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Abstract

In this paper we consider the minimization of the unconstrained low order-value func-
tion. We also consider the case in which the feasible region is given by a closed convex set,
assuming that the projection operation is affordable. For both cases, we introduce regular-
ized first-order algorithms and prove worst-case iteration and evaluation complexity results.
Asymptotic convergence results are also presented. The proposed algorithm for the case
of constraints given by an arbitrary closed convex set has the classical projected gradient
method as a particular case. The algorithms are implemented and several numerical experi-
ments illustrate their application.
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1 Introduction

The low order-value optimization (LOVO) problem, introduced in [7], is part of a family of
optimization problems in which the evaluation of the objective function at a given point depends
on the sorting of functional values at that point. Given f1, . . . , fm, with fi : Rn → R for
i = 1, . . . ,m, examples of such problems include minimizing min{f1(x), . . . , fm(x)}, minimizing
max{f1(x), . . . , fm(x)}, and, given 1 ≤ q ≤ m minimizing fiq(x)(x), where for every x ∈ Rn,
iq(x) is such that fi1(x)(x) ≤ fi2(x)(x) ≤ · · · ≤ fim(x)(x). The latter problem is known as the
order-value optimization (OVO) problem [1, 4, 5, 8, 9]. In the LOVO problem the goal is to
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minimize
∑q

j=1 fij(x)(x). An overview and generalization of OVO and LOVO type problems is
presented in [20].

In [7], two methods were introduced for the unconstrained LOVO problem, each of them
with asymptotic convergence to so called weakly critical points and strongly critical points. In
addition, a method based on augmented Lagrangians [2, 3, 13, 14] for the constrained LOVO
problem was also introduced in [7]. This method has asymptotic convergence to weakly critical
points. In [19], it was shown that the minimization of the low order-value function is an NP-
hard problem in the case where all fi are affine functions and the constraints are given by a
polytope. There is no method in the literature with worst-case complexity analysis for the LOVO
problem. In this paper we introduce two first-order regularized algorithms for the unconstrained
LOVO problem and for the LOVO problem in which the feasible region is given by a closed
convex set. For both algorithms we prove worst-case iteration and evaluation complexity for
convergence to so called approximate strongly critical points with precision ϵ > 0. Unfortunately,
convergence to approximate strongly critical points does not imply asymptotic convergence to
strongly critical points. Then, we also prove asymptotic convergence to weakly critical points for
the two methods. The proposed algorithm for the case of constraints given by an arbitrary closed
convex set has the classical projected gradient method as a particular case when m = q = 1.

The LOVO problem with q = m and a suitable choice of functions fi is a generalization of
the classical least squares problem and, as such, has a wide range of applications. Moreover,
with the same choice of functions and q < m, it can be used to disregard the influence of
outliers in the data. Thus, the LOVO problem has interesting applications for robust parameter
estimation [16]. The LOVO problem can also be used to find hidden structures in data and
one of its most successful applications has been the protein alignment problem [7]. In [15], the
LOVO problem was related to a multiple fitting strategy for the estimation of parameters in
supercritical fluid extraction models. In [10], a portfolio optimization problems with a constraint
on the admissible Value at Risk was modeled as a problem in which a low order-value function
appears in the constraints. Algorithms for this type of problem were introduced and portfolio
optimization problems with transaction costs were solved.

The remainder of this work is organized as follows. In Section 2, we formally define the
LOVO problem and present the concepts of weakly critical and strongly critical points. In Sec-
tions 3 and 4, we present the methods and their convergence theory for the unconstrained case
and the case where the feasible region is determined by a closed and convex set, respectively.
Numerical experiments illustrating the applicability of the proposed methods are presented in
Section 5. The final section presents conclusions and possibilities for future work.

Notation. Bϵ(x) denotes the closed ball in Rn centered at the point x and with radius ϵ, that
is, Bϵ(x) = {y ∈ Rn | ∥x−y∥ ≤ ϵ}. For a ∈ R, a+ = max{0, a}. For a matrix A ∈ Rn×n, λmin(A)
represents its smallest eigenvalue.
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2 Problem definition and preliminaries

Let fi : Ω → R for i = 1, . . . ,m be given, where Ω = Rn or Ω ⊂ Rn is a closed and convex set.
For a given q ∈ {1, 2, . . . ,m} the qth low order-value function Sq : Ω→ R is defined as

Sq(x) :=

q∑
j=1

fij(x)(x),

where {i1(x), i2(x), . . . , im(x)} = {1, 2, . . . ,m} are such that

fi1(x)(x) ≤ fi2(x)(x) ≤ · · · ≤ fim(x)(x),

that is, Sq is such that, for all x ∈ Ω, Sq(x) corresponds to the sum of the q smallest values among
{f1(x), f2(x), . . . , fm(x)}. If q = 1, then Sq(x) = min{f1(x), f2(x), . . . , fm(x)}. This makes it
clear that even if all fi are differentiable, it is very likely that the low order-value function is
not. In the present work, we consider the low order-value optimization (LOVO) problem given
by

Minimize Sq(x) subject to x ∈ Ω. (1)

There exist exactly

r =

(
m
q

)
=

m!

q! (m− q)!

subsets C1, . . . , Cr of the set {1, . . . ,m} such that |Ci| = q for i = 1, . . . , r. For all i = 1, . . . , r,
we define

Fi(x) =
∑
j∈Ci

fj(x)

and
Fmin(x) = min{F1(x), . . . , Fr(x)}. (2)

Clearly, for every x ∈ Ω, the permutation {i1(x), . . . , iq(x)} such that

fi1(x)(x) ≤ fi2(x)(x) ≤ · · · ≤ fiq(x)(x) ≤ fiq+1(x)(x) ≤ · · · ≤ fim(x)(x)

coincides with one of the subsets C1, . . . , Cr. Therefore, Fmin(x) = Sq(x) for all x ∈ Ω and, in
consequence, the LOVO problem (1) can be rewritten as

Minimize Fmin(x) subject to x ∈ Ω. (3)

For all x ∈ Ω, we define

Imin(x) := {i ∈ {1, . . . , r} |Fi(x) = Fmin(x)}.

Theorem 2.1. [7, Thm. 2.1] Let x∗ be a local minimizer of (3) and for i ∈ Imin(x
∗) consider

the problem
Minimize Fi(x) subject to x ∈ Ω. (4)

Then, x∗ is a local minimizer of (4) for all i ∈ Imin(x
∗).
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Proof. Assume that, for some i ∈ Imin(x
∗), x∗ is not a local minimizer of (4). Then, for every

ϵ > 0, there exist x̄ ∈ Bϵ(x
∗)∩Ω such that Fi(x̄) < Fi(x

∗). Then, by the definitions of Fmin and
Imin we have that

Fmin(x̄) ≤ Fi(x̄) < Fi(x
∗) = Fmin(x

∗),

which contradicts the fact that x being a local minimizer of (3).

