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Abstract

A family of variable metric methods for convex constrained optimization was intro-
duced recently by Birgin, Mart́ınez and Raydan. One of the members of this family is
the Inexact Spectral Projected Gradient (ISPG) method for minimization with convex
constraints. At each iteration of these methods a strictly convex quadratic function
with convex constraints must be (inexactly) minimized. In the case of the ISPG
method it was shown that, in some important applications, iterative projection meth-
ods can be used for this minimization. In this paper the particular case in which the
convex domain is a polytope described by a finite set of linear inequalities is considered.
For solving the linearly constrained convex quadratic subproblem a dual approach is
adopted, by means of which subproblems become (not necessarily strictly) convex
quadratic minimization problems with box constraints. These subproblems are solved
by means of an active-set box-constraint quadratic optimizer with a proximal-point
type unconstrained algorithm for minimization within the current faces. Convergence
results and numerical experiments are presented.
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1 Introduction

We consider the problem

Minimize f(x) subject to x ∈ Ω, (1)

where
Ω = {x ∈ IRn | Ax ≤ b}. (2)

The matrix A has m rows and n columns and f admits continuous first derivatives on
an open set that contains Ω. We will assume that the level sets {x ∈ Ω | f(x) ≤ c} are
bounded.

This is a classical problem in practical continuous optimization. See, for example,
[14, 22, 28, 33]. The best known general-purpose algorithm for solving this problem is
implemented in the software MINOS [34].

The Spectral Projected Gradient (SPG) method for solving (1) when Ω is a general
convex set was introduced in [7]. In [8] it was shown that, when the projections onto the
convex set Ω are not difficult to compute, the performance of the SPG method for solving
very large problems can be quite impressive.

The SPG method is a variation of the projected gradient method (see [4, 29, 32]).
The features of the SPG method that make it computationally efficient are the spectral
(Barzilai-Borwein) choice of the steplength, introduced in [2] and analyzed by several
authors (see, among others, [15, 16, 23, 24, 36, 37]) and the use of nonmonotone line-
search strategies [30]. The difficulty in computing projections in critical cases motivated
the introduction of the Inexact Spectral Projected Gradient (ISPG) method in [9]. The
idea is that the search direction does not need to be computed exactly for obtaining global
convergence and efficiency. So, iterative methods with premature stopping criteria can
be used. In [9] the ISPG method was also generalized giving rise to a general Inexact
Variable Metric method (IVM) for convex constrained optimization. In [9] the authors
implemented the ISPG method using a projection method [11, 20, 31, 38] for approximate
computation of projections on a family of matricial optimization problems with linear
constraints.

In this paper we introduce a general purpose IVM algorithm for solving (1). Subprob-
lems are solved using the dual of a strictly convex quadratic programming problem. This
problem can be reduced to the minimization of a convex quadratic function subject only
to nonnegativity constraints. For solving the quadratic programming problem we use a
well established active-set algorithm [25, 26] and, for minimization within current faces, a
damped proximal-point unconstrained minimization method is employed.

This paper is organized as follows. The inexact variable metric method proposed in [9]
is briefly reviewed in Section 2. Local convergence of Newton-like instances is discussed
in Section 3. The dual of quadratic programming with linear inequality constraints is
derived in Section 4. In Section 5 it is explained how to obtain an admissible trial point
starting from an approximate solution of the dual problem mentioned in Section 4. In
Section 6 the algorithms used to solve the non-negatively constrained dual problem are
justified. In Section 7 we describe the damped proximal-point algorithm used for internal
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minimization within faces. Numerical experiments are presented in Section 8. In Section 9
we state some conclusions and lines for future research.

Notation.

‖ · ‖ is the 2-norm of vectors and matrices;

B(z, δ) = {x ∈ IRn | ‖x− z‖ < δ};

B̄(z, δ) = {x ∈ IRn | ‖x− z‖ ≤ δ};

IN = {0, 1, 2, . . .};

IRn
+ = {x ∈ IRn | x ≥ 0};

IRn
++ = {x ∈ IRn | x > 0}.

The symbol [v]i denotes the i-th component of the vector v in the cases in which the
usual notation vi can lead to confusion.

We denote g(x) = ∇f(x). Consequently, gk = ∇f(xk).
Int(Ω) denotes the set of interior points of Ω.
N (A) denotes the null-space of the matrix A.
R(Z) denotes the column-space of the matrix Z.

2 Inexact Variable Metric method

In this section the Inexact Variable Metric (IVM) method is reviewed and the global
convergence results proved in [9] are recalled.

Let L ∈ IR++. We denote by G the set of n × n symmetric positive definite matrices
such that, for all G ∈ G,

‖G‖ ≤ L and ‖G−1‖ ≤ L.

The Inexact Variable Metric method introduced in [9] is as follows.

Algorithm 2.1: Inexact Variable Metric Method

Assume η ∈ (0, 1), γ ∈ (0, 1
2 ), 0 < σ1 < σ2 < 1, M a positive integer. Let x0 ∈ Ω be

an arbitrary initial point. Given xk ∈ Ω, Gk ∈ G, the steps of the k−th iteration of the
algorithm are:

Step 1. Compute the search direction

Consider the subproblem

Minimize Qk(d) subject to A(xk + d) ≤ b, (3)
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where

Qk(d) =
1

2
dT Gkd + gT

k d ∀ d ∈ IRn.

Compute dk such that xk + dk ∈ Ω and

Qk(dk) ≤ η Qk(d̄k), (4)

where d̄k is the exact solution of (3).
If dk = 0, stop the execution of the algorithm declaring that xk is a stationary point.

Step 2. Compute the steplength

Set α← 1 and fmax = max{f(xk−j+1) | 1 ≤ j ≤ min{k + 1,M}}.
If

f(xk + αdk) ≤ fmax + γαgT
k dk,

set αk = α, xk+1 = xk + αkdk and finish the iteration. Otherwise, choose

αnew ∈ [σ1α, σ2α], (5)

set α← αnew and repeat If.

Remark. Since Gk is positive definite, the subproblem (3) has a unique solution d̄k. This
solution is mentioned in the test (4) but does not need to be computed at all. Instead,
we will see how to generate a sequence of lower bounds Cℓ ≤ Qk(d̄k) that converges to
the true value Qk(d̄k). Clearly, if the computable criterion Qk(dk) ≤ ηCℓ is satisfied, the
test (4) is satisfied as well. The lower bounds Cℓ will be the values of the Lagrangian
associated with the dual problem of (3).

Lemma 2.1 and Theorem 2.1 were proved in [9].

Lemma 2.1. Algorithm 2.1 is well defined.

Theorem 2.1. Assume that the set {x ∈ Ω | f(x) ≤ f(x0)} is bounded. Then, either
the sequence generated by Algorithm 2.1 stops at some stationary point xk, or every limit
point of the generated sequence is stationary.

3 Local convergence

In this section we prove that, under some conditions, the whole sequence generated by
the IVM method converges to a stationary point of the original problem. Moreover, when
the matrices Gk are chosen as Hessians or secant approximations of the Hessians (see
[18]) and the subproblems are solved exactly, the convergence is quadratic or superlinear
respectively.
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Lemma 3.1 characterizes the exact solutions of the quadratic subproblems.

Lemma 3.1. For all k ∈ IN there exists λk ∈ IRm
+ such that

Gkd̄k + gk + AT λk = 0, (6)

A(xk + d̄k) ≤ b, (7)

λT
k [A(xk + d̄k)− b] = 0. (8)

Proof. Recall that d̄k is the exact solution of (3). The equations (6)–(8) are the KKT
conditions of this subproblem. 2

Assumptions L1–L7 will be used for proving different results along this section. None
of these assumptions is going to be used in forthcoming sections.

Assumption L1 (Isolation)
There exists x∗ ∈ Ω, a limit point of the sequence generated by Algorithm 2.1, and

δ > 0 such that x∗ is the unique stationary point of (1) in the ball B̄(x∗, δ).

Theorem 3.1 Assume that x∗ ∈ Ω is a limit point of sequence generated by Algorithm 2.1
that x∗ satisfies Assumption L1. Then, the sequence converges to x∗.

Proof. Let δ > 0 be such that x∗ is the unique stationary point of problem (1) in B̄(x∗, δ).
Define

K = {k ∈ IN | ‖xk − x∗‖ ≤
δ

2
}. (9)

Clearly
lim
k∈K

xk = x∗, (10)

otherwise we would have a set of the form {x ∈ Ω | ε ≤ ‖x−x∗‖ ≤
δ
2} containing infinitely

many elements of {xk}k∈IN , which is impossible because x∗ is an isolated limit point.
By Lemma 2.10 of [9] we have that

lim
k∈K
‖xk+1 − xk‖ = 0. (11)

Consider the set

C0 = {x ∈ Ω |
δ

2
≤ ‖x− x∗‖ ≤ δ}.

