
An inner-outer nonlinear programming approach

for constrained quadratic matrix model updating∗

M. Andretta † E. G. Birgin‡ M. Raydan§

September 1, 2014

Abstract

The Quadratic Finite Element Model Updating Problem (QFEMUP) concerns with up-
dating a symmetric second-order finite element model so that it remains symmetric and
the updated model reproduces a given set of desired eigenvalues and eigenvectors by re-
placing the corresponding ones from the original model. Taking advantage of the special
structure of the constraint set, it is first shown that the QFEMUP can be formulated as
a suitable constrained nonlinear programming problem. Using this formulation, a method
based on successive optimizations is then proposed and analyzed. To avoid that spurious
modes (eigenvectors) appear in the frequency range of interest (eigenvalues) after the model
has been updated, additional constraints based on a quadratic Rayleigh quotient are dynam-
ically included in the constraint set. A distinct practical feature of the proposed method is
that it is implementable computing only a few eigenvalues and eigenvectors of the associated
quadratic matrix pencil. The results of our numerical experiments on illustrative problems
show that the algorithm works well in practice.

Keywords: Quadratic matrix model updating, quadratic Rayleigh quotient, nonlinear pro-
gramming, algorithms.

1 Introduction

The Quadratic Finite Element Model Updating Problem (QFEMUP) concerns with updating a
finite-element generated model of a vibrating structure of the form:

Mẍ(t) +Dẋ(t) +Kx(t) = 0, (1)

∗This work was supported by PRONEX-CNPq/FAPERJ (E-26/111.449/2010-APQ1), FAPESP (grants
2010/10133-0, 2013/03447-6, 2013/05475-7, and 2013/07375-0), and CNPq (PVE 71/2013, proj. 400926/2013-0).
†Department of Applied Mathematics and Statistics, Institute of Mathematical and Computer Sciences, Uni-

versity of São Paulo, Av. Trabalhador São-carlense, 400, Centro, 13566-590, São Carlos, SP, Brazil. e-mail:
andretta@icmc.usp.br
‡Department of Computer Science, Institute of Mathematics and Statistics, University of São Paulo, Rua do

Matão, 1010, Cidade Universitária, 05508-090, São Paulo, SP, Brazil. e-mail: egbirgin@ime.usp.br
§Departamento de Cómputo Cient́ıfico y Estad́ıstica, Universidad Simón Boĺıvar, Ap. 89000, Caracas 1080-A,

Venezuela. e-mail: mraydan@usb.ve

1

where M , D, and K are real n×n matrices known as mass, damping, and stiffness, respectively;
and ẋ(t) and ẍ(t) denote the first and second derivatives of the time-dependent vector x(t). The
eigenvalues of the associated quadratic pencil

Q(λ) = λ2M + λD +K (2)

are related to natural frequencies and the eigenvectors are the mode shapes of the vibrating sys-
tem (1) (see, e.g., [17, 18, 31]). The quadratic pencil (2) has 2n eigenvalues and 2n eigenvectors.
The dynamics of the system are modeled by these eigenvalues and eigenvectors. For example,
it is well-known that the stability of a vibrating system is determined by the nature of a few
dominating natural frequencies. It is also well-known that sometimes the vibrating structures
experience dangerous vibrations, called resonance, when a natural frequency becomes close or
equal to a frequency of an external force, such as earthquake, gusty wind, weights of the human
bodies, among others. Failures of many structures like buildings, bridges, airplane wings, and
turbines have been attributed to resonance.

Equation (1) is usually obtained by discretization of a distributed parameter system with
finite element techniques, and therefore, known as the finite element model. The matrices M ,
D, and K are often very large and sparse, but have some structures, such as, M is symmetric
and positive definite (M = MT > 0) and often diagonal, D and K are symmetric (D = DT and
K = KT), and the stiffness matrix K is often tridiagonal and positive semi-definite.

The QFEMUP consists in updating the quadratic pencil Q(λ) to another quadratic pencil

Q̃(λ) = λ2M + λD̃ + K̃ (3)

in such a way that a small number 1 ≤ p < 2n of given measured eigenvalues and eigenvectors
from a real-life structure or an experimental structure are reproduced by the updated pencil.
Besides the basic requirements of preserving the symmetry and sparsity pattern of the new
matrices D̃ and K̃ and reproducing the p measured eigenvalues and eigenvectors, there are
certain other engineering issues that must be taken into account while solving the problem in
practice. For instance, it is important that the new matrices D̃ and K̃ are as close as possible
to the original ones D and K, respectively, which imposes an optimization approach. It is also
very important that no spurious modes appear in the frequency range of interest after the model
has been updated; see [27]. The so called no spill-over constraint which, assuming that the p
eigenpairs to be replaced are known, forces the additional 2n− p eigenvalues and corresponding
eigenvectors to remain unchanged, clearly guarantees that no spurious modes will appear in the
frequency range of interest. Several iterative numerical schemes have been recently proposed
to accomplish all the mentioned requirements, including the no spill-over constraint, for several
different scenarios; see, e.g., [5, 11, 12, 13, 14, 15, 16, 20, 21, 24, 25, 31, 32, 33] and references
in there. In most cases, the no spill-over constraint is accomplished by using some clever linear
algebra theoretical results that involve the solution of several large-scale Lyapunov, Sylvester,
and block linear systems per iteration.

In this paper, we present a new optimization approach that not only maintains the sym-
metry, the sparsity structure, and the nearness of the matrices D̃ and K̃, while reproducing
the p measured eigenvalues and eigenvectors, but also pays special attention to the fundamental
engineering requirement of making sure that no spurious modes appear in the frequency range

2

of interest. In this work, we accomplish all these requirements without forcing the no spill-over
constraint. For that, our new scheme combines an optimization procedure with the dynamical
inclusion of additional constraints in an inner-outer iterative scheme. The additional constraints
are based on a suitable recent extension of the Rayleigh quotient for quadratic eigenvalue prob-
lems [29, 38]. A key practical feature of the proposed scheme is that it is implementable com-
puting only a few additional eigenvalues and eigenvectors of the associated quadratic matrix
pencil. Variations of finite element model updating problems, with different levels of difficulty,
have been solved in the past using numerical optimization techniques of several types; see, e.g.,
[1, 5, 6, 7, 11, 19, 33, 36].

The rest of the paper is organized as follows. In Section 2, we formulate the QFEMUP
as a constrained optimization problem and describe the variables and the constrains, including
the way of forcing the matrices’ sparsity structure and symmetry. In Section 3, we describe
the suitable use of the Rayleigh quotient for quadratic eigenvalue problems for building the
constraints or cuts, to avoid when necessary the presence of spurious modes in the frequency
range of interest. We also describe in detail the inner-outer iterative scheme, and discuss its
theoretical properties. In Section 4, we show the performance of our scheme on some illustrative
examples. Concluding remarks are presented in Section 5.

2 Mathematical programming formulation

Consider the quadratic pencil Q(λ) given by (2), where M,D,K ∈ Rn×n are given matrices such
that M is symmetric positive definite and D and K are symmetric. Let 1 ≤ p < 2n, λi ∈ C,
and xi ∈ Cn be such that (λi, xi) for i = 1, . . . , p are the desired eigenpairs. The goal is to find
matrices D̃, K̃ ∈ Rn×n such that (λi, xi) are eigenpairs of the updated quadratic eigenpencil
Q̃(λ) given by (3), i.e.,

(λ2iM + λiD̃ + K̃)xi = 0, i = 1, . . . , p. (4)

Matrices D̃ = (d̃ij) and K̃ = (k̃ij) must be symmetric and must preserve the sparsity pattern of
D = (dij) and K = (kij), respectively. In addition, D̃ and K̃ must be as close as possible to D
and K, respectively.

Let ÎD be a given set of pairs of the form (i, j) with i ≤ j such that dij = 0 and such
that those null elements are required to be preserved in D̃, i.e., ÎD represents the null elements
(sparsity pattern) in the upper triangle of matrix D that must be preserved in D̃. Analogously,
let ÎK be the indices of the null elements of the upper triangle of K to be preserved, and let

ID = {(i, j) | 1 ≤ i ≤ j ≤ n such that (i, j) /∈ ÎD}

and
IK = {(i, j) | 1 ≤ i ≤ j ≤ n such that (i, j) /∈ ÎK}.

Therefore, elements d̃ij with (i, j) ∈ ID are the unknown elements or variables of the desired
matrix D̃. For the remaining elements of D̃ we have that: (a) if i > j and (j, i) ∈ ID then
d̃ij = d̃ji in order to preserve symmetry, and (b) if neither (i, j) nor (j, i) are in ID then
d̃ij = d̃ji = 0 in order to preserve the desired sparsity pattern. Similarly, the unknowns related
to the matrix K̃ are k̃ij with (i, j) ∈ IK . It is assumed that a non-negative real number U such
that −U ≤ d̃ij ≤ U for all (i, j) ∈ ID and −U ≤ k̃ij ≤ U for all (i, j) ∈ IK is known.

3

Summing up, the mathematical programming formulation of the QFEMUP is given by

Minimize ‖D̃ −D‖2F + ‖K̃ −K‖2F
subject to MXΛ2 + D̃XΛ + K̃X = 0,

−U ≤ d̃ij ≤ U for all (i, j) ∈ ID,
−U ≤ k̃ij ≤ U for all (i, j) ∈ IK ,

(5)

where Λ = diag(λ1, . . . , λp) ∈ Cp×p and X ∈ Cn×p has columns x1, . . . , xp.
Note that in (5) the variables are d̃ij with (i, j) ∈ ID and k̃ij with (i, j) ∈ IK . Hence the

number of variables is |ID| + |IK |, and the sparsity pattern and symmetry of D and K are
preserved because

d̃ij =

{
0, if i ≤ j and (i, j) /∈ ID,

d̃ji, if i > j,
and k̃ij =

{
0, if i ≤ j and (i, j) /∈ IK ,

k̃ji, if i > j.

This means that the symmetry and the sparsity pattern of D̃ and K̃ are guaranteed by a clever
choice of the variables, and that those requirements do not need to be considered as explicit
constraints, thus reducing the number of constraints as well. Moreover, note that in the objective
function in (5) we have

‖D̃ −D‖2F =
∑

(i,i)∈ID

(d̃ii − dii)2 + 2
∑

(i, j) ∈ ID
i 6= j

(d̃ij − dij)2,

since the remaining terms are null, and, similarly,

‖K̃ −K‖2F =
∑

(i,i)∈IK

(k̃ii − kii)2 + 2
∑

(i, j) ∈ IK
i 6= j

(k̃ij − kij)2.

Therefore, since the number of variables, the number of constraints, and the computational
complexity of evaluating the objective function and the constraints in (5) are of the order of the
number of non-null entries in M , D, and K, the model (5) is suitable for solving potentially
large-sized instances of the QFEMUP.

