
miniYFJS29 32,826 9,429,478 47,201 2933.9 [17,217, 32,826] 47.55% 72,931,315 3600.0
miniYFJS30 [27,281, 30,427] 10.34% 14,301,672 40,562 3600.0 29,848 50,040,117 1840.0

Table 7: Solutions found and computational cost of solving the small-sized instances with learn-
ing rate α = 0.3 using CPLEX and CP Optimizer with no warm start.
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IBM ILOG CPLEX IBM ILOG CP Optimizer

makespan
Effort measurement

makespan
Effort measurement

#iterations #B&B Nodes CPU #branches CPU
DAFJS01 [20,320, 28,850] 29.57% 2,781,484 10,131 3,600.0 [18,617, 24,424] 23.78% 8,687,672 3,600.0
DAFJS02 [23,614, 31,946] 26.08% 2,850,568 10,711 3,600.0 [18,533, 26,575] 30.26% 11,632,154 3,600.0
DAFJS03 3,600.0 [41,271, 54,098] 23.71% 801,461 3,600.1
DAFJS04 [45,286, 131,061] 65.45% 215,396 13 3,600.0 [44,062, 53,100] 17.02% 850,903 3,600.2
DAFJS05 [30,405, 140,075] 78.29% 291,690 510 3,600.0 [23,378, 36,347] 35.68% 2,711,057 3,600.1
DAFJS06 [31,881, 147,509] 78.39% 259,758 320 3,600.0 [23,364, 37,043] 36.93% 1,783,500 3,600.1
DAFJS07 3,600.0 [33,601, 53,504] 37.20% 244,414 3,600.1
DAFJS08 3,600.0 [43,331, 56,281] 23.01% 269,955 3,600.7
DAFJS09 [36,374, 192,570] 81.11% 175,545 72 3,600.0 [22,460, 41,791] 46.26% 965,188 3,600.5
DAFJS10 [39,597, 191,176] 79.29% 98,599 10 3,600.0 [23,440, 49,083] 52.24% 840,177 3,600.1
DAFJS11 3,600.0 [44,061, 75,805] 41.88% 105,184 3,600.6
DAFJS12 3,600.0 [35,262, 81,972] 56.98% 95,935 3,601.9
DAFJS13 [50,247, 244,658] 79.46% 61,459 38 3,600.0 [20,981, 59,747] 64.88% 554,985 3,600.8
DAFJS14 [55,319, 249,678] 77.84% 67,950 35 3,600.0 [23,996, 67,444] 64.42% 520,032 3,600.1
DAFJS15 3,600.0 [33,814, 87,500] 61.36% 99,363 3,601.1
DAFJS16 3,600.0 [42,465, 80,415] 47.19% 102,647 3,601.4
DAFJS17 [57,432, 280,020] 79.49% 67,245 0 3,600.0 [20,260, 71,425] 71.63% 365,553 3,600.5
DAFJS18 [58,268, 297,443] 80.41% 48,679 12 3,600.0 [21,838, 76,769] 71.55% 339,613 3,600.3
DAFJS19 [36,126, 303,143] 88.08% 49,902 5 3,600.0 [35,267, 52,861] 33.28% 345,133 3,601.0
DAFJS20 3,600.0 [29,175, 73,693] 60.41% 252,777 3,600.5
DAFJS21 3,600.0 [33,405, 84,030] 60.25% 179,517 3,600.9
DAFJS22 3,600.0 [30,309, 86,845] 65.10% 135,315 3,602.9
DAFJS23 3,600.0 [31,047, 49,850] 37.72% 433,417 3,601.8
DAFJS24 3,600.0 [32,194, 65,845] 51.11% 208,687 3,600.6
DAFJS25 3,600.0 [38,155, 97,200] 60.75% 94,874 3,601.5
DAFJS26 3,600.0 [36,963, 88,141] 58.06% 127,700 3,602.7
DAFJS27 3,600.0 [32,947, 101,100] 67.41% 100,670 3,602.2
DAFJS28 3,600.0 [36,392, 57,672] 36.90% 197,677 3,600.6
DAFJS29 3,600.0 [40,983, 65,385] 37.32% 204,841 3,600.7
DAFJS30 3,600.0 [31,515, 63,194] 50.13% 217,698 3,600.8

YFJS01 [57,696, 231,813] 75.11% 1,238,787 3,343 3,600.0 [53,549, 69,362] 22.80% 7,616,521 3,600.0
YFJS02 [65,884, 254,446] 74.11% 3,832,008 7,555 3,600.0 [61,356, 72,465] 15.33% 17,752,225 3,600.0
YFJS03 32,538 2,006,700 10,709 541.2 32,538 2,940,455 168.8
YFJS04 35,883 5,283,854 24,497 1,843.3 [27,197, 35,883] 24.21% 23,523,339 3,600.0
YFJS05 [37,902, 44,039] 13.94% 5,926,501 22,100 3,600.0 [36,307, 40,186] 9.65% 34,964,540 3,600.0
YFJS06 [35,243, 51,826] 32.00% 2,722,415 10,769 3,600.0 [25,961, 41,178] 36.95% 16,247,718 3,600.0
YFJS07 [36,346, 104,736] 65.30% 2,698,037 5,692 3,600.0 [32,925, 41,534] 20.73% 18,901,026 3,600.0
YFJS08 32,573 3,051,228 7,177 708.6 32,573 1,259,189 216.5
YFJS09 [17,755, 40,126] 55.75% 627,852 1,029 3,600.0 [15,238, 22,745] 33.01% 4,864,764 3,600.0
YFJS10 [31,850, 40,178] 20.73% 8,068,466 27,728 3,600.0 [33,897, 37,372] 9.30% 28,533,789 3,600.0
YFJS11 [42,604, 132,168] 67.77% 848,614 1,063 3,600.0 [39,044, 49,425] 21.00% 10,127,040 3,600.0
YFJS12 [38,233, 100,230] 61.85% 985,456 1,407 3,600.0 [33,937, 47,572] 28.66% 9,207,619 3,600.0
YFJS13 [30,132, 238,928] 87.39% 909,917 1,608 3,600.0 [27,343, 37,361] 26.81% 7,593,992 3,600.0
YFJS14 3,600.0 [94,991, 117,280] 19.00% 1,036,376 3,601.7
YFJS15 3,600.0 [89,818, 112,561] 20.21% 812,403 3,600.8
YFJS16 3,600.0 [86,618, 121,962] 28.98% 919,286 3,601.0
YFJS17 3,600.0 [76,416, 235,919] 67.61% 103,006 3,600.7
YFJS18 3,600.0 [81,982, 242,241] 66.16% 164,161 3,602.0
YFJS19 3,600.0 [62,129, 222,300] 72.05% 182,566 3,601.4
YFJS20 3,600.0 [65,048, 204,465] 68.19% 209,968 3,602.5

