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Abstract. Augmented Lagrangian methods with general lower-level constraints are consid-
ered in the present research. These methods are useful when efficient algorithms exist for solving
subproblems in which the constraints are only of the lower-level type. Inexact resolution of the
lower-level constrained subproblems is considered. Global convergence is proved using the Constant
Positive Linear Dependence constraint qualification. Conditions for boundedness of the penalty
parameters are discussed. The resolution of location problems in which many constraints of the
lower-level set are nonlinear is addressed, employing the Spectral Projected Gradient method for
solving the subproblems. Problems of this type with more than 3 × 106 variables and 14 × 106

constraints are solved in this way, using moderate computer time. All the codes are available in
www.ime.usp.br/∼egbirgin/tango/.
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1. Introduction. Many practical optimization problems have the form

Minimize f(x) subject to x ∈ Ω1 ∩Ω2,(1.1)

where the constraint set Ω2 is such that subproblems of type

Minimize F (x) subject to x ∈ Ω2(1.2)

are much easier than problems of type (1.1). By this we mean that there exist efficient
algorithms for solving (1.2) that cannot be applied to (1.1). In these cases it is
natural to address the resolution of (1.1) by means of procedures that allow one to
take advantage of methods that solve (1.2). Several examples of this situation may
be found in the expanded report [3].

These problems motivated us to revisit Augmented Lagrangian methods with
arbitrary lower-level constraints. Penalty and Augmented Lagrangian algorithms can
take advantage of the existence of efficient procedures for solving partially constrained
subproblems in a natural way. For this reason, many practitioners in Chemistry,
Physics, Economy and Engineering rely on empirical penalty approaches when they
incorporate additional constraints to models that were satisfactorily solved by pre-
existing algorithms.

The general structure of Augmented Lagrangian methods is well known [7, 22,
39]. An Outer Iteration consists of two main steps: (a) Minimize the Augmented
Lagrangian on the appropriate “simple” set (Ω2 in our case); (b) Update multipliers
and penalty parameters. However, several decisions need to be taken in order to
define a practical algorithm. In this paper we use the Powell-Hestenes-Rockafellar
PHR Augmented Lagrangian function [33, 40, 42] (see [8] for a comparison with other
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Augmented Lagrangian functions) and we keep inequality constraints as they are,
instead of replacing them by equality constraints plus bounds. So, we pay the price of
having discontinuous second derivatives in the objective function of the subproblems
when Ω1 involves inequalities.

A good criterion is needed for deciding that a suitable approximate subproblem
minimizer has been found at Step (a). In particular, one must decide whether sub-
problem minimizers must be feasible with respect to Ω2 and which is the admissible
level of infeasibility and lack of complementarity at these solutions. (Bertsekas [6]
analyzed an Augmented Lagrangian method for solving (1.1) in the case in which the
subproblems are solved exactly.) Moreover, simple and efficient rules for updating
multipliers and penalty parameters must be given.

Algorithmic decisions are taken looking at theoretical convergence properties and
practical performance. Only experience tells one which theoretical results have prac-
tical importance and which do not. Although we recognize that this point is contro-
versial, we would like to make explicit here our own criteria:

1. External penalty methods have the property that, when one finds the global
minimizers of the subproblems, every limit point is a global minimizer of the
original problem [24]. We think that this property must be preserved by the
Augmented Lagrangian counterparts. This is the main reason why, in our
algorithm, we will force boundedness of the Lagrange multipliers estimates.

2. We aim feasibility of the limit points but, since this may be impossible (even
an empty feasible region is not excluded) a “feasibility result” must say that
limit points are stationary points for some infeasibility measure. Some meth-
ods require that a constraint qualification holds at all the (feasible or infea-
sible) iterates. In [15, 47] it was shown that, in such cases, convergence to
infeasible points that are not stationary for infeasibility may occur.

3. Feasible limit points that satisfy a constraint qualification must be KKT.
The constraint qualification must be as weak as possible. Therefore, under
the assumption that all the feasible points satisfy the constraint qualification,
all the feasible limit points should be KKT.

4. Theoretically, it is impossible to prove that the whole sequence generated by a
general Augmented Lagrangian method converges, because multiple solutions
of the subproblems may exist and solutions of the subproblems may oscillate.
However, since one uses the solution of one subproblem as initial point for
solving the following one, the convergence of the whole sequence generally
occurs. In this case, under suitable local conditions, we must be able to prove
that the penalty parameters remain bounded.

In other words, the method must have all the good global convergence properties
of an external penalty method. In addition, when everything “goes well”, it must
be free of the asymptotic instability caused by large penalty parameters. Since we
deal with nonconvex problems, the possibility of obtaining full global convergence
properties based on proximal-point arguments is out of question.

The algorithm presented in this paper satisfies those theoretical requirements. In
particular, we will show that, if a feasible limit point satisfies the Constant Positive
Linear Dependence (CPLD) condition, then it is a KKT point. A feasible point x
of a nonlinear programming problem is said to satisfy CPLD if the existence of a
nontrivial null linear combination of gradients of active constraints with nonnegative
coefficients corresponding to the inequalities implies that the gradients involved in
that combination are linearly dependent for all z in a neighborhood of x. The CPLD
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condition was introduced by Qi and Wei [41]. In [4] it was proved that CPLD is
a constraint qualification, being strictly weaker than the Linear Independence Con-
straint Qualification (LICQ) and than the Mangasarian-Fromovitz condition (MFCQ)
[36, 43]. Since CPLD is weaker than (say) LICQ, theoretical results saying that if a
limit point satisfies CPLD then it satisfies KKT are stronger than theoretical results
saying that if a limit point satisfies LICQ then it satisfies KKT.

Most practical nonlinear programming methods published after 2001 rely on (a
combination of) sequential quadratic programming (SQP), Newton-like or barrier
approaches [1, 5, 14, 16, 18, 19, 26, 27, 28, 29, 35, 38, 44, 45, 46, 48, 49, 50]. None of
these methods can be easily adapted to the situation described by (1.1)-(1.2).

In the numerical experiments we will show that, in some very large scale location
problems, to use a specific algorithm for convex-constrained programming [11, 12, 13,
23] for solving the subproblems in the Augmented Lagrangian context is much more
efficient than using a general purpose method. We will also show that Algencan

(the particular implementation of the algorithm introduced in this paper for the case
in which the lower-level set is a box [9]) seems to converge to global minimizers more
often than Ipopt [47, 48].