The mathematical programming formulation (5) is equivalent (in the sense of providing the
same solution) to the approach based on alternating projection methods introduced in [36], the
novelty of the former being the possibility of dealing in an efficient way with the requirement of
avoiding spurious modes in the frequency range of interest after the model has been updated,
as will be described in Section 3.

A remark on the way we tackled the requirement “having the new matrices D̃ and K̃ as close
as possible to the original ones D and K” is in order. The objective function in (5) minimizes
the Frobenius norm of the difference between (D̃, K̃) and (D,K). The squaring of the Frobenius
norm has no effect in this case other than providing differentiability of the objective function.
However, having (D̃, K̃) as close as possible to (D,K) is not exactly the same as having D̃ as
close as possible to D and at the same time K̃ as close as possible to K. This bi-objective

4

problem (see, for example, [35]) would be much more difficult to be solved (since computing the
Pareto frontier [35] would be needed). An alternative would be to minimize the sum of those
distances, i.e., ‖D̃ −D‖ + ‖K̃ −K‖, where ‖ · ‖ is an arbitrary norm. Note that squaring the
norms would transform the problem into a different problem and not squaring the norms would
make, for example, the case in which the Frobenius norm is considered, a non-differentiable
problem. Another alternative would be to minimize the largest between ‖D̃−D‖ and ‖K̃ −K‖
for any arbitrary norm, i.e.,

Minimize z

subject to ‖D̃ −D‖ ≤ z,

‖K̃ −K‖ ≤ z,

MXΛ2 + D̃XΛ + K̃X = 0,

−U ≤ d̃ij ≤ U for all (i, j) ∈ ID,

−U ≤ k̃ij ≤ U for all (i, j) ∈ IK .

(6)

If the Frobenius norm is considered in (6), squaring both sides in the first two inequalities
does not alter the problem and it becomes continuous and differentiable. All these alternatives
correspond to different interpretations of the nearness requirement and they probably have
different solutions. In the present work we consider the objective function in (5), which is the
usual interpretation of the nearness requirement considered in the literature (see, for example,
[27] and the references therein).

Finally, a remark on the hyperplane constraint in (5) is also in order. Note that λi ∈ C and
xi ∈ Cn for i = 1, . . . , p. Therefore, to deal with regular nonlinear programming solvers, that
handle problems in the real (non-complex) space, it would be adequate to re-write the constraint
as:

<(MXΛ2 + D̃XΛ + K̃X) = 0,

=(MXΛ2 + D̃XΛ + K̃X) = 0,

where <(c) and =(c) represent the real part a and the imaginary part b of a complex number
c = a+ bi, arriving to the formulation

Minimize ‖D̃ −D‖2F + ‖K̃ −K‖2F
subject to <(MXΛ2 + D̃XΛ + K̃X) = 0,

=(MXΛ2 + D̃XΛ + K̃X) = 0,

−U ≤ d̃ij ≤ U for all (i, j) ∈ ID,

−U ≤ k̃ij ≤ U for all (i, j) ∈ IK .

(7)

Note that (7) is a continuous and differentiable nonlinear programming problem for which any
off-the-shelf nonlinear programming method may be applied.

5

3 Nonlinear cuts and algorithmic framework

In this section, we consider the extra requirement of avoiding that spurious eigenvalues appear
in the updated quadratic eigenpencil (3). For simplicity of exposition, we will focus on the
frequent situation in which λ̂ ∈ R is given (the reader can think of a “small” and negative value
for λ̂ but any value is possible) and there is a constraint that says that all eigenvalues of the
updated eigenpencil (3) must have their real part less than or equal to λ̂.

Let us assume that (µ1, y1), . . . , (µ2n, y2n) are the (unknown) eigenpairs of the original
quadratic eigenpencil (2) and that 1 ≤ p < 2n and (λ1, x1), . . . , (λp, xp) are the desired eigen-
pairs. In addition, let us assume that the p eigenpairs that must be substituted are known
and that (without loss of generality) those eigenpairs are the first p eigenpairs of (2), i.e.,
(µ1, y1), . . . , (µp, yp). In what follows we will also assume that

(a) the p desired eigenpairs are such that <(λi) ≤ λ̂ for i = 1, . . . , p,

(b) the p eigenpairs that will be substituted are such that <(µi) > λ̂ for i = 1, . . . , p,

(c) the remaining 2n− p eigenpairs are such that <(µi) ≤ λ̂ for i = p+ 1, . . . , 2n.

The so called no spill-over constraint forces the 2n − p eigenpairs (µp+1, yp+1), . . . , (µ2n, y2n)
to remain unchanged and, therefore, the updated quadratic eigenpencil (3) will have all its
eigenvalues with their real part less than or equal to λ̂ as desired. The methodologies, already
developed, that preserve the unknown 2n− p eigenpairs (µp+1, yp+1), . . . , (µ2n, y2n) of the orig-
inal quadratic eigenpencil (2) as eigenpairs of the updated quadratic eigenpencil (3) certainly
avoids the advent of spurious eigenvalues in the updated quadratic eigenpencil, at the price of
solving several large-scale Lyapunov, Sylvester, and block linear systems per iteration.

In the present work, we address the extra requirement of avoiding that spurious eigenvalues
appear in the updated quadratic eigenpencil (3) using a different approach. Solving the mathe-
matical programming problem (7), we find matrices D̃ and K̃ such that the updated quadratic
eigenpencil (3) has the desired eigenpairs (λ1, x1), . . . , (λp, xp) for i = 1, . . . , p, i.e., such that (4)
holds. To achieve this goal, none of the eigenpairs (µ1, y1), . . . , (µ2n, y2n) of the original quadratic
eigenpencil (2) are assumed to be known. It is the nearness requirement, expressed in the mini-
mization of the distance between (D̃, K̃) and (D,K), that helps to safeguard as much as possible
the eigenpairs of the original quadratic eigenpencil. Then, an eigenvalue with largest real part
of the updated quadratic eigenpencil (3) is computed. If its real part is larger than λ̂, then a
(normalized) associated eigenvector x̃ is computed; a constraint, that depends on x̃, is added to
the mathematical programming model (7) with the attempt of avoiding the detected spurious
eigenvalue; and a new nonlinear programming problem is solved. This iterative process is re-
peated until the updated quadratic eigenpencil has no spurious eigenvalues. The nature of the
constraint or cut that is added to the mathematical programming model is discussed below. The
idea of generating additional constraints or cuts from standard (non-quadratic) eigenvectors was
used to solve Lyapunov equations by Geromel [28] and to solve constrained least-squares matrix
problems by Hu [30].

Assume that an eigenvalue τ ∈ C with largest real part of the updated eigenpencil (3)
has been computed and that <(τ) > λ̂. Then, a normalized associated eigenvector x̃ ∈ Cn is
computed. From the Galerkin condition (see [29, 38]), it follows that τ must be one of the two

6

solutions of the quadratic equation

q(θ) = θ2(x̃∗Mx̃) + θ(x̃∗D̃x̃) + (x̃∗K̃x̃),

that are given by

θ1 =
−(x̃∗D̃x̃) +

√
(x̃∗D̃x̃)2 − 4(x̃∗Mx̃)(x̃∗K̃x̃)

2(x̃∗Mx̃)

and

θ2 =
−(x̃∗D̃x̃)−

√
(x̃∗D̃x̃)2 − 4(x̃∗Mx̃)(x̃∗K̃x̃)

2(x̃∗Mx̃)
.

If τ = θ1 then the new constraint is given by

<

−(x̃∗D̃x̃) +
√

(x̃∗D̃x̃)2 − 4(x̃∗Mx̃)(x̃∗K̃x̃)

2(x̃∗Mx̃)

 ≤ λ̂− ε, (8)

where ε > 0 is a given small tolerance, which is subtracted from λ̂ to slightly overstate what we
want to achieve. Otherwise, we have that τ = θ2 and then the new constraint is given by

<

−(x̃∗D̃x̃)−
√

(x̃∗D̃x̃)2 − 4(x̃∗Mx̃)(x̃∗K̃x̃)

2(x̃∗Mx̃)

 ≤ λ̂− ε. (9)

Recall that when solving problem (7) with the additional constraint (8) or the additional con-
straint (9), we have that the vector x̃ is given, as well as the matrix M , and so the variables are
the elements d̃ij of D̃ with (i, j) ∈ ID and the elements k̃ij of K̃ with (i, j) ∈ IK . The complete
iterative procedure is described below.

Algorithm 3.1. Let M,D,K ∈ Rn×n be given matrices such that M is positive definite and
D = (dij) and K = (kij) are symmetric. Let 1 ≤ p < 2n and let (λi, xi) ∈ C×Cn for i = 1, . . . , p

be the desired quadratic eigenpairs. Let λ̂ ∈ R be a parameter that describes the forbidden re-
gion for the quadratic eigenvalues of the updated quadratic eigenpencil. Let U > 0 be a given
large real number and let ε > 0 be a given small tolerance. Set κ← 0.

Step 1. Set the sparsity patterns

Compute
ID = {(i, j) | 1 ≤ i ≤ j ≤ n such that dij 6= 0}

and
IK = {(i, j) | 1 ≤ i ≤ j ≤ n such that kij 6= 0}.

Step 2. Optimization step

7

By solving the nonlinear programming problem with |ID|+ |IK | variables given by

Minimize ‖D̃ −D‖2F + ‖K̃ −K‖2F
subject to <(MXΛ2 + D̃XΛ + K̃X) = 0,

=(MXΛ2 + D̃XΛ + K̃X) = 0,

−U ≤ d̃ij ≤ U for all (i, j) ∈ ID,

−U ≤ k̃ij ≤ U for all (i, j) ∈ IK ,

(10)

plus

<

−(u∗jD̃uj) + sj

√
(u∗jD̃uj)

2 − 4(u∗jMuj)(u∗jK̃uj)

2(u∗jMuj)

 ≤ λ̂− ε, j = 0, . . . , κ− 1, (11)

where Λ = diag(λ1, . . . , λp) ∈ Cp×p and X ∈ Cn×p has columns x1, . . . , xp, find matrices D̃κ and
K̃κ such that

(λ2iM + λiD̃κ + K̃κ)xi = 0, i = 1, . . . , p.

Step 3. Check for spurious quadratic eigenvalues

Step 3.1. Compute a quadratic eigenvalue τ with largest real part of the updated quadratic
eigenpencil

Q̃(λ) = λ2M + λD̃κ + K̃κ.

Step 3.2. If <(τ) ≤ λ̂ then stop returning D̃κ and K̃κ.

Step 4. Add a new cut and iterate

Step 4.1. Compute a quadratic eigenvector uκ associated with τ (such that ‖uκ‖2 = 1).

Step 4.2. If

τ =
−(u∗κD̃κuκ) +

√
(u∗κD̃κuκ)2 − 4(u∗κMuκ)(u∗κK̃κuκ)

2(u∗κMuκ)

then set sκ = 1. Otherwise, if

τ =
−(u∗κD̃κuκ)−

√
(uκ∗D̃κuκ)2 − 4(u∗κMuκ)(u∗κK̃κuκ)

2(u∗κMuκ)

then set sκ = −1.