Since x∗ is isolated, it follows that C0 does not contain any stationary point of (1). There-
fore, by Theorem 2.1, C0 cannot contain infinitely many members of the sequence {xk}k∈IN .
This implies that there exists k1 ∈ IN such that

xk /∈ C0 ∀ k ≥ k1. (12)

By (10) and (11) there exists k2 ∈ K, k2 ≥ k1, such that

‖xk2
− x∗‖ <

δ

2
. (13)
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and

‖xk+1 − xk‖ ≤
δ

2
∀ k ∈ K,k ≥ k2. (14)

By (12), (13) and (14), we obtain that

‖xk2+1 − x∗‖ ≤
δ

2
.

Therefore, k2 + 1 ∈ K. Continuing this argument inductively, we obtain that

‖xk − x∗‖ ≤
δ

2
∀ k ≥ k2.

By (9) and (10) this implies that
lim

k→∞
xk = x∗,

as we wanted to prove. 2

Since the constraints of (1) are linear, the KKT conditions are satisfied by local mini-
mizers. We assume, without loss of generality that the active constraints at x∗ are those
corresponding to the first s rows of A. Let us denote

A = (a1, . . . , am)T , Ā = (a1, . . . , as)
T , b̄ = (b1, . . . , bs)

T .

By the KKT conditions, there exists λ̄∗ ∈ IRs
+ such that

∇f(x∗) + ĀT λ̄∗ = 0,

Āx∗ = b̄,

aT
i x∗ < bi, i = s + 1, . . . ,m.

Assumption L2 (Strict complementarity)

[λ̄∗]i > 0 ∀ i = 1, . . . , s.

Assumption L3 (Regularity)
The vectors a1, . . . , as are linearly independent. (In particular, s ≤ n.)

Assumption L4 (Taylor)
The function f has continuous second derivatives and its Hessian satisfies a Lipschitz

condition. Therefore, for all x, y ∈ Ω,

f(y) = f(x) +∇f(x)T (y − x) +
1

2
(y − x)T∇2f(x)(y − x) + o(‖y − x‖2).

Assumption L5 (Dennis-Moré condition [17, 18])
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If Z ∈ IRn×(n−s) is such that R(Z) = N (Ā), then:

lim
k→∞

‖ZT [Gk −∇
2f(xk)]d̄k‖

‖d̄k‖
= 0.

Assumption L6 (Nonsingularity)
If n > s and Z ∈ IRn×(n−s) is such that R(Z) = N (Ā), then the reduced Hessian

ZT∇2f(x∗)Z is positive definite.

Assumption L7

The subproblem (3) is solved exactly. (So, dk = d̄k for all k ∈ IN .)

Assumption L8

Gk = ∇2f(xk) ∈ G for all k ∈ IN .

Lemma 3.2. Suppose that Assumptions L1, L2 and L3 are satisfied by the sequence {xk}
generated by Algorithm 2.1. Then,

lim
k→∞

d̄k = 0. (15)

Moreover:

1. There exist k0 ∈ IN and {λ̄k}k≥k0
⊂ IRs

++ such that, for all k ≥ k0,

Gkd̄k + gk + ĀT λ̄k = 0, (16)

Ā(xk + d̄k) = b̄ (17)

and
aT

i (xk + d̄k) < bi ∀ i = s + 1, . . . ,m. (18)

2.

lim
k→∞

[λ̄k]i = [λ̄∗]i ∀ i = 1, . . . , s.

3. If, in addition, Assumption L7 holds and, for some k̄ ≥ k0 we have that

Āxk̄ = b̄,

then
Āxk = b̄ (19)

and
d̄k = −Z(ZTGkZ)−1ZT gk (20)

for all k ≥ k̄, where the columns of Z ∈ IRn× (n− s) form a basis of N (A).
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Proof. By Assumption L1 and Theorem 3.1 the sequence xk converges to x∗. By Lemma
2.12 of [9],

lim
k→∞

Qk(d̄k) = 0.

Let us prove first that (15) holds. We proceed by contradiction. Suppose that there exists
an infinite sequence of indices K1 such that d̄k is bounded away from zero. By Lemma 2.6
of [9], d̄k is bounded, therefore there exists an infinite sequence of indices K2 such that

lim
k∈K2

d̄k = d̄ 6= 0. (21)

Let K3 ⊂ K2 be a subsequence of indices such that

lim
k∈K3

Gk = G ∈ G.

By continuity, it is easy to see that d̄ is a global minimizer of 1
2dT Gd +∇f(x∗)

T d subject
to x∗ + d ∈ Ω. But, since x∗ is stationary, d = 0 is a global minimizer of the quadratic
1
2dT Gd +∇f(x∗)

T d. Since G ∈ G this quadratic has only one global minimizer, so d̄ = 0,
which contradicts (21). So, (15) is proved.

By (15), since aT
i x∗ < bi for all i = s + 1, . . . ,m, we have that (18) holds for k large

enough. Therefore, by (8) and (15),

[λk]i = 0 ∀ i = s + 1, . . . ,m.

By (6), defining λ̄k = ([λk]1, . . . , [λk]s)
T , the equation (16) also holds.

Let us prove that (17) holds for k large enough. Observe first that, by L3,

λ̄∗ = −(ĀĀT )−1g(x∗). (22)

By (16),
ĀGkd̄k + Āgk + ĀĀT λ̄k = 0.

Moreover, by L3 and the nonsingularity of ĀĀT :

(ĀĀT )−1ĀGkd̄k + (ĀĀT )−1Āgk + λ̄k = 0.

Taking limits and using that d̄k → 0 we obtain that the sequence λ̄k is convergent and

lim
k→∞

λ̄k = −(ĀĀT )−1Āg(x∗).

By (22), this implies that
lim

k→∞
λ̄k = λ̄∗.

By L2, λ̄∗ > 0. Then, λ̄k > 0 for all k large enough. By (8) the equalities (17) also hold.
Finally, assume that for some k̄ ≥ k0, Āxk̄ = b̄. By (18) we have that d̄k̄ ∈ N (Ā).

So, by Assumption L7 and the definition of xk̄+1, we obtain that Āxk̄+1 = b̄. Proceeding
by induction, we deduce that Āxk = b̄ for all k ≥ k̄. Therefore, (20) follows from (16)
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and (17). 2

Lemma 3.3. Suppose that Assumptions L1, L2, L3 and L7 are satisfied by an infinite se-
quence {xk} generated by Algorithm 2.1. Then, every limit point of the sequence {d̄k/‖d̄k‖}
belongs to N (Ā).

Moreover, for all k ∈ IN ,
d̄k

‖d̄k‖
= d̃

(1)
k + d̃

(2)
k ,

where d̃
(1)
k ∈ N (Ā), d̃

(2)
k ∈ R(ĀT ) and

lim
k→∞

d̃
(2)
k = 0.

Proof. By (16),
d̄T

k Gkd̄k + gT
k d̄k + λT

k Ād̄k = 0 ∀ k ≥ k0. (23)

Since f has continuous first derivatives, we have that

f(xk + d̄k) = f(xk) + γgT
k d̄k + (1− γ)gT

k d̄k + o(‖d̄k‖).

So, by (23), and the positive definiteness of Gk,

f(xk + d̄k)− f(xk)− γgT
k d̄k = −(1− γ)d̄T

k Gkd̄k − (1− γ)λT
k Ād̄k + o(‖d̄k‖)

≤ (γ − 1)λT
k Ād̄k + o(‖d̄k‖)

for all k ≥ k0. So,

f(xk + d̄k)− f(xk)− γgT
k d̄k

‖d̄k‖
≤ (γ − 1)λT

k Ā
d̄k

‖d̄k‖
+ o(1) (24)

for all k ≥ k0.
By Lemma 3.2, Ā(xk + d̄k) = b̄ for all k ≥ k0. So, by the feasibility of xk,

−Ād̄k = Āxk − b̄ ≤ 0 ∀ k ≥ k0. (25)

Therefore,

Ā
d̄k

‖d̄k‖
≥ 0 ∀ k ≥ k0. (26)

Assume that K ⊂ IN is an infinite set of indices such that

lim
k∈K

d̄k

‖d̄k‖
= d̃. (27)

Suppose, by contradiction, that
Ād̃ 6= 0. (28)
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Taking limits in (26) we see that Ād̃ ≥ 0. Therefore, there exists j ∈ {1, . . . , s} such that
[Ād̃]j > 0. Then, by Assumption L2,

λT
∗ Ād̃ = ρ > 0.

By Lemma 3.2, since γ < 1, this implies that there exists an infinite set K1 ⊂ {k ∈ K | k ≥
k0} such that

(γ − 1)λT
k Ā

d̄k

‖d̄k‖
< −ρ/2 < 0

for all k ∈ K1. Therefore, by (24), if k ∈ K1 is large enough,

f(xk + d̄k)− f(xk)− γgT
k d̄k

‖d̄k‖
< −ρ/4 < 0.