Table 8: Solutions found and computational cost of solving the large-sized instances with learning
rate α = 0.1 using CPLEX and CP Optimizer with no warm start.
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#iterations #B&B Nodes CPU #branches CPU
DAFJS01 [17,243, 24,221] 28.81% 4,060,290 15,216 3,600.0 [14,141, 21,955] 35.59% 10,060,921 3,600.1
DAFJS02 [20,460, 29,199] 29.93% 4,007,884 12,017 3,600.0 [13,966, 24,524] 43.05% 9,597,884 3,600.0
DAFJS03 3,600.0 [29,519, 46,041] 35.89% 805,535 3,600.2
DAFJS04 [33,806, 120,313] 71.90% 227,790 80 3,600.0 [32,038, 46,931] 31.73% 941,659 3,600.4
DAFJS05 [25,343, 121,192] 79.09% 492,382 517 3,600.0 [17,025, 32,708] 47.95% 2,914,026 3,600.1
DAFJS06 [25,463, 140,367] 81.86% 167,625 52 3,600.0 [16,745, 32,824] 48.99% 1,301,726 3,600.2
DAFJS07 3,600.0 [23,042, 48,878] 52.86% 225,447 3,600.4
DAFJS08 3,600.0 [29,898, 50,257] 40.51% 313,129 3,600.3
DAFJS09 [28,979, 145,250] 80.05% 228,678 164 3,600.0 [16,016, 37,560] 57.36% 1,098,208 3,600.8
DAFJS10 [30,054, 156,114] 80.75% 119,791 32 3,600.0 [16,354, 38,870] 57.93% 728,566 3,600.1
DAFJS11 3,600.0 [29,499, 81,300] 63.72% 99,427 3,600.7
DAFJS12 3,600.0 [23,461, 72,400] 67.60% 135,347 3,601.1
DAFJS13 [39,222, 196,510] 80.04% 74,615 68 3,600.0 [14,433, 51,221] 71.82% 453,040 3,600.3
DAFJS14 [43,933, 198,907] 77.91% 45,790 23 3,600.0 [16,518, 57,141] 71.09% 524,897 3,600.2
DAFJS15 3,600.0 [22,324, 79,631] 71.97% 130,605 3,601.1
DAFJS16 3,600.0 [28,167, 81,701] 65.52% 108,595 3,601.6
DAFJS17 [42,564, 220,059] 80.66% 33,743 9 3,600.0 [13,683, 82,646] 83.44% 325,206 3,600.3
DAFJS18 [45,690, 235,050] 80.56% 25,576 24 3,600.0 [14,813, 62,738] 76.39% 336,152 3,600.3
DAFJS19 [27,775, 240,355] 88.44% 48,308 28 3,600.0 [24,250, 44,680] 45.73% 327,636 3,601.5
DAFJS20 3,600.0 [19,568, 63,643] 69.25% 210,906 3,600.7
DAFJS21 3,600.0 [22,142, 87,819] 74.79% 179,311 3,600.7
DAFJS22 3,600.0 [19,800, 85,714] 76.90% 126,624 3,601.2
DAFJS23 [23,925, 233,720] 89.76% 41,051 6 3,600.0 [21,422, 43,475] 50.73% 336,352 3,600.4
DAFJS24 3,600.0 [21,763, 48,898] 55.49% 282,253 3,601.7
DAFJS25 3,600.0 [24,843, 88,803] 72.02% 94,333 3,601.6
DAFJS26 3,600.0 [24,182, 92,386] 73.83% 106,909 3,601.8
DAFJS27 3,600.0 [21,584, 104,021] 79.25% 122,926 3,601.1
DAFJS28 3,600.0 [24,712, 51,123] 51.66% 410,247 3,600.5
DAFJS29 3,600.0 [27,497, 63,976] 57.02% 245,480 3,600.8
DAFJS30 3,600.0 [21,222, 52,467] 59.55% 148,359 3,600.9

YFJS01 [48,380, 207,840] 76.72% 1,396,979 3,117 3,600.0 [39,902, 64,326] 37.97% 8,194,144 3,600.0
YFJS02 [56,014, 110,194] 49.17% 4,003,670 12,006 3,600.0 [46,660, 66,853] 30.21% 16,482,400 3,600.0
YFJS03 30,073 1,963,718 8,908 417.1 30,073 1,773,318 72.1
YFJS04 [28,652, 33,302] 13.96% 9,950,004 30,017 3,600.0 [21,857, 32,670] 33.10% 38,796,057 3,600.0
YFJS05 [34,538, 41,872] 17.51% 5,831,217 22,402 3,600.0 [24,921, 38,628] 35.48% 25,567,988 3,600.0
YFJS06 [30,840, 43,441] 29.01% 3,078,999 12,300 3,600.0 [19,541, 37,181] 47.44% 15,078,425 3,600.0
YFJS07 [33,082, 44,007] 24.83% 3,617,331 11,662 3,600.0 [26,063, 37,758] 30.97% 19,115,592 3,600.0
YFJS08 30,184 9,794,233 20,272 2,876.9 30,184 7,683,812 833.2
YFJS09 [15,117, 158,694] 90.47% 617,130 1,487 3,600.0 [11,324, 21,796] 48.05% 3,596,887 3,600.1
YFJS10 [26,194, 34,624] 24.35% 8,728,009 20,709 3,600.0 [22,368, 34,689] 35.52% 29,087,297 3,600.0
YFJS11 [35,267, 253,872] 86.11% 876,414 650 3,600.0 [30,073, 44,294] 32.11% 11,082,859 3,600.0
YFJS12 [31,237, 252,722] 87.64% 931,005 1,435 3,600.0 [26,939, 43,890] 38.62% 5,091,417 3,600.0
YFJS13 [24,896, 134,313] 81.46% 910,968 1,009 3,600.0 [21,361, 34,961] 38.90% 10,804,651 3,600.0
YFJS14 3,600.0 [68,423, 112,188] 39.01% 1,166,881 3,600.3
YFJS15 3,600.0 [64,923, 108,629] 40.23% 1,190,623 3,600.2
YFJS16 3,600.0 [62,865, 100,740] 37.60% 893,979 3,601.3
YFJS17 3,600.0 [51,540, 227,121] 77.31% 194,201 3,604.5
YFJS18 3,600.0 [55,101, 244,159] 77.43% 206,239 3,601.5
YFJS19 3,600.0 [41,690, 220,400] 81.08% 162,093 3,601.2
YFJS20 3,600.0 [43,711, 221,741] 80.29% 164,334 3,602.6

Table 9: Solutions found and computational cost of solving the large-sized instances with learning
rate α = 0.2 using CPLEX and CP Optimizer with no warm start.
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#iterations #B&B Nodes CPU #branches CPU
DAFJS01 [15,541, 24,191] 35.76% 3,223,970 12,860 3,600.0 [10,711, 20,080] 46.66% 7,023,413 3,600.1
DAFJS02 [16,850, 27,398] 38.50% 3,318,330 12,085 3,600.0 [10,500, 22,335] 52.99% 9,620,254 3,600.0
DAFJS03 [22,536, 165,343] 86.37% 125,755 7 3,600.0 [21,152, 41,224] 48.69% 920,372 3,600.2
DAFJS04 [24,891, 120,636] 79.37% 197,181 48 3,600.0 [23,278, 41,388] 43.76% 785,196 3,600.4
DAFJS05 [20,613, 101,212] 79.63% 482,040 586 3,600.0 [12,401, 28,360] 56.27% 2,582,449 3,600.1
DAFJS06 [20,173, 101,490] 80.12% 155,197 120 3,600.0 [12,004, 29,142] 58.81% 1,249,407 3,600.4
DAFJS07 3,600.0 [15,801, 43,615] 63.77% 268,582 3,601.0
DAFJS08 3,600.0 [20,629, 46,117] 55.27% 344,899 3,600.6
DAFJS09 [22,200, 128,596] 82.74% 273,485 52 3,600.0 [11,423, 32,928] 65.31% 1,100,742 3,600.7
DAFJS10 [22,505, 125,666] 82.09% 91,470 51 3,600.0 [11,408, 34,844] 67.26% 638,065 3,600.1
DAFJS11 3,600.0 [19,709, 68,718] 71.32% 175,014 3,600.8
DAFJS12 3,600.0 [15,608, 74,389] 79.02% 165,507 3,601.0
DAFJS13 [29,196, 162,727] 82.06% 57,780 12 3,600.0 [9,929, 42,863] 76.84% 529,927 3,600.1
DAFJS14 [32,943, 160,464] 79.47% 58,666 28 3,600.0 [11,318, 49,446] 77.11% 446,682 3,600.2
DAFJS15 3,600.0 [14,671, 81,186] 81.93% 243,450 3,601.4
DAFJS16 3,600.0 [18,661, 83,128] 77.55% 92,594 3,601.7
DAFJS17 [29,948, 174,560] 82.84% 28,368 0 3,600.0 [9,240, 53,632] 82.77% 325,179 3,600.5
DAFJS18 [32,363, 188,164] 82.80% 24,901 20 3,600.0 [10,047, 57,057] 82.39% 375,922 3,600.3
DAFJS19 [21,110, 174,022] 87.87% 47,203 24 3,600.0 [16,675, 44,216] 62.29% 344,220 3,600.8
DAFJS20 3,600.0 [13,124, 70,212] 81.31% 214,594 3,601.3
DAFJS21 3,600.0 [14,664, 82,400] 82.20% 153,028 3,601.1
DAFJS22 3,600.0 [12,934, 83,000] 84.42% 206,899 3,601.5
DAFJS23 3,600.0 [14,782, 39,390] 62.47% 321,790 3,600.2
DAFJS24 3,600.0 [14,688, 59,521] 75.32% 199,251 3,600.7
DAFJS25 3,600.0 [16,174, 91,876] 82.40% 104,229 3,601.4
DAFJS26 3,600.0 [15,820, 92,135] 82.83% 161,119 3,601.4
DAFJS27 3,600.0 [14,138, 101,680] 86.10% 99,450 3,601.5
DAFJS28 3,600.0 [16,781, 53,598] 68.69% 296,149 3,600.8
DAFJS29 3,600.0 [18,452, 51,935] 64.47% 189,417 3,600.6
DAFJS30 3,600.0 [14,275, 45,882] 68.89% 376,298 3,600.1