Step 4.3. Set κ← κ+ 1 and go to Step 2.

8

Remark. Notice that, for any iteration κ, the feasible region of the nonlinear programming
problem solved at Step 2 is a closed subset of the closed and bounded set BD ×BK , where

BD = {D ∈ Rn×n| D = DT ,−U ≤ dij ≤ U if (i, j) ∈ ID, and dij = 0 if (i, j) ∈ ÎD}

and

BK = {K ∈ Rn×n| K = KT ,−U ≤ kij ≤ U if (i, j) ∈ IK , and kij = 0 if (i, j) ∈ ÎK}.

Notice also that at each iteration κ ≥ 1 all the cuts in (11) from previous iterations are kept
as constraints for the current nonlinear programming problem. Therefore, the feasible region
is monotonically reduced when κ increases. Our next theorem establishes that Algorithm 3.1
terminates in a finite number of iterations.

Theorem 3.1 Let λ̂ ∈ R and ε > 0 be given. If Algorithm 3.1 is applied to solve the optimization
problem (7) with the additional constraint that all eigenvalues of the updated eigenpencil (3) must
have their real part less than or equal to λ̂, then it terminates in a finite number of iterations.

Proof. Let us consider the functions θ1 : BD × BK × Su → R and θ2 : BD × BK × Su → R,
where Su = {u ∈ Cn| ‖u‖2 = 1} is the unit sphere in Cn, that define the possible cuts in (11)

θ1(D̃, K̃, u) = <

−(u∗D̃u) +
√

(u∗D̃u)2 − 4(u∗Mu)(u∗K̃u)

2(u∗Mu)


and

θ2(D̃, K̃, u) = <

−(u∗D̃u)−
√

(u∗D̃u)2 − 4(u∗Mu)(u∗K̃u)

2(u∗Mu)

 .

Since M is symmetric and positive definite, and ‖u‖2 = 1, then u∗Mu ≥ λmin(M) > 0, where
λmin(M) > 0 is the smallest eigenvalue of M . Hence, in θ1 and θ2 the denominator is uniformly
bounded away from zero, and as a consequence both functions are continuous on BD×BK×Su.
Moreover, since BD × BK × Su is a compact set, then the functions θ1 and θ2 are uniformly
continuous on BD ×BK × Su. Therefore, for the given ε > 0, there exists δ1 > 0 such that

‖[D̃′ : K̃ ′ : u′]− [D̃ : K̃ : u]‖F < δ1 (12)

implies that
|θ1(D̃′, K̃ ′, u′)− θ1(D̃, K̃, u)| < ε, (13)

for all (D̃′, K̃ ′, u′) and (D̃, K̃, u) in BD × BK × Su. Similarly, for the given ε > 0 there exists
δ2 > 0 such that

‖[D̃′ : K̃ ′ : u′]− [D̃ : K̃ : u]‖F < δ2 (14)

implies that
|θ2(D̃′, K̃ ′, u′)− θ2(D̃, K̃, u)| < ε, (15)

9

for all (D̃′, K̃ ′, u′) and (D̃, K̃, u) in BD × BK × Su. In here, [D̃ : K̃ : u] denotes a block matrix
which is built stacking the matrices D̃, K̃, and the vector u, i.e., it is a matrix with 2n + 1
columns and n rows.

For each iteration κ, if the algorithm does not stop at Step 3.2, it sets sκ = 1 or sκ = −1. It
means that exactly one of the two functions θ1 or θ2 is chosen to build a new cut at Step 4. Hence,
Algorithm 3.1 generates two subsequences of iterations identified with Jθ1 ⊂ N and Jθ2 ⊂ N,
which are the sets of indices κ associated with the iterations for which θ1 (or equivalently sκ = 1)
is chosen, and the indices for which θ2 (or equivalently sκ = −1) is chosen, respectively. Hence,
once κ iterations have been performed (numbered from 0 to κ− 1), it follows that Jθ1 ∩ Jθ2 = ∅
and Jθ1 ∪ Jθ2 = {0, 1, . . . , κ− 1}.

Let us suppose, by way of contradiction, that Algorithm 3.1 iterates infinitely many times
using the function θ1 to build the cuts, i.e., that Jθ1 is an infinite set of indices. In that case,
Algorithm 3.1 generates a sequence {uκ} in Su for κ ∈ Jθ1 . Since Su is compact then there
exists an accumulation point of that sequence in Su. Hence, for δ1 > 0 there exist ui1 and ui2
with i1 < i2 and i1, i2 ∈ Jθ1 , satisfying

‖[D̃i2 : K̃i2 : ui1]− [D̃i2 : K̃i2 : ui2]‖F = ‖ui1 − ui2‖2 < δ1. (16)

Now, since i1 < i2, matrices D̃i2 and K̃i2 computed at iteration i2 satisfy the constraint in (11)
with j = i1 given by

θ1(D̃i2 , K̃i2 , ui1) ≤ λ̂− ε. (17)

However, since Algorithm 3.1 does not stop at iteration i2 (Step 3.2) and i2 ∈ Jθ1 , this means
that ui2 is such that

θ1(D̃i2 , K̃i2 , ui2) > λ̂. (18)

Clearly, (16), (17), and (18) contradict (12) and (13), the uniform continuity of θ1 on BD ×
BK × Su. Therefore the number of indices in the set Jθ1 is finite, say N1.

Let us now suppose, by way of contradiction, that Algorithm 3.1 iterates infinitely many
times using the function θ2 to build the cuts, i.e., that Jθ2 is an infinite set of indices. Repeating
the same sequence of arguments as before but now using δ2 > 0 and θ2 instead of δ1 > 0 and θ1,
and contradicting (14) and (15), i.e., the uniform continuity of θ2 on BD×BK×Su, we conclude
that the number of indices in the set Jθ2 is also finite, say N2. Thus, Algorithm 3.1 terminates
in a finite number of iterations N̂ = N1 +N2, and the result is established. 2

Notice that when Algorithm 3.1 terminates, at Step 3.2, matrices D̃
N̂

and K̃
N̂

satisfy all the
constraints in (10). Moreover, the real part of all the eigenvalues λ of the quadratic eigenpencil
λ2M +λD̃

N̂
+ K̃

N̂
are less than or equal to λ̂. Therefore, Algorithm 3.1 terminates at a feasible

solution of (10) that also satisfies the extra requirement of not having spurious eigenvalues and
that it is optimal for problem (10,11).

4 Numerical experiments

To give further insight into the new approach of dynamically adding quadratic Rayleigh quotient
cuts to the nonlinear programming setting, for solving the QFEMUP, we present the results of

10

some numerical experiments. We implemented Algorithm 3.1 in Fortran 90. All tests were
conducted on a computer with 4 Intel Core i7-3417U 1.9GHz processors and 4GB of RAM
memory, running GNU/Linux operating system (Ubuntu 4.8.2-19ubuntu1, kernel 3.13.0-32).
Codes were compiled by the GFortran Fortran compiler of GCC (version 4.8.2) with the -O3
optimization directive enabled.

At Step 2 of Algorithm 3.1, the optimization subproblems given by (10,11) were solved us-
ing the nonlinear programming solver Algencan [2, 3, 10]. Algencan version 3.0.0, available for
download at the TANGO Project web page (http://www.ime.usp.br/~egbirgin/tango/) was
considered. All parameters were used with their default values, while feasibility and optimality
tolerances were both set to 10−4. Algencan is an augmented Lagrangian method for nonlin-
ear programming that solves the bound-constrained augmented Lagrangian subproblems using
Gencan [8, 9, 4], an active-set method for bound-constrained minimization. The initial guess
for the (iterative process of solving the) nonlinear programming subproblems is always given by
the original matrices D and K.

At Step 3, a quadratic eigenvalue τ with largest real part and, when required, an associated
eigenvector, are computed using subroutines dnaupd and dneupd from Arpack [34]. Arpack
subroutines, based on implicitly restarted Arnoldi methods, are applied to compute an eigenvalue
with largest real part of the linearization given by applying the substitution v = λx in (λ2M +
λD̃ + K̃)x = 0, that yields the generalized eigenvalue problem(

0 I

−K̃ −D̃

)(
x
v

)
− λ

(
I 0
0 M

)(
x
v

)
= 0. (19)

Other linearizations are possible and the most adequate choice depends on the nonsingularity
of M and K̃ and, in the large-scale case, on the sparsity structure of the matrices. See [38, pp.
252–253] for details.

The performance of Algorithm 3.1 will be illustrated by analyzing its behavior on three
small and one medium-sized randomly generated numerical test examples. In all examples, we
set U = 1020 and ε = 2× 10−4. The three small examples were solved in a fraction of a second,
and so elapsed CPU times required to solve them are not reported.

4.1 Example 1.

In the first example, we considered the quadratic eigenpencil (2) with matrices

M =

 0.7110 0.0212 −0.5813
0.0212 0.8509 0.4498
−0.5813 0.4498 1.7045

 , D =

 0.1167 0.3240 0.0237
0.3240 0.2774 0.6079
0.0237 0.6079 2.0967

 ,

and

K =

 0.3521 0.0222 0.2350
0.0222 −0.0007 0.0544
0.2350 0.0544 1.0708

 .

The objective is to find symmetric matrices D̃ and K̃ ∈ R3×3 such that the modified eigen-
pencil (3) has λ1 = −0.1 as quadratic eigenvalue associated with the quadratic eigenvector

11

http://www.ime.usp.br/~egbirgin/tango/

x1 = (0.09,−1.00, 0.07)T . In addition, we would like that all quadratic eigenvalues of the mod-
ified eigenpencil have its real part not larger that λ̂ = −0.1. Matrices D̃ and K̃ should be as
near as possible to D and K, respectively, and, since the given matrices are dense, there is no
sparsity pattern to be preserved.