So, by Assumption L7, if k ∈ K1 is large enough, xk+1 = xk + d̄k. Thus, by Lemma 3.2,
Āxk+1 = b̄ for all k ∈ K1 large enough. Again by Lemma 3.2, this implies that Āxk = b̄
and Ād̄k = 0 for all k large enough. This contradicts (28). So, the first part of the thesis
is proved.

For proving the second part, let us write

d̄k

‖d̄k‖
= d̃

(1)
k + d̃

(2)
k ,

where d̃
(1)
k ∈ N (Ā), d̃

(2)
k ∈ R(ĀT ). By Pythagoras,

‖d̃
(1)
k ‖

2 + ‖d̃
(2)
k ‖

2 = 1,

so {d̃
(1)
k } and {d̃

(2)
k } are bounded. If ‖d̃

(2)
k ‖ does not tend to zero then, some subsequence

of d̃
(2)
k converges to some nonnull vector

d̃(2) ∈ R(ĀT ). (29)

Taking an appropriate subsequence, d̃
(1)
k converges to d̃(1) ∈ N (Ā). So, for some subse-

quence, d̄k

‖d̄k‖
converges to d̃(1) + d̃(2). By (29), this vector does not belong to N (Ā). This

contradicts the first part of the thesis. 2

Corollary 3.1. If the Assumptions L1, L2, L3 and L7 are satisfied and n = s the se-
quence terminates with xk = x∗ for some finite k.

Proof. Suppose that the sequence {xk} is infinite. Then, by Lemma 3.3, any limit point
of {dk/‖dk‖} must belong to N (Ā). But, when n = s we have that N (Ā) = {0}. This is a
contradiction, since all the terms of {dk/‖dk‖} are unitary. Therefore, the sequence {xk}
must be finite and, so, it terminates at x∗. 2
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Lemma 3.4. Suppose that Assumptions L1– L7 are satisfied by the sequence {xk} gener-
ated by Algorithm 2.1. Then, there exists k1 ∈ IN such that, for all k ≥ k1

f(xk + d̄k) ≤ f(xk) + γgT
k d̄k.

Proof. By Assumption L4, for all k ∈ IN we have:

f(xk + d̄k) = f(xk) + gT
k d̄k +

1

2
d̄T

k∇
2f(xk)d̄k + o(‖d̄k‖

2)

= f(xk) + γgT
k d̄k + (1− γ)gT

k d̄T
k +

1

2
d̄T

k∇
2f(xk)d̄k + o(‖d̄k‖

2)

= f(xk) + γgT
k d̄k + (1− γ)gT

k d̄k + (1− γ)d̄T
k∇

2f(xk)d̄k + (γ −
1

2
)d̄T

k∇
2f(xk)d̄k + o(‖d̄k‖

2)

= f(xk) + γgT
k d̄k + (1− γ)[gT

k d̄k + d̄T
k Gkd̄k] + (1− γ)d̄T

k [∇2f(xk)−Gk]d̄k

+(γ −
1

2
)d̄T

k∇
2f(xk)d̄k + o(‖d̄k‖

2).

Therefore,
f(xk + d̄k)− f(xk)− γgT

k d̄k

‖d̄k‖2
= (1− γ)

[gk + Gkd̄k]
T d̄k

‖d̄k‖2

+(1− γ)
d̄T

k [∇2f(xk)−Gk]d̄k

‖d̄k‖2
+ (γ −

1

2
)
d̄T

k∇
2f(xk)d̄k

‖d̄k‖2
+

o(‖d̄k‖
2)

‖d̄k‖2
. (30)

Now, d̄k is the exact solution of (3) and ∇Qk(d̄k) = Gkd̄k + gk. By the convexity of
Qk, the function Qk(d) decreases monotonically along the segment {td̄k, t ∈ [0, 1]}. This
implies that, for all k ∈ IN ,

(gk + Gkd̄k)
T d̄k = ∇Qk(d̄k)T d̄k ≤ 0. (31)

Let d̃
(1)
k and d̃

(2)
k be as in the thesis of Lemma 3.3. Then,

d̄T
k [∇2f(xk)−Gk]d̄k

‖d̄k‖2
=

d̄T
k

‖d̄k‖
[∇2f(xk)−Gk]

d̄k

‖d̄k‖

= (d̃
(1)
k + d̃

(2)
k )T [∇2f(xk)−Gk]

d̄k

‖d̄k‖

= (d̃
(1)
k )T [∇2f(xk)−Gk]

d̄k

‖d̄k‖
+ (d̃

(2)
k )T [∇2f(xk)−Gk]

d̄k

‖d̄k‖
. (32)

The first term of (32) tends to zero by the Dennis-Moré condition and the second term

tends to zero since, by Lemma 3.3, d̃
(2)
k tends to zero. Thus,

lim
k→∞

d̄T
k [∇2f(xk)−Gk]d̄k

‖d̄k‖2
= 0. (33)
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By Lemma 3.3 and Assumption L6, there exist k2 ∈ IN and ̺ > 0 such that

d̄T
k∇

2f(xk)d̄k

‖d̄k‖2
> ̺ (34)

for all k ≥ k2.
Since γ < 1

2 , using (30), (31), (33) and (34) we obtain, for k ≥ k2,

f(xk + d̄k)− f(xk)− γgT
k d̄k

‖d̄k‖2
≤ (γ −

1

2
)̺ + o(1)

So, taking k1 ≥ k2 large enough and k ≥ k1,

f(xk + d̄k)− f(xk)− γgT
k d̄k

‖d̄k‖2
≤ 0.

This implies the desired result. 2

Theorem 3.2. Suppose that Assumptions L1–L7 hold and that {xk} is a sequence gen-
erated by Algorithm 2.1. Then, there exists k3 ∈ IN such that for all k ≥ k3, we have that
αk = 1 and Āxk = b̄. Moreover, {xk} converges to x∗ superlinearly.

Proof. Let Z be a matrix whose columns are a basis of the null-space of Ā. Define

vk = −(ZT GkZ)−1gk. (35)

By (20) and Lemma 3.4, we have that d̄k = Zvk for k large enough.
Then, by Lemma 3.4, there exists k3 ∈ IN such that for all k ≥ k3, Āxk = b̄ and

xk+1 = xk + d̄k = xk + Zvk. (36)

Then, for all k > k3,
xk = xk3

+ Zuk, (37)

where
uk = vk3

+ . . . + vk−1. (38)

Consider the nonlinear system of equations

Φ(u) ≡ ZT∇f(xk3
+ Zu) = 0. (39)

Define u∗ ∈ IRn−s by
x∗ = xk3

+ Zu∗.

Clearly, Φ(u∗) = 0 and, by Assumption L6, Φ′(u∗) is nonsingular.
By (36)–(39) the sequence uk is defined, for k large enough, by

uk3
= 0, uk+1 = uk + vk ∀ k ≥ k3. (40)
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But, by (35), for all k ≥ k3,
vk = −B−1

k Φ(uk) (41)

where
Bk = ZT GkZ.

Then, by Assumption L5 and the linear independence of the columns of Z,

lim
k→∞

‖[Bk − Φ′(u∗)](vk)‖

‖vk‖
= 0. (42)

By (40) and (41) {uk} is a quasi-Newton sequence associated to the nonlinear system (39).
By (42) the Dennis-Moré condition holds. Therefore (see [17, 18]) the convergence of uk

is superlinear. By the definition of vk and the linear independence of the columns of Z
this implies the superlinear convergence of {xk}. 2

Theorem 3.3. Suppose that Assumptions L1–L6 and L8 hold and that {xk} is a sequence
generated by Algorithm 2.1. Then, there exists k3 ∈ IN such that, for all k ≥ k3, we have
that αk = 1 and Āxk = b̄. Moreover {xk} converges quadratically to x∗.

Proof. Clearly, Assumption L8 implies Assumption L7. Then, the arguments for this
proof are the same as the ones of Theorem 3.2, invoking the local convergence theory of
Newton’s method [18], instead of the one of quasi-Newton algorithms. 2

4 The Dual of Quadratic Programming

Writing G = Gk, u = d, c = gk, b̄ = b−Axk, problem (3) is equivalent to

{

Minimize 1
2uT Gu + cT u

s.t. Au ≤ b̄
(43)

where A ∈ Rm×n and G is symmetric and positive definite.
Define the Lagrangian function:

L(u, y) =
1

2
uT Gu + cT u + yT (Au− b̄).

The dual problem of (43) (see [22], Section 9.5) is







Maximizeu,y L(u, y)
s.t. Gu + c + AT y = 0

y ≥ 0

(44)

It follows from the first constraint of (44) that

u = −G−1(c + AT y). (45)
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So, if (u, y) satisfies the first constraint of (44),

L(u, y) = −
1

2
(c + AT y)T G−1(c + AT y)− b̄T y.

Therefore, (44) is equivalent to

{

Minimize 1
2(c + AT y)T G−1(c + AT y) + b̄T y

s.t. y ≥ 0.
(46)

The main properties of the dual approach are:

(a) If ū is a feasible point of (43) and (u, y) is a feasible point of (44), then

L(u, y) ≤
1

2
ūT Gū + cT ū.