Theorem 2.2. [7, Prop. 2.1] Assume that x∗ is a local minimizer of (4) for all i ∈ Imin(x
∗)

and that Fi is continuous at x∗ for all i ̸∈ Imin(x
∗). Then, x∗ is a local minimizer of (3).

Proof. Since x∗ is a local minimizer of (4), there exist ϵ1 > 0 such that for all i ∈ Imin(x
∗) and

for all x ∈ Bϵ1(x
∗) ∩ Ω

Fi(x) ≥ Fi(x
∗) = Fmin(x

∗). (5)

On the other hand, if i ̸∈ Imin(x
∗), then Fi(x

∗) > Fmin(x
∗). Therefore, by the continuity of Fi at

x∗ for all i ̸∈ Imin(x
∗), there exist ϵ2 > 0 such that for all i ̸∈ Imin(x

∗) and for all x ∈ Bϵ2(x
∗)∩Ω

Fi(x) > Fmin(x
∗). (6)

Therefore, taken ϵ = min{ϵ1, ϵ2}, by (5) and (6), we have that, for all x ∈ Bϵ(x
∗)∩Ω and for all

i = 1, 2, . . . , r, Fi(x) ≥ Fmin(x
∗). Thus,

Fmin(x) ≥ Fmin(x
∗),

for all x ∈ Bϵ(x
∗) ∩ Ω, and we conclude that x∗ is a local minimizer of (3).

Theorem 2.1 states that x∗ being a local minimizer of problem (4) for all i ∈ Imin(x
∗) is

a necessary condition for x∗ being a local minimizer of (3). As a consequence, clearly, being
a local minimizer of problem (4) for some i ∈ Imin(x

∗) is a (weaker) necessary condition as
well. Additionally, it is also clear that satisfying a necessary optimality condition (NOC) of
problem (4) for some or for all i ∈ Imin(x

∗) is also a NOC for problem (3). Thus, following [7],
given a NOC for problem (4), we say that x∗ ∈ Ω is a weakly critical point of problem (3) (with
respect to the given NOC), if x∗ satisfies the given NOC for problem (4) for some i ∈ Imin(x

∗);
and we say that x∗ ∈ Ω is a strongly critical point of problem (3), if x∗ satisfies the given NOC
for problem (4) for all i ∈ Imin(x

∗).

3 Regularized first-order method for the unconstrained case

In this section, we consider Ω = Rn and introduce a regularized first-order method associated
with the necessary optimality condition

∇Fi(x) = 0 (7)

of problem (4). For (7) to be a necessary optimality condition of (4), it is enough to ask Fi

to be continuously differentiable and for that it is enough to ask f1, . . . , fm to be continuously
differentiable. We therefore place below our first assumption.

Assumption A1. Functions f1, . . . , fm are continuously differentiable for all x ∈ Rn.
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Given x0 ∈ Rn, the method generates iterates x1, x2, . . . . The sequence of iterates is finite
if, for some k, ∇Fi(x

k) = 0 for all i ∈ Imin(x
k). Otherwise, the method generates an infinite

sequence {xk}. Each iteration k of the method is based on the minimization of a first-order
regularized model of Fνk(x), for some νk ∈ Imin(x

k). The algorithm follows below.

Algorithm 3.1: Let σmin > 0, θ ∈ (0, 1], M > 0, γ > 1, α ∈ (0, 1), and x0 ∈ Rn be given.
Initialize k ← 0.

Step 1. Initialize j ← 0 and σk,0 = 0 and choose νk ∈ Imin(x
k) such that

∥∇Fνk(x
k)∥ ≥ θ∥∇Fi(x

k)∥ for all i ∈ Imin(x
k).

If ∇Fνk(x
k) = 0, stop.

Step 2. Choose Bk,j ∈ Rn×n symmetric, positive definite, and such that ∥Bk,j∥ ≤ M , and

compute xk,jtrial as a solution to the problem

Minimize ∇Fνk(x
k)T (x− xk) +

1

2
(x− xk)TBk,j(x− xk) +

σk,j
2
∥x− xk∥2. (8)

Step 3. Consider condition
Fmin(x) ≤ Fmin(x

k)− α∥x− xk∥2. (9)

If (9) with x ≡ xk,jtrial does not hold, then set σk,j+1 = max{σmin, γσk,j}, update j ← j +1,
and go to Step 2.

Step 4. Define xk+1 = xk,jtrial, σk = σk,j , jk = j, update k ← k + 1 and go to Step 1.

Remark. At Step 2 of Algorithm 3.1, xk,jtrial is given by xk,jtrial = xk − (Bk,j + σk,jI)
−1∇Fνk(x

k).

Next, we show that Algorithm 3.1 is well defined. For this purpose, the following assumption
is needed.

Assumption A2. There exist L > 0 such that, for all k ≥ 0 and j = 0, 1, . . . , jk,

Fνk(x) ≤ Fνk(x
k) +∇Fνk(x

k)T (x− xk) +
L

2
∥x− xk∥2 (10)

holds with x = xk,jtrial, where xk,jtrial is the trial point computed at Step 2 of Algorithm 3.1.

Theorem 3.1. Suppose that Assumption A1 and A2 hold. Then, if Algorithm 3.1 does not stop
at xk, iteration k is well-defined and

σk ≤ σmax := max {σmin, γ(2α+ L)} . (11)

Proof. Assume that Algorithm 3.1 does not stop at xk. If σk,j ≥ 2α + L, then, by the defini-
tion (2) of Fmin, (10) in Assumption A2, Bk,j being positive definite, and the fact the objective

5



value at the solution of (8) being necessarily non-positive implies ∇Fνk(x
k)T (xk,jtrial − xk) ≤

−1
2(x

k,j
trial − xk)TBk,j(x

k,j
trial − xk)− σk,j

2 ∥x
k,j
trial − xk∥2, we have that

Fmin(x
k,j
trial) ≤ Fνk(x

k,j
trial)

≤ Fνk(x
k,j
trial) +∇Fνk(x

k)T (xk,jtrial − xk) +
L

2
∥xk,jtrial − xk∥2

≤ Fmin(x
k)− 1

2
(xk,jtrial − xk)TBk,j(x

k,j
trial − xk)− σk,j

2
∥xk,jtrial − xk∥2 + L

2
∥xk,jtrial − xk∥2

≤ Fmin(x
k) +

(
L− σk,j

2

)
∥xk,jtrial − xk∥2

≤ Fνk(x
k)− α∥xk,jtrial − xk∥2.