We now describe the application of Algorithm 3.1 to this example. At Step 1, we have that
ID = IK = {(1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 3)}, meaning that the nonlinear programming
subproblems at Step 2 will have n = 12 variables. This reflects the fact that matrices D̃ and K̃
are dense (because matrices D and K are also dense) and that, since D̃ and K̃ are symmetric,
the unknowns correspond only to their upper triangle’s elements. By solving the nonlinear
programming subproblem (10) at Step 2 (note that there are no constraints of type (11) in this
first iteration), we obtain

D̃0 =

 0.1177 0.3185 0.0248
0.3185 0.2745 0.5998
0.0248 0.5998 2.0978

 and K̃0 =

 0.3420 0.0770 0.2237
0.0770 0.0286 0.1355
0.2237 0.1355 1.0593

 . (20)

Matrices D̃0 and K̃0 in (20) are such that ‖D − D̃0‖2F = 0.0002 and ‖K − K̃0‖2F = 0.0205. At
Step 3, we compute a quadratic eigenvalue τ of the modified eigenpencil with largest real part
and we obtain that τ = −0.0712 6≤ −0.1 = λ̂. Therefore, at Step 4, we compute a normalized
eigenvector u0 associated with τ given by u0 = (0.1106,−0.9909, 0.0762)T . In addition, by the
test given at Step 4.2, we set s0 = 1. The values u0 and s0 define a cut of type (11). In the next
iteration (κ = 1), by solving subproblem (10,11), we obtain matrices

D̃1 =

 0.1181 0.3151 0.0251
0.3151 0.3053 0.5974
0.0251 0.5974 2.0980

 and K̃1 =

 0.3420 0.0767 0.2237
0.0767 0.0317 0.1353
0.2237 0.1353 1.0593

 . (21)

Matrices D̃1 and K̃1 in (21) are such that ‖D − D̃1‖2F = 0.0012 and ‖K − K̃1‖2F = 0.0206.
These distances are only slightly larger than the distances obtained in the first iteration of the
algorithm. This time, when computing a quadratic eigenvalue τ with largest real part, we verify
that τ = −0.1 = λ̂. This means that we have obtained the desired modified eigenpencil with no
spurious quadratic eigenvalues.

4.2 Example 2.

In the second example, we considered the quadratic eigenpencil (2) with matrices

M =


1.6312 −0.2473 −1.0380 0.4628
−0.2473 0.9275 −0.0052 0.2589
−1.0380 −0.0052 2.1554 0.1102

0.4628 0.2589 0.1102 0.8301

 , D =


1.4794 −1.1102 0 −0.2222
−1.1102 0.3455 0.1237 0

0 0.1237 2.4643 −0.1004
−0.2222 0 −0.1004 1.0838

 ,

and

K =


0.5875 −0.1668 0 0
−0.1668 0.1831 0.0456 0

0 0.0456 1.0749 0.3803
0 0 0.3803 0.5624

 .

12

The highlight in this 4× 4 example is that D has an arbitrary sparsity pattern to be inherited
by D̃, while K is tridiagonal, property that must also be inherited by K̃. In this case, we have

ID = {(1, 1), (1, 2), (1, 4), (2, 2), (2, 3), (3, 3), (3, 4), (4, 4)},

IK = {(1, 1), (1, 2), (2, 2), (2, 3), (3, 3), (3, 4), (4, 4)},

and the nonlinear programming subproblems at Step 2 have n = 15 variables. The objective is to
find matrices D̃ and K̃ as near as possible to D and K, respectively, and such that the updated
eigenpencil (3) has the two desired eigenpairs (λ1, x1) and (λ2, x2), where λ1 = −0.1 + 0.3398i,
x1 = (0.5 + 0.04i, 0.8,−0.04 + 0.1i, 0.04 − 0.1i)T , and (λ2, x2) corresponds to the conjugate
eigenpair. In addition, we would also like the updated eigenpencil to have all its quadratic
eigenvalues with their real part not larger than λ̂ = −0.1.

By solving the first nonlinear programming subproblem at Step 2 (with κ = 0, i.e., with no
cut constraints), we obtain matrices

D̃0 =


1.5950 −0.9061 0 −0.1048
−0.9061 0.7112 −0.0282 0

0 −0.0282 2.4953 −0.2540
−0.1048 0 −0.2540 1.3599

 (22)

and

K̃0 =


0.5325 −0.1962 0 0
−0.1962 0.2082 0.0309 0

0 0.0309 0.9775 0.4915
0 0 0.4915 0.4374

 . (23)

Matrices D̃0 and K̃0 in (22,23) are such that ‖D−D̃0‖2F = 0.4284 and ‖K−K̃0‖2F = 0.0557 (the
sum being equal to 0.4841). When computing an eigenvalue τ with largest real part we find that
τ = −0.0798 6≤ −0.1 = λ̂. Therefore, we compute an associated normalized eigenvector given by
u0 = (0.0008, 0.1063,−0.5433, 0.8328)T , and, by the test at Step 4.2, set s0 = 1. Then, we solve
a new nonlinear programming subproblem at Step 2 (this time with a single cut of type (11)
given by u0 and s0) and find matrices

D̃1 =


1.5936 −0.9073 0 −0.0807
−0.9073 0.7109 −0.0392 0

0 −0.0392 2.4946 −0.2534
−0.0807 0 −0.2534 1.3588

 (24)

and

K̃1 =


0.5318 −0.1968 0 0
−0.1968 0.2081 0.0312 0

0 0.0312 0.9915 0.4758
0 0 0.4758 0.4612

 . (25)

This time, the quadratic eigenvalue τ with largest real part corresponds to τ = −0.1± 0.3398i
and, therefore, since <(τ) = −0.1 = λ̂, we are done. Matrices D̃1 and K̃1 in (24) and (25)

13

are such that ‖D − D̃1‖2F = 0.4454 and ‖K − K̃1‖2F = 0.0414. Since the sum of both squared
distances is equal to 0.4868, it means that we have obtained the desired updated eigenpencil,
with no spurious eigenvalues, at the price of a “very small” increase (≈ 0.5%) in the objective
function value. Observe that, as required, D̃1 and K̃1 in (24,25) are symmetric and preserve the
desired sparsity pattern.

4.3 Example 3.

In the third example, we considered the quadratic eigenpencil (2) given by matrices

M =


1.9979 0.3890 −0.3500 0.5459
0.3890 1.5993 0.2906 −0.8680
−0.3500 0.2906 1.1656 −0.5510

0.5459 −0.8680 −0.5510 1.8281

 , D =


0.9727 0.7667 −0.1444 0.3118
0.7667 0.0000 0.1213 −0.0389
−0.1444 0.1213 0.7190 0.3321

0.3118 −0.0389 0.3321 1.3145

 ,

and

K =


0.4018 0.4055 0.1019 0.3685
0.4055 0.5521 0.2048 0.0112
0.1019 0.2048 0.2443 0.0941
0.3685 0.0112 0.0941 0.8133

 .

The desired quadratic eigenpair is given by λ1 = −0.1 and x1 = (0.6,−0.6, 0.4,−0.5)T . In
addition, we would like the modified eigenpencil (3) to have all its eigenvalues with their real
part not larger than λ̂ = −0.1.

Since matrices D and K are dense, we have ID = IK = {(i, j) | 1 ≤ i ≤ j ≤ 4} and, thus, the
nonlinear programming subproblems at Step 2 have n = 20 variables. When solving the first
nonlinear programming subproblem with no cuts, we obtained matrices

D̃0 =


0.9583 0.7707 −0.1496 0.3114
0.7707 0.0063 0.1196 −0.0299
−0.1496 0.1196 0.7185 0.3282

0.3114 −0.0299 0.3282 1.3251

 (26)

and

K̃0 =


0.5460 0.3650 0.1540 0.3721
0.3650 0.4888 0.2218 −0.0788
0.1540 0.2218 0.2497 0.1332
0.3721 −0.0788 0.1332 0.7072

 . (27)

These matrices are such that ‖D−D̃0‖2F = 0.0006 and ‖K−K̃0‖2F = 0.0646. When computing a
quadratic eigenvalue τ with largest real part of the associated modified eigenpencil, we observed
that τ = 0.626 6≤ −0.1 = λ̂. Therefore, we computed an associated normalized eigenvector
u0 = (−0.5199, 0.715,−0.3242, 0.3368)T , and, by the test at Step 4.2, set s0 = 1. When solving
the second nonlinear programming subproblem, this time with the addition of the cut given by

14

u0 and s0, we obtained matrices

D̃1 =


1.0981 0.5784 −0.0624 0.2208
0.5784 0.2710 −0.0003 0.0946
−0.0624 −0.0003 0.7729 0.2717

0.2208 0.0946 0.2717 1.3839

 (28)

and

K̃1 =


0.5600 0.3455 0.1627 0.3632
0.3455 0.5139 0.2095 −0.0653
0.1627 0.2095 0.2550 0.1278
0.3632 −0.0653 0.1278 0.7123

 . (29)

Matrices in (28,29) are such that ‖D − D̃1‖2F = 0.2703 and ‖K − K̃1‖2F = 0.0655. When
computing a quadratic eigenvalue τ = −0.047 ± 0.4178i with largest real part, we observed
that <(τ) = −0.047 6≤ −0.1 = λ̂. A normalized eigenvector associated with the eigenvalue
−0.047+0.4178i is given by u1 = (−0.1964−0.5258i,−0.153+0.7568i,−0.1265−0.0316i, 0.2661−
0.0305i)T . By the test at Step 4.2, we set s1 = −1. This means that the next nonlinear
programming subproblem to be solved had two cut constraints. By solving it, we obtained
matrices

D̃2 =


1.1721 0.5134 −0.1034 0.2673
0.5134 0.4118 0.0858 −0.0337
−0.1034 0.0858 0.7428 0.2943

0.2673 −0.0337 0.2943 1.3818

 (30)

and

K̃2 =


0.5662 0.3403 0.1600 0.3661
0.3403 0.5181 0.2128 −0.0690
0.1600 0.2128 0.2487 0.1354
0.3661 −0.0690 0.1354 0.7032

 (31)

such that ‖D − D̃2‖2F = 0.3555 and ‖K − K̃2‖2F = 0.072. When computing an eigenvalue τ
with largest real part associated with the modified eigenpencil given by matrices in (30,31), we
obtained that τ = −0.1 ≤ λ̂ and, therefore, the algorithm stopped.

It is worth noticing that the final sum of the squared distances is 0.4275, which is relatively
larger than the sum of the squared distances obtained after the first iteration of the algorithm
(where the nonlinear programming subproblem did not include any cut), whose value is 0.0652.
This is because the matrices D̃0 and K̃0 in (26,27) obtained in the first iteration have, as well
as the original matrices, a quadratic eigenvalue λ ≈ 0.6 that is relatively far from the desired
upper limit λ̂ = −0.1. This justifies the “relatively large modification” of the matrices, reflected
in the relatively large final squared distances, when compared to the distances obtained after
the first iteration of the algorithm that did not include any cut.

4.4 Example 4.

In the fourth example, we considered the quadratic eigenpencil (2) given by sparse matrices
M,D,K ∈ R100×100, such that M is diagonal and positive definite and D and K are both

15

tridiagonal and symmetric. Matrices M , D, and K can be found in the Appendix. The two
desired quadratic eigenvalues are given by λ1 = −0.3 + 0.4713i and its conjugate λ2 = −0.3 −
0.4713i. The desired eigenvectors x1 and x2 are such that x1 has its non-null elements given by

[x1]1 = 0.0010 + 0.0001i
[x1]2 = −0.0010 + 0.0001i
[x1]16 = −0.0020 + 0.0000i
[x1]17 = −0.0020 + 0.0020i
[x1]18 = −0.0100 + 0.0050i
[x1]19 = 0.8000 + 0.0000i
[x1]20 = −0.0050− 0.0020i
[x1]100 = 0.0010 + 0.0010i

and x2 is the conjugate of x1. In addition, we would like the modified eigenpencil (3) to have all
its eigenvalues with their real part not larger than λ̂ = −0.3. Matrices D and K are tridiagonal,
so we have ID = IK = {(i, i) | 1 ≤ i ≤ 100} ∪ {(i, i + 1) | 1 ≤ i ≤ 99} and, thus, the nonlinear
programming subproblems at Step 2 have n = 398 variables.