YFJS01 [38,603, 206,193] 81.28% 1,572,862 2,749 3,600.0 [29,808, 57,430] 48.10% 6,949,608 3,600.0
YFJS02 [47,466, 135,328] 64.93% 2,828,906 7,612 3,600.0 [35,526, 59,001] 39.79% 12,658,211 3,600.0
YFJS03 27,686 1,251,537 4,381 296.2 27,686 1,594,601 122.2
YFJS04 [26,169, 32,060] 18.37% 10,641,643 39,250 3,600.0 [18,161, 29,692] 38.84% 27,504,395 3,600.0
YFJS05 [30,039, 36,387] 17.45% 8,525,830 25,348 3,600.0 [19,314, 34,779] 44.47% 22,727,062 3,600.0
YFJS06 [26,525, 48,115] 44.87% 3,358,590 10,847 3,600.0 [14,714, 35,191] 58.19% 14,821,556 3,600.0
YFJS07 [25,837, 38,561] 33.00% 6,699,356 10,466 3,600.0 [20,397, 34,719] 41.25% 19,712,483 3,600.0
YFJS08 28,192 13,666,904 32,817 2,983.1 [17,787, 28,192] 36.91% 28,825,696 3,600.0
YFJS09 [12,140, 58,851] 79.37% 612,060 505 3,600.0 [9,525, 20,298] 53.07% 3,309,202 3,600.0
YFJS10 [26,137, 33,956] 23.03% 8,801,436 30,736 3,600.0 [17,808, 32,159] 44.63% 14,620,248 3,600.0
YFJS11 [29,484, 105,275] 71.99% 1,018,382 2,382 3,600.0 [23,170, 40,504] 42.80% 7,022,214 3,600.0
YFJS12 [25,803, 219,386] 88.24% 800,690 1,458 3,600.0 [21,335, 40,292] 47.05% 8,198,562 3,600.0
YFJS13 [20,982, 157,470] 86.68% 810,584 1,229 3,600.0 [16,668, 31,626] 47.30% 8,516,433 3,600.0
YFJS14 3,600.0 [49,252, 94,421] 47.84% 969,495 3,600.2
YFJS15 3,600.0 [46,947, 94,408] 50.27% 973,106 3,600.2
YFJS16 3,600.0 [45,648, 94,031] 51.45% 944,283 3,600.2
YFJS17 3,600.0 [34,763, 216,587] 83.95% 202,741 3,602.6
YFJS18 3,600.0 [37,042, 246,800] 84.99% 138,109 3,601.5
YFJS19 3,600.0 [27,976, 199,757] 85.99% 169,481 3,601.1
YFJS20 3,600.0 [29,376, 108,103] 72.83% 1,201,418 3,600.8

Table 10: Solutions found and computational cost of solving the large-sized instances with
learning rate α = 0.3 using CPLEX and CP Optimizer with no warm start.
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instance
IBM ILOG CPLEX IBM ILOG CP Optimizer

makespan
Effort measurement

makespan
Effort measurement

#iterations #B&B Nodes CPU #branches CPU
miniDAFJS01 22,875 27,130 272 2.2 22,875 143,152 3.2
miniDAFJS02 22,708 9,960 85 1.1 22,708 15,317 0.3
miniDAFJS03 18,363 0 0 0.0 18,363 5,403 0.1
miniDAFJS04 20,498 155 0 0.0 20,498 27,577 0.2
miniDAFJS05 20,593 27,452 195 1.7 20,593 66,727 1.1
miniDAFJS06 22,867 4,996 28 1.1 22,867 67,777 1.6
miniDAFJS07 25,715 368 3 0.1 25,715 21,890 0.3
miniDAFJS08 19,878 0 0 - 19,878 2,920 0.0
miniDAFJS09 24,267 81,679 379 5.4 24,267 216,182 4.9
miniDAFJS10 20,336 725 0 0.1 20,336 22,466 0.2
miniDAFJS11 29,968 199,078 963 9.8 29,968 175,679 3.2
miniDAFJS12 18,670 2,687 48 0.4 18,670 30,780 1.0
miniDAFJS13 16,313 225 0 0.0 16,313 3,313 0.1
miniDAFJS14 23,140 8,076 76 0.7 23,140 22,300 0.5
miniDAFJS15 21,715 5,253 86 0.4 21,715 41,419 0.6
miniDAFJS16 25,426 4,790 40 1.4 25,426 19,747 1.3
miniDAFJS17 20,155 126 0 0.0 20,155 13,033 0.2
miniDAFJS18 18,135 525 0 0.1 18,135 36,894 0.3
miniDAFJS19 20,945 54 0 0.1 20,945 13,158 0.5
miniDAFJS20 21,838 9,612 81 0.7 21,838 102,174 1.5
miniDAFJS21 23,344 2,836,539 11,309 506.7 23,344 14,223,831 668.3
miniDAFJS22 25,923 1,458,988 5,824 400.1 25,923 1,677,181 145.2
miniDAFJS23 24,038 11,310,339 53,964 2,311.6 24,038 21,223,801 1,037.8
miniDAFJS24 24,579 466,199 2,231 84.8 24,579 1,360,319 54.6
miniDAFJS25 21,143 205,001 1,097 32.3 21,143 122,087 9.4
miniDAFJS26 21,120 678,221 3,053 160.1 21,120 384,449 30.3
miniDAFJS27 22,050 4,215,023 21,045 660.6 22,050 1,437,370 107.7
miniDAFJS28 22,708 1,861,961 13,443 186.5 22,708 275,433 12.9
miniDAFJS29 20,278 7,016 36 1.3 20,278 34,767 2.5
miniDAFJS30 23,558 8,456,954 23,560 1,500.5 23,558 15,938,770 541.0