Thus, xk,jtrial satisfies the descent condition (9) and iteration k is over. That means that if (9)
does not hold, we must have σk,j < 2α + L. Therefore, the initialization rule σk,0 = 0 and the
updating rule σk,j+1 = max{σmin, γσk,j} guarantee that either σk = σk,0 = 0, σk = σk,1 = σmin,
or σk = σk,j for some j ≥ 2 and σk,j < γ(2α + L) because σk,j−1 < 2α + L, from which (11)
follows.

The next lemma is an intermediate result that is used in both the asymptotic convergence to
weak critical points and the complexity result for finding strong critical points with precision ϵ.

Lemma 3.1. Suppose that Assumption A1 and A2 hold. Then, for all k ≥ 0,

∥xk+1 − xk∥ ≥ ∥∇Fνk(x
k)∥

M + σmax
, (12)

where σmax is given by (11).

Proof. By definition of Algorithm 3.1,

∇
[
∇Fνk(x

k)T (x− xk) +
1

2
(x− xk)TBk,j(x− xk) +

σk,j
2
∥x− xk∥2

]∣∣∣∣
x=xk+1

= 0,

i.e.
∇Fνk(x

k) + (Bk,j + σk,jI)(x
k+1 − xk) = 0.

Then
∥∇Fνk(x

k)∥ ≤ (M + σmax)∥xk+1 − xk∥,
as we wanted to prove.

The following theorem shows the worst-case iteration complexity of the proposed method for
finding a strongly critical point with precision ϵ > 0, i.e. an iterate xk such that ∥∇Fi(x

k)∥ ≤ ϵ
for all i ∈ Imin(x

k).

Theorem 3.2. Suppose that Assumptions A1 and A2 hold and that there exists Flow ∈ R
such that Fmin(x) ≥ Flow for all x ∈ Rn. Given ϵ > 0, the number of iterations k at which
1
θ∥∇Fνk(x

k)∥ > ϵ is bounded above by⌊(
(M + σmax)

2

α θ2

)(
Fmin(x

0)− Flow

ϵ2

)⌋
(13)
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Proof. Let K = {k0, k1, k2, . . . } with k0 < k1 < k2 < · · · be a set of indices such that
1
θ∥∇Fνkj

(xkj )∥ > ϵ. Then, by (12) in Lemma 3.1,

∥xkj+1 − xkj∥ > ϵ θ

M + σmax
.

Therefore, since (9) holds with x = xkj+1, we have that

Fmin(x
kj )− Fmin(x

kj+1) ≥ α∥xkj+1 − xkj∥2 > α

(
ϵ θ

M + σmax

)2

.

Summing for all kj ∈ K, we obtain∑
kj∈K

[Fmin(x
kj )− Fmin(x

kj+1)] > |K|α
(

ϵ θ

M + σmax

)2

.

The sum on the left-hand side is the sum of the improvements obtained over the iterations
kj ∈ K. But the method generates a sequence {xk} for which {Fmin(x

k)} is monotonically
decreasing. Then, all improvements are positive, their sum is bounded by F (x0)−Flow, and the
desired result follows.

Theorem 3.3. Suppose that Assumptions A1 and A2 hold and that there exists Flow ∈ R such
that Fmin(x) ≥ Flow for all x ∈ Rn. Given ϵ > 0, in at most kmax + 1 = O(ϵ−2) iterations,
where kmax is given by (13), the algorithm finds an iterate xk such that ∥∇Fi(x

k)∥ ≤ ϵ for all
i ∈ Imin(x

k), i.e. a strongly critical point of problem (3) with precision ϵ with respect to the NOC
given by (7).

Proof. This is a direct consequence of Theorem 3.2 and the way νk is chosen at Step 1 of
Algorithm 3.1.

Remark. By the definition of Algorithm 3.1, σk = σk,0 = 0 or σk = σk,jk = γjk−1σmin for
some jk > 0. But Theorem 3.1 guarantees that σk ≤ σmax. Then, jk ≤ ⌊logγ(σmax/σmin)⌋ + 1.
By the definition of Algorithm 3.1, the number of functional evaluations per iteration is ex-
actly jk + 1. Therefore, the number of evaluations of Fmin at any iteration k is limited by
⌊logγ(σmax/σmin)⌋ + 2. Combining the limitation on the number of evaluations of Fmin per
iteration with the limitation on the number of iterations given by Theorem 3.3, we obtain a
limitation on the total number of evaluations of Fmin, i.e. we obtain a worst-case evaluation
complexity result.

Unfortunately, the complexity result of Theorem 3.3 for convergence to strongly critical
points with precision ϵ > 0 does not imply an asymptotic convergence result to strongly critical
points. Consider the problem with m = 2, f1(x) = x2, f2(x) = (x− 1)2 − 1, and q = 1, i.e. the
problem corresponds to minimizing min{f1(x), f2(x)}. The point xϵ = −ϵ/2 is a strongly critical
point with precision ϵ, because Imin(xϵ) = {1} and |f ′

1(xϵ)| = ϵ. However, limϵ→0 xϵ = x̄ = 0 is a
weakly critical point, because Imin(x̄) = {1, 2}, |f ′

1(x̄)| = 0, and |f ′
2(x̄)| = 2 ̸= 0. (The strongly

critical point of this problem is x∗ = 1, for which Imin(x
∗) = {2} and |f ′

2(x
∗)| = 0.) The next

theorem shows asymptotic convergence to weakly critical points.
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Theorem 3.4. Suppose that Assumptions A1 and A2 hold. Let K be an infinite set of indices
such that i = νk ∈ Imin(x

k) and limk∈K xk = x∗. Then i ∈ Imin(x
∗), ∇Fi(x

∗) = 0, and

lim
k∈K

∥∥∥∇Fνk(x
k)
∥∥∥ = 0.

Proof. Let K = {k0, k1, k2, . . . } with k0 < k1 < k2 < · · · be an infinite set of indices such that
i = νkj ∈ Imin(x

kj ) and limj→∞ xkj = x∗. By the continuity of Fi,

lim
j→∞

Fi(x
kj ) = Fi(x

∗). (14)

As, for all j ∈ N, i = νkj and νkj ∈ Imin(x
kj ), then, for all j ∈ N, we have that Fi(x

kj ) ≤ Fℓ(x
kj )

for all ℓ ∈ {1, . . . , r}. Then, taking limits for j → ∞, by (14), we see that Fi(x
∗) ≤ Fℓ(x

∗) for
all ℓ ∈ {1, . . . , r}. Therefore,

i ∈ Imin(x
∗).