Algorithm 3.1 required four iterations to solve this problem. The computed eigenvalue with
largest real part at each iteration, as well as the squared distances of the obtained matrices, are
reported in Table 1. Intermediate matrices (D̃0, D̃1, D̃2, K̃0, K̃1, and K̃2) and final matrices
D̃3 and K̃3 are reported in the Appendix. In the considered computational environment, the
elapsed CPU time required to solve this problem was 6.96 seconds.

κ ‖D − D̃κ‖2F ‖K − K̃κ‖2F τ

0 0.5305 0.1308 −0.2275± 0.4486i
1 0.5876 0.1367 −0.2910± 0.4472i
2 0.5886 0.1369 −0.2989± 0.4406i
3 0.5891 0.1370 −0.3000± 0.4713i

Table 1: Details of the progress of Algorithm 3.1 when applied to Example 4.

5 Final remarks

We introduced a new optimization approach for solving the QFEMUP problem, that combines
the use of standard nonlinear programming solvers with the dynamical inclusion of additional
constraints to avoid that spurious modes appear in the frequency range of interest. These ad-
ditional constraints or cuts are based on an extension of the Rayleigh quotient for quadratic
eigenvalue problems. For this combination of ideas, we have presented an iterative algorithm
for which we have established finite termination. A key feature, observed on some preliminary
numerical experiments, is that our new machinery finds an optimal and feasible solution com-
puting only a few eigenvalues and eigenvectors of the associated quadratic matrix pencil. For our
experiments we have combined the packages Algencan for solving the constrained optimization
problems, and the package Arpack for the eigenvalue-eigenvector calculations. Both packages

16

are easy to obtain and easy to use, however, it is worth mentioning that any other packages can
be used as inner-solvers in our iterative scheme.

In our approach, the structure of the feasible region played a key role concerning practical and
also theoretical issues. However, the objective function of the sequence of nonlinear programming
problems was not referred in the analysis of the algorithm. Hence, our iterative combined scheme
can be extended to solve some other related model updating and eigenvalue assignment problems;
see e.g., [5, 11, 19, 25, 33]. Moreover, the symmetry of the involved matrices M , D, and K, does
not play any special role in our optimization machinery, besides halving the required storage,
and so our approach can also be adapted to solve some other problems for which these structural
constraints are not required.

17

6 Appendix

Tables 2–6 describe the matrices related to the numerical example 4.

i [M]ii i [M]ii i [M]ii i [M]ii i [M]ii i [M]ii
1 1.5053 18 0.4996 35 1.5666 52 0.2083 69 1.2030 86 1.4889
2 0.1538 19 0.2994 36 0.9184 53 0.4445 70 1.0488 87 0.5119
3 1.6977 20 1.8723 37 1.4335 54 1.0295 71 0.5911 88 0.1202
4 0.5716 21 1.4258 38 1.9216 55 1.5657 72 0.2764 89 0.8877
5 1.4613 22 1.3173 39 0.1249 56 0.0473 73 0.0717 90 0.8505
6 0.4390 23 1.2847 40 1.6696 57 1.7994 74 0.9783 91 0.5080
7 0.5855 24 0.8649 41 0.0548 58 1.9011 75 0.0839 92 0.7225
8 1.4777 25 1.9855 42 1.0039 59 0.3625 76 0.3570 93 0.1266
9 1.6715 26 1.2321 43 0.3965 60 1.5685 77 1.7329 94 1.8337

10 1.8623 27 0.3111 44 1.1356 61 0.5913 78 0.5870 95 1.8101
11 1.5375 28 1.1334 45 0.2888 62 0.4942 79 1.2112 96 0.3831
12 1.8198 29 1.0207 46 0.9464 63 0.9773 80 1.0747 97 1.8462
13 0.6485 30 1.9437 47 1.6218 64 1.0405 81 1.6449 98 1.3943
14 0.5811 31 0.7576 48 1.7579 65 1.1056 82 0.8369 99 0.8907
15 1.3107 32 0.9548 49 1.6852 66 0.6284 83 1.2493 100 0.3181
16 1.6592 33 0.7280 50 1.8897 67 0.2455 84 0.3631
17 1.4239 34 0.4705 51 1.1201 68 0.2085 85 0.8329

Table 2: Indices and elements of matrix M for example 4.

18

i j [D]ij [D̃0]ij [D̃1]ij [D̃2]ij [D̃3]ij i j [D]ij [D̃0]ij [D̃1]ij [D̃2]ij [D̃3]ij
1 1 0.6249 0.6938 0.8678 0.8766 0.8785 41 40 0.0075 0.0075 0.0075 0.0075 0.0075
2 1 -0.0117 -0.0359 0.0442 0.0266 0.0231 41 41 0.0641 0.0641 0.0641 0.0641 0.0641
2 2 0.2183 0.1694 0.2116 0.2174 0.2169 42 41 -0.0177 -0.0177 -0.0177 -0.0177 -0.0177
3 2 -0.0746 -0.0625 -0.0617 -0.0609 -0.0608 42 42 1.3064 1.3064 1.3064 1.3064 1.3064
3 3 2.1765 2.1765 2.1765 2.1766 2.1766 43 42 -0.0266 -0.0266 -0.0266 -0.0266 -0.0266
4 3 -0.0352 -0.0352 -0.0352 -0.0352 -0.0352 43 43 0.5155 0.5155 0.5155 0.5155 0.5155
4 4 0.7032 0.7032 0.7032 0.7032 0.7032 44 43 0.0212 0.0212 0.0212 0.0212 0.0212
5 4 0.0031 0.0031 0.0031 0.0031 0.0031 44 44 1.4344 1.4344 1.4344 1.4344 1.4344
5 5 1.8362 1.8362 1.8362 1.8362 1.8362 45 44 -0.0021 -0.0021 -0.0021 -0.0021 -0.0021
6 5 0.0032 0.0032 0.0032 0.0032 0.0032 45 45 0.3655 0.3655 0.3655 0.3655 0.3655
6 6 0.5306 0.5306 0.5306 0.5306 0.5306 46 45 0.0052 0.0052 0.0052 0.0052 0.0052
7 6 0.0458 0.0458 0.0458 0.0458 0.0458 46 46 1.1749 1.1749 1.1749 1.1749 1.1749
7 7 0.7282 0.7282 0.7282 0.7282 0.7282 47 46 -0.0363 -0.0363 -0.0363 -0.0363 -0.0363
8 7 0.0368 0.0368 0.0368 0.0368 0.0368 47 47 2.0016 2.0016 2.0016 2.0016 2.0016
8 8 1.7787 1.7787 1.7787 1.7787 1.7787 48 47 0.0281 0.0281 0.0281 0.0281 0.0281
9 8 -0.1126 -0.1126 -0.1126 -0.1126 -0.1126 48 48 2.1579 2.1579 2.1579 2.1579 2.1579
9 9 2.0339 2.0339 2.0339 2.0339 2.0339 49 48 -0.0331 -0.0331 -0.0331 -0.0331 -0.0331