This paper is organized as follows. A high-level description of the main algorithm
is given in Section 2. The rigorous definition of the method is in Section 3. Section 4
is devoted to global convergence results. In Section 5 we prove boundedness of the
penalty parameters. In Section 6 we show the numerical experiments. Conclusions
are given in Section 7.

Notation. We denote: IR+ = {t ∈ IR | t ≥ 0}, IN = {0, 1, 2, . . .}, ‖ · ‖ is
an arbitrary vector norm and [v]i is the i−th component of the vector v. If there
is no possibility of confusion we may also use the notation vi. For all y ∈ IRn,
y+ = (max{0, y1}, . . . , max{0, yn})T . If F : IRn → IRm, F = (f1, . . . , fm)T , we denote
∇F (x) = (∇f1(x), . . . ,∇fm(x)) ∈ IRn×m. If K = {k0, k1, k2, . . .} ⊂ IN (kj+1 >
kj ∀j), we denote limk∈K xk = limj→∞ xkj

.

2. Overview of the method. We will consider the following nonlinear pro-
gramming problem:

Minimize f(x) subject to h1(x) = 0, g1(x) ≤ 0, h2(x) = 0, g2(x) ≤ 0,(2.1)

where f : IRn → IR, h1 : IRn → IRm1 , h2 : IRn → IRm2 , g1 : IRn → IRp1 , g2 : IRn →
IRp2 . We assume that all these functions admit continuous first derivatives on a
sufficiently large and open domain. We define Ω1 = {x ∈ IRn | h1(x) = 0, g1(x) ≤ 0}
and Ω2 = {x ∈ IRn | h2(x) = 0, g2(x) ≤ 0}.

For all x ∈ IRn, ρ > 0, λ ∈ IRm1 , µ ∈ IRp1

+ we define the Augmented Lagrangian
with respect to Ω1 [33, 40, 42] as:

L(x, λ, µ, ρ) = f(x) +
ρ

2

m1∑

i=1

(
[h1(x)]i +

λi

ρ

)2

+
ρ

2

p1∑

i=1

(
[g1(x)]i +

µi

ρ

)2

+

.(2.2)

The main algorithm defined in this paper will consist of a sequence of (approx-
imate) minimizations of L(x, λ, µ, ρ) subject to x ∈ Ω2, followed by the updating of
λ, µ and ρ. A version of the algorithm with several penalty parameters may be found
in [3]. Each approximate minimization of L will be called an Outer Iteration.

After each Outer Iteration one wishes some progress in terms of feasibility and
complementarity. The infeasibility of x with respect to the equality constraint [h1(x)]i =
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0 is naturally represented by |[h1(x)]i|. The case of inequality constraints is more com-
plicate because, besides feasibility, one expects to have a null multiplier estimate if
gi(x) < 0. A suitable combined measure of infeasibility and non-complementarity with
respect to the constraint [g1(x)]i ≤ 0 comes from defining [σ(x, µ, ρ)]i = max{[g1(x)]i,−µi/ρ}.
Since µi/ρ is always nonnegative, it turns out that [σ(x, µ, ρ)]i vanishes in two sit-
uations: (a) when [g1(x)]i = 0; and (b) when [g1(x)]i < 0 and µi = 0. So, roughly
speaking, |[σ(x, µ, ρ)]i| measures infeasibility and complementarity with respect to
the inequality constraint [g1(x)]i ≤ 0. If, between two consecutive outer iterations,
enough progress is observed in terms of (at least one of) feasibility and complemen-
tarity, the penalty parameter will not be updated. Otherwise, the penalty parameter
is increased by a fixed factor.

The rules for updating the multipliers need some discussion. In principle, we adopt
the classical first-order correction rule [33, 40, 43] but, in addition, we impose that
the multiplier estimates must be bounded. So, we will explicitly project the estimates
on a compact box after each update. The reason for this decision was already given
in the introduction: we want to preserve the property of external penalty methods
that global minimizers of the original problem are obtained if each outer iteration
computes a global minimizer of the subproblem. This property is maintained if the
quotient of the square of each multiplier estimate over the penalty parameter tends
to zero when the penalty parameter tends to infinity. We were not able to prove that
this condition holds automatically for usual estimates and, in fact, we conjecture that
it does not. Therefore, we decided to force the boundedness condition. The price paid
by this decision seems to be moderate: in the proof of the boundedness of penalty
parameters we will need to assume that the true Lagrange multipliers are within the
bounds imposed by the algorithm. Since “large Lagrange multipliers” is a symptom
of “near-nonfulfillment” of the Mangasarian-Fromovitz constraint qualification, this
assumption seems to be compatible with the remaining ones that are necessary to
prove penalty boundedness.

3. Description of the Augmented Lagrangian algorithm. In this section
we provide a detailed description of the main algorithm. Approximate solutions of
the subproblems are defined as points that satisfy the conditions (3.1)–(3.4) below.
These formulae are relaxed KKT conditions of the problem of minimizing L subject
to x ∈ Ω2. The first-order approximations of the multipliers are computed at Step 3.
Lagrange multipliers estimates are denoted λk and µk whereas their safeguarded coun-
terparts are λ̄k and µ̄k. At Step 4 we update the penalty parameters according to the
progress in terms of feasibility and complementarity.

Algorithm 3.1.

Let x0 ∈ IRn be an arbitrary initial point. The given parameters for the execution
of the algorithm are: τ ∈ [0, 1), γ > 1, ρ1 > 0, −∞ < [λ̄min]i ≤ [λ̄max]i < ∞ ∀ i =
1, . . . , m1, 0 ≤ [µ̄max]i < ∞ ∀ i = 1, . . . , p1, [λ̄1]i ∈ [[λ̄min]i, [λ̄max]i] ∀ i = 1, . . . , m1,
[µ̄1]i ∈ [0, [µ̄max]i] ∀ i = 1, . . . , p1. Finally, {εk} ⊂ IR+ is a sequence of tolerance
parameters such that limk→∞ εk = 0.