On the other hand, since kj+1 ≥ kj + 1, we have:

Fi(x
kj+1) = Fmin(x

kj+1) ≤ Fmin(x
kj+1) ≤ Fmin(x

kj )− α∥xkj+1 − xkj∥2 ≤ Fmin(x
kj ) = Fi(x

kj )

for all j ∈ N. Taking limits for j →∞, we have that limj→∞ ∥xkj+1 − xkj∥2 = 0. Therefore,

lim
j→∞

∥xkj+1 − xkj∥ = 0.

Now, by (12), we have that

∥∇Fi(x
kj )∥ ≤ (M + σmax)∥xkj+1 − xkj∥.

So, limj→∞ ∥∇Fi(x
kj )∥ = 0 as we wanted to prove.

4 Regularized first-order method for the constrained case

In this section, we consider Ω is a closed and convex set and introduce a regularized first-order
method associated with the necessary optimality condition

PΩ(x−∇Fi(x))− x = 0 (15)

of problem (4), where PΩ represents the projector operator onto Ω. For (15) to be a necessary
optimality condition of (4), it is enough to ask Fi to be continuously differentiable and for that
it is enough to ask f1, . . . , fm to be continuously differentiable. We therefore place below our
first assumption of the current section.

Assumption A3. Functions f1, . . . , fm are continuously differentiable for all x in an open set
that contains Ω.
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Given x0 ∈ Ω, the method generates iterates x1, x2, . . . . The sequence of iterates is finite if,
for some k, PΩ(x

k − ∇Fi(x
k)) − xk = 0 for all i ∈ Imin(x

k). Otherwise, the method generates
an infinite sequence {xk}. Each iteration k of the method is based on the minimization of a
first-order regularized model of Fνk(x) subject to x ∈ Ω, for some νk ∈ Imin(x

k). The algorithm
follows below.

Algorithm 4.1: Let σmin > 0, θ ∈ (0, 1], γ > 1, α ∈ (0, 1), and x0 ∈ Ω be given. Initialize k ←
0.

Step 1. Initialize j ← 0 and σk,0 = σmin and choose νk ∈ Imin(x
k) such that

∥PΩ(x
k −∇Fνk(x

k))− xk∥ ≥ θ∥PΩ(x
k −∇Fi(x

k))− xk∥ for all i ∈ Imin(x
k).

If PΩ(x
k −∇Fνk(x

k))− xk = 0, stop.

Step 2. Compute xk,jtrial as a solution to the problem

Minimize ∇Fνk(x
k)T (x− xk) +

σk,j
2
∥x− xk∥2 subject to x ∈ Ω. (16)

Step 3. Consider condition
Fmin(x) ≤ Fmin(x

k)− α∥x− xk∥2. (17)

If (9) with x ≡ xk,jtrial does not hold, then set σk,j+1 = γσk,j , update j ← j + 1, and go
to Step 2.

Step 4. Define xk+1 = xk,jtrial, σk = σk,j , jk = j, update k ← k + 1 and go to Step 1.

Remark 1. At Step 2, xk,jtrial is given by xk,jtrial = PΩ

(
xk − 1

σk,j
∇Fνk(x

k)

)
.

Remark 2. In Algorithm 4.1, when compared to Algorithm 3.1, the second-order term in the
subproblem considered at Step 2 is limited to the regularization term, i.e. there is no positive
definite matrix Bk,j . For that reason, in Step 1 of Algorithm 4.1, σk=0 = σmin instead of σk=0 = 0
as in Algorithm 3.1.

Next, we show that Algorithm 4.1 is well defined. For this purpose, the following assumption
is needed.

Assumption A4. There exist L > 0 such that, for all k ≥ 0 and j = 0, 1, . . . , jk,

Fνk(x) ≤ Fνk(x
k) +∇Fνk(x

k)T (x− xk) +
L

2
∥x− xk∥2 (18)

holds with x = xk,jtrial, where xk,jtrial is the trial point computed at Step 2 of Algorithm 4.1.

Theorem 4.1. Suppose that Assumption A3 and A4 hold. Then, if Algorithm 4.1 does not stop
at xk, iteration k is well-defined and

σk ≤ σmax := max {σmin, γ(2α+ L)} . (19)
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Proof. Assume that the algorithm does not stop at xk. If σk,j ≥ 2α+L, then, by the definition (2)
of Fmin, (18) in Assumption A4, and the fact the objective value at the solution of (16) being

necessarily non-positive implies ∇Fνk(x
k)T (xk,jtrial − xk) ≤ −σk,j

2 ∥x
k,j
trial − xk∥2, we have that

Fmin(x
k,j
trial) ≤ Fνk(x

k,j
trial)

≤ Fνk(x
k,j
trial) +∇Fνk(x

k)T (xk,jtrial − xk) +
L

2
∥xk,jtrial − xk∥2

≤ Fmin(x
k) +

(
L− σk,j

2

)
∥xk,jtrial − xk∥2

≤ Fνk(x
k)− α∥xk,jtrial − xk∥2.

Thus, xk,jtrial satisfies the descent condition (17) and iteration k is over. That means that if (17)
does not hold, we must have σk,j < 2α + L. Therefore, the initialization rule σk,0 = σmin and
the updating rule σk,j+1 = γσk,j guarantee that either σk = σk,0 = σmin or σk = σk,j for some
j ≥ 1 and σk,j < γ(2α+ L) because σk,j−1 < 2α+ L, from which (19) follows.

The two theorems that follow shows the worst-case iteration complexity of the proposed
method for finding an iterate xk such that ∥PΩ(x

k −∇Fi(x
k))− xk∥ ≤ ϵ for all i ∈ Imin(x

k).

Theorem 4.2. Suppose that Assumptions A3 and A4 hold and that there exists Flow ∈ R
such that Fmin(x) ≥ Flow for all x ∈ Ω. Given δ > 0, the number of iterations k at which
∥P (xk − 1

σk
∇Fνk(x

k))− xk∥ > δ is bounded above by

kmax :=

⌊(
1

α

)(
Fmin(x

0)− Flow

δ2

)⌋
(20)

Proof. Let K = {k0, k1, k2, . . . } with k0 < k1 < k2 < · · · be a set of indices such that ∥PΩ(x
kj −

1
σkj
∇Fνkj

(xkj ))− xkj∥ > δ. Then, by the definition of the algorithm,

∥xkj+1 − xkj∥ =
∥∥∥∥PΩ

(
xkj − 1

σkj
∇Fνkj

(xkj )

)
− xkj

∥∥∥∥ > δ.