(b) If y ∈ IRm
+ , u = −G−1(c + AT y) and u is a feasible point of (43) (so, Au ≤ b̄) then

u is the unique solution of (43).

5 Obtaining a trial point for the IVM iteration

Making the proper substitutions, and eliminating the constant term in the objective func-
tion, problem (46) has the form

Minimize
1

2
yT By + b̂T y s.t. y ≥ 0, (47)

where B = AG−1AT and b̂ = b̄ + AG−1c.
Assume, for a moment, that we have an algorithm for non-negative constrained convex

quadratic minimization that is able to generate a (finite or infinite) sequence converging
to a solution of (47). For each iteration yℓ of this box-constrained quadratic solver we
compute, using (45),

uℓ = −G−1(c + AT yℓ).

Then, either uℓ is feasible for some finite ℓ, therefore being the solution of (43), or the
sequence {uℓ} converges to a solution of (43). Therefore, for all ℓ each uℓ we have a lower
bound Cℓ = L(uℓ, yℓ) that converges to the optimal functional value of (43). Recall the
remark after the definition of Algorithm 2.1.

These properties suggest a practical procedure for obtaining a point that satisfies (4).
For implementing Algorithm 5.1 below we assume that

Int(Ω) 6= ∅.

Algorithm 5.1 Computation of the search direction dk.
Assume that the iterate xk of the IVM method (Algorithm 2.1) is interior, that is,

Axk < b. Choose β ∈ (0, 1), η′ ∈ (0, 1) and define η = βη′. Set ℓ← 0.
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Step 1. Check exact solution.

Compute yℓ, the ℓ−th iterate of the box-constrained quadratic solver mentioned above.
Compute

uℓ = −G−1(c + AT yℓ).

If Auℓ ≤ b̄ go to Step 3. (In this case, yℓ is a solution of (47) and uℓ is the exact solution
of (43).)

Step 2. Check inexact solution.

Compute
αℓ

max = max{α ≥ 0 | xk + αuℓ ∈ Ω}.

(In this case αℓ
max < 1 since uℓ is infeasible.)

If
Qk(βαℓ

maxuℓ) ≤ ηL(uℓ, yℓ) (48)

set
dk = βαℓ

maxuℓ

and terminate the execution of the algorithm.
If (48) does not hold, set ℓ← ℓ + 1 and go to Step 1.

Step 3. Keep the new trial point interior enough

Compute
αℓ

max = max{α ≥ 0 | xk + αuℓ ∈ Ω}.

Define
dk = min{1, βαℓ

max}uℓ

and terminate the execution of the algorithm.

The justification of this procedure is based on the following lemma, proved in [9].

Lemma 5.1 Assume that Ω is a closed and convex set, xk ∈ Int(Ω) and {uℓ} ⊂ IRn is a
sequence such that

lim
ℓ→∞

uℓ = d̄k,

where xk + d̄k ∈ Ω.
For all ℓ ∈ IN we define

αℓ
max = max{α ≥ 0 | xk + αuℓ ∈ Ω}

and
ūℓ = min(αℓ

max, 1)uℓ.
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Then,
lim
ℓ→∞

ūℓ = d̄k.

Theorem 5.1 The direction dk computed at Algorithm 5.1 satisfies (4).

Proof. Assume first that Algorithm 5.1 terminates at Step 3. Then uℓ = d̄k and αℓ
max ≥ 1.

This implies (4) in the case that 1 ≤ βαℓ
max. If βαℓ

max < 1 then, by the convexity of Qk,

Qk(βαℓ
maxuℓ) ≤ βαℓ

maxQk(d̄k) ≤ βQk(d̄k) ≤ ηQk(d̄k).

Therefore, (4) is satisfied.
Assume now that Algorithm 5.1 does not terminate at Step 3. Therefore, xk + uℓ /∈ Ω

for all ℓ. So, αℓ
max < 1 for all ℓ. By Lemma 5.1, since the box-constrained solver is globally

convergent,
lim
ℓ→∞

αℓ
maxuℓ = d̄k.

Therefore,
lim
ℓ→∞

Qk(α
ℓ
maxuℓ) = Qk(d̄k). (49)

By the convexity of Qk,
Qk(βαℓ

maxuℓ) ≤ βQk(α
ℓ
maxuℓ).

So, by (49), since η < β and the box-constrained solver is globally convergent, we have
that, for ℓ large enough,

Qk(βαℓ
maxuℓ) ≤ ηL(uℓ, yℓ).

Thus, (48) is satisfied. This completes the proof. 2

6 Nonnegatively constrained minimization

In the previous sections we saw that, for solving the quadratic programming problem (43)
using the dual approach, we need to minimize a (not necessarily strictly) convex quadratic
with nonnegativity constraints. So, in this section we assume that the problem to be
solved is (47). From now on, we define:

q(y) =
1

2
yT By + b̂T y.

The solutions of (47) are the Lagrange multipliers associated to the unique solution
of (43). Moreover, since the feasible set of (43) is a polytope with nonempty interior, the
Mangasarian-Fromovitz constraint qualification is satisfied at every feasible point of (43).
This implies (see [27]) that the set of Lagrange multipliers is compact. So, the problem
(47) has a nonempty and compact solution set. We are going to prove that this implies that
the level sets of the objective function in the nonnegative orthant are also compact. This
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is a crucial step for ensuring the effectivity of iterative algorithms for solving this problem.

Theorem 6.1. Let y∗ be a solution of (47), c ≥ q(y∗). Define

Sc = {y ∈ IRm
+ | q(y) ≤ c}.

Then, Sc is bounded.

Proof. Assume, by contradiction, that Sc is unbounded. Then, there exists a sequence
{yk} ⊂ Sc such that

lim
k→∞

‖yk‖ = lim
k→∞

‖yk − y∗‖ =∞. (50)

By the definition of Sc and the convexity of q, we have that, for all k ∈ IN ,

c− q(y∗)

‖yk − y∗‖
≥

q(yk)− q(y∗)

‖yk − y∗‖
≥
∇q(y∗)

T (yk − y∗)

‖yk − y∗‖
≥ 0. (51)

Moreover, by (50),

lim
k→∞

c− q(y∗)

‖yk − y∗‖
= 0. (52)

Let K1 be an infinite subset of indices such that

lim
k∈K1

yk − y∗
‖yk − y∗‖

= v. (53)

By (51), (52) and (53) we obtain:

0 ≤ ∇q(y∗)
T v = lim

k∈K1

∇q(y∗)
T yk − y∗
‖yk − y∗‖

= 0. (54)

Now,
q(yk)− q(y∗)−∇q(y∗)

T (yk − y∗)

‖yk − y∗‖2
=

1

2

(yk − y∗)
T

‖yk − y∗‖
B

(yk − y∗)

‖yk − y∗‖
. (55)

So, by (50), (54) and (55),
vT Bv = 0.

Therefore, by (54),

q(y∗ + tv) = q(y∗) + t∇q(y∗)
T v +

1

2
t2vT Bv = q(y∗) for all t ∈ IR. (56)

Since the set of solutions is bounded and v 6= 0, (56) implies that there exists t̄ > 0
such that

y∗ + t̄v /∈ IRm
+ .

So, there exists k0 ∈ K1 such that for all k ∈ K1, k ≥ k0,

t̄

‖yk − y∗‖
< 1
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and
(

1−
t̄

‖yk − y∗‖

)

y∗ +
t̄

‖yk − y∗‖
yk = y∗ +

t̄

‖yk − y∗‖
(yk − y∗) /∈ IRm

+ .

Thus, a convex combination of yk and y∗ does not belong to IRm
+ . This implies that

either yk or y∗ do not belong to IRm
+ , which is a contradiction. 2

The algorithm used to solve (47) is inspired in the papers [5, 12, 25]. The main
difference with the problems addressed in those papers is that in (47) the feasible region
is unbounded. However, as we proved above, the level sets of the objective function are
bounded. So, the convergence results of [5, 12, 25] hold exactly in the same way as in
those papers. The proposed method is an active-set method with a special procedure for
dropping constraints.

As in [12, 25], let us divide the feasible set Ω into disjoint faces. For all I ⊂ {1, . . . ,m},
we define

FI = {y ∈ IRm
+ | yi = 0 if i ∈ I, yi > 0 otherwise}.

The closure of FI is denoted by F̄I . Let [FI ] denote the smallest linear manifold that
contains FI , and SI denote the subspace obtained by the parallel translation of [FI ]. As
in [12], −∇q(y) will be called the antigradient.

Given y ∈ FI , the orthogonal projection of −∇q(y) on SI will be called the internal
antigradient and denoted by gI(y). The chopped antigradient (see [19, 25]) gC(y) is defined
for y ∈ IRm

+ as follows

[gC(y)]i =

{

− ∂q
∂yi

(x), if [y]i = 0 and ∂q
∂yi

(y) < 0,

0, otherwise,

where i = 1, . . . ,m. Observe that [gC(y)]i = 0 if [y]i > 0.
Since gC(y) ⊥ SI , we have that

gI(y) ⊥ gC(y).