Step 1. Initialization

Set k ← 1. For i = 1, . . . , p1, compute [σ0]i = max{0, [g1(x0)]i}.
Step 2. Solving the subproblem

Compute (if possible) xk ∈ IRn such that there exist vk ∈ IRm2 , uk ∈ IRp2 satis-
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fying

‖∇L(xk, λ̄k, µ̄k, ρk) +

m2∑

i=1

[vk]i∇[h2(xk)]i +

p2∑

i=1

[uk]i∇[g2(xk)]i‖ ≤ εk,1,(3.1)

[uk]i ≥ 0 and [g2(xk)]i ≤ εk,2 for all i = 1, . . . , p2,(3.2)

[g2(xk)]i < −εk,2 ⇒ [uk]i = 0 for all i = 1, . . . , p2,(3.3)

‖h2(xk)‖ ≤ εk,3,(3.4)

where εk,1, εk,2, εk,3 ≥ 0 are such that max{εk,1, εk,2, εk,3} ≤ εk. If it is not possible
to find xk satisfying (3.1)–(3.4), stop the execution of the algorithm.
Step 3. Estimate multipliers

For all i = 1, . . . , m1, compute

[λk+1]i = [λ̄k]i + ρk[h1(xk)]i,(3.5)

[λ̄k+1]i ∈ [[λ̄min]i, [λ̄max]i].(3.6)

(Usually, [λ̄k+1]i will be the projection of [λk+1]i on the interval [[λ̄min]i, [λ̄max]i].)
For all i = 1, . . . , p1, compute

[µk+1]i = max{0, [µ̄k]i + ρk[g1(xk)]i}, [σk]i = max

{
[g1(xk)]i,−

[µ̄k]i
ρk

}
,(3.7)

[µ̄k+1]i ∈ [0, [µ̄max]i].

(Usually, [µ̄k+1]i = min{[µk+1]i, [µ̄max]i}.)
Step 4. Update the penalty parameter

If max{‖h1(xk)‖∞, ‖σk‖∞} ≤ τ max{‖h1(xk−1)‖∞, ‖σk−1‖∞}, then define ρk+1 =
ρk. Else, define ρk+1 = γρk.
Step 5. Begin a new outer iteration

Set k ← k + 1. Go to Step 2.

4. Global convergence. In this section we assume that the algorithm does not
stop at Step 2. In other words, it is always possible to find xk satisfying (3.1)-(3.4).
Problem-dependent sufficient conditions for this assumption can be given in many
cases.

We will also assume that at least a limit point of the sequence generated by
Algorithm 3.1 exists. A sufficient condition for this is the existence of ε > 0 such
that the set {x ∈ IRn | g2(x) ≤ ε, ‖h2(x)‖ ≤ ε} is bounded. This condition may be
enforced adding artificial simple constraints to the set Ω2.

Global convergence results that use the CPLD constraint qualification are stronger
than previous results for more specific problems: In particular, Conn, Gould and
Toint [21] and Conn, Gould, Sartenaer and Toint [20] proved global convergence
of Augmented Lagrangian methods for equality constraints and linear constraints
assuming linear independence of all the gradients of active constraints at the limit
points. Their assumption is much stronger than our CPLD assumptions. On one
hand, the CPLD assumption is weaker than LICQ (for example, CPLD always holds
when the constraints are linear). On the other hand, our CPLD assumption involves
only feasible points instead of all possible limit points of the algorithm.
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Convergence proofs for Augmented Lagrangian methods with equalities and box
constraints using CPLD were given in [2].

We are going to investigate the status of the limit points of sequences generated
by Algorithm 3.1. Firstly, we will prove a result on the feasibility properties of a
limit point. Theorem 4.1 shows that, either a limit point is feasible or, if the CPLD
constraint qualification with respect to Ω2 holds, it is a KKT point of the sum of
squares of upper-level infeasibilities.

Theorem 4.1. Let {xk} be a sequence generated by Algorithm 3.1. Let x∗ be a
limit point of {xk}. Then, if the sequence of penalty parameters {ρk} is bounded, the
limit point x∗ is feasible. Otherwise, at least one of the following possibilities hold:

(i) x∗ is a KKT point of the problem

Minimize
1

2

[ m1∑

i=1

[h1(x)]2i +

p1∑

i=1

max{0, [g1(x)]i}2
]

subject to x ∈ Ω2.(4.1)

(ii) x∗ does not satisfy the CPLD constraint qualification associated with Ω2.

Proof. Let K be an infinite subsequence in IN such that limk∈K xk = x∗. Since
εk → 0, by (3.2) and (3.4), we have that g2(x∗) ≤ 0 and h2(x∗) = 0. So, x∗ ∈ Ω2.

Now, we consider two possibilities: (a) the sequence {ρk} is bounded; and (b) the
sequence {ρk} is unbounded. Let us analyze first Case (a). In this case, from some
iteration on, the penalty parameters are not updated. Therefore, limk→∞ ‖h1(xk)‖ =
limk→∞ ‖σk‖ = 0. Thus, h1(x∗) = 0. Now, if [g1(x∗)]j > 0 then [g1(xk)]j > c > 0
for k ∈ K large enough. This would contradict the fact that [σk]j → 0. Therefore,
[g1(x∗)]i ≤ 0 ∀i = 1, . . . , p1.

Since x∗ ∈ Ω2, h1(x∗) = 0 and g1(x∗) ≤ 0, x∗ is feasible. Therefore, we proved
the desired result in the case that {ρk} is bounded.

Consider now Case (b). So, {ρk}k∈K is not bounded. By (2.2) and (3.1), we have:

∇f(xk) +
∑m1

i=1([λ̄k]i + ρk[h1(xk)]i)∇[h1(xk)]i +
∑p1

i=1 max{0, [µ̄k]i

+ρk[g1(xk)]i}∇[g1(xk)]i +
∑m2

i=1[vk]i∇[h2(xk)]i +
∑p2

j=1[uk]j∇[g2(xk)]j = δk,
(4.2)

where, since εk → 0, limk∈K ‖δk‖ = 0.

If [g2(x∗)]i < 0, there exists k1 ∈ IN such that [g2(xk)]i < −εk for all k ≥ k1, k ∈
K. Therefore, by (3.3), [uk]i = 0 for all k ∈ K, k ≥ k1. Thus, by x∗ ∈ Ω2 and (4.2),
for all k ∈ K, k ≥ k1 we have that

∇f(xk) +
∑m1

i=1([λ̄k]i + ρk[h1(xk)]i)∇[h1(xk)]i +
∑p1

i=1 max{0, [µ̄k]i

+ρk[g1(xk)]i}∇[g1(xk)]i +
∑m2

i=1[vk]i∇[h2(xk)]i +
∑

[g2(x∗)]j=0[uk]j∇[g2(xk)]j = δk.

Dividing by ρk we get:

∇f(xk)
ρk

+
∑m1

i=1

(
[λ̄k]i
ρk

+ [h1(xk)]i

)
∇[h1(xk)]i +

∑p1

i=1 max

{
0, [µ̄k]i

ρk
+ [g1(xk)]i

}
∇[g1(xk)]i

+
∑m2

i=1
[vk]i
ρk
∇[h2(xk)]i +

∑
[g2(x∗)]j=0

[uk]j
ρk
∇[g2(xk)]j = δk

ρk
.