Therefore, since (17) holds with x = xkj+1, we have that

Fmin(x
kj )− Fmin(x

kj+1) ≥ α∥xkj+1 − xkj∥2 > αδ2.

Summing for all kj ∈ K, we obtain∑
kj∈K

[Fmin(x
kj )− Fmin(x

kj+1)] > |K|α δ2.

The sum on the left-hand side is the sum of the improvements obtained over the iterations
kj ∈ K. But the algorithm generates a sequence {xk} for which {Fmin(x

k)} is monotonically
decreasing. Then, all improvements are positive, their sum is bounded by F (x0)−Flow, and the
desired result follows.
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Theorem 4.3. Suppose that Assumptions A3 and A4 hold and that there exists Flow ∈ R such
that Fmin(x) ≥ Flow for all x ∈ Ω. Given ϵ > 0, in at most⌊(

max{1, σ2
max}

α θ2

)(
Fmin(x

0)− Flow

ϵ2

)⌋
+ 1

iterations, the algorithm finds an iterate xk such that ∥PΩ(x
k − ∇Fi(x

k)) − xk∥ ≤ ϵ for all
i ∈ Imin(x

k), i.e. a strongly critical point of problem (3) with precision ϵ with respect to the NOC
given by (15).

Proof. Consider δ = ϵ θ/max{1, σmax}. By Theorem 4.2, the number of iterations at which∥∥∥PΩ

(
xk − 1

σk
∇Fνk(x

k)
)
− xk

∥∥∥ > ϵ θ/max{1, σmax} is limited by kmax defined in (20) with δ =

ϵ θ/max{1, σmax}. On the other hand, for any iteration k, from [18, Ex. 3.2.16] and (19), it
follows that∥∥∥PΩ

(
xk −∇Fνk(x

k)
)
− xk

∥∥∥ ≤ max{1, σmax}
∥∥∥∥PΩ

(
xk − 1

σk
∇Fνk(x

k)

)
− xk

∥∥∥∥ .
This means that the number of iterations at which

∥∥PΩ

(
xk −∇Fνk(x

k)
)
− xk

∥∥ > ϵ θ is limited
by kmax in (20) with δ = ϵ θ/max{1, σmax} and the result follows from the way νk is chosen at
Step 1.

Remark. By the definition of Algorithm 4.1, σk = σk,jk = γjkσmin for some jk ≥ 0. But
Theorem 4.1 guarantees that σk ≤ σmax. Then, jk ≤ ⌊logγ(σmax/σmin)⌋. By the definition of
Algorithm 4.1, the number of functional evaluations per iteration is exactly jk + 1. Therefore,
the number of evaluations of Fmin at any iteration k is limited by ⌊logγ(σmax/σmin)⌋+ 1. Com-
bining the limitation on the number of evaluations of Fmin per iteration with the limitation on
the number of iterations given by Theorem 4.3, we obtain a limitation on the total number of
evaluations of Fmin, i.e. we obtain a worst-case evaluation complexity result.

The next theorem shows asymptotic convergence to weakly critical points.

Theorem 4.4. Suppose that Assumptions A3 and A4 hold. Let K be an infinite set of indices
such that i = νk ∈ Imin(x

k) and limk∈K xk = x∗. Then i ∈ Imin(x
∗), PΩ(x

∗−∇Fi(x
∗))−x∗ = 0,

and
lim
k∈K

∥∥∥PΩ(x
k −∇Fνk(x

k))− xk)
∥∥∥ = 0.

Proof. Let K = {k0, k1, k2, . . . } with k0 < k1 < k2 < · · · be an infinite set of indices such that
i = νkj ∈ Imin(x

kj ) and limj→∞ xkj = x∗. By the continuity of Fi,

lim
j→∞

Fi(x
kj ) = Fi(x

∗). (21)

As, for all j ∈ N, i = νkj and νkj ∈ Imin(x
kj ), then, for all j ∈ N, we have that Fi(x

kj ) ≤ Fℓ(x
kj )

for all ℓ ∈ {1, . . . , r}. Then, taking limits for j → ∞, by (21), we see that Fi(x
∗) ≤ Fℓ(x

∗) for
all ℓ ∈ {1, . . . , r}. Therefore,

i ∈ Imin(x
∗).

11



On the other hand, since kj+1 ≥ kj + 1, we have:

Fi(x
kj+1) = Fmin(x

kj+1) ≤ Fmin(x
kj+1) ≤ Fmin(x

kj )− α∥xkj+1 − xkj∥2 ≤ Fmin(x
kj ) = Fi(x

kj )

for all j ∈ N. Taking limits for j →∞, we have that limj→∞ ∥xkj+1 − xkj∥2 = 0. Therefore,

lim
j→∞

∥xkj+1 − xkj∥ = 0.

But, by the definition of the algorithm and [18, Ex. 3.2.16], we have that

∥xkj+1 − xkj∥ =

∥∥∥∥PΩ

(
xkj − 1

σkj
∇Fνkj

(xkj )

)
− xkj

∥∥∥∥
≥ 1

max{1, σmax}
∥∥∥PΩ

(
xkj −∇Fνkj

(xkj )
)
− xkj

∥∥∥
So, limj→∞

∥∥∥PΩ

(
xkj −∇Fνkj

(xkj )
)
− xkj

∥∥∥ = 0 as we wanted to prove.

5 Numerical experiments

In this section, we illustrate with numerical experiments how parameter estimation problems in
the presence of outliers can be solved by modeling them as LOVO type problems and solving
them with Algorithm 3.1 or 4.1. In Section 5.1, we consider a simple problem of parameter
fitting with a small excerpt of data from the COVID-19 pandemic. In section 5.2, assuming that
both test and training data contain outliers, we consider a parameter fitting problem in which
the objective is to find an underlying hidden function. In Section 5.3, we consider a simple
problem of parameter fitting of an epidemiological model in which the model parameters have
constraints.