Denote gP (y) = gI(y) + gC(y). The vector gP (y) will be called the projected antigradient.
Note that y ∈ IRm

+ is a stationary point of problem (47) if and only if gP (y) = 0. In
general, the mapping gP (y) is not continuous, nevertheless, yk → y and gP (yk)→ 0 imply
that gP (y) = 0 (see [13]).

Given yk ∈ IRm
+ , a sub-algorithm is available that may compute a new iterate yk+1.

We assume that the sub-algorithm has the following properties (see [12]):

P1. q(yk+1) < q(yk).

P2. If yk ∈ FI then yk+1 ∈ F̄I .

P3. If {yk, yk+1, yk+2, . . .} ⊂ FI is a set of infinitely many iterates generated by the
sub-algorithm, then gI(yk)→ 0.
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The sub-algorithm is essentially an unconstrained minimization method that handles
the free variables in the face FI .

Below we present our main model algorithm.

Algorithm 6.1. Assume that y0 ∈ IRm
+ is an arbitrary initial point, TOL ∈ (0, 1), Let

FI be the face that contains the current iterate yk. The new iterate yk+1 is computed as
follows.

Step 1. Decide whether the current face must be abandoned or not.

If ‖gP (yk)‖ = 0 (yk is a stationary point), stop.
If

‖gC(yk)‖

‖gP (yk)‖
≥ TOL,

compute yk+1 at Step 2, else compute yk+1 using the sub-algorithm.

Step 2. Abandoning the current face.

Define αk > 0 such that

q(yk + αkgC(yk)) ≤ q(yk + αgC(yk)) ∀ α ≥ 0.

Set yk+1 = yk + αkgC(yk).

Slight variations of the arguments used in [12] allow one to prove the following theorem.

Theorem 6.1. Algorithm 6.1 is well defined and, given any ε > 0 there exists k ∈ IN
such that

‖gP (yk)‖ ≤ ε.

Remark. The definition of Algorithm 6.1 must be completed by the introduction of the
internal algorithm used within the faces. In some cases, as we will see in the numerical
experiments, the structure of the problem is such that the conjugate-gradient method is the
best choice. In other cases the damped proximal-point method, which will be introduced
in the next section, will be preferred. In practice, and due to availability reasons, in the
cases in which the conjugate-gradient method is used inside the faces, the nonnegatively
constrained minimizer used will be a quadratic adaptation of GENCAN (see [6]). Due
to the bounded level set property, the convergence established in Theorem 6.1 holds for
GENCAN as well.

7 Damped proximal-point minimization of a convex quadratic

The internal algorithm used within the faces is, essentially, an unconstrained minimization
method. Therefore, this algorithm might generate an iterate not belonging to the nonneg-
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ative orthant. In this case, we need that the objective function value at the “breakpoint”
on the boundary of the current face should be smaller than the objective function value
at the previous iterate. In order to guarantee this essential property, the unconstrained
optimization algorithm will be based on descent directions and the new iterate will be
defined as the minimizer along the half-line determined by some search direction, when
this minimizer exists. If the one-dimensional minimizer does not exist, the search direction
must be such that the objective function tends monotonically to −∞ along the generated
half-line. In this way, the internal minimization algorithm will generate a monotonic se-
quence of points within the current face or will be able to stop on the boundary of the
nonnegative orthant with a decrease of the objective function value.

In this section we define an adequate algorithm for our purposes. It will be called the
DPP (Damped proximal-point) method. In the context of Algorithm 6.1 the DPP method
modifies only the free variables of FI . For simplicity of exposition we call m the number
of free variables of FI and we define the quadratic objective function as:

q(y) =
1

2
yT By + b̂T y, (57)

where b̂, y ∈ IRm and B ∈ IRm×m is symmetric and positive semidefinite.
The problem of minimizing q(y) may have solutions or not. The unconstrained mini-

mizers of this quadratic function are the zeros of the linear system ∇q(y) = 0. So, at an
unconstrained minimizer of q(y) we have that

By = −b̂. (58)

Algorithm 7.1. Damped proximal-point method

Given σ > 0, y0 ∈ IRn set k ← 0. Execute the following steps.

Step 1. Finite convergence criterion

If ∇q(yk) = 0, terminate the execution of the algorithm. The point yk is a solution.

Step 2. Search direction

Compute dk ∈ IRm by:

(B + σI)dk = −∇q(yk). (59)

Step 3. Test if one-dimensional minimum exists

If dT
k Bdk = 0 terminate the execution of the algorithm. The function is linear along

the half-line {yk + tdk}t>0 and tends monotonically to −∞.

Step 4. One-dimensional minimizer
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Compute

αk = −
∇q(yk)

T dk

dkBdk

. (60)

Step 5. Next iterate

Compute
yk+1 = yk + αkdk.

Set k ← k + 1 and go to Step 1.

Proposition 7.1. If dk is defined by (59), ∇q(yk) 6= 0 and αk is defined by (60), then

q(yk + tdk) < q(yk) ∀ t ∈ (0, αk) (61)

Proof. The inequality (61) holds because dk is a descent direction, the objective function
is a parabola and αk is its minimizer. 2

When tk ≡ 1, the iterative process defined by

yk+1 = yk + tkdk, dk = −[B + σIm]−1[Byk + b̂], tk > 0 (62)

is the proximal point method [39] for minimizing q(y).

Lemma 7.1. Assume that B is symmetric and positive definite, and λ0, ρ are the smallest
and largest eigenvalues of B respectively. Then, for all σ ≥ 0, v 6= 0,

(vT (B + σI)−1v)2

(vT B−1v)(vT (B + σI)−1B(B + σI)−1v)
≥

4λ0ρ(ρ + σ)(λ0 + σ)

(2λ0ρ + σ(ρ + λ0))2
. (63)

Proof. Since σ ≥ 0, B + σI is symmetric and positive definite. Hence, there exists a
nonsingular matrix C such that B + σI = CCT . Defining w = C−1v 6= 0 and Q =
C−1BC−T , we obtain:

(vT (B + σI)−1v)2

(vT B−1v)(vT (B + σI)−1B(B + σI)−1v)
=

(wT w)2

(wT C−1BC−Tw)(wT CTB−1Cw)

=
(wT w)2

(wT Qw)(wT Q−1w)
.

So, by the Kantorovich Inequality ([33], p. 151),

(wT w)2

(wT Qw)(wT Q−1w)
≥

4τγ

(τ + γ)2
, (64)

where τ and γ are the smallest and largest eigenvalues of Q respectively. Since Q is similar
to (B + σI)−1B, we have

τ =
λ0

λ0 + σ
, and γ =

ρ

ρ + σ
. (65)

21



Substituting (65) into (64), we obtain (63). So, the proof is complete. 2

Theorem 7.1. Assume that a solution of (58) exists. Let y∗ be the unique solution of the
problem

Minimize ‖y − y0‖ s.t. By = −b̂. (66)

Let {yk} be the sequence generated by Algorithm 7.1. Then, one of the following possibili-
ties hold:

(a) The sequence terminates at Step 1 with yk = y∗;
(b) The sequence {yk} converges to {y∗} at a linear rate in an appropriate norm.

Proof. Since By∗ = b, we have that

∇q(yk) = Byk + b̂ = B(yk − y∗).

By (59), for all k such that ∇q(yk) 6= 0 we have that

dk 6= 0 and (B + σI)dk = −B(yk − y∗).

So,
σdk = −B(yk − y∗)−Bdk.

This implies that dk belongs to the column-space of B. Therefore, dT
k Bdk > 0 and, so,

termination at Step 3 of the algorithm is not possible.
Moreover, α0d0 + . . . + αk−1dk−1 belongs to the column-space of B for all k, therefore

yk − y0 is in the column-space of B for all k.
Thus, if the algorithm terminates at Step 1 with ∇q(yk) = 0, yk must be the closest

point to y0 that satisfies By + b̂ = 0.
Consider the case in which the algorithm generates an infinite sequence. Assume first

that B is positive definite.
Define E(y) = 1

2(y − y∗)
T B(y − y∗), vk = yk − y∗, and gk = Bvk. Since

αk =
dT

k (B + σI)dk

dT
k Bdk

=
gT
k (B + σI)−1gk

gT
k (B + σI)−1B(B + σI)−1gk

,

we have that

E(yk)− E(yk+1) =
1

2
vT
k Bvk −

1

2
vT
k+1Bvk+1

= αkg
T
k (B + σI)−1gk −

1

2
α2

kg
T
k (B + σI)−1B(B + σI)−1gk

=
(gT

k (B + σI)−1gk)
2E(yk)

(gT
k (B + σI)−1B(B + σI)−1gk)(g

T
k B−1gk)

.