10 9 -0.1332 -0.1332 -0.1332 -0.1332 -0.1332 49 49 2.1106 2.1106 2.1106 2.1106 2.1106
10 10 2.2911 2.2911 2.2911 2.2911 2.2911 50 49 0.0479 0.0479 0.0479 0.0479 0.0479
11 10 -0.0345 -0.0345 -0.0345 -0.0345 -0.0345 50 50 2.4156 2.4156 2.4156 2.4156 2.4156
11 11 2.0015 2.0015 2.0015 2.0015 2.0015 51 50 -0.0204 -0.0204 -0.0204 -0.0204 -0.0204
12 11 0.0482 0.0482 0.0482 0.0482 0.0482 51 51 1.3701 1.3701 1.3701 1.3701 1.3701
12 12 2.3092 2.3092 2.3092 2.3092 2.3092 52 51 -0.0315 -0.0315 -0.0315 -0.0315 -0.0315
13 12 0.0268 0.0268 0.0268 0.0268 0.0268 52 52 0.2578 0.2578 0.2578 0.2578 0.2578
13 13 0.7812 0.7812 0.7812 0.7812 0.7812 53 52 -0.0031 -0.0031 -0.0031 -0.0031 -0.0031
14 13 -0.0074 -0.0074 -0.0074 -0.0074 -0.0074 53 53 0.5275 0.5275 0.5275 0.5275 0.5275
14 14 0.7136 0.7136 0.7136 0.7136 0.7136 54 53 0.0449 0.0449 0.0449 0.0449 0.0449
15 14 0.0111 0.0111 0.0111 0.0111 0.0111 54 54 1.2412 1.2412 1.2412 1.2412 1.2412
15 15 1.5925 1.5925 1.5925 1.5925 1.5925 55 54 0.0477 0.0477 0.0477 0.0477 0.0477
16 15 0.0602 0.0303 0.0303 0.0303 0.0303 55 55 1.9213 1.9213 1.9213 1.9213 1.9213
16 16 1.9953 1.7690 1.7690 1.7690 1.7691 56 55 -0.0049 -0.0049 -0.0049 -0.0049 -0.0049
17 16 -0.0603 -0.3164 -0.3164 -0.3164 -0.3164 56 56 0.0665 0.0665 0.0665 0.0665 0.0665
17 17 1.6940 1.6151 1.6151 1.6151 1.6151 57 56 -0.0454 -0.0454 -0.0454 -0.0454 -0.0454
18 17 -0.0276 -0.1439 -0.1439 -0.1439 -0.1439 57 57 2.1968 2.1968 2.1968 2.1968 2.1968
18 18 0.6022 0.6022 0.6022 0.6022 0.6022 58 57 0.0909 0.0909 0.0909 0.0909 0.0909
19 18 0.0063 0.0034 0.0034 0.0034 0.0034 58 58 2.3015 2.3015 2.3015 2.3015 2.3015
19 19 -0.3571 0.1797 0.1797 0.1797 0.1797 59 58 -0.0632 -0.0632 -0.0632 -0.0632 -0.0632
20 19 0.0127 0.0089 0.0089 0.0089 0.0089 59 59 0.4271 0.4271 0.4271 0.4271 0.4271
20 20 2.3512 2.3513 2.3513 2.3513 2.3513 60 59 0.0235 0.0235 0.0235 0.0235 0.0235
21 20 -0.0559 -0.0027 -0.0027 -0.0027 -0.0027 60 60 1.9162 1.9162 1.9162 1.9162 1.9162
21 21 1.7239 1.7239 1.7239 1.7239 1.7239 61 60 0.0460 0.0460 0.0460 0.0460 0.0460
22 21 -0.0371 -0.0371 -0.0371 -0.0371 -0.0371 61 61 0.7717 0.7717 0.7717 0.7717 0.7717
22 22 1.6275 1.6275 1.6275 1.6275 1.6275 62 61 0.0158 0.0158 0.0158 0.0158 0.0158
23 22 -0.0471 -0.0471 -0.0471 -0.0471 -0.0471 62 62 0.5896 0.5896 0.5896 0.5896 0.5896
23 23 1.5498 1.5498 1.5498 1.5498 1.5498 63 62 -0.0122 -0.0122 -0.0122 -0.0122 -0.0122
24 23 0.0159 0.0159 0.0159 0.0159 0.0159 63 63 1.2641 1.2641 1.2641 1.2641 1.2641
24 24 1.0451 1.0451 1.0451 1.0451 1.0451 64 63 0.0657 0.0657 0.0657 0.0657 0.0657
25 24 -0.1689 -0.1689 -0.1689 -0.1689 -0.1689 64 64 1.2396 1.2396 1.2396 1.2396 1.2396
25 25 2.5574 2.5574 2.5574 2.5574 2.5574 65 64 0.0415 0.0415 0.0415 0.0415 0.0415
26 25 0.0541 0.0541 0.0541 0.0541 0.0541 65 65 1.2803 1.2803 1.2803 1.2803 1.2803
26 26 1.5564 1.5564 1.5564 1.5564 1.5564 66 65 0.0088 0.0088 0.0088 0.0088 0.0088
27 26 0.0366 0.0366 0.0366 0.0366 0.0366 66 66 0.7706 0.7706 0.7706 0.7706 0.7706
27 27 0.3810 0.3810 0.3810 0.3810 0.3810 67 66 0.0260 0.0260 0.0260 0.0260 0.0260
28 27 -0.0691 -0.0691 -0.0691 -0.0691 -0.0691 67 67 0.3015 0.3015 0.3015 0.3015 0.3015
28 28 1.3412 1.3412 1.3412 1.3412 1.3412 68 67 0.0311 0.0311 0.0311 0.0311 0.0311
29 28 0.0160 0.0160 0.0160 0.0160 0.0160 68 68 0.2662 0.2662 0.2662 0.2662 0.2662
29 29 1.2401 1.2401 1.2401 1.2401 1.2401 69 68 0.0501 0.0501 0.0501 0.0501 0.0501
30 29 -0.0470 -0.0470 -0.0470 -0.0470 -0.0470 69 69 1.4331 1.4331 1.4331 1.4331 1.4331
30 30 2.4459 2.4459 2.4459 2.4459 2.4459 70 69 -0.0314 -0.0314 -0.0314 -0.0314 -0.0314
31 30 0.0066 0.0066 0.0066 0.0066 0.0066 70 70 1.2423 1.2423 1.2423 1.2423 1.2423
31 31 0.9368 0.9368 0.9368 0.9368 0.9368 71 70 -0.0447 -0.0447 -0.0447 -0.0447 -0.0447
32 31 -0.0400 -0.0400 -0.0400 -0.0400 -0.0400 71 71 0.6949 0.6949 0.6949 0.6949 0.6949
32 32 1.1424 1.1424 1.1424 1.1424 1.1424 72 71 -0.0152 -0.0152 -0.0152 -0.0152 -0.0152
33 32 -0.0076 -0.0076 -0.0076 -0.0076 -0.0076 72 72 0.3444 0.3444 0.3444 0.3444 0.3444
33 33 0.8920 0.8920 0.8920 0.8920 0.8920 73 72 0.0016 0.0016 0.0016 0.0016 0.0016
34 33 0.0082 0.0082 0.0082 0.0082 0.0082 73 73 0.0907 0.0907 0.0907 0.0907 0.0907
34 34 0.6148 0.6148 0.6148 0.6148 0.6148 74 73 0.0009 0.0009 0.0009 0.0009 0.0009
35 34 -0.0676 -0.0676 -0.0676 -0.0676 -0.0676 74 74 1.2681 1.2681 1.2681 1.2681 1.2681
35 35 1.8878 1.8878 1.8878 1.8878 1.8878 75 74 -0.0404 -0.0404 -0.0404 -0.0404 -0.0404
36 35 -0.0176 -0.0176 -0.0176 -0.0176 -0.0176 75 75 0.1070 0.1070 0.1070 0.1070 0.1070
36 36 1.1609 1.1609 1.1609 1.1609 1.1609 76 75 0.0063 0.0063 0.0063 0.0063 0.0063
37 36 -0.0513 -0.0513 -0.0513 -0.0513 -0.0513 76 76 0.4486 0.4486 0.4486 0.4486 0.4486
37 37 1.7837 1.7837 1.7837 1.7837 1.7837 77 76 0.0944 0.0944 0.0944 0.0944 0.0944
38 37 0.0471 0.0471 0.0471 0.0471 0.0471 77 77 2.1622 2.1622 2.1622 2.1622 2.1622
38 38 2.4379 2.4379 2.4379 2.4379 2.4379 78 77 -0.0339 -0.0339 -0.0339 -0.0339 -0.0339
39 38 -0.0112 -0.0112 -0.0112 -0.0112 -0.0112 78 78 0.7619 0.7619 0.7619 0.7619 0.7619
39 39 0.1619 0.1619 0.1619 0.1619 0.1619 79 78 0.0300 0.0300 0.0300 0.0300 0.0300
40 39 0.0661 0.0661 0.0661 0.0661 0.0661 79 79 1.4654 1.4654 1.4654 1.4654 1.4654
40 40 1.9771 1.9771 1.9771 1.9771 1.9771 80 79 0.0260 0.0260 0.0260 0.0260 0.0260

Table 3: Indices and elements of matrices D, D̃0, D̃1, D̃2, D̃3 for example 4.

19

i j [D]ij [D̃0]ij [D̃1]ij [D̃2]ij [D̃3]ij i j [D]ij [D̃0]ij [D̃1]ij [D̃2]ij [D̃3]ij
80 80 1.3267 1.3267 1.3267 1.3267 1.3267 91 90 -0.0026 -0.0026 -0.0026 -0.0026 -0.0026
81 80 0.0515 0.0515 0.0515 0.0515 0.0515 91 91 0.6285 0.6285 0.6285 0.6285 0.6285
81 81 2.0186 2.0186 2.0186 2.0186 2.0186 92 91 0.0168 0.0168 0.0168 0.0168 0.0168
82 81 -0.0352 -0.0352 -0.0352 -0.0352 -0.0352 92 92 0.8958 0.8958 0.8958 0.8958 0.8958
82 82 1.0750 1.0750 1.0750 1.0750 1.0750 93 92 -0.0059 -0.0059 -0.0059 -0.0059 -0.0059
83 82 0.0339 0.0339 0.0339 0.0339 0.0339 93 93 0.1448 0.1448 0.1448 0.1448 0.1448
83 83 1.5337 1.5337 1.5337 1.5337 1.5337 94 93 -0.0197 -0.0197 -0.0197 -0.0197 -0.0197
84 83 0.0278 0.0278 0.0278 0.0278 0.0278 94 94 2.2673 2.2673 2.2673 2.2673 2.2673
84 84 0.4384 0.4384 0.4384 0.4384 0.4384 95 94 -0.0110 -0.0110 -0.0110 -0.0110 -0.0110
85 84 -0.0167 -0.0167 -0.0167 -0.0167 -0.0167 95 95 2.2483 2.2483 2.2483 2.2483 2.2483
85 85 1.0386 1.0386 1.0386 1.0386 1.0386 96 95 0.0169 0.0169 0.0169 0.0169 0.0169
86 85 -0.0531 -0.0531 -0.0531 -0.0531 -0.0531 96 96 0.4819 0.4819 0.4819 0.4819 0.4819
86 86 1.7935 1.7935 1.7935 1.7935 1.7935 97 96 0.0678 0.0678 0.0678 0.0678 0.0678
87 86 0.0464 0.0464 0.0464 0.0464 0.0464 97 97 2.2184 2.2184 2.2184 2.2184 2.2184
87 87 0.6006 0.6006 0.6006 0.6006 0.6006 98 97 -0.0253 -0.0253 -0.0253 -0.0253 -0.0253
88 87 -0.0064 -0.0064 -0.0064 -0.0064 -0.0064 98 98 1.6361 1.6361 1.6361 1.6361 1.6361
88 88 0.1532 0.1532 0.1532 0.1532 0.1532 99 98 0.0078 0.0078 0.0078 0.0078 0.0078
89 88 -0.0093 -0.0093 -0.0093 -0.0093 -0.0093 99 99 1.0793 1.0793 1.0793 1.0793 1.0793
89 89 1.0679 1.0679 1.0679 1.0679 1.0679 100 99 0.0001 -0.0006 -0.0006 -0.0006 -0.0006
90 89 0.0289 0.0289 0.0289 0.0289 0.0289 100 100 0.3972 0.2940 0.2940 0.2940 0.2940
90 90 0.9835 0.9835 0.9835 0.9835 0.9835

Table 4: Indices and elements of matrices D, D̃0, D̃1, D̃2, D̃3 for example 4 (cont.).