We implemented Algorithms 3.1 and 4.1 in Fortran 90. For Algorithm 3.1, we implemented
as a stopping criterion, in Step 1, ∥∇Fνk(x

k)∥∞ ≤ ϵ, while for Algorithm 4.1, we implemented,
also in Step 1, ∥PΩ(x

k − ∇Fνk(x
k)) − xk∥∞ ≤ ϵ. In the numerical experiments, based on

preliminary experiments, we considered σmin = 0.1, θ = 1, γ = 10, and α = 10−8 for both
algorithms. For the stopping criteria of both algorithms, we set ϵ = 10−8. In Algorithm 3.1, we
considered Bk,j = ∇2Fνk(x

k) +
(
−λmin(∇2Fνk(x

k)) +
√
ϵmach

)
+
I for all k and all j. Condition

∥Bk,j∥F ≤M hold in every conducted experiment for M = 1000.
Tests were conducted on a computer with a 3.9 GHz AMD Ryzen 5 5600G processor and

32GB 3200 MHz DDR3 RAM memory, running Windows 11 Pro and a Windows Subsystem for
Linux with Debian GNU/Linux 11. Code was compiled by the GNU Fortran compiler (version
10.2.1) with the -O3 optimization directive enabled.

5.1 Experiments with a small excerpt of data from COVID-19 pandemic

In this experiment, we considered m = 30 data (ti, ỹi), i = 1, . . . ,m, corresponding to the 7-day
rolling average of deaths per million inhabitants in Italy during the COVID-19 pandemic from
August 6 to September 4, 2020, taken from https://ourworldindata.org. Figure 1 shows the
data. We chose these data because they apparently contain 7 outliers. We divided the m data

12
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into training data (ti, ỹi), i = 1, . . . , m̄, and test data (ti, ỹi), i = m̄ + 1, . . . ,m, with m̄ = 27.
The objective is to fit the model

y(t;x) = ỹm̄ + x1

(
t− tm̄
tm̄

)
+ x2

(
t− tm̄
tm̄

)2

+ x3

(
t− tm̄
tm̄

)3

to the training data and then use it to simulate the prediction of the test data. It is worth
noting that the model has only three parameters (x1, x2, x3) since it is imposed y(tm̄;x) = ym̄
for all x. We defined the functions fi(x) = 1

2(y(ti;x) − ỹi)
2, i = 1, . . . , m̄, and solved eleven

different LOVO problems with q = m̄ − o and the number of outliers o ∈ {0, 1, . . . , 10} using
Algorithm 3.1. In all cases we used the least squares solution as the initial solution. Table 1
shows the value of the objective function Sq(x

∗), the mean error of the training data given by
1
m̄

∑m̄
i=1 |y(ti;x∗)− ỹi| and the mean error of the test data given by 1

m−m̄

∑m
i=m̄+1 |y(ti;x∗)− ỹi|.

Additionally, it shows, for the testing data, ỹi, y(t
′
ix

∗), and Ei(x
∗) = |y(ti;x∗)−ỹi|, i = 28, 29, 30.

In all problems Algorithm 3.1 satisfied the stopping criterion using a maximum of 4 iterations,
a single function evaluation per iteration and a CPU time of less than 0.01 seconds. Figure 2
shows the fitted models for the different values of o. The table shows a clear drop of Sq(x

∗) and
the training and testing errors for o ≥ 7. It is clear that the strategy is able to identify outliers
in the data and that the models give reasonable predictions when o ≥ 7. Table 1 shows that in
these cases the error in the test data is small. It should be noted that this is because the test
data set contains no outliers.
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Figure 1: 7-day rolling average of deaths per million inhabitants in Italy during the COVID-19
pandemic from August 6 to September 4, 2020, taken from https://ourworldindata.org. We
assume that the 7 values above 0.4 are outliers.
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Figure 2: Graphical representation of the fitted models considering the number of outliers o ∈
{0, 1, . . . , 10}. The solid black dots are the training data and the transparent small squares are
the test data. The data circled in red are the data that the method chose to consider outliers
and, therefore, excluded from the fitting process.
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o Sq(x
∗)

ỹ28 = 0.111 ỹ29 = 0.094 ỹ30 = 0.106 Training
error

Testing
errory(ti;x

∗) Ei(x
∗) y(ti;x

∗) Ei(x
∗) y(ti;x

∗) Ei(x
∗)

0 2.167E-01 0.084 0.027 0.067 0.027 0.050 0.056 0.112 0.037
1 1.952E-01 0.090 0.021 0.080 0.014 0.072 0.034 0.105 0.023
2 1.792E-01 0.094 0.017 0.089 0.005 0.087 0.019 0.103 0.014
3 1.532E-01 0.100 0.011 0.100 0.006 0.104 0.002 0.088 0.006
4 1.264E-01 0.103 0.008 0.107 0.013 0.114 0.008 0.076 0.010
5 9.405E-02 0.105 0.006 0.110 0.016 0.118 0.012 0.058 0.011
6 5.338E-02 0.104 0.007 0.108 0.014 0.114 0.008 0.036 0.010
7 4.509E-04 0.102 0.009 0.101 0.007 0.100 0.006 0.005 0.007
8 2.667E-04 0.101 0.010 0.100 0.006 0.099 0.007 0.004 0.008
9 2.223E-04 0.101 0.010 0.099 0.005 0.098 0.008 0.004 0.008
10 1.936E-04 0.101 0.010 0.100 0.006 0.098 0.008 0.004 0.008

Table 1: Details of the model fitting process when we consider different values o ∈ {0, 1, . . . , 10}
for the presumed number of outliers in the training data.

5.2 Hidden underlying function

In the experiment of the previous section we applied the classical strategy of separating the
available data into training and test data, fitting the model using only the training data and
testing it using the test data. The small error in both, the training data (disregarding the
outliers) and the testing data was used to infer the accuracy of the fitted models. But how
to assess the quality of a prediction if the test data are also contaminated with outliers? To
overcome this issue, in the experiment of the present section, we considered a ground truth
model. With this model we generated data and inserted noise and outliers into the data. We
then separated the data into training data and test data and fit the model by solving a LOVO
problem with the training data only. At the end, we compared the obtained model with the
ground truth model, displaying the test data as a reference only.

The considered ground truth model is given by

y(t; c) = c0 + c1t+ c2t
2 + c3t

3, (22)

where (c0, c1, c2, c3) = (1, 1,−3, 1). We initially considered the data set (ti, yi), i = 1, . . . ,m,
with yi = y(ti; c), m = 100, ti = a + (b − a)(i − 1)/(m − 1), a = −1 and b = 3. From these
data, we considered the data with noise given by ỹi = yi + ri, where ri ∈ [−0.1, 0.1] is a random
variable with uniform distribution. Finally, to include outliers, with probability 0.1 we redefined
yi as yi = yi ± si, where si ∈ [0.2 ymax, 0.5 ymax], with ymax = max{|yi|}, is a random variable
with uniform distribution, where we considered probability 0.8 that ỹi = yi− si and probability
0.2 that ỹi = yi + si. Figure 3(a) shows the model, the ỹi data with noise and outliers and, by
way of illustration, the least squares solution.