miniYFJS01 35,046 103 0 0.1 35,046 10,467 0.8
miniYFJS02 24,359 3,241 50 0.4 24,359 21,396 0.7
miniYFJS03 47,391 18,165 76 2.6 47,391 127,728 7.5
miniYFJS04 25,394 0 0 0.1 25,394 11,912 0.7
miniYFJS05 23,985 6,849 149 1.0 23,985 29,709 2.5
miniYFJS06 29,469 6,924 85 1.0 29,469 53,903 4.0
miniYFJS07 45,705 9,538 46 1.6 45,705 76,457 4.3
miniYFJS08 33,829 25,821 97 3.2 33,829 51,912 3.9
miniYFJS09 37,049 18,799 72 2.2 37,049 38,103 2.9
miniYFJS10 27,310 57,031 322 7.8 27,310 82,248 6.9
miniYFJS11 41,300 12,019 39 2.3 41,300 41,763 2.9
miniYFJS12 30,145 294,626 2,569 77.5 30,145 331,536 28.0
miniYFJS13 30,962 102,796 961 19.0 30,962 901,505 38.0
miniYFJS14 31,398 183,367 1,750 16.5 31,398 236,377 13.0
miniYFJS15 45,442 82,620 330 8.2 45,442 105,976 7.0
miniYFJS16 33,791 54,694 430 15.4 33,791 174,917 14.3
miniYFJS17 42,838 179,623 955 25.0 42,838 282,364 20.0
miniYFJS18 28,247 42,054 291 7.2 28,247 56,100 3.3
miniYFJS19 33,601 290,798 2,054 26.7 33,601 346,272 23.0
miniYFJS20 30,837 130,053 955 21.0 30,837 107,625 12.6
miniYFJS21 37,096 739,545 2,458 116.2 37,096 1,094,577 37.3
miniYFJS22 34,282 383,245 2,448 88.7 34,282 1,202,777 56.8
miniYFJS23 42,079 1,273,019 3,794 211.1 42,079 11,638,509 300.8
miniYFJS24 30,905 508,302 2,030 80.6 30,905 502,409 42.8
miniYFJS25 36,170 1,461,404 6,280 274.0 36,170 9,574,183 267.5
miniYFJS26 51,466 180,881 1,916 38.9 51,466 2,962,339 111.9
miniYFJS27 36,719 1,046,266 4,945 269.3 36,719 370,959 53.3
miniYFJS28 34,509 355,782 2,272 75.0 34,509 309,959 29.5
miniYFJS29 39,798 924,452 3,149 201.2 39,798 5,971,499 217.6
miniYFJS30 33,974 984,016 4,217 229.0 33,974 398,470 52.5

Table 11: Solutions found and computational cost of solving the small-sized instances with
learning rate α = 0.1 using CPLEX and CP Optimizer with warm start.
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instance
IBM ILOG CPLEX IBM ILOG CP Optimizer

makespan
Effort measurement

makespan
Effort measurement

#iterations #B&B Nodes CPU #branches CPU
miniDAFJS01 21,327 539,475 4,331 31.9 21,327 759,456 13.6
miniDAFJS02 20,635 30,346 207 2.0 20,635 30,019 0.5
miniDAFJS03 17,972 561 0 0.1 17,972 10,221 0.3
miniDAFJS04 19,602 655 0 0.1 19,602 14,122 0.2
miniDAFJS05 18,803 58,235 514 3.5 18,803 206,620 4.5
miniDAFJS06 20,568 100,122 455 7.1 20,568 546,000 9.3
miniDAFJS07 24,715 949 0 0.1 24,715 18,941 0.3
miniDAFJS08 18,857 0 0 - 18,857 1,649 0.0
miniDAFJS09 22,660 186,037 926 11.0 22,660 883,945 18.5
miniDAFJS10 18,823 5,108 109 0.4 18,823 26,280 0.3
miniDAFJS11 27,455 300,137 1,078 16.7 27,455 374,425 7.7
miniDAFJS12 17,874 12,831 131 1.2 17,874 59,342 1.3
miniDAFJS13 15,143 2,141 55 0.2 15,143 19,480 0.2
miniDAFJS14 21,817 70,714 493 4.4 21,817 74,338 1.5
miniDAFJS15 20,236 37,460 459 2.0 20,236 87,133 1.7
miniDAFJS16 24,114 64,350 482 3.6 24,114 307,748 6.8
miniDAFJS17 19,145 829 0 0.2 19,145 15,518 0.3
miniDAFJS18 17,270 1,065 0 0.2 17,270 17,709 0.5
miniDAFJS19 19,642 1,547 0 0.4 19,642 21,831 0.6
miniDAFJS20 20,086 29,709 216 1.9 20,086 153,453 2.4
miniDAFJS21 21,352 18,397,933 64,892 3,232.2 21,352 48,115,711 1,848.5
miniDAFJS22 23,852 2,278,871 8,970 750.5 23,852 5,245,403 434.6
miniDAFJS23 [21,765, 22,491] 3.23% 18,863,739 62,979 3,600.0 [14,739, 22,390] 34.17% 111,132,643 3,600.0
miniDAFJS24 22,521 867,832 3,978 139.4 22,521 8,980,581 264.8
miniDAFJS25 19,809 1,379,354 6,519 212.9 19,809 562,324 37.1
miniDAFJS26 19,724 2,047,373 8,877 233.3 19,724 2,193,339 95.1
miniDAFJS27 20,245 20,712,585 48,282 2,813.0 20,245 50,918,190 1,460.9
miniDAFJS28 20,635 1,901,205 7,073 282.7 20,635 469,515 14.7
miniDAFJS29 19,201 31,346 132 7.3 19,201 324,996 8.7
miniDAFJS30 21,552 7,330,089 24,386 1,396.9 21,552 121,294,838 3,525.5

miniYFJS01 33,132 3,140 10 0.7 33,132 36,116 3.5
miniYFJS02 23,100 7,994 68 1.1 23,100 29,477 1.7
miniYFJS03 42,896 30,087 187 3.4 42,896 778,560 42.4
miniYFJS04 24,485 1,988 0 0.4 24,485 34,244 3.7
miniYFJS05 23,597 6,272 130 0.8 23,597 28,855 3.1
miniYFJS06 28,655 14,327 71 1.8 28,655 96,238 7.6
miniYFJS07 42,239 13,236 256 2.0 42,239 67,142 6.4
miniYFJS08 31,471 105,081 743 17.0 31,471 104,921 6.3
miniYFJS09 35,250 57,100 909 8.8 35,250 127,601 8.7
miniYFJS10 26,145 77,158 308 11.6 26,145 327,857 29.9
miniYFJS11 38,545 24,787 119 4.2 38,545 82,328 8.6
miniYFJS12 27,895 553,149 2,713 122.3 27,895 558,847 50.6
miniYFJS13 28,120 66,786 456 17.8 28,120 764,195 60.8
miniYFJS14 29,682 430,434 3,103 44.7 29,682 627,089 43.5
miniYFJS15 41,619 59,634 221 8.6 41,619 396,413 28.1
miniYFJS16 31,280 93,638 810 20.9 31,280 444,883 44.2
miniYFJS17 40,388 327,916 2,106 48.6 40,388 770,351 43.9
miniYFJS18 26,297 88,571 326 9.0 26,297 105,187 9.5
miniYFJS19 30,717 835,718 3,653 243.0 30,717 471,674 53.1
miniYFJS20 28,832 370,354 2,191 120.3 28,832 703,276 88.2
miniYFJS21 34,811 6,145,627 21,227 977.9 34,811 5,002,760 274.9
miniYFJS22 31,702 1,643,715 5,521 642.9 31,702 23,565,438 1,002.5
miniYFJS23 38,639 17,107,906 40,129 2,673.9 [23,930, 38,639] 38.07% 134,588,957 3,600.0
miniYFJS24 28,884 739,701 2,619 162.6 28,884 1,758,952 124.2
miniYFJS25 [31,852, 34,231] 6.95% 24,701,462 59,283 3,600.0 34,231 43,322,143 1,291.2
miniYFJS26 47,519 465,569 3,359 180.3 47,519 6,832,013 361.0
miniYFJS27 34,042 519,541 1,954 209.2 34,042 1,960,966 199.3
miniYFJS28 32,080 413,378 1,225 73.8 32,080 710,691 71.6
miniYFJS29 36,093 1,214,346 3,669 333.5 36,093 70,667,722 2,208.3
miniYFJS30 31,888 3,633,325 10,645 763.9 31,888 10,290,751 500.6