Then,

E(yk+1) = {1−
(gT

k (B + σI)−1gk)
2

(gT
k (B + σI)−1B(B + σI)−1gk)(g

T
k B−1gk)

}E(yk).
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Thus, by Lemma 7.1,

E(yk+1) ≤ {1−
4λ0ρ(ρ + σ)(λ0 + σ)

[2λ0ρ + σ(ρ + λ0)]2
}E(yk) =

(ρ− λ0)
2σ2

[2λ0ρ + σ(ρ + λ0)]2
E(yk).

Since
(ρ− λ0)

2σ2

[2λ0ρ + σ(ρ + λ0)]2
< 1,

we deduce that E(yk) converges to zero. Since B is symmetric and positive definite, yk

converges to y∗.
It remains to discuss the case in which B is singular. Since B is symmetric and positive

semidefinite, there exists an orthogonal matrix U such that

B = U

(

D 0
0 0

)

UT , (67)

where D ∈ Rl×l is positive definite and l = rank(B).
Pre-multiplying (62) by UT and replacing tk by αk, we obtain

zk+1 = UT yk+1 = UT yk − αk[

(

D 0
0 0

)

+ σIm]−1[

(

D 0
0 0

)

UT yk + UT b̂]

= zk − αk[

(

D 0
0 0

)

+ σIm]−1[

(

D 0
0 0

)

zk +

(

b1

0

)

]. (68)

So,
(

z
(1)
k+1

z
(2)
k+1

)

=

(

[D + σIl]
−1{[(1− αk)D + σIl]z

(1)
k − αkb1}

z
(2)
k

)

. (69)

Formula (69) describes the behavior of the iterative process in the space z. In particular,

observe that z
(2)
k = z

(2)
0 for all k. Applying Lemma 7.1 with B = D, we can prove that

z
(1)
k converges to z

(1)
∗ . Since z(2) is fixed, it follows from (69) that {zk} is convergent. So,

yk converges to the unique solution of (66) at a linear rate in the norm
√

E(y). 2

Theorem 7.2. Assume that a solution of (58) does not exist. Then the sequence generated
by Algorithm 7.1 satisfies:

lim
k→∞

‖yk‖ =∞.

Proof. Since (58) has no solution, B must be singular. Moreover, B has the form (67) and
b̂ does not belong to the its column-space. Since B is symmetric and positive semidefinite,
substituting (67) in (58), we obtain

U

(

D 0
0 0

)

UT y = −b̂.

Let UT y = z =

(

z(1)

z(2)

)

, −UT b̂ =

(

b1

b2

)

. Then,

(

D 0
0 0

)(

z(1)

z(2)

)

=

(

b1

b2

)

.
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Since b̂ does not belong to the column-space of B we have that b2 6= 0 . Pre-multiplying
(62) by UT and replacing tk by αk, we obtain

zk+1 =

(

z
(1)
k+1

z
(2)
k+1

)

=

(

(D + σIl)
−1([(1 − αk)D + σIl]z

(1)
k + αkb1)

z
(2)
k + 1

σ
b2

)

=

(

(D + σIl)
−1([(1 − αk)D + σIl]z

(1)
k + αkb1)

z
(2)
0 + k+1

σ
b2

)

,

where z0 = UT y0. Without loss of the generality, we can set z
(2)
0 = 0. Then,

‖yk‖ = ‖Uzk‖ = ‖zk‖ ≥ ‖z
(2)
k ‖ =

k

σ
‖b2‖ → ∞

as k tends to ∞. 2

We finish this section showing how to compute the search direction in Algorithm 7.1
when the matrix has the form

B = AG−1AT ,

where A ∈ IRm×n, and G ∈ IRn×n is symmetric and positive definite. So, defining z =
dk, v = −∇q(yk), (59) takes the form

[AG−1AT + σI]z = v. (70)

In principle, one solution of (70) involves Cholesky factorizations of G and [AG−1AT +
σI]. The final factorization can be dense even in cases that G and A are very sparse. For
this reason we decomposed the solution of (70) in order to make it more suitable for sparse
calculations.

Let us define
r = G−1AT z.

So,
−AT z + Gr = 0

and, by (70),
σz + Ar = v.

Therefore (70) is equivalent to:
(

σI A
−AT G

)(

z
r

)

=

(

v
0

)

.

So, by elimination,
(

σI A
0 G + AT A/σ

)(

z
r

)

=

(

v
AT v/σ

)

. (71)

Since G is positive definite, G + AT A/σ is positive definite too. Therefore, r can be
obtained from (71) solving the system

(σG + AT A)r = AT v. (72)
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The solution of (72) may be obtained using the Cholesky decomposition of σG + AT A.
Finally,

z = (v −Ar)/σ.

When the inverse of G can be easily computed there are no special difficulties with
the computation of the search direction using (70) as it stands. In these cases, we can use
the quadratic version of GENCAN [6] for solving the nonnegatively constrained quadratic
minimization problem.

8 Numerical experiments

We implemented the Inexact Variable Metric (Algorithm 2.1) in the way described below.

8.1 Hessian approximation

Two different definitions for Gk were employed:

(a) Hessian choice. A positive-definite modification of the true Hessian as described
by Eskow and Schnabel in [21].

(b) ISPG choice. The diagonal spectral approximation given by Gk = (1/λspg
k )I, where

λspg
k = min{λmax,max{λmin,

‖xk − xk−1‖
2

(xk − xk−1)T (gk − gk−1)
}}

if (xk − xk−1)
T (gk − gk−1) > 0, whereas λspg

k = λmax otherwise.

The arbitrary initial spectral steplength λ0 ∈ [λmin, λmax] was computed as

λspg
0 = min{λmax,max{λmin,

‖x̄− x0‖
2

(x̄− x0)T (g(x̄)− g0)
}}

if (x̄ − x0)
T (g(x̄) − g0) > 0, and λspg

k = λmax otherwise. Here x̄ = x0 − tsmallg(x0) and
tsmall = max(ǫrel‖x‖∞, ǫabs).

8.2 Solution of the subproblem at Step 1

The approximate minimization of Qk(d) subject to A(xk +d) ≤ b was performed using the
dual approach. The dual problem becomes the minimization of a convex quadratic on the
nonnegative orthant. In the case in which the matrix Gk is an exact or modified Hessian
the nonnegative quadratic minimization is done using the active set method described in
Section 6. We use the DPP method described in Section 7 within the faces. In the case
in which the Hessian approximation is the spectral diagonal matrix described above, the
nonnegative quadratic minimization problem is solved using a quadratic-oriented version
of GENCAN [6].

The initial point (dual variables) in the nonnegatively constrained quadratic minimiza-
tion problems is the set of Lagrange multipliers estimated at the previous iteration.
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The trial point that satisfies (4) is computed using the procedure described in Section 5.
This means that, at each iteration of the nonnegative quadratic solver, we check feasibility
of uℓ and we test the inequality (48). In this way, a trial point that satisfies (4) is necessarily
obtained.

8.3 Computation of the steplength

The computation of αnew in (5) uses safeguarded one-dimensional quadratic interpolation.
We take αnew ← α/2 when the minimizer of the one-dimensional quadratic lies outside
[σ1, σ2α].

8.4 Practical convergence criterion

In the first set of (CUTE) problems we terminate the execution of the algorithm when

‖dk‖∞ ≤ ǫ1.

In the set of large-scale location problems, we terminate when

min{αk
max, 1}‖dk‖∞ ≤ ǫ1,

where, as usually,
αk

max = max{t ≥ 0 | xk + tdk ∈ Ω}.

8.5 Parameters

We used η = βη′, γ = 10−4, σ1 = 0.1, σ2 = 0.9, M = 10, ǫ1 = 10−6, ǫ2 = 10−6, ǫrel = 10−7,
ǫabs = 10−10 for Algorithm 2.1; β = 0.85, and η′=0.8 for Algorithm 5.1 and TOL = 0.9
for Algorithm 6.1. In Algorithm 7.1, σ was chosen as follows:

σ = τ
maxij |[A

tA]ij |

maxij |[Gk]ij|
.

In general, we use τ = 10−6. However, we have some evidence that in the iterations in
which Gk is the true Hessian or a very small modification of the true Hessian, τ = 0.1 is
better.

8.6 Problems in the CUTE collection

We considered all the problems of type (1)-(2) for which an interior initial point is provided
in the CUTE collection [10]. Box constraints were considered as ordinary linear inequality
constraints.

The computations were done on an 1.9Ghz Intel Pentium IV Computer with 1Gb of
RAM. Codes are in Fortran and the compiler used was GNU Fortran 2.95.4, with the
optimization option “–O4”.