By Caratheodory’s Theorem of Cones (see [7], page 689) there exist Îk ⊂ {1, . . . , m2}, Ĵk ⊂
{j | [g2(x∗)]j = 0}, [v̂k]i, i ∈ Îk and [ûk]j ≥ 0, j ∈ Ĵk such that the vectors
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{∇[h2(xk)]i}i∈bIk
∪ {∇[g2(xk)]j}j∈ bJk

are linearly independent and

∇f(xk)
ρk

+
∑m1

i=1

(
[λ̄k]i
ρk

+ [h1(xk)]i

)
∇[h1(xk)]i +

∑p1

i=1 max

{
0, [µ̄k]i

ρk
+ [g1(xk)]i

}
∇[g1(xk)]i

+
∑

i∈bIk
[v̂k]i∇[h2(xk)]i +

∑
j∈ bJk

[ûk]j∇[g2(xk)]j = δk

ρk
.

(4.3)

Since there exist a finite number of possible sets Îk, Ĵk, there exists an infinite set
of indices K1 such that K1 ⊂ {k ∈ K | k ≥ k1}, Îk = Î , and

Ĵ = Ĵk ⊂ {j | [g2(x∗)]j = 0}(4.4)

for all k ∈ K1. Then, by (4.3), for all k ∈ K1 we have:

∇f(xk)
ρk

+
∑m1

i=1

(
[λ̄k]i
ρk

+ [h1(xk)]i

)
∇[h1(xk)]i +

∑p1

i=1 max

{
0, [µ̄k]i

ρk
+ [g1(xk)]i

}
∇[g1(xk)]i

+
∑

i∈bI
[v̂k]i∇[h2(xk)]i +

∑
j∈ bJ

[ûk]j∇[g2(xk)]j = δk

ρk
,

(4.5)
and the gradients

{∇[h2(xk)]i}i∈bI
∪ {∇[g2(xk)]j}j∈ bJ

are linearly independent.(4.6)

We consider, again, two cases: (1) the sequence {‖(v̂k, ûk)‖, k ∈ K1} is bounded;
and (2) the sequence {‖(v̂k, ûk)‖, k ∈ K1} is unbounded. If the sequence {‖(v̂k, ûk)‖}k∈K1

is bounded, and Î ∪ Ĵ 6= ∅, there exist (v̂, û), û ≥ 0 and an infinite set of indices
K2 ⊂ K1 such that limk∈K2

(v̂k, ûk) = (v̂, û). Since {ρk} is unbounded, by the bound-
edness of λ̄k and µ̄k, lim[λ̄k]i/ρk = 0 = lim[µ̄k]j/ρk for all i, j. Therefore, by δk → 0,
taking limits for k ∈ K2 in (4.5), we obtain:

∑m1

i=1[h1(x∗)]i∇[h1(x∗)]i +
∑p1

i=1 max{0, [g1(x∗)]i}∇[g1(x∗)]i

+
∑

i∈bI
v̂i∇[h2(x∗)]i +

∑
j∈ bJ

ûj∇[g2(x∗)]j = 0.
(4.7)

If Î ∪ Ĵ = ∅ we obtain
∑m1

i=1[h1(x∗)]i∇[h1(x∗)]i +
∑p1

i=1 max{0, [g1(x∗)]i}∇[g1(x∗)]i =
0.

Therefore, by x∗ ∈ Ω2 and (4.4), x∗ is a KKT point of (4.1).
Finally, assume that {‖(v̂k, ûk)‖}k∈K1

is unbounded. Let K3 ⊂ K1 be such that

limk∈K3
‖(v̂k, ûk)‖ = ∞ and (v̂, û) 6= 0, û ≥ 0 such that limk∈K3

(bvk,buk)
‖(bvk,buk)‖ = (v̂, û).

Dividing both sides of (4.5) by ‖(v̂k, ûk)‖ and taking limits for k ∈ K3, we deduce

that
∑

i∈bI
v̂i∇[h2(x∗)]i +

∑
j∈ bJ

ûj∇[g2(x∗)]j = 0. But [g2(x∗)]j = 0 for all j ∈ Ĵ .

Then, by (4.6), x∗ does not satisfy the CPLD constraint qualification associated with
the set Ω2. This completes the proof.

Roughly speaking, Theorem 4.1 says that, if x∗ is not feasible, then (very likely)
it is a local minimizer of the upper-level infeasibility, subject to lower-level feasibility.
From the point of view of optimality, we are interested in the status of feasible limit
points. In Theorem 4.2 we will prove that, under the CPLD constraint qualification,
feasible limit points are stationary (KKT) points of the original problem. Since CPLD
is strictly weaker than the Mangasarian-Fromovitz (MF) constraint qualification, it
turns out that the following theorem is stronger than results where KKT conditions
are proved under MF or regularity assumptions.
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Theorem 4.2. Let {xk}k∈IN be a sequence generated by Algorithm 3.1. Assume
that x∗ ∈ Ω1 ∩ Ω2 is a limit point that satisfies the CPLD constraint qualification
related to Ω1 ∩Ω2. Then, x∗ is a KKT point of the original problem (2.1). Moreover,
if x∗ satisfies the Mangasarian-Fromovitz constraint qualification and {xk}k∈K is a
subsequence that converges to x∗, the set

{‖λk+1‖, ‖µk+1‖, ‖vk‖, ‖uk‖}k∈K is bounded.(4.8)

Proof. For all k ∈ IN , by (3.1), (3.3), (3.5) and (3.7), there exist uk ∈ IRp2

+ ,
δk ∈ IRn such that ‖δk‖ ≤ εk and

∇f(xk) +
∑m1

i=1[λk+1]i∇[h1(xk)]i +
∑p1

i=1[µk+1]i∇[g1(xk)]i

+
∑m2

i=1[vk]i∇[h2(xk)]i +
∑p2

j=1[uk]j∇[g2(xk)]j = δk.
(4.9)

By (3.7), µk+1 ∈ IRp1

+ for all k ∈ IN . Let K ⊂ IN be such that limk∈K xk = x∗.
Suppose that [g2(x∗)]i < 0. Then, there exists k1 ∈ IN such that ∀k ∈ K, k ≥
k1, [g2(xk)]i < −εk. Then, by (3.3), [uk]i = 0 ∀k ∈ K, k ≥ k1.