20

i j [K]ij [K̃0]ij [K̃1]ij [K̃2]ij [K̃3]ij i j [K]ij [K̃0]ij [K̃1]ij [K̃2]ij [K̃3]ij
1 1 0.2980 0.3794 0.4017 0.4040 0.4045 41 40 -0.0131 -0.0131 -0.0131 -0.0131 -0.0131
2 1 -0.0107 -0.0064 -0.0184 -0.0221 -0.0228 41 41 0.0273 0.0273 0.0273 0.0273 0.0273
2 2 0.1122 0.0863 0.0636 0.0679 0.0685 42 41 -0.0325 -0.0325 -0.0325 -0.0325 -0.0325
3 2 -0.0394 -0.0278 -0.0277 -0.0276 -0.0275 42 42 0.6446 0.6446 0.6446 0.6446 0.6446
3 3 1.0301 1.0301 1.0301 1.0301 1.0301 43 42 -0.0166 -0.0166 -0.0166 -0.0166 -0.0166
4 3 -0.0218 -0.0218 -0.0218 -0.0218 -0.0218 43 43 0.2622 0.2622 0.2622 0.2622 0.2622
4 4 0.3388 0.3388 0.3388 0.3388 0.3388 44 43 0.0282 0.0282 0.0282 0.0282 0.0282
5 4 0.0064 0.0064 0.0064 0.0064 0.0064 44 44 0.7142 0.7142 0.7142 0.7142 0.7142
5 5 0.8838 0.8838 0.8838 0.8838 0.8838 45 44 0.0065 0.0065 0.0065 0.0065 0.0065
6 5 0.0104 0.0104 0.0104 0.0104 0.0104 45 45 0.1770 0.1770 0.1770 0.1770 0.1770
6 6 0.2431 0.2431 0.2431 0.2431 0.2431 46 45 -0.0285 -0.0285 -0.0285 -0.0285 -0.0285
7 6 0.0548 0.0548 0.0548 0.0548 0.0548 46 46 0.5735 0.5735 0.5735 0.5735 0.5735
7 7 0.3357 0.3357 0.3357 0.3357 0.3357 47 46 -0.0149 -0.0149 -0.0149 -0.0149 -0.0149
8 7 0.0416 0.0416 0.0416 0.0416 0.0416 47 47 0.9513 0.9513 0.9513 0.9513 0.9513
8 8 0.8690 0.8690 0.8690 0.8690 0.8690 48 47 -0.0559 -0.0559 -0.0559 -0.0559 -0.0559
9 8 -0.0468 -0.0468 -0.0468 -0.0468 -0.0468 48 48 1.0210 1.0210 1.0210 1.0210 1.0210
9 9 0.9956 0.9956 0.9956 0.9956 0.9956 49 48 0.0117 0.0117 0.0117 0.0117 0.0117

10 9 -0.0545 -0.0545 -0.0545 -0.0545 -0.0545 49 49 1.0097 1.0097 1.0097 1.0097 1.0097
10 10 1.1117 1.1117 1.1117 1.1117 1.1117 50 49 0.0006 0.0006 0.0006 0.0006 0.0006
11 10 0.0019 0.0019 0.0019 0.0019 0.0019 50 50 1.1858 1.1858 1.1858 1.1858 1.1858
11 11 0.9711 0.9711 0.9711 0.9711 0.9711 51 50 0.0118 0.0118 0.0118 0.0118 0.0118
12 11 0.0213 0.0213 0.0213 0.0213 0.0213 51 51 0.6299 0.6299 0.6299 0.6299 0.6299
12 12 1.0589 1.0589 1.0589 1.0589 1.0589 52 51 -0.0183 -0.0183 -0.0183 -0.0183 -0.0183
13 12 0.0137 0.0137 0.0137 0.0137 0.0137 52 52 0.1195 0.1195 0.1195 0.1195 0.1195
13 13 0.3661 0.3661 0.3661 0.3661 0.3661 53 52 -0.0113 -0.0113 -0.0113 -0.0113 -0.0113
14 13 0.0021 0.0021 0.0021 0.0021 0.0021 53 53 0.2642 0.2642 0.2642 0.2642 0.2642
14 14 0.3436 0.3436 0.3436 0.3436 0.3436 54 53 0.0265 0.0265 0.0265 0.0265 0.0265
15 14 0.0430 0.0430 0.0430 0.0430 0.0430 54 54 0.5898 0.5898 0.5898 0.5898 0.5898
15 15 0.7593 0.7593 0.7593 0.7593 0.7593 55 54 0.0236 0.0236 0.0236 0.0236 0.0236
16 15 0.0288 0.0118 0.0118 0.0118 0.0118 55 55 0.9430 0.9430 0.9430 0.9430 0.9430
16 16 0.9102 0.7172 0.7172 0.7172 0.7172 56 55 -0.0052 -0.0052 -0.0052 -0.0052 -0.0052
17 16 -0.0649 0.0979 0.0979 0.0979 0.0979 56 56 0.0359 0.0359 0.0359 0.0359 0.0359
17 17 0.7940 0.7934 0.7934 0.7934 0.7934 57 56 -0.0039 -0.0039 -0.0039 -0.0039 -0.0039
18 17 -0.0375 -0.1435 -0.1435 -0.1435 -0.1435 57 57 1.0276 1.0276 1.0276 1.0276 1.0276
18 18 0.2864 0.2866 0.2866 0.2866 0.2866 58 57 0.1115 0.1115 0.1115 0.1115 0.1115
19 18 0.0057 0.0020 0.0020 0.0020 0.0020 58 58 1.0951 1.0951 1.0951 1.0951 1.0951
19 19 0.1731 0.0935 0.0935 0.0935 0.0935 59 58 -0.0412 -0.0412 -0.0412 -0.0412 -0.0412
20 19 -0.0058 0.0026 0.0026 0.0026 0.0026 59 59 0.1886 0.1886 0.1886 0.1886 0.1886
20 20 1.1777 1.1776 1.1776 1.1776 1.1776 60 59 0.0209 0.0209 0.0209 0.0209 0.0209
21 20 -0.0158 -0.0010 -0.0010 -0.0010 -0.0010 60 60 0.8946 0.8946 0.8946 0.8946 0.8946
21 21 0.7943 0.7943 0.7943 0.7943 0.7943 61 60 0.0328 0.0328 0.0328 0.0328 0.0328
22 21 -0.0009 -0.0009 -0.0009 -0.0009 -0.0009 61 61 0.3736 0.3736 0.3736 0.3736 0.3736
22 22 0.7647 0.7647 0.7647 0.7647 0.7647 62 61 0.0094 0.0094 0.0094 0.0094 0.0094
23 22 -0.0057 -0.0057 -0.0057 -0.0057 -0.0057 62 62 0.2816 0.2816 0.2816 0.2816 0.2816
23 23 0.7363 0.7363 0.7363 0.7363 0.7363 63 62 -0.0140 -0.0140 -0.0140 -0.0140 -0.0140
24 23 0.0047 0.0047 0.0047 0.0047 0.0047 63 63 0.6170 0.6170 0.6170 0.6170 0.6170
24 24 0.5057 0.5057 0.5057 0.5057 0.5057 64 63 0.0370 0.0370 0.0370 0.0370 0.0370
25 24 -0.0652 -0.0652 -0.0652 -0.0652 -0.0652 64 64 0.5822 0.5822 0.5822 0.5822 0.5822
25 25 1.2316 1.2316 1.2316 1.2316 1.2316 65 64 0.0605 0.0605 0.0605 0.0605 0.0605
26 25 0.0744 0.0744 0.0744 0.0744 0.0744 65 65 0.6281 0.6281 0.6281 0.6281 0.6281
26 26 0.6940 0.6940 0.6940 0.6940 0.6940 66 65 0.0173 0.0173 0.0173 0.0173 0.0173
27 26 0.0067 0.0067 0.0067 0.0067 0.0067 66 66 0.3706 0.3706 0.3706 0.3706 0.3706
27 27 0.1870 0.1870 0.1870 0.1870 0.1870 67 66 0.0209 0.0209 0.0209 0.0209 0.0209
28 27 -0.0352 -0.0352 -0.0352 -0.0352 -0.0352 67 67 0.1492 0.1492 0.1492 0.1492 0.1492
28 28 0.6323 0.6323 0.6323 0.6323 0.6323 68 67 0.0251 0.0251 0.0251 0.0251 0.0251
29 28 -0.0104 -0.0104 -0.0104 -0.0104 -0.0104 68 68 0.1386 0.1386 0.1386 0.1386 0.1386
29 29 0.5899 0.5899 0.5899 0.5899 0.5899 69 68 0.0446 0.0446 0.0446 0.0446 0.0446
30 29 -0.0952 -0.0952 -0.0952 -0.0952 -0.0952 69 69 0.7056 0.7056 0.7056 0.7056 0.7056
30 30 1.2424 1.2424 1.2424 1.2424 1.2424 70 69 -0.0590 -0.0590 -0.0590 -0.0590 -0.0590
31 30 0.0314 0.0314 0.0314 0.0314 0.0314 70 70 0.6026 0.6026 0.6026 0.6026 0.6026
31 31 0.4440 0.4440 0.4440 0.4440 0.4440 71 70 -0.0032 -0.0032 -0.0032 -0.0032 -0.0032
32 31 -0.0402 -0.0402 -0.0402 -0.0402 -0.0402 71 71 0.3224 0.3224 0.3224 0.3224 0.3224
32 32 0.5256 0.5256 0.5256 0.5256 0.5256 72 71 -0.0249 -0.0249 -0.0249 -0.0249 -0.0249
33 32 0.0002 0.0002 0.0002 0.0002 0.0002 72 72 0.1528 0.1528 0.1528 0.1528 0.1528
33 33 0.4183 0.4183 0.4183 0.4183 0.4183 73 72 0.0075 0.0075 0.0075 0.0075 0.0075
34 33 0.0127 0.0127 0.0127 0.0127 0.0127 73 73 0.0435 0.0435 0.0435 0.0435 0.0435
34 34 0.3118 0.3118 0.3118 0.3118 0.3118 74 73 0.0045 0.0045 0.0045 0.0045 0.0045
35 34 -0.0492 -0.0492 -0.0492 -0.0492 -0.0492 74 74 0.6108 0.6108 0.6108 0.6108 0.6108
35 35 0.9529 0.9529 0.9529 0.9529 0.9529 75 74 -0.0136 -0.0136 -0.0136 -0.0136 -0.0136
36 35 -0.0197 -0.0197 -0.0197 -0.0197 -0.0197 75 75 0.0552 0.0552 0.0552 0.0552 0.0552
36 36 0.5571 0.5571 0.5571 0.5571 0.5571 76 75 -0.0001 -0.0001 -0.0001 -0.0001 -0.0001
37 36 -0.0192 -0.0192 -0.0192 -0.0192 -0.0192 76 76 0.2254 0.2254 0.2254 0.2254 0.2254
37 37 0.8393 0.8393 0.8393 0.8393 0.8393 77 76 0.0219 0.0219 0.0219 0.0219 0.0219
38 37 0.0677 0.0677 0.0677 0.0677 0.0677 77 77 1.0077 1.0077 1.0077 1.0077 1.0077
38 38 1.2079 1.2079 1.2079 1.2079 1.2079 78 77 -0.0653 -0.0653 -0.0653 -0.0653 -0.0653
39 38 -0.0390 -0.0390 -0.0390 -0.0390 -0.0390 78 78 0.3813 0.3813 0.3813 0.3813 0.3813
39 39 0.0787 0.0787 0.0787 0.0787 0.0787 79 78 0.0338 0.0338 0.0338 0.0338 0.0338
40 39 0.0668 0.0668 0.0668 0.0668 0.0668 79 79 0.6700 0.6700 0.6700 0.6700 0.6700
40 40 0.9517 0.9517 0.9517 0.9517 0.9517 80 79 0.0037 0.0037 0.0037 0.0037 0.0037

Table 5: Indices and elements of matrices K, K̃0, K̃1, K̃2, K̃3 for example 4.