Tables 1 and 2 show the performance of the Hessian version and the ISPG version
of IVM on this set of problems. In these tables n is the number of variables, m is the
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number of constraints, OUTIT is the number of iterations, FE is the number of function
and gradient evaluations, HM is the number of times the Hessian was not positive definite
and was modified by the Eskow-Schnabel subroutine, INNIT is the number of iterations
performed by the nonnegative quadratic minimization solver, TIME is the CPU time in
seconds and f(x∗) is the objective function value at solution found. In Table 1 some
comparison with two well-known algorithms is also given. The algorithms are LOQO (see
[40, 41]) and FSQP (see [35, 42, 43]). The code of FQSP was provided by AEM Design
[1] and the experiments of LOQO were taken from [3]. In the case of LOQO, since the
experiments were done on a different computer environment, we report the number of
function/gradient evaluations as performance parameter. In some problems (indicated by
NA) this information was not available. We proceed in the same way with respect to
FSQP. In the case of FSQP, since the experiments were run by us in the same conditions
as we did in the case of the IVM method, computer times are available. They are not
reported here for economy of space and because they are proportional to the number of
functional evaluations, so they add nothing to the comparison. In these problems FSQP
seems to be more efficient than the IVM method. This is probably due to the efficient way
in which FSQP discards constraints that are strongly satisfied at a current iterate. We
also observe that, in this limited number of examples, the number of function/gradient
evaluations used by LOQO is, on average, similar to the one used by the IVM method.
The final functional values were always the same for the three methods.

Clearly, the IVM-Hessian algorithm is much more efficient than the ISPG method
when the true Hessian is positive definite everywhere (problems HS35, HS35I, HS76 and
HS76I). In the cases in which the Eskow-Schnabel algorithm modifies the Hessian, the
performance of both algorithms is more or less the same. Problems KSIP and SIPOXX

are Linear Programming problems. In these cases the Hessian is null, therefore the Eskow-
Schnabel algorithm modifies this matrix at every iteration. The ISPG method also replaces
the Hessian by a small diagonal matrix in this case, and this is the reason why both
methods behave very similarly.

It is interesting to observe that in all the iterations of all these problems the first trial
point was accepted, so decreasing the steplength was never necessary and the number of
functional evaluations coincides with the number of iterations. This is probably an effect
of the nonmonotone strategy.

8.7 Location problems

We consider the family of location problems introduced in [8]. In [8] the 2-dimensional
case, in which the projections onto the feasible set are easy to compute, was considered.
Here we deal with the 3-dimensional case.

Given a set of npol disjoint polyhedra P1, P2, . . . , Pnpol in IR3 we wish to find the point
znpol ∈ Pnpol that minimizes the sum of the distances to the other polyhedra. Therefore,
the problem is

Minimize
(z1,...,znpol)

1

npol− 1

npol−1
∑

i=1

‖zi − znpol‖2
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Problem n m OUTIT FE FE(LOQO) FE(FSQP) HM INNIT TIME f(x∗)

HS24 2 3 13 14 13 5 14 29 0.03 −1.000
HS35 3 1 8 9 10 7 0 1 0.00 0.1111
HS35I 3 1 8 9 NA 7 0 1 0.00 0.1111
HS36 3 1 10 11 16 2 11 16 0.01 −3300.
HS37 3 2 46 47 11 11 47 50 0.01 −3456.
HS44NEW 4 6 10 11 12 5 11 33 0.00 −15
HS76 4 3 8 9 11 7 0 5 0.01 −4.682
HS76I 4 3 8 9 NA 7 0 5 0.00 −4.682
KSIP 20 1001 12 13 47 47 13 669 2.92 0.5758
SIPOW1 2 2000 15 16 NA 6 16 390 0.74 −1.000
SIPOW1M 2 2000 17 18 NA 6 18 387 0.75 −1.000
SIPOW2 2 2000 14 15 NA 6 15 254 0.48 −1.000
SIPOW2M 2 2000 15 16 NA 6 16 257 0.44 −1.000
SIPOW3 4 2000 9 10 NA 3 10 308 0.70 0.5347
SIPOW4 4 2000 9 10 NA 3 10 603 1.30 0.2724
SIPOW1 2 10000 19 20 17 6 20 1019 13.15 −1.000
SIPOW1M 2 10000 20 21 16 6 21 1113 14.77 −1.000
SIPOW2 2 10000 18 19 NA 6 19 681 8.05 −1.000
SIPOW2M 2 10000 19 20 NA 6 20 730 9.21 −1.000
SIPOW3 4 10000 9 10 19 3 10 686 12.24 0.5357
SIPOW4 4 10000 9 10 19 3 10 1437 26.33 0.2728

Table 1: IVM-Hessian (η′ = 0.8, τ = 10−6), LOQO and FSQP on CUTE problems.

Problem n m OUTIT FE INNIT TIME f(x∗)

HS24 2 3 11 12 17 0.00 −1.000
HS35 3 1 17 18 15 0.00 0.1111
HS35I 3 1 17 18 15 0.01 0.1111
HS36 3 1 12 13 30 0.01 −3300
HS37 3 2 28 29 35 0.00 −3456
HS44NEW 4 6 13 14 29 0.00 −15
HS76 4 3 14 15 19 0.00 −4.682
HS76I 4 3 14 15 19 0.02 −4.682
KSIP 20 1001 25 26 1086 4.19 0.5758
SIPOW1 2 2000 15 16 641 1.07 −1.000
SIPOW1M 2 2000 13 14 656 1.10 −1.000
SIPOW2 2 2000 11 12 349 0.53 −1.000
SIPOW2M 2 2000 12 13 323 0.48 −1.000
SIPOW3 4 2000 11 12 1355 3.51 0.5347
SIPOW4 4 2000 11 12 1398 4.18 0.2724
SIPOW1 2 10000 15 16 2039 23.73 −1.000
SIPOW1M 2 10000 15 16 2463 29.32 −1.000
SIPOW2 2 10000 15 16 1485 14.72 −1.000
SIPOW2M 2 10000 14 15 1535 15.25 −1.000
SIPOW3 4 10000 13 14 4711 81.44 0.5357
SIPOW4 4 10000 13 14 5176 104.21 0.2728

Table 2: ISPG on CUTE problems.
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subject to zi ∈ Pi, i = 1, . . . ,npol.

This problem has 3 × npol variables. The number of (linear inequality) constraints is
∑npol

i=1 νi, where νi is the number of constraints that define the polyhedron Pi. Writing

x = (z1
1 , z1

2 , z1
3 , . . . , znpol

1 , znpol
2 , znpol

3 ), the Hessian of this problem, which is singular and
positive semidefinite, has the form

H(x) =



























H1 −H1

H2 −H2

H3 −H3

H4 −H4

. . .
...

Hnpol−1 −Hnpol−1

−H1 −H2 −H3 −H4 . . . −Hnpol−1
∑npol−1

i=1 Hi



























(73)

Each Hi is a 3× 3 matrix which depends on zi and znpol. In order to obtain a positive
definite matrix Bk at each iteration of the algorithm, it is sufficient to add a small positive
number to the diagonal of H(x). Note that the pattern (73) does not produce fill-in in the
Cholesky factorization. Moreover, the matrix σB + AT A used in (72) exhibits the same
pattern.

We generated 54 problems of this class, varying npol and choosing randomly the loca-
tion of the polygons and the number of half-spaces that define each polytope. The test
problems were solved with IVM. As in [9], the interior initial guess for the primal variables
is generated together with the problem data. The initial guess for the vector of Lagrange
multipliers (variables of the nonnegatively constrained quadratic minimization problems)
was the null vector.

Since we know that the matrices Bk are tiny modifications of the Hessian and the
factorization work required for an IVM iteration is similar to the one required by the
ISPG iteration, we only used IVM for solving this set of problems.

Table 3 displays the performance of two versions of the IVM-Hessian algorithm: solving
the problems accurately (η = 0.90, θ = 0.95) and inaccurately (η = 0.50, θ = 0.75).
The columns mean: Problem, problem number; n, number of variables; m, number of
constraints; OUTIT, iterations of IVM needed to satisfy the convergence criterion; INNIT,
total number of iterations of the quadratic solver; TIME, CPU time in seconds; f(x∗),
function value at the solution found. The practical convergence criterion was satisfied in
all the cases. In this table we also report the performance of FSQP on some problems. In
the last column of the table we give the number of function/gradient evaluations used by
FSQP to achieve convergence. The final functional value was always the same for the three
methods. We do not report computer time of FSQP because, in this case, it would be quite
unfair. In fact, since FSQP does not use sparse factorization techniques, the numerical
algebra overhead is very high and do not reflect the performance that this algorithm would
achieve if sparsity were exploited. For example, in the last problem reported here, FSQP
used almost six hours to converge. On the other hand, functional evaluations provide a fair
performance measure for comparison with the IVM method. It is quite impressive that in
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all the problems FSQP used much more functional evaluations than the IVM algorithms
thus confirming the observations made in [8] for the 2-dimensional case.

As expected, when the subproblems are less accurately solved, the number of outer
iterations increases, and the average number of inner iterations needed to solve each sub-
problem decreases. As a whole, the accurate version was more efficient in 34 problems
whereas the inaccurate version won in 20 problems.