Let us prove now that a similar property takes place when [g1(x∗)]i < 0. In this
case, there exists k2 ≥ k1 such that [g1(xk)]i < c < 0 ∀k ∈ K, k ≥ k2.

We consider two cases: (1) {ρk} is unbounded; and (2) {ρk} is bounded. In the
first case we have that limk∈K ρk =∞. Since {[µ̄k]i} is bounded, there exists k3 ≥ k2

such that, for all k ∈ K, k ≥ k3, [µ̄k]i + ρk[g1(xk)]i < 0. By the definition of µk+1 this
implies that [µk+1]i = 0 ∀k ∈ K, k ≥ k3.

Consider now the case in which {ρk} is bounded. In this case, limk→∞[σk]i = 0.
Therefore, since [g1(xk)]i < c < 0 for k ∈ K large enough, limk∈K [µ̄k]i = 0. So, for
k ∈ K large enough, [µ̄k]i + ρk[g1(xk)]i < 0. By the definition of µk+1, there exists
k4 ≥ k2 such that [µk+1]i = 0 for k ∈ K, k ≥ k4.

Therefore, there exists k5 ≥ max{k1, k3, k4} such that for all k ∈ K, k ≥ k5,

[[g1(x∗)]i < 0⇒ [µk+1]i = 0] and [[g2(x∗)]i < 0⇒ [uk]i = 0].(4.10)

(Observe that, up to now, we did not use the CPLD condition.) By (4.9) and
(4.10), for all k ∈ K, k ≥ k5, we have:

∇f(xk) +
∑m1

i=1[λk+1]i∇[h1(xk)]i +
∑

[g1(x∗)]i=0[µk+1]i∇[g1(xk)]i

+
∑m2

i=1[vk]i∇[h2(xk)]i +
∑

[g2(x∗)]j=0[uk]j∇[g2(xk)]j = δk,
(4.11)

with µk+1 ∈ IRp1

+ , uk ∈ IRp2

+ .
By Caratheodory’s Theorem of Cones, for all k ∈ K, k ≥ k5, there exist

Îk ⊂ {1, . . . , m1}, Ĵk ⊂ {j | [g1(x∗)]j = 0}, Îk ⊂ {1, . . . , m2}, Ĵk ⊂ {j | [g2(x∗)]j = 0},

[λ̂k]i ∈ IR ∀i ∈ Îk, [µ̂k]j ≥ 0 ∀j ∈ Ĵk, [v̂k]i ∈ IR ∀i ∈ Îk, [ûk]j ≥ 0 ∀j ∈ Ĵk

such that the vectors

{∇[h1(xk)]i}i∈bIk
∪ {∇[g1(xk)]i}i∈ bJk

∪ {∇[h2(xk)]i}i∈Îk
∪ {∇[g2(xk)]i}i∈Ĵk

are linearly independent and

∇f(xk) +
∑

i∈bIk
[λ̂k]i∇[h1(xk)]i +

∑
i∈ bJk

[µ̂k]i∇[g1(xk)]i

+
∑

i∈Îk
[v̂k]i∇[h2(xk)]i +

∑
j∈Ĵk

[ûk]j∇[g2(xk)]j = δk.
(4.12)
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Since the number of possible sets of indices Îk, Ĵk, Îk, Ĵk is finite, there exists an
infinite set K1 ⊂ {k ∈ K | k ≥ k5} such that Îk = Î , Ĵk = Ĵ , Îk = Î , Ĵk = Ĵ , for all
k ∈ K1.

Then, by (4.12),

∇f(xk) +
∑

i∈bI
[λ̂k]i∇[h1(xk)]i +

∑
i∈ bJ

[µ̂k]i∇[g1(xk)]i

+
∑

i∈Î
[v̂k]i∇[h2(xk)]i +

∑
j∈Ĵ

[ûk]j∇[g2(xk)]j = δk

(4.13)

and the vectors

{∇[h1(xk)]i}i∈bI
∪ {∇[g1(xk)]i}i∈ bJ

∪ {∇[h2(xk)]i}i∈Î ∪ {∇[g2(xk)]i}i∈Ĵ(4.14)

are linearly independent for all k ∈ K1.
If Î ∪ Ĵ ∪ Î ∪ Ĵ = ∅, by (4.13) and δk → 0 we obtain ∇f(x∗) = 0. Otherwise, let

us define

Sk = max{max{|[λ̂k]i|, i ∈ Î}, max{[µ̂k]i, i ∈ Ĵ}, max{|[v̂k]i|, i ∈ Î}, max{[ûk]i, i ∈ Ĵ}}.
We consider two possibilities: (a) {Sk}k∈K1

has a bounded subsequence; and (b)
limk∈K1

Sk =∞. If {Sk}k∈K1
has a bounded subsequence, there exists K2 ⊂ K1 such

that limk∈K2
[λ̂k]i = λ̂i, limk∈K2

[µ̂k]i = µ̂i ≥ 0, limk∈K2
[v̂k]i = v̂i, and limk∈K2

[ûk]i =
ûi ≥ 0. By εk → 0 and ‖δk‖ ≤ εk, taking limits in (4.13) for k ∈ K2, we obtain:

∇f(x∗)+
∑

i∈bI

λ̂i∇[h1(x∗)]i+
∑

i∈ bJ

µ̂i∇[g1(x∗)]i+
∑

i∈Î

v̂i∇[h2(x∗)]i+
∑

j∈Ĵ

ûj∇[g2(x∗)]j = 0,

with µ̂i ≥ 0, ûi ≥ 0. Since x∗ ∈ Ω1 ∩ Ω2, we have that x∗ is a KKT point of (2.1).
Suppose now that limk∈K2

Sk =∞. Dividing both sides of (4.13) by Sk we obtain:

∇f(xk)
Sk

+
∑

i∈bI

[bλk]i
Sk
∇[h1(xk)]i +

∑
i∈ bJ

[bµk]i
Sk
∇[g1(xk)]i

+
∑

i∈Î
[bvk]i
Sk
∇[h2(xk)]i +

∑
j∈Ĵ

[buk]j
Sk
∇[g2(xk)]j = δk

Sk
,

(4.15)

where

∣∣∣∣
[bλk]i
Sk

∣∣∣∣ ≤ 1,

∣∣∣∣
[bµk]i
Sk

∣∣∣∣ ≤ 1,

∣∣∣∣
[bvk]i
Sk

∣∣∣∣ ≤ 1,

∣∣∣∣
[buk]j
Sk

∣∣∣∣ ≤ 1. Therefore, there exists K3 ⊂ K1

such that limk∈K3

[bλk]i
Sk

= λ̂i, limk∈K3

[bµk]i
Sk

= µ̂i ≥ 0, limk∈K3

[bvk]i
Sk

= v̂i, limk∈K3

[buk]j
Sk

=

ûj ≥ 0. Taking limits on both sides of (4.15) for k ∈ K3, we obtain:
∑

i∈bI

λ̂i∇[h1(x∗)]i +
∑

i∈ bJ

µ̂i∇[g1(x∗)]i +
∑

i∈Î

v̂i∇[h2(x∗)]i +
∑

j∈Ĵ

ûj∇[g2(x∗)]j = 0.