21

i j [K]ij [K̃0]ij [K̃1]ij [K̃2]ij [K̃3]ij i j [K]ij [K̃0]ij [K̃1]ij [K̃2]ij [K̃3]ij
80 80 0.6383 0.6383 0.6383 0.6383 0.6383 91 90 0.0088 0.0088 0.0088 0.0088 0.0088
81 80 0.0502 0.0502 0.0502 0.0502 0.0502 91 91 0.3181 0.3181 0.3181 0.3181 0.3181
81 81 0.9791 0.9791 0.9791 0.9791 0.9791 92 91 0.0300 0.0300 0.0300 0.0300 0.0300
82 81 -0.0360 -0.0360 -0.0360 -0.0360 -0.0360 92 92 0.4434 0.4434 0.4434 0.4434 0.4434
82 82 0.5431 0.5431 0.5431 0.5431 0.5431 93 92 -0.0073 -0.0073 -0.0073 -0.0073 -0.0073
83 82 0.0479 0.0479 0.0479 0.0479 0.0479 93 93 0.0653 0.0653 0.0653 0.0653 0.0653
83 83 0.7244 0.7244 0.7244 0.7244 0.7244 94 93 -0.0365 -0.0365 -0.0365 -0.0365 -0.0365
84 83 0.0377 0.0377 0.0377 0.0377 0.0377 94 94 1.1224 1.1224 1.1224 1.1224 1.1224
84 84 0.2167 0.2167 0.2167 0.2167 0.2167 95 94 -0.0261 -0.0261 -0.0261 -0.0261 -0.0261
85 84 -0.0033 -0.0033 -0.0033 -0.0033 -0.0033 95 95 1.0743 1.0743 1.0743 1.0743 1.0743
85 85 0.4981 0.4981 0.4981 0.4981 0.4981 96 95 0.0040 0.0040 0.0040 0.0040 0.0040
86 85 -0.0502 -0.0502 -0.0502 -0.0502 -0.0502 96 96 0.2336 0.2336 0.2336 0.2336 0.2336
86 86 0.8774 0.8774 0.8774 0.8774 0.8774 97 96 0.0659 0.0659 0.0659 0.0659 0.0659
87 86 0.0462 0.0462 0.0462 0.0462 0.0462 97 97 1.0218 1.0218 1.0218 1.0218 1.0218
87 87 0.2655 0.2655 0.2655 0.2655 0.2655 98 97 -0.0390 -0.0390 -0.0390 -0.0390 -0.0390
88 87 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 98 98 0.7724 0.7724 0.7724 0.7724 0.7724
88 88 0.0770 0.0770 0.0770 0.0770 0.0770 99 98 0.0666 0.0666 0.0666 0.0666 0.0666
89 88 0.0097 0.0097 0.0097 0.0097 0.0097 99 99 0.5172 0.5172 0.5172 0.5172 0.5172
89 89 0.5222 0.5222 0.5222 0.5222 0.5222 100 99 -0.0045 -0.0011 -0.0011 -0.0011 -0.0011
90 89 0.0295 0.0295 0.0295 0.0295 0.0295 100 100 0.1932 0.1392 0.1392 0.1392 0.1392
90 90 0.4324 0.4324 0.4324 0.4324 0.4324

Table 6: Indices and elements of matrices K, K̃0, K̃1, K̃2, K̃3 for example 4 (cont.).

22

References

[1] M. O. Abdalla, K. M. Grigoriadis, and D. C. Zimmerman, Enhanced structural damage
detection using alternating projection methods, AIAA Journal 36, pp. 1305–1311, 1998.

[2] R. Andreani, E. G. Birgin, J. M. Mart́ınez, and M. L. Schuverdt, On Augmented Lagrangian
methods with general lower-level constraints, SIAM Journal on Optimization 18, pp. 1286–
1309, 2007.

[3] R. Andreani, E. G. Birgin, J. M. Mart́ınez, and M. L. Schuverdt, Augmented Lagrangian
methods under the Constant Positive Linear Dependence constraint qualification, Mathe-
matical Programming 111, pp. 5–32, 2008.

[4] M. Andretta, E. G. Birgin and J. M. Mart́ınez, Practical active-set Euclidean trust-region
method with spectral projected gradients for bound-constrained minimization, Optimization
54, pp. 305–325, 2005.

[5] Z.-J. Bai, B. N. Datta, and J. Wang, Robust and minimum norm partial quadratic eigen-
value assignment in vibrating systems: A new optimization approach, Mechanical Systems
and Signal Processing 24, pp. 766–783, 2010.

[6] M. Baruch, Optimization procedure to correct stiffness and flexibility matrices using vibra-
tion data, AIAA Journal 16, pp. 1208–1210, 1978.

[7] C. A. Beattie and S. W. Smith, Optimal matrix approximants in structural identification,
Journal of Optimization Theory and Applications 74, pp. 23–56, 1992.

[8] E. G. Birgin and J. M. Mart́ınez, A box-constrained optimization algorithm with negative
curvature directions and spectral projected gradients, Computing [Suppl] 15, pp. 49–60,
2001.

[9] E. G. Birgin and J. M. Mart́ınez, Large-scale active-set box-constrained optimization
method with spectral projected gradients, Computational Optimization and Applications
23, pp. 101–125, 2002.

[10] E. G. Birgin and J. M. Mart́ınez, Practical Augmented Lagrangian Methods for Constrained
Optimization, Society for Industrial and Applied Mathematics, Philadelphia, 2014.

[11] S. Brahma and B. N. Datta, An optimization approach for minimum norm and robust
partial quadratic eigenvalue assignment problems for vibrating structures, Journal of Sound
and Vibration 324, pp. 471–489, 2009.

[12] J. B. Carvalho, B. N. Datta, A. Gupta, and M. Lagadapati, A direct method for model
updating with incomplete measured data and without spurious modes, Mechanical Systems
and Signal Processing 21, pp. 2715–2731, 2007.

[13] J. B. Carvalho, B. N. Datta, W.-W. Lin, and C.-S. Wang, Symmetry preserving eigenvalue
embedding in finite element model updating of vibrating structures, Journal of Sound and
Vibration 290, pp. 839–864, 2006.

23

[14] M. T. Chu, B. N. Datta, W.-W. Lin, and S.-F. Xu, Spillover phenomenon in quadratic
model updating, AIAA Journal 46, pp. 420–428, 2008.

[15] M. T. Chu, W.-W. Lin, and S.-F. Xu, Updating quadratic models with no spill-over effect
on unmeasured spectral data, Inverse Problems 23, pp. 243–256, 2007.

[16] B. N. Datta, Finite element model updating, eigenstructure assignment and eigenvalue
embedding techniques for vibrating systems, Mechanical Systems and Signal Processing 16,
pp. 83–96, 2002.

[17] B. N. Datta, Numerical Linear Algebra and Applications, second edition, SIAM, Philadel-
phia, 2010.

[18] B. N. Datta, Numerical methods for linear control systems, Elsevier Academic Press, San
Diego, CA, 2004.

[19] B. N. Datta, S. Deng, V. O. Sokolov, and D. R. Sarkissian, An optimization technique for
damped model updating with measured data satisfying quadratic orthogonality constraint,
Mechanical Systems and Signal Processing 23, pp. 1759–1772, 2009.

[20] B. N. Datta, S. Elhay, Y. M. Ram, and D. R. Sarkissian, Partial eigenstructure assignment
for the quadratic pencil, Journal of Sound and Vibration 1, pp. 101–110, 2000.

[21] B. N. Datta and D. R. Sarkissian, Multi-input partial eigenvalue assignment for the symmet-
ric quadratic pencil, Proceedings of the 1999 American Control Conference 4, pp. 2244–2247,
1999.

[22] B. N. Datta and D. R. Sarkissian, Theory and computations of some inverse eigenvalue
problems for the quadratic pencil, Contemporary Mathematics, Volume Structured Matrices
in Operator Theory, Control and Signal an Image Processing 280, American Mathematical
Society, pp. 221–240, 2001.

[23] B. N. Datta and D. R. Sarkissian, A computational method for feedback control in dis-
tributed parameter systems, Proceedings of the 8th IEEE International Conference on Meth-
ods and Models in Robotics, pp. 139–144, 2002.

[24] B. N. Datta and V. O. Sokolov, Quadratic inverse eigenvalue problems, active vibration
control and model updating, Applied and Computational Mathematics 8, pp. 170–191, 2009.

[25] B. N. Datta and V. O. Sokolov, A solution of the affine quadratic inverse eigenvalue problem,
Linear Algebra and its Applications 434, pp. 1745–1760, 2011.

[26] M. A. Diniz-Ehrhardt, M. A. Gomes-Ruggiero, J. M. Mart́ınez, and S. A. Santos, Aug-
mented Lagrangian algorithms based on the spectral projected gradient for solving non-
linear programming problems, Journal of Optimization Theory and Applications 123, pp.
497–517, 2004.

[27] M. Friswell and J. E. Mottershead, Finite Element Model Updating in Structural Dynamics,
Kluwer Academic Publishers, London, 1995.

24

[28] J. C. Geromel, On the determination of a diagonal solution of the Lyapunov equation, IEEE
Transactions on Automatic Control AC-30, pp. 404–406, 1985.

[29] M. E. Hochstenbach and H. A. van Der Vorst, Alternatives to the Rayleigh quotient for
the quadratic eigenvalue problem, SIAM Journal on Scientific Computing 25, pp. 591–603,
2003.

[30] H. Hu, Positive definite constrained least-squares estimation of matrices, Linear Algebra
and its Applications 229, pp. 167–174, 1995.

[31] D. J. Inman, Vibrations: with Control, Measurement, and Stability, Prentice Hall, Engle-
wood Cliffs, NJ, 1989.

[32] D. J. Inman and A. Kress, Eigenstructure assignment using inverse eigenvalue methods,
Journal of Guidance, Control, and Dynamics 18, pp. 625–627, 1995.

[33] Y.-C. Kuo and B. N. Datta, Quadratic model updating with no spill-over and incomplete
measured data: Existence and computation of solution, Linear Algebra and its Applications
436, pp. 2480–2493, 2012.

[34] R. B. Lehoucq, D. C. Sorensen, and C. Yang, ARPACK users’ guide: solution of large-scale
eigenvalue problems with implicitly restarted Arnoldi methods, Society for Industrial and
Applied Mathematics, Philadelphia, 1998.

[35] K. Miettinen, Nonlinear Multiobjective Optimization, Kluwer academic Publishers, Boston,
MA, 1999.

[36] J. Moreno, B. N. Datta, and M. Raydan, A symmetry preserving alternating projection
method for matrix model updating, Mechanical Systems and Signal Processing 23, pp.
1784–1791, 2009.

[37] N. K. Nichols and J. Kautsky, Robust eigenstructure assignment in quadratic matrix poly-
nomials: nonsingular case, SIAM Journal on Matrix Annalysis and Applications 23, pp.
77–102, 2001.

[38] F. Tisseur and K. Meerbergen, The quadratic eigenvalue problem, SIAM Review 43, pp.
235–286, 2001.

25

	Introduction
	Mathematical programming formulation
	Nonlinear cuts and algorithmic framework
	Numerical experiments
	Example 1.
	Example 2.
	Example 3.
	Example 4.

	Final remarks
	Appendix