In the fitting process, we considered m̄ = 80, used the data (ti, ỹi), i = 1, . . . , m̄, as training
data and left the data (ti, ỹi), i = m̄ + 1, . . . ,m, as test data. (Figure 3(a) shows that the
training data have 7 outliers, while the test data have 4 outliers.) We defined the functions
fi(x) =

1
2(y(ti;x)−ỹi)2, i = 1, . . . , m̄, and solved eleven different LOVO problems with q = m̄−o

and the number of outliers o ∈ {0, 1, . . . , 10} using Algorithm 3.1. In all cases we used the least
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squares solution as the initial solution. Table 2 shows the solution found x∗, the value of the
objective function Sq(x

∗) and the distance ∥x∗ − c∥∞ from the solution found x∗ to the true
coefficients c. The table also shows the mean error of the training data and the test data. In
all problems Algorithm 3.1 satisfied the stopping criterion using a maximum of 5 iterations, a
single function evaluation per iteration and a CPU time of less than 0.01 seconds. Figure 4
shows the value of Sq(x

∗) as a function of the number of outliers o. The figure, in logarithmic
scale, makes it evident that the method employed is capable of detecting the exact number of
outliers contained in the training data. Figure 3(a–d) shows the fitted models y(t;x∗) for some
values of o. The observation of the figure makes clear the good fitting of the data with noise
in the case where the correct amount of outliers is considered (o = 7). It is worth noting that,
as anticipated, the mean error of the test data, shown in Table 2, does not help to determine
the number of outliers contained in the data and to choose the best model. This is due to the
fact that the error is dominated by the error related to the outliers present in the test data.
The training error decreases monotonically as the number of outliers considered increases (and,
consequently, the amount of fitted data decreases). It is noted that, as well as in the value of
Sq(x

∗), there is a noticeable drop in the training error for o ≥ 7, i.e. q ≤ m̄− o = 73.

o x∗1 x∗2 x∗3 x∗4 Sq(x
∗) ∥c− x∗∥∞ Training

error
Testing
error

0 0.942 0.873 -2.993 1.018 7.254 0.127 0.219 0.295
1 0.970 0.921 -3.003 1.006 5.634 0.079 0.181 0.356
2 0.971 0.895 -3.015 1.034 4.181 0.105 0.148 0.437
3 1.006 0.848 -3.023 1.047 3.145 0.152 0.133 0.511
4 1.043 0.873 -3.060 1.053 2.218 0.127 0.108 0.480
5 1.038 0.918 -3.019 1.022 1.335 0.082 0.078 0.332
6 1.026 0.946 -2.976 0.999 0.576 0.054 0.059 0.283
7 1.004 0.981 -2.977 0.993 0.091 0.023 0.043 0.280
8 1.002 0.978 -2.976 0.994 0.086 0.024 0.042 0.279
9 1.005 0.975 -2.978 0.995 0.082 0.025 0.042 0.280
10 1.005 0.977 -2.977 0.993 0.077 0.023 0.041 0.280

Table 2: Details of the solutions found in the problem of discovering a hidden function, when we
consider different values o ∈ {0, 1, . . . , 10} for the presumed number of outliers in the training
data.

5.3 Parameter fitting of an epidemiological model

In this section, we examine the epidemiological model devised in [17] to simulate a serological
data set including 8870 individuals prior to the implementation of the measles, mumps, and
rubella vaccination in the United Kingdom. This problem was recently considered in [1], where
it was modeled as an OVO type problem. The only difference between what was done in [1]
and what is shown in the present section is that, with the OVO function, the largest quadratic
error between the model and the samples that are not considered outliers is minimized, while
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Figure 3: Graphical representation of the fitted models considering the number of outliers o ∈
{0, 3, 5, 7}. The solid black dots are the training data and the transparent small squares are the
test data. The data circled in red are the data that the method chose to consider outliers and,
therefore, excluded from the fitting process.

with the LOVO function the sum of the same quadratic errors is minimized. For this particular
experiment, it is expected the two approaches to generate similar solutions. This problem
is included in the present study because the model parameters have constraints and, therefore,
Algorithm 4.1 will be used in the optimization process instead of Algorithm 3.1. The model seeks
to characterize the rate at which vulnerable people become infected with the aforementioned
illnesses at various ages. The estimated proportion of seropositive individuals in the unvaccinated
part of the sample, broken down into m = 29 age categories, is displayed in Table 3, which is
derived from [17]. We polluted the observations of the age groups [19, 21), [21, 23), [23, 25),
and [25, 27), replacing the corresponding observation with the value 0.5 (numbers colored red in
Table 3).
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Figure 4: Optimal value Sq(x
∗) as a function of the number of outliers o considered in the

optimization process. (Recall that q = m̄ − o.) The clear drop at o = 7 shows that the
procedure is able to detect the number of outliers in the training data.

Age group Proportion seropositive Age group Proportion seropositive
(years) Measles Mumps Rubella (years) Measles Mumps Rubella
[1, 2) 0.207 0.115 0.126 [17, 19) 0.898 0.895 0.869
[2, 3) 0.301 0.147 0.171 [19, 21) 0.500 0.500 0.500
[3, 4) 0.409 0.389 0.184 [21, 23) 0.500 0.500 0.500
[4, 5) 0.589 0.516 0.286 [23, 25) 0.500 0.500 0.500
[5, 6) 0.757 0.669 0.400 [25, 27) 0.500 0.500 0.500
[6, 7) 0.669 0.768 0.503 [27, 29) 0.939 0.909 0.921
[7, 8) 0.797 0.786 0.524 [29, 31) 0.967 0.873 0.896
[8, 9) 0.818 0.798 0.634 [31, 33) 0.973 0.880 0.890
[9, 10) 0.866 0.878 0.742 [33, 35) 0.943 0.915 0.949
[10, 11) 0.859 0.861 0.664 [35, 40) 0.967 0.906 0.899
[11, 12) 0.908 0.844 0.735 [40, 45) 0.946 0.933 0.955
[12, 13) 0.923 0.881 0.815 [45, 55) 0.961 0.917 0.937
[13, 14) 0.889 0.895 0.768 [55, 65) 0.968 0.898 0.933
[14, 15) 0.936 0.882 0.842 [65,+∞) 0.968 0.839 0.917
[15, 17) 0.889 0.869 0.760

Table 3: Proportion of seropositive for measles, mumps and rubella by age group.