But the modulus of at least one of the coefficients λ̂i, µ̂i, v̂i, ûi is equal to 1. Then, by
the CPLD condition, the gradients

{∇[h1(x)]i}i∈bI
∪ {∇[g1(x)]i}i∈ bJ

∪ {∇[h2(x)]i}i∈Î
∪ {∇[g2(x)]i}i∈Ĵ

must be linearly dependent in a neighborhood of x∗. This contradicts (4.14). There-
fore, the main part of the theorem is proved.

Finally, let us prove that the property (4.8) holds if x∗ satisfies the Mangasarian-
Fromovitz constraint qualification. Let us define

Bk = max{‖λk+1‖∞, ‖µk+1‖∞, ‖vk‖∞, ‖uk‖∞}k∈K .

If (4.8) is not true, we have that limk∈K Bk = ∞. In this case, dividing both sides
of (4.11) by Bk and taking limits for an appropriate subsequence, we obtain that x∗

does not satisfy the Mangasarian-Fromovitz constraint qualification.
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5. Boundedness of the penalty parameters. When the penalty parameters
associated with Penalty or Augmented Lagrangian methods are too large, the sub-
problems tend to be ill-conditioned and its resolution becomes harder. One of the
main motivations for the development of the basic Augmented Lagrangian algorithm
is the necessity of overcoming this difficulty. Therefore, the study of conditions un-
der which penalty parameters are bounded plays an important role in Augmented
Lagrangian approaches.

5.1. Equality constraints. We will consider first the case p1 = p2 = 0.
Let f : IRn → IR, h1 : IRn → IRm1 , h2 : IRn → IRm2 . We address the problem

Minimize f(x) subject to h1(x) = 0, h2(x) = 0.(5.1)

The Lagrangian function associated with problem (5.1) is given by L0(x, λ, v) = f(x)+
〈h1(x), λ〉 + 〈h2(x), v〉, for all x ∈ IRn, λ ∈ IRm1 , v ∈ IRm2 .

Algorithm 3.1 will be considered with the following standard definition for the
safeguarded Lagrange multipliers.
Definition. For all k ∈ IN , i = 1, . . . , m1, [λ̄k+1]i will be the projection of [λk+1]i on
the interval [[λ̄min]i, [λ̄max]i].

We will use the following assumptions:
Assumption 1. The sequence {xk} is generated by the application of Algorithm 3.1
to problem (5.1) and limk→∞ xk = x∗.
Assumption 2. The point x∗ is feasible (h1(x∗) = 0 and h2(x∗) = 0).
Assumption 3. The gradients ∇[h1(x∗)]1, . . . ,∇[h1(x∗)]m1

,∇[h2(x∗)]1, . . . ,∇[h2(x∗)]m2

are linearly independent.
Assumption 4. The functions f, h1 and h2 admit continuous second derivatives in
a neighborhood of x∗.
Assumption 5. The second order sufficient condition for local minimizers ([25],
page 211) holds with Lagrange multipliers λ∗ ∈ IRm1 and v∗ ∈ IRm2 .
Assumption 6. For all i = 1, . . . , m1, [λ∗]i ∈ ([λ̄min]i, [λ̄max]i).

Proposition 5.1. Suppose that Assumptions 1, 2, 3 and 6 hold. Then, limk→∞ λk =
λ∗, limk→∞ vk = v∗ and λ̄k = λk for k large enough.

Proof. The proof of the first part follows from the definition of λk+1, the stop-
ping criterion of the subproblems and the linear independence of the gradients of the
constraints at x∗. The second part of the thesis is a consequence of λk → λ∗, using
Assumption 6 and the definition of λ̄k+1.

Lemma 5.2. Suppose that Assumptions 3 and 5 hold. Then, there exists ρ̄ > 0
such that, for all π ∈ [0, 1/ρ̄], the matrix




∇2

xxL0(x∗, λ∗, v∗) ∇h1(x∗) ∇h2(x∗)
∇h1(x∗)

T −πI 0
∇h2(x∗)

T 0 0





is nonsingular.
Proof. The matrix is trivially nonsingular for π = 0. So, the thesis follows by the

continuity of the matricial inverse.
Lemma 5.3. Suppose that Assumptions 1–5 hold. Let ρ̄ be as in Lemma 5.2.

Suppose that there exists k0 ∈ IN such that ρk ≥ ρ̄ for all k ≥ k0. Define

αk = ∇L(xk, λ̄k, ρk) +∇h2(xk)vk,(5.2)

βk = h2(xk).(5.3)
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Then, there exists M > 0 such that, for all k ∈ IN ,

‖xk − x∗‖ ≤M max

{‖λ̄k − λ∗‖∞
ρk

, ‖αk‖, ‖βk‖
}

,(5.4)

‖λk+1 − λ∗‖ ≤M max

{‖λ̄k − λ∗‖∞
ρk

, ‖αk‖, ‖βk‖
}

.(5.5)

Proof. Define, for all k ∈ IN ,

tk = (λ̄k − λ∗)/ρk,(5.6)

πk = 1/ρk.(5.7)

By (3.5), (5.2) and (5.3), ∇L(xk, λ̄k, ρk)+∇h2(xk)vk−αk = 0, λk+1 = λ̄k +ρkh1(xk)
and h2(xk)− βk = 0 for all k ∈ IN .

Therefore, by (5.6) and (5.7), we have that ∇f(xk)+∇h1(xk)λk+1 +∇h2(xk)vk−
αk = 0, h1(xk)− πkλk+1 + tk + πkλ∗ = 0 and h2(xk)− βk = 0 for all k ∈ IN . Define,
for all π ∈ [0, 1/ρ̄], Fπ : IRn× IRm1 × IRm2 × IRm1 × IRn× IRm2 → IRn × IRm1 × IRm2

by

Fπ(x, λ, v, t, α, β) =





∇f(x) +∇h1(x)λ +∇h2(x)v − α
[h1(x)]1 − π[λ]1 + [t]1 + π[λ∗]1

·
·
·

[h1(x)]m1
− π[λ]m1

+ [t]m1
+ π[λ∗]m1

h2(x) − β





.