Table 12: Solutions found and computational cost of solving the small-sized instances with
learning rate α = 0.2 using CPLEX and CP Optimizer with warm start.
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instance
IBM ILOG CPLEX IBM ILOG CP Optimizer

makespan
Effort measurement

makespan
Effort measurement

#iterations #B&B Nodes CPU #branches CPU
miniDAFJS01 19,443 698,096 4,945 38.9 19,443 1,528,271 32.0
miniDAFJS02 18,916 43,060 324 2.0 18,916 81,435 1.5
miniDAFJS03 17,419 6,368 91 0.6 17,419 27,973 0.4
miniDAFJS04 18,800 4,986 135 0.3 18,800 23,757 0.3
miniDAFJS05 17,596 174,306 2,110 7.9 17,596 505,368 9.0
miniDAFJS06 18,692 443,238 2,499 22.7 18,692 1,037,811 22.1
miniDAFJS07 24,256 13,304 243 0.8 24,256 53,533 0.9
miniDAFJS08 17,900 111 0 0.0 17,900 4,197 0.1
miniDAFJS09 20,797 414,070 1,767 22.8 20,797 3,702,199 71.1
miniDAFJS10 17,395 4,313 63 0.5 17,395 39,582 0.6
miniDAFJS11 25,304 879,945 4,672 52.5 25,304 652,569 13.6
miniDAFJS12 17,105 44,853 368 2.5 17,105 146,544 2.9
miniDAFJS13 14,077 1,996 31 0.2 14,077 18,277 0.3
miniDAFJS14 20,620 228,333 1,904 18.2 20,620 290,223 5.1
miniDAFJS15 18,625 43,116 709 3.2 18,625 254,148 4.0
miniDAFJS16 22,734 192,603 1,353 8.9 22,734 397,403 8.5
miniDAFJS17 18,253 4,414 116 0.3 18,253 44,549 0.6
miniDAFJS18 16,495 18,129 299 1.1 16,495 31,340 0.7
miniDAFJS19 18,474 8,267 49 0.9 18,474 62,253 1.2
miniDAFJS20 18,521 76,034 409 5.9 18,521 570,319 27.0
miniDAFJS21 19,430 12,431,780 94,510 2,459.4 [11,665, 19,430] 39.96% 105,058,989 3,600.0
miniDAFJS22 22,322 3,599,003 16,569 682.7 22,322 25,436,965 1,435.7
miniDAFJS23 [18,434, 20,932] 11.94% 18,976,637 71,111 3,600.0 [11,409, 20,932] 45.49% 95,215,268 3,600.0
miniDAFJS24 20,389 5,941,541 24,041 704.4 20,389 83,999,123 2,067.1
miniDAFJS25 18,400 1,455,883 5,536 238.6 18,400 2,232,839 148.1
miniDAFJS26 18,396 3,666,483 30,795 533.9 18,396 31,939,819 783.1
miniDAFJS27 18,501 24,132,489 84,513 3,505.6 [10,545, 18,501] 43.00% 122,850,832 3,600.0
miniDAFJS28 18,762 4,874,294 33,717 418.7 18,762 2,637,043 142.9
miniDAFJS29 18,253 32,091 183 5.0 18,253 629,042 23.9
miniDAFJS30 [17,441, 19,618] 11.10% 27,578,433 109,651 3,600.0 [11,670, 19,504] 40.17% 129,675,062 3,600.0

miniYFJS01 31,008 10,554 42 2.3 31,008 58,728 7.3
miniYFJS02 22,010 12,966 86 1.7 22,010 40,643 2.8
miniYFJS03 38,935 36,885 205 4.4 38,935 973,233 54.5
miniYFJS04 23,774 3,571 20 0.6 23,774 62,640 7.0
miniYFJS05 22,843 19,695 119 3.1 22,843 74,641 8.0
miniYFJS06 27,366 20,266 49 2.6 27,366 141,515 13.2
miniYFJS07 38,932 8,969 120 2.0 38,932 152,186 12.2
miniYFJS08 29,464 105,069 606 8.6 29,464 164,477 13.5
miniYFJS09 33,763 228,616 1,229 17.7 33,763 436,472 32.1
miniYFJS10 25,072 330,870 2,304 53.3 25,072 722,733 56.6
miniYFJS11 36,307 47,377 224 9.7 36,307 132,322 15.1
miniYFJS12 26,219 1,091,871 4,786 342.8 26,219 1,172,626 196.8
miniYFJS13 25,619 64,547 257 15.2 25,619 4,736,621 403.7
miniYFJS14 27,428 1,341,266 10,416 199.0 27,428 1,441,449 147.9
miniYFJS15 38,256 113,347 531 12.9 38,256 764,677 59.9
miniYFJS16 29,442 129,890 593 31.3 29,442 1,172,679 138.6
miniYFJS17 37,465 831,549 2,535 96.6 37,465 867,735 106.3
miniYFJS18 25,067 109,409 268 11.2 25,067 230,384 19.2
miniYFJS19 29,207 692,645 2,990 127.8 29,207 2,273,168 217.8
miniYFJS20 27,091 273,694 2,124 83.5 27,091 1,673,408 188.3
miniYFJS21 32,166 10,577,650 45,662 2,754.5 32,166 21,292,838 1,363.1
miniYFJS22 28,985 5,415,929 14,497 1,324.2 [17,383, 28,985] 40.03% 109,784,943 3,600.0
miniYFJS23 [29,176, 36,873] 20.88% 20,854,030 82,637 3,600.0 [18,601, 35,441] 47.52% 113,483,666 3,600.0
miniYFJS24 27,023 1,487,508 5,429 343.6 27,023 1,057,202 114.5
miniYFJS25 [31,821, 32,346] 1.62% 22,189,124 79,357 3,600.0 [17,438, 32,465] 46.29% 134,302,757 3,600.0
miniYFJS26 43,452 896,287 3,959 291.0 43,452 14,604,568 663.7
miniYFJS27 31,571 546,712 2,309 367.4 31,571 3,042,229 443.4
miniYFJS28 30,428 919,151 2,475 223.8 30,428 1,426,748 168.6
miniYFJS29 32,826 4,884,746 8,355 1,341.8 [17,217, 32,826] 47.55% 108,180,711 3,600.0
miniYFJS30 29,848 2,521,758 9,078 825.1 29,848 28,247,627 1,499.0

Table 13: Solutions found and computational cost of solving the small-sized instances with
learning rate α = 0.3 using CPLEX and CP Optimizer with warm start.
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IBM ILOG CPLEX IBM ILOG CP Optimizer