9 Conclusions

The fine performance of the SPG method in very large problems [8] motivated the in-
troduction of the inexact spectral projected gradient method [9]. This method should be
useful when exact projections are difficult to compute.

Sometimes, the structure of the problem suggests a particular procedure for computing
inexact projections. This is the case of the matricial problems considered in [9]. In other
cases, using a general quadratic solver seems to be recommendable. The strategy chosen
in this paper for solving the quadratic subproblems fits the theoretical requirements of
the IVM method because it produces lower bounds of the objective function value at the
quadratic solution. This implies that the fulfillment of the inexact criterion for stopping
iterations of the subproblem is theoretically guaranteed.

In many cases the computer work required by the ISPG iteration is considerably less
than the computer work required by Newton or quasi-Newton iterations. When this is
not the case, it seems reasonable to use a Newton-like IVM method. We observed that,
for convex problems, the advantage of the Newtonian IVM is clear, but for nonconvex
problems it is better to use the ISPG method. Moreover, we showed that, exploiting the
sparsity pattern of a positive semidefinite Hessian, to solve very large location problems
is possible.

The superiority of the ISPG method over the Newton-like IVM method in nonconvex
problems deserves some explanation. When, at the current iteration, the Hessian is not
positive semidefinite the Newtonian IVM method adds positive terms to the diagonal in
order to obtain the positive definite matrix Bk. This is a common practical procedure
in unconstrained minimization and, roughly speaking, it is in this way that trust-region
steps are obtained. In unconstrained minimization one replaces a subproblem without
solution (minimizing a nonconvex quadratic) by the problem of minimizing the Taylor ap-
proximation on a restricted region. Probably, this is the best thing we can do. However,
when constraints are present, the original quadratic subproblem (with indefinite or nega-
tive definite Hessian) may be solvable and the solution of its diagonal modification might
be very different from its true solution. It is not surprising, therefore, that no meaningful
differences appear between slight and rough positive definite modifications of the Hessian
in constrained problems. Due to its low cost, the ISPG strategy may be even better.

Further research is necessary to exploit all the possible variations of linear constraints
for an efficient implementation of IVM and ISPG. The implementation of different quasi-
Newton versions of the IVM algorithm is also necessary.
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Problem IVM with accurate subproblems IVM with inaccurate subproblems FSQP
n m OUTIT FE INNIT TIME OUTIT FE INNIT TIME FE

33 10,050 7 7 65 1.28 16 16 61 1.35 68
78 21,868 9 9 618 20.34 20 20 558 21.30 156
84 21,903 9 9 604 20.14 24 24 542 18.03 168
99 25,333 8 8 203 11.41 21 21 279 16.07 198
90 20,841 9 9 428 16.48 21 21 403 16.32 180

141 34,683 9 9 1138 58.77 23 23 936 55.13 282
132 31,154 8 8 526 28.30 21 21 518 29.55 264
174 46,504 9 9 905 75.78 22 22 969 82.99 348
177 45,001 9 9 559 44.81 20 20 740 66.71 354
225 58,807 10 10 1112 116.37 23 23 829 88.77 450
276 69,483 9 9 1297 148.60 24 24 1065 131.69 552
345 86,595 10 10 530 93.58 23 23 563 111.07
339 88,505 11 11 1291 168.18 23 23 863 132.06
336 80,235 10 10 3195 346.16 24 24 2789 320.86
411 109,512 10 10 871 182.06 22 22 867 243.17
504 138,872 11 11 678 176.38 26 26 971 347.63
636 160,509 11 11 746 245.54 25 25 522 242.22
738 196,046 12 12 1045 388.15 25 25 832 395.27
837 211,050 12 12 1201 446.30 30 30 1387 600.04
897 235,127 12 12 749 344.22 27 27 526 319.14
966 263,094 14 14 1071 582.65 32 32 1186 754.96
978 267,744 12 12 646 428.11 28 28 602 454.03

1158 306,201 13 13 1134 730.02 30 30 1077 801.92
1245 335,266 12 12 2119 1413.51 27 27 3142 2197.49
1353 365,464 12 12 1555 1161.41 30 30 893 787.18
1416 379,009 18 18 1523 1173.03 37 37 2562 1926.32
1479 387,914 15 15 1075 1012.29 28 28 827 887.87
1623 433,965 20 20 1766 1760.34 38 38 1890 1990.88
1671 445,415 21 21 2605 2551.67 56 56 2846 2736.35
1761 471,237 20 20 2302 2412.56 46 46 2680 3029.78
1848 499,401 17 17 1631 1999.98 33 33 1046 1647.56
1860 481,435 19 19 8096 7757.22 48 48 11395 11128.81
2133 592,996 17 17 3240 4496.14 44 44 3150 4629.66
2223 613,562 19 19 1834 3141.99 53 53 1859 3246.47
2259 590,251 21 21 2389 3683.71 45 45 2019 3459.02
2337 630,390 25 25 9131 12990.15 40 40 5517 8546.61
2448 648,757 16 16 976 2163.47 39 39 1044 2193.88
2562 676,535 17 17 2222 4291.25 44 44 2090 4186.96
2625 703,565 20 20 1521 3361.72 31 31 1562 3446.29
2688 724,318 17 17 1532 3487.54 29 29 1207 3300.02
2823 763,514 20 20 1537 3613.95 45 45 4093 8865.39
2865 753,101 29 29 3940 8161.02 46 46 3195 7082.61
2991 795,177 22 22 2692 6452.56 42 42 2600 6455.50
3048 834,315 21 21 1398 3943.43 68 68 1639 4575.67
3123 815,656 20 20 2911 7039.55 41 41 1751 4703.06
3222 877,593 15 15 2473 6580.20 39 39 3599 9540.93
3327 873,605 25 25 5309 14163.70 39 39 5663 14972.71
3429 893,267 23 23 3931 11126.43 44 44 2174 6505.21
3537 946,827 17 17 1552 5444.67 69 69 2833 9013.79
3621 970,713 13 13 555 2844.54 31 31 1122 4333.27
3621 1,571,323 13 13 659 4429.44 22 22 565 4072.57
3621 2,196,476 12 12 788 6736.31 29 29 3003 16044.66
3621 2,845,050 12 12 1119 10754.51 29 29 1744 13414.26
3621 3,361,256 12 12 955 10648.48 45 45 2950 22439.15

Table 3: Performance of IVM and FSQP in the 3D location problems.

31



Acknowledgements

We are indebted to two anonymous referees whose comments helped a lot to improve
this paper.

References

[1] http://www.aemdesign.com/

[2] J. Barzilai and J. M. Borwein, Two point step size gradient methods, IMA Journal
of Numerical Analysis 8, pp. 141–148, 1988.

[3] H. Y. Benson, D. F. Shano and R. J. Vanderbei, Interior-point methods for non-
convex nonlinear programming: jamming and comparative numerical testing, Op-
erations Research and Financial Engineering, Princeton University, ORFE-00-02,
2000. (A detailed table with the numerical experiments of this work was found at
http://www.princeton.edu/ rvdb/bench.html).

[4] D. P. Bertsekas, On the Goldstein-Levitin-Polyak gradient projection method, IEEE
Transactions on Automatic Control 21, pp. 174–184, 1976.

[5] R. H. Bielschowsky, A. Friedlander, F. M. Gomes, J. M. Mart́ınez and M. Raydan,
An adaptive algorithm for bound constrained quadratic minimization, Investigación
Operativa 7 pp. 67–102, 1998.

[6] E. G. Birgin and J. M. Mart́ınez, Large-scale active-set box-constrained optimization
method with spectral projected gradients, Computational Optimization and Appli-
cations 23, pp. 101–125, 2002.

[7] E. G. Birgin, J. M. Mart́ınez and M. Raydan, Nonmonotone spectral projected
gradient methods on convex sets, SIAM Journal on Optimization 10, pp. 1196–1211,
2000.

[8] E. G. Birgin, J. M. Mart́ınez and M. Raydan, Algorithm 813: SPG - Software for
convex-constrained optimization, ACM Transactions on Mathematical Software 27,
pp. 340–349, 2001.

[9] E. G. Birgin, J. M. Mart́ınez and M. Raydan. Inexact Spectral Projected Gradient
methods on convex sets, IMA Journal on Numerical Analysis 23, pp. 539–559, 2003.

[10] I. Bongartz, A. R. Conn, N. I. M. Gould and Ph. L. Toint. CUTE: constrained and
unconstrained testing environment. ACM Transactions on Mathematical Software
21, pp. 123–160 (1995).

[11] J. P. Boyle and R. L. Dykstra, A method for finding projections onto the intersection
of convex sets in Hilbert spaces, Lecture Notes in Statistics 37, pp. 28–47, 1986.

32



[12] O. Burdakov, J. M. Mart́ınez and E. A. Pilotta, A limited memory multipoint secant
method for bound constrained optimization, Annals of Operations Research 117, pp.
51–70, 2002.
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