Clearly,

Fπk
(xk, λk+1, vk, tk, αk, βk) = 0(5.8)

and, by Assumptions 1 and 2,

Fπ(x∗, λ∗, v∗, 0, 0, 0) = 0 ∀π ∈ [0, 1/ρ̄].(5.9)

Moreover, the Jacobian matrix of Fπ with respect to (x, λ, v) computed at (x∗, λ∗, v∗, 0, 0, 0)
is:




∇2

xxL0(x∗, λ∗, v∗) ∇h1(x∗) ∇h2(x∗)
∇h1(x∗)

T −πI 0
∇h2(x∗)

T 0 0



 .

By Lemma 5.2, this matrix is nonsingular for all π ∈ [0, 1/ρ̄]. By continuity, the
norm of its inverse is bounded in a neighborhood of (x∗, λ∗, v∗, 0, 0, 0) uniformly with
respect to π ∈ [0, 1/ρ̄]. Moreover, the first and second derivatives of Fπ are also
bounded in a neighborhood of (x∗, λ∗, v∗, 0, 0, 0) uniformly with respect to π ∈ [0, 1/ρ̄].
Therefore, the bounds (5.4) and (5.5) follow from (5.8) and (5.9) by the Implicit
Function Theorem and the Mean Value Theorem of Integral Calculus.

Theorem 5.4. Suppose that Assumptions 1–6 are satisfied by the sequence gen-
erated by Algorithm 3.1 applied to the problem (5.1). In addition, assume that there
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exists a sequence ηk → 0 such that εk ≤ ηk‖h1(xk)‖∞ for all k ∈ IN . Then, the
sequence of penalty parameters {ρk} is bounded.

Proof. Assume, by contradiction, that limk→∞ ρk =∞. Since h1(x∗) = 0, by the
continuity of the first derivatives of h1 there exists L > 0 such that, for all k ∈ IN ,
‖h1(xk)‖∞ ≤ L‖xk − x∗‖. Therefore, by the hypothesis, (5.4) and Proposition 5.1,

we have that ‖h1(xk)‖∞ ≤ LM max

{
‖λk−λ∗‖∞

ρk
, ηk‖h1(xk)‖∞

}
for k large enough.

Since ηk tends to zero, this implies that

‖h1(xk)‖∞ ≤ LM
‖λk − λ∗‖∞

ρk

(5.10)

for k large enough.
By (3.6) and Proposition 5.1, we have that λk = λk−1 + ρk−1h1(xk−1) for k large

enough. Therefore,

‖h1(xk−1)‖∞ =
‖λk − λk−1‖∞

ρk−1
≥ ‖λk−1 − λ∗‖∞

ρk−1
− ‖λk − λ∗‖∞

ρk−1
.(5.11)

Now, by (5.5), the hypothesis of this theorem and Proposition 5.1, for k large enough

we have: ‖λk − λ∗‖∞ ≤ M

(
‖λk−1−λ∗‖∞

ρk−1
+ ηk−1‖h1(xk−1)‖∞

)
. This implies that

‖λk−1−λ∗‖∞

ρk−1
≥ ‖λk−λ∗‖∞

M
−ηk−1‖h1(xk−1)‖∞. Therefore, by (5.11), (1+ηk−1)‖h1(xk−1)‖∞ ≥

‖λk−λ∗‖∞
(

1
M
− 1

ρk−1

)
≥ 1

2M
‖λk−λ∗‖∞. Thus, ‖λk−λ∗‖∞ ≤ 3M‖h1(xk−1)‖∞ for

k large enough. By (5.10), we have that ‖h1(xk)‖∞ ≤ 3LM2

ρk
‖h1(xk−1)‖∞. Therefore,

since ρk → ∞, there exists k1 ∈ IN such that ‖h1(xk)‖∞ ≤ τ‖h1(xk−1)‖∞ for all
k ≥ k1. So, ρk+1 = ρk for all k ≥ k1. Thus, {ρk} is bounded.

5.2. General constraints. In this subsection we address the general problem
(2.1). As in the case of equality constraints, we adopt the following definition for the
safeguarded Lagrange multipliers in Algorithm 3.1.
Definition. For all k ∈ IN , i = 1, . . . , m1, j = 1, . . . , p1, [λ̄k+1]i will be the projection
of [λk+1]i on the interval [[λ̄min]i, [λ̄max]i] and [µ̄k+1]j will be the projection of [µk+1]j
on [0, [µ̄max]j ].

The technique for proving boundedness of the penalty parameter consists of re-
ducing (2.1) to a problem with (only) equality constraints. The equality constraints of
the new problem will be the active constraints at the limit point x∗. After this reduc-
tion, the boundedness result is deduced from Theorem 5.4. The sufficient conditions
are listed below.
Assumption 7. The sequence {xk} is generated by the application of Algorithm 3.1
to problem (2.1) and limk→∞ xk = x∗.
Assumption 8. The point x∗ is feasible (h1(x∗) = 0, h2(x∗) = 0, g1(x∗) ≤ 0 and
g2(x∗) ≤ 0.)
Assumption 9. The gradients {∇[h1(x∗)]i}m1

i=1, {∇[g1(x∗)]i}[g1(x∗)]i=0, {∇[h2(x∗)]i}m2

i=1,
{∇[g2(x∗)]i}[g2(x∗)]i=0 are linearly independent. (LICQ holds at x∗.)
Assumption 10. The functions f, h1, g1, h2 and g2 admit continuous second deriva-
tives in a neighborhood of x∗.
Assumption 11. Define the tangent subspace T as the set of all z ∈ IRn such that
∇h1(x∗)

T z = ∇h2(x∗)
T z = 0, 〈∇[g1(x∗)]i, z〉 = 0 for all i such that [g1(x∗)]i = 0 and
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〈∇[g2(x∗)]i, z〉 = 0 for all i such that [g2(x∗)]i = 0. Then, for all z ∈ T, z 6= 0,

〈z, [∇2f(x∗) +
∑m1

i=1[λ∗]i∇2[h1(x∗)]i +
∑p1

i=1[µ∗]i∇2[g1(x∗)]i

+
∑m2

i=1[v∗]i∇2[h2(x∗)]i +
∑p2

i=1[u∗]i∇2[g2(x∗)]i]z〉 > 0.