makespan
Effort measurement

makespan
Effort measurement

#iterations #B&B Nodes CPU #branches CPU
DAFJS01 [21,618, 28,107] 23.09% 2,625,310 8,412 3,600.0 [18,588, 23,460] 20.77% 11,970,328 3,600.0
DAFJS02 [23,418, 29,389] 20.32% 3,476,653 10,932 3,600.0 [18,533, 26,535] 30.16% 9,040,577 3,600.0
DAFJS03 [42,594, 53,688†] 20.66% 116,124 0 3,600.0 [41,271, 53,610] 23.02% 896,736 3,600.0
DAFJS04 [45,501, 54,082†] 15.87% 204,366 82 3,600.0 [44,062, 53,010] 16.88% 1,705,142 3,600.0
DAFJS05 [30,528, 45,862†] 33.44% 354,131 576 3,600.0 [23,378, 37,770] 38.1% 5,032,131 3,600.0
DAFJS06 [31,799, 51,925†] 38.76% 226,576 80 3,600.0 [23,364, 36,872] 36.63% 1,822,585 3,600.0
DAFJS07 [34,214, 57,193†] 40.18% 58,523 0 3,600.0 [33,601, 51,411] 34.64% 321,191 3,600.0
DAFJS08 [43,521, 62,159†] 29.98% 70,699 0 3,600.0 [43,331, 61,362] 29.38% 334,236 3,600.0
DAFJS09 [36,343, 48,680†] 25.34% 205,835 100 3,600.0 [22,460, 42,199] 46.78% 2,205,797 3,600.0
DAFJS10 [39,542, 58,695†] 32.63% 122,016 90 3,600.0 [23,440, 48,563] 51.73% 851,860 3,600.0
DAFJS11 [44,224, 67,594†] 34.57% 65,692 0 3,600.0 [44,061, 63,573] 30.69% 271,903 3,600.0
DAFJS12 [38,375, 68,322†] 43.83% 72,522 0 3,600.0 [35,262, 68,084] 48.21% 189,478 3,600.0
DAFJS13 [50,239, 61,794†] 18.7% 55,740 68 3,600.0 [20,981, 55,636] 62.29% 1,545,915 3,600.0
DAFJS14 [55,259, 76,862†] 28.11% 54,196 19 3,600.0 [23,996, 65,747] 63.5% 1,009,208 3,600.0
DAFJS15 [0, 72,288†] 100% 81,108 0 3,600.0 [33,814, 69,826] 51.57% 122,557 3,600.0
DAFJS16 [42,615, 76,204†] 44.08% 91,239 0 3,600.0 [42,465, 69,138] 38.58% 195,672 3,600.0
DAFJS17 [57,425, 73,219†] 21.57% 69,268 0 3,600.0 [20,260, 71,060] 71.49% 409,608 3,600.0
DAFJS18 [58,244, 78,862†] 26.14% 40,568 0 3,600.0 [21,838, 72,542] 69.9% 572,642 3,600.0
DAFJS19 [36,123, 66,412†] 45.61% 51,797 11 3,600.0 [35,267, 52,507] 32.83% 665,468 3,600.0
DAFJS20 [49,353, 78,778†] 37.35% 43,063 0 3,600.0 [29,175, 78,778†] 62.97% 198,407 3,600.0
DAFJS21 [52,221, 78,320†] 33.32% 62,815 0 3,600.0 [33,405, 75,364] 55.68% 231,834 3,600.0
DAFJS22 [44,636, 70,892†] 37.04% 65,715 0 3,600.0 [30,309, 66,797] 54.63% 192,435 3,600.0
DAFJS23 [31,584, 49,110] 35.69% 52,522 0 3,600.0 [31,047, 49,061] 36.72% 748,142 3,600.0
DAFJS24 [36,461, 57,411†] 36.49% 61,989 0 3,600.0 [32,194, 54,926] 41.39% 529,912 3,600.0
DAFJS25 [0, 82,055†] 100% 88,785 0 3,600.0 [38,155, 82,015] 53.48% 127,645 3,600.0
DAFJS26 [0, 81,480†] 100% 74,398 0 3,600.0 [36,963, 81,480†] 54.64% 107,805 3,600.0
DAFJS27 [0, 81,470†] 100% 80,755 0 3,600.0 [32,947, 81,470†] 59.56% 115,600 3,600.0
DAFJS28 [0, 62,568†] 100% 108,749 0 3,600.0 [36,392, 57,459] 36.66% 301,750 3,600.0
DAFJS29 [41,245, 72,938†] 43.45% 60,978 0 3,600.0 [40,983, 70,410] 41.79% 278,261 3,600.0
DAFJS30 [34,731, 61,147†] 43.2% 111,886 0 3,600.0 [31,515, 60,403] 47.83% 422,912 3,600.0

YFJS01 [57,818, 80,523] 28.2% 631,409 1,146 3,600.0 [53,549, 69,462] 22.91% 8,688,261 3,600.0
YFJS02 [67,561, 81,579†] 17.18% 1,651,737 2,124 3,600.0 [61,286, 72,465] 15.43% 20,961,495 3,600.0
YFJS03 32,538 705,691 4,291 163.1 32,538 5,882,775 240.8
YFJS04 35,883 5,680,590 20,543 2,326.3 35,883 35,490,989 2,482.2
YFJS05 [37,761, 44,693] 15.51% 5,265,253 14,605 3,600.0 [32,158, 41,034] 21.63% 37,821,835 3,600.0
YFJS06 [35,026, 49,730] 29.57% 1,268,993 3,064 3,600.0 [25,961, 42,164] 38.43% 21,994,678 3,600.0
YFJS07 [36,364, 50,566] 28.09% 3,446,288 9,359 3,600.0 [32,925, 41,394] 20.46% 28,140,293 3,600.0
YFJS08 32,573 5,126,300 8,163 1,451.9 32,573 921,923 139.7
YFJS09 [18,421, 28,354†] 35.03% 448,453 415 3,600.0 [15,000, 22,681] 33.87% 5,587,852 3,600.0
YFJS10 [32,897, 41,403] 20.54% 5,261,520 8,363 3,600.0 [28,226, 37,372] 24.47% 40,955,286 3,600.0
YFJS11 [44,029, 59,356†] 25.82% 753,893 930 3,600.0 [39,044, 47,813] 18.34% 10,343,776 3,600.0
YFJS12 [38,581, 69,052] 44.13% 707,117 1,038 3,600.0 [33,937, 49,132] 30.93% 9,351,799 3,600.0
YFJS13 [32,018, 48,686] 34.24% 910,842 1,168 3,600.0 [27,343, 38,681] 29.31% 12,959,067 3,600.0
YFJS14 [95,365, 129,428†] 26.32% 76,343 0 3,600.0 [94,991, 119,807] 20.71% 1,139,268 3,600.0
YFJS15 [90,045, 138,196†] 34.84% 84,512 0 3,600.0 [89,818, 123,190] 27.09% 1,334,191 3,600.0
YFJS16 [0, 127,055†] 100% 89,770 0 3,600.0 [86,618, 123,582] 29.91% 1,122,570 3,600.0
YFJS17 [0, 109,112†] 100% 76,340 0 3,600.0 [76,416, 109,112†] 29.97% 208,535 3,600.0
YFJS18 [0, 133,703†] 100% 90,335 0 3,600.0 [81,982, 133,611] 38.64% 197,872 3,600.0
YFJS19 [0, 107,055†] 100% 76,027 0 3,600.0 [62,129, 107,014] 41.94% 179,087 3,600.0
YFJS20 [0, 97,868†] 100% 60,504 0 3,600.0 [65,048, 96,534] 32.62% 198,912 3,600.0

Mean [34173.86, 68097.18] 49.82% 825,318.70 1,911.58 3,462.83 [39009.64, 63142.2] 38.22% 5,717,964.02 3,441.25