Equation

y(t, x) = 1− exp

{
x1
x2

te−x2t +
x1
x2

(
x1
x2
− x3

)(
e−x2t − 1

)
− x3t

}
, (23)
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presents the model we want to fit to the data in Table 3, where x1, x2, and x3 are non-negative
unknown parameters. We want to estimate the parameters x1, x2, and x3 of model (23) for each
of the three illnesses individually, i.e. we have three separate problems. In order to translate
the model parameter fitting problem into a LOVO type problem, we define, once again, fi(x) =
1
2 (y(ti, x)− yi)

2, i = 1, . . . ,m, where ti denotes the left limit of an age range [tmin, tmax) and yi
denotes the associated observation. We also define Ω = {x ∈ R3 | 0 ≤ xi ≤ Mx for i = 1, 2, 3},
where Mx is a sufficiently large number.

Table 4 shows the result of applying Algorithm 4.1 with q = m−o and o ∈ {0, 1, . . . , 10}. The
table shows the value of Sq(x

∗), the number of iterations, the number of functional evaluations
and the CPU time in seconds. Looking at the values of Sq(x

∗) for different presumed numbers
o of outliers, it is clear that the value drops by an order of magnitude from the case o = 3 to
the case o = 4. This is the only drastic drop and shows that the performed experiment allows
to identify the amount of outliers in the data. For values o ≥ 4, the value of Sq(x

∗) drops
gradually, but this is expected since it corresponds to a sum of a decreasing number of squared
errors. Figure 5 shows, on the left, the obtained models for the different values of o in the three
different illnesses. On the right of the figure, the case o = 4 is highlighted, showing that the
method identified correctly the introduced outliers in all cases.

Table 4 shows that, for o ≥ 4, the number of iterations of the method is relatively small,
while the average number of function evaluations per iteration is of the order of 20. This
number seems relatively large and is due to the choice of the initial value of the regularization
parameter σmin. On the one hand, we could fine-tune this parameter to find one that decreases
the number of function evaluations. On the other hand, the reasonable strategy would be to use
the information of what was the value of σk−1 to choose the initial value of the regularization
parameter in iteration k. This is in fact possible and was done in [11]. It just makes it a little
cumbersome to calculate the complexity of the algorithms and we chose not to include this detail
in the present work for ease of exposition. The relatively high number of iterations, in relation
to the experiments of the two previous sections, is also related to the rather stringent stopping
criteria for a first order method such as Algorithm 4.1.

o
measles mumps rubella

f(x∗) #it #fcnt Time f(x∗) #it #fcnt Time f(x∗) #it #fcnt Time

0 3.101E-01 95 478 4.130E-04 2.695E-01 405 2355 1.565E-03 2.278E-01 591 3456 2.364E-03
1 2.455E-01 717 7351 2.545E-03 2.154E-01 283 1575 1.129E-03 1.810E-01 316 1790 1.306E-03
2 1.758E-01 656 5227 2.280E-03 1.559E-01 71 358 3.210E-04 1.315E-01 173 949 7.380E-04
3 9.996E-02 183 1801 6.510E-04 8.915E-02 45 223 2.240E-04 7.816E-02 129 697 5.590E-04
4 1.610E-02 44 879 1.690E-04 1.351E-02 47 216 1.900E-04 1.772E-02 153 866 6.270E-04
5 9.974E-03 36 1013 1.420E-04 8.151E-03 40 178 1.570E-04 1.328E-02 205 1167 8.160E-04
6 6.508E-03 30 1286 1.110E-04 6.007E-03 39 171 1.580E-04 1.045E-02 213 1206 8.450E-04
7 3.821E-03 34 1347 1.280E-04 4.915E-03 37 175 1.500E-04 8.005E-03 241 1364 9.630E-04
8 3.156E-03 30 1485 1.090E-04 3.716E-03 144 755 5.350E-04 5.642E-03 257 1472 1.044E-03
9 2.640E-03 23 1566 8.400E-05 2.445E-03 707 3647 2.207E-03 4.550E-03 91 504 3.940E-04
10 2.055E-03 28 623 1.070E-04 2.620E-03 10 40 4.100E-05 3.801E-03 152 839 6.260E-04

Table 4: Details of applying Algorithm 4.1 for solving the LOVO problem with q = m− o and
o ∈ {0, 1, . . . , 10}.

19



0 10 20 30 40 50 60 70

0.2

0.4

0.6

0.8

1.0

o = 0

o = 1

o = 2

o = 3

o = 4

o = 5

o = 6

o = 7

o = 8

o = 9

o = 10

0 10 20 30 40 50 60 70

0.2

0.4

0.6

0.8

1.0

(a) measles (d) measles

0 10 20 30 40 50 60 70

0.2

0.4

0.6

0.8

1.0

o = 0

o = 1

o = 2

o = 3

o = 4

o = 5

o = 6

o = 7

o = 8

o = 9

o = 10

0 10 20 30 40 50 60 70

0.2

0.4

0.6

0.8

1.0

(b) mumps (e) mumps

0 10 20 30 40 50 60 70

0.2

0.4

0.6

0.8

1.0

o = 0

o = 1

o = 2

o = 3

o = 4

o = 5

o = 6

o = 7

o = 8

o = 9

o = 10

0 10 20 30 40 50 60 70

0.2

0.4

0.6

0.8

1.0

(c) rubella (f) rubella

Figure 5: The models fitted with o ∈ {0, 1, . . . , 10} are on the left. The models fitted with o = 4
on the right side show the observations that the LOVO problems’ optimal solutions indicate are
outliers.
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6 Conclusions

In this paper, we introduced first-order methods for the unconstrained LOVO problem and for
the LOVO problem restricted to a closed and convex set. For these methods, we developed
iteration and evaluation worst-case complexity theory for convergence to approximate strongly
critical points and asymptotic theory for convergence to weakly critical points. Regarding the
development of algorithms with complexity results for the LOVO problem, there are several
possible directions to follow. Analyzing the methods introduced in [7], it would be interesting to
try to develop methods with both, complexity and asymptotic convergence theory, to strongly
critical points. Moreover, considering the augmented Lagrangian-based method for the general
constrained LOVO problem introduced in [7], and the augmented Lagrangian complexity theory
developed in [14], it could be attempted to develop a method with complexity theory for the
LOVO problem with general constraints. Finally, regularized high-order methods [11, 12] for
the LOVO problem could be developed.
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