Assumption 12. For all i = 1, . . . , m1, j = 1, . . . , p1, [λ∗]i ∈ ([λ̄min]i, [λ̄max]i),
[µ∗]j ∈ [0, [µ̄max]j).
Assumption 13. For all i such that [g1(x∗)]i = 0, we have [µ∗]i > 0.

Observe that Assumption 13 imposes strict complementarity related only to the
constraints in the upper-level set. In the lower-level set it is admissible that [g2(x∗)]i =
[u∗]i = 0. Observe, too, that Assumption 11 is weaker than the usual second-order
sufficiency assumption, since the subspace T is orthogonal to the gradients of all active
constraints, and no exception is made with respect to active constraints with null
multiplier [u∗]i. In fact, Assumption 11 is not a second-order sufficiency assumption
for local minimizers. It holds for the problem of minimizing x1x2 subject to x2−x1 ≤ 0
at (0, 0) although (0, 0) is not a local minimizer of this problem.

Theorem 5.5. Suppose that Assumptions 7–13 are satisfied. In addition, assume
that there exists a sequence ηk → 0 such that εk ≤ ηk max{‖h1(xk)‖∞, ‖σk‖∞} for all
k ∈ IN . Then, the sequence of penalty parameters {ρk} is bounded.

Proof. Without loss of generality, assume that: [g1(x∗)]i = 0 if i ≤ q1, [g1(x∗)]i <
0 if i > q1, [g2(x∗)]i = 0 if i ≤ q2, [g2(x∗)]i < 0 if i > q2. Consider the auxiliary
problem:

Minimize f(x) subject to H1(x) = 0, H2(x) = 0,(5.12)

where H1(x) =





h1(x)
[g1(x)]1

...
[g1(x)]q1



, H2(x) =





h2(x)
[g2(x)]1

...
[g2(x)]q2



.

By Assumptions 7–11, x∗ satisfies the Assumptions 2–5 (with H1, H2 replacing
h1, h2). Moreover, by Assumption 8, the multipliers associated to (2.1) are the La-
grange multipliers associated to (5.12).

As in the proof of (4.10) (first part of the proof of Theorem 4.2), we have that,
for k large enough: [[g1(x∗)]i < 0⇒ [µk+1]i = 0] and [[g2(x∗)]i < 0⇒ [uk]i = 0].

Then, by (3.1), (3.5) and (3.7),

‖∇f(xk) +
∑m1

i=1[λk+1]i∇[h1(xk)]i +
∑q1

i=1[µk+1]i∇[g1(xk)]i

+
∑m2

i=1 [vk]i∇[h2(xk)]i +
∑q2

i=1[uk]i∇[g2(xk)]i‖ ≤ εk

for k large enough.
By Assumption 9, taking appropriate limits in the inequality above, we obtain

that limk→∞ λk = λ∗ and limk→∞ µk = µ∗.
In particular, since [µ∗]i > 0 for all i ≤ q1,

[µk]i > 0(5.13)

for k large enough.
Since λ∗ ∈ (λ̄min, λ̄max)

m1 and [µ∗]i < [µ̄max]i, we have that [µ̄k]i = [µk]i, i =
1, . . . , q1 and [λ̄k]i = [λk]i, i = 1, . . . , m1 for k large enough.
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Let us show now that the updating formula (3.7) for [µk+1]i, provided by Algo-
rithm 3.1, coincides with the updating formula (3.5) for the corresponding multiplier
in the application of the algorithm to the auxiliary problem (5.12).

In fact, by (3.7) and [µ̄k]i = [µk]i, we have that, for k large enough, [µk+1]i =
max{0, [µk]i +ρk[g1(xk)]i}. But, by (5.13), [µk+1]i = [µk]i +ρk[g1(xk)]i, i = 1, . . . , q1,
for k large enough.

In terms of the auxiliary problem (5.12) this means that [µk+1]i = [µk]i +
ρk[H1(xk)]i, i = 1, . . . , q1, as we wanted to prove.

Now, let us analyze the meaning of [σk]i. By (3.7), we have: [σk]i = max{[g1(xk)]i,−[µ̄k]i/ρk}
for all i = 1, . . . , p1. If i > q1, since [g1(x∗)]i < 0, [g1]i is continuous and [µ̄k]i = 0, we

have that [σk]i = 0 for k large enough. Now, suppose that i ≤ q1. If [g1(xk)]i < − [µ̄k]i
ρk

,

then, by (3.7), we would have [µk+1]i = 0. This would contradict (5.13). Therefore,

[g1(xk)]i ≥ − [µ̄k]i
ρk

for k large enough and we have that [σk]i = [g1(xk)]i. Thus, for k
large enough,

H1(xk) =

(
h1(xk)

σk

)
.(5.14)

Therefore, the test for updating the penalty parameter in the application of Al-
gorithm 3.1 to (5.12) coincides with the updating test in the application of the al-
gorithm to (2.1). Moreover, formula (5.14) also implies that the condition εk ≤
ηk max{‖σk‖∞, ‖h1(xk)‖∞} is equivalent to the hypothesis εk ≤ ηk‖H1(xk)‖∞ as-
sumed in Theorem 5.4.

This completes the proof that the sequence {xk} may be thought as being gen-
erated by the application of Algorithm 3.1 to (5.12). We proved that the associ-
ated approximate multipliers and the penalty parameters updating rule also coincide.
Therefore, by Theorem 5.4, the sequence of penalty parameters is bounded, as we
wanted to prove.
Remark. The results of this section provide a theoretical answer to the following
practical question: What happens if the box chosen for the safeguarded multipliers
estimates is too small? The answer is: the box should be large enough to contain
the “true” Lagrange multipliers. If it is not, the global convergence properties remain
but, very likely, the sequence of penalty parameters will be unbounded, leading to
hard subproblems and possible numerical instability. In other words, if the box is
excessively small, the algorithm tends to behave as an external penalty method. This
is exactly what is observed in practice.

6. Numerical experiments. For solving unconstrained and bound-constrained
subproblems we use Gencan [9] with second derivatives and a CG-preconditioner
[10]. Algorithm 3.1 with Gencan will be called Algencan. For solving the convex-
constrained subproblems that appear in the large location problems, we use the Spec-
tral Projected Gradient method SPG [11, 12, 13]. The resulting Augmented La-
grangian algorithm is called Alspg. In general, it would be interesting to apply
Alspg