Table 14: Solutions found and computational cost of solving the large-sized instances with
learning rate α = 0.1 using CPLEX and CP Optimizer with warm start.
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instance
IBM ILOG CPLEX IBM ILOG CP Optimizer

makespan
Effort measurement

makespan
Effort measurement

#iterations #B&B Nodes CPU #branches CPU
DAFJS01 [16,695, 26,067] 35.95% 1,867,058 5,324 3,600.0 [14,141, 21,861] 35.31% 12,852,459 3,600.0
DAFJS02 [20,341, 28,154†] 27.75% 577,583 1,370 3,600.0 [13,966, 24,746] 43.56% 18,869,445 3,600.0
DAFJS03 [31,052, 48,555†] 36.05% 84,156 0 3,600.0 [29,519, 46,422] 36.41% 1,344,012 3,600.0
DAFJS04 [33,568, 48,461†] 30.73% 183,960 44 3,600.0 [32,038, 45,677] 29.86% 1,406,727 3,600.0
DAFJS05 [25,167, 44,790†] 43.81% 324,450 373 3,600.0 [17,025, 33,314] 48.9% 3,620,699 3,600.0
DAFJS06 [25,478, 44,228†] 42.39% 162,369 137 3,600.0 [16,745, 33,357] 49.8% 2,409,876 3,600.0
DAFJS07 [23,877, 50,802†] 53% 61,634 0 3,600.0 [23,042, 45,742] 49.63% 398,145 3,600.0
DAFJS08 [30,551, 53,439†] 42.83% 47,840 0 3,600.0 [29,898, 51,973] 42.47% 625,148 3,600.0
DAFJS09 [28,845, 42,537†] 32.19% 130,367 100 3,600.0 [16,016, 36,539] 56.17% 1,722,093 3,600.0
DAFJS10 [30,021, 46,257†] 35.1% 63,949 10 3,600.0 [16,354, 40,354] 59.47% 1,779,988 3,600.0
DAFJS11 [29,853, 56,847†] 47.49% 55,377 0 3,600.0 [29,499, 55,646] 46.99% 205,807 3,600.0
DAFJS12 [26,886, 55,575†] 51.62% 99,798 0 3,600.0 [23,461, 55,575†] 57.78% 104,236 3,600.0
DAFJS13 [39,200, 51,317†] 23.61% 50,909 66 3,600.0 [14,433, 48,176] 70.04% 880,264 3,600.0
DAFJS14 [43,922, 62,724†] 29.98% 36,836 13 3,600.0 [16,518, 54,861] 69.89% 769,749 3,600.0
DAFJS15 [0, 54,353†] 100% 55,931 0 3,600.0 [22,324, 53,549] 58.31% 97,946 3,600.0
DAFJS16 [28,823, 65,550†] 56.03% 92,513 0 3,600.0 [28,167, 65,257] 56.84% 135,220 3,600.0
DAFJS17 [42,492, 63,177†] 32.74% 33,771 0 3,600.0 [13,683, 56,330] 75.71% 447,082 3,600.0
DAFJS18 [45,630, 61,831†] 26.2% 29,131 23 3,600.0 [14,813, 59,787] 75.22% 1,007,448 3,600.0
DAFJS19 [27,728, 58,001†] 52.19% 47,626 17 3,600.0 [24,250, 44,486] 45.49% 881,311 3,600.0
DAFJS20 [37,194, 63,588†] 41.51% 42,948 0 3,600.0 [19,568, 63,065] 68.97% 332,996 3,600.0
DAFJS21 [36,582, 63,202†] 42.12% 54,908 0 3,600.0 [22,142, 62,438] 64.54% 179,594 3,600.0
DAFJS22 [31,266, 56,115†] 44.28% 72,153 0 3,600.0 [19,800, 56,115†] 64.72% 146,289 3,600.0
DAFJS23 [23,845, 47,616†] 49.92% 40,481 0 3,600.0 [21,422, 42,266] 49.32% 488,429 3,600.0
DAFJS24 [26,527, 49,019†] 45.88% 56,184 0 3,600.0 [21,763, 48,525] 55.15% 346,533 3,600.0
DAFJS25 [0, 66,262†] 100% 111,844 0 3,600.0 [24,843, 66,200] 62.47% 88,055 3,600.0
DAFJS26 [0, 72,226†] 100% 77,334 0 3,600.0 [24,182, 71,874] 66.36% 101,029 3,600.0
DAFJS27 [0, 64,797†] 100% 64,933 0 3,600.0 [21,584, 64,781] 66.68% 145,287 3,600.0
DAFJS28 [25,167, 52,639†] 52.19% 58,308 0 3,600.0 [24,712, 50,995] 51.54% 193,331 3,600.0
DAFJS29 [29,463, 59,792†] 50.72% 66,255 0 3,600.0 [27,497, 57,222] 51.95% 246,809 3,600.0
DAFJS30 [27,084, 55,015†] 50.77% 91,519 0 3,600.0 [21,222, 54,467] 61.04% 306,321 3,600.0

YFJS01 [47,837, 84,152†] 43.15% 768,698 1,077 3,600.0 [39,902, 63,486] 37.15% 4,653,807 3,600.0
YFJS02 [59,193, 66,853†] 11.46% 1,587,076 2,455 3,600.0 [46,660, 66,853†] 30.21% 16,559,119 3,600.0
YFJS03 30,073 2,666,461 8,869 651.0 30,073 1,859,541 89.8
YFJS04 [29,362, 35,810] 18.01% 8,026,009 27,106 3,600.0 [21,857, 32,670] 33.1% 44,018,889 3,600.0
YFJS05 [34,400, 40,221] 14.47% 6,938,357 20,891 3,600.0 [24,921, 37,682] 33.86% 37,757,176 3,600.0
YFJS06 [31,101, 38,684] 19.6% 3,339,460 7,174 3,600.0 [19,541, 36,812] 46.92% 17,596,410 3,600.0
YFJS07 [31,513, 42,140] 25.22% 2,383,275 7,262 3,600.0 [26,063, 37,664] 30.8% 11,920,798 3,600.0
YFJS08 30,184 8,684,046 11,067 2,401.4 30,184 15,779,708 1,242.7
YFJS09 [14,785, 23,430] 36.9% 330,752 106 3,600.0 [11,324, 21,796] 48.05% 5,536,683 3,600.0
YFJS10 [30,116, 37,720] 20.16% 8,688,281 15,350 3,600.0 [22,264, 34,624] 35.7% 38,762,863 3,600.0
YFJS11 [35,760, 51,469†] 30.52% 653,855 652 3,600.0 [30,073, 44,294] 32.11% 16,060,438 3,600.0
YFJS12 [32,446, 59,898†] 45.83% 795,705 1,181 3,600.0 [26,939, 43,790] 38.48% 13,545,313 3,600.0
YFJS13 [25,469, 45,084†] 43.51% 466,368 549 3,600.0 [21,361, 35,266] 39.43% 8,512,041 3,600.0
YFJS14 [68,791, 109,469†] 37.16% 74,831 0 3,600.0 [68,423, 98,323] 30.41% 1,965,536 3,600.0
YFJS15 [65,453, 112,424†] 41.78% 78,095 0 3,600.0 [64,923, 105,088] 38.22% 5,880,443 3,600.0
YFJS16 [63,661, 106,855†] 40.42% 56,452 0 3,600.0 [62,865, 103,358] 39.18% 1,474,916 3,600.0
YFJS17 [0, 85,736†] 100% 84,708 0 3,600.0 [51,540, 85,611] 39.8% 277,616 3,600.0
YFJS18 [0, 99,429†] 100% 85,143 0 3,600.0 [55,101, 97,691] 43.6% 256,080 3,600.0
YFJS19 [0, 89,561†] 100% 109,068 0 3,600.0 [41,690, 89,561†] 53.45% 205,157 3,600.0
YFJS20 [0, 91,958†] 100% 111,180 0 3,600.0 [43,711, 91,958†] 52.47% 127,010 3,600.0

Mean [28348.02, 57881.72] 51.02% 1,013,398.90 2,224.32 3,517.05 [27680.84, 53967.68] 48.71% 5,897,637.44 3,482.65

Table 15: Solutions found and computational cost of solving the large-sized instances with
learning rate α = 0.2 using CPLEX and CP Optimizer with warm start.
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IBM ILOG CPLEX IBM ILOG CP Optimizer

makespan
Effort measurement

makespan
Effort measurement

#iterations #B&B Nodes CPU #branches CPU
DAFJS01 [13,085, 22,616†] 42.14% 1,117,444 1,730 3,600.0 [10,730, 20,247] 47% 7,775,777 3,600.0
DAFJS02 [16,801, 26,183†] 35.83% 1,515,028 3,091 3,600.0 [10,500, 22,147] 52.59% 18,313,536 3,600.0
DAFJS03 [22,719, 43,964†] 48.32% 87,465 6 3,600.0 [21,152, 42,677] 50.44% 653,668 3,600.0
DAFJS04 [24,927, 43,281†] 42.41% 150,187 31 3,600.0 [23,278, 40,023] 41.84% 2,127,914 3,600.0
DAFJS05 [20,474, 38,237†] 46.46% 298,694 514 3,600.0 [12,401, 29,897] 58.52% 3,366,879 3,600.0
DAFJS06 [20,171, 38,007†] 46.93% 103,184 100 3,600.0 [12,004, 28,181] 57.4% 1,790,536 3,600.0
DAFJS07 [16,887, 41,285†] 59.1% 57,392 0 3,600.0 [15,801, 40,857] 61.33% 311,704 3,600.0
DAFJS08 [21,334, 46,323†] 53.95% 84,392 0 3,600.0 [20,629, 42,452] 51.41% 289,066 3,600.0
DAFJS09 [22,185, 41,418†] 46.44% 176,125 14 3,600.0 [11,423, 33,332] 65.73% 1,702,714 3,600.0
DAFJS10 [22,463, 38,771†] 42.06% 71,903 14 3,600.0 [11,408, 32,284] 64.66% 1,290,793 3,600.0
DAFJS11 [20,011, 47,805†] 58.14% 81,360 0 3,600.0 [19,709, 47,731] 58.71% 193,904 3,600.0
DAFJS12 [18,895, 45,735†] 58.69% 76,070 0 3,600.0 [15,608, 44,045] 64.56% 196,960 3,600.0
DAFJS13 [29,210, 42,319†] 30.98% 65,284 26 3,600.0 [9,929, 40,101] 75.24% 1,351,794 3,600.0
DAFJS14 [32,979, 49,459†] 33.32% 47,535 37 3,600.0 [11,318, 45,078] 74.89% 763,657 3,600.0
DAFJS15 [0, 49,206†] 100% 71,721 0 3,600.0 [14,671, 48,366] 69.67% 131,171 3,600.0
DAFJS16 [20,218, 56,727†] 64.36% 97,311 0 3,600.0 [18,661, 56,727†] 67.1% 171,678 3,600.0
DAFJS17 [29,862, 54,527†] 45.23% 29,116 0 3,600.0 [9,240, 48,773] 81.06% 499,025 3,600.0
DAFJS18 [32,271, 51,823†] 37.73% 29,115 12 3,600.0 [10,047, 47,845] 79% 670,899 3,600.0
DAFJS19 [21,074, 46,880†] 55.05% 44,072 9 3,600.0 [16,675, 43,407] 61.58% 654,923 3,600.0
DAFJS20 [25,682, 51,686†] 50.31% 58,048 0 3,600.0 [13,124, 51,061] 74.3% 333,744 3,600.0
DAFJS21 [0, 53,010†] 100% 66,397 0 3,600.0 [14,664, 50,104] 70.73% 234,319 3,600.0
DAFJS22 [21,312, 45,005†] 52.65% 85,113 0 3,600.0 [12,934, 45,005†] 71.26% 146,342 3,600.0
DAFJS23 [18,008, 39,249†] 54.12% 41,167 0 3,600.0 [14,782, 39,145] 62.24% 652,256 3,600.0
DAFJS24 [18,974, 44,851†] 57.7% 61,919 0 3,600.0 [14,688, 44,462] 66.97% 255,869 3,600.0
DAFJS25 [0, 51,964†] 100% 71,177 0 3,600.0 [16,174, 51,964†] 68.87% 83,334 3,600.0
DAFJS26 [0, 57,182†] 100% 103,993 0 3,600.0 [15,820, 57,182†] 72.33% 123,884 3,600.0
DAFJS27 [25,010, 58,138†] 56.98% 107,828 0 3,600.0 [14,138, 57,409] 75.37% 139,297 3,600.0
DAFJS28 [18,433, 42,898†] 57.03% 63,459 0 3,600.0 [16,781, 40,331] 58.39% 611,659 3,600.0
DAFJS29 [22,832, 51,606†] 55.76% 58,895 0 3,600.0 [18,452, 51,156] 63.93% 194,564 3,600.0
DAFJS30 [17,829, 43,859†] 59.35% 82,952 0 3,600.0 [14,275, 42,315] 66.26% 281,586 3,600.0

YFJS01 [39,168, 66,116] 40.76% 560,775 1,035 3,600.0 [29,808, 58,170] 48.76% 6,636,736 3,600.0
YFJS02 [48,544, 59,211] 18.02% 1,188,834 2,163 3,600.0 [35,526, 59,001] 39.79% 12,010,945 3,600.0
YFJS03 27,686 1,406,947 4,582 337.1 27,686 1,278,286 66.9
YFJS04 [25,715, 32,191] 20.12% 8,529,348 26,006 3,600.0 [18,161, 29,692] 38.84% 42,209,341 3,600.0
YFJS05 [31,090, 34,905] 10.93% 8,010,184 28,009 3,600.0 [19,314, 35,629] 45.79% 40,473,041 3,600.0
YFJS06 [26,650, 39,813] 33.06% 2,057,905 4,922 3,600.0 [14,714, 33,822] 56.5% 14,236,397 3,600.0
YFJS07 [27,041, 38,134] 29.09% 3,907,838 10,102 3,600.0 [20,397, 33,059] 38.3% 12,005,380 3,600.0
YFJS08 [27,020, 28,638] 5.65% 11,006,083 13,663 3,600.0 [17,787, 28,192] 36.91% 41,659,118 3,600.0
YFJS09 [12,166, 21,816] 44.23% 439,398 350 3,600.0 [9,525, 20,457] 53.44% 4,119,430 3,600.0
YFJS10 [28,406, 33,622] 15.51% 8,543,764 16,090 3,600.0 [17,808, 32,159] 44.63% 30,351,408 3,600.0
YFJS11 [30,906, 45,051†] 31.4% 770,066 1,119 3,600.0 [23,170, 41,095] 43.62% 7,467,430 3,600.0
YFJS12 [26,035, 48,493] 46.31% 381,810 116 3,600.0 [21,335, 39,039] 45.35% 7,124,912 3,600.0
YFJS13 [23,227, 40,119†] 42.1% 812,817 1,074 3,600.0 [16,668, 30,711] 45.73% 4,335,509 3,600.0
YFJS14 [49,960, 92,457†] 45.96% 83,456 0 3,600.0 [49,252, 91,042] 45.9% 1,297,229 3,600.0
YFJS15 [47,574, 96,547†] 50.72% 77,782 0 3,600.0 [46,947, 89,100] 47.31% 824,181 3,600.0
YFJS16 [47,654, 92,811†] 48.65% 55,873 0 3,600.0 [45,648, 87,080] 47.58% 1,706,868 3,600.0
YFJS17 [0, 73,682†] 100% 65,088 0 3,600.0 [34,763, 73,682†] 52.82% 110,226 3,600.0
YFJS18 [0, 87,059†] 100% 72,375 0 3,600.0 [37,042, 87,059†] 57.45% 111,311 3,600.0
YFJS19 [0, 74,431†] 100% 62,604 0 3,600.0 [27,976, 74,431†] 62.41% 138,828 3,600.0
YFJS20 [0, 72,481†] 100% 133,020 0 3,600.0 [29,376, 72,250] 59.34% 138,581 3,600.0

Mean [21849.76, 49385.54] 51.47% 1,063,406.26 2,296.30 3,534.74 [19678.38, 46553.2] 57.73% 5,470,972.18 3,529.34

Table 16: Solutions found and computational cost of solving the large-sized instances with
learning rate α = 0.3 using CPLEX and CP Optimizer with warm start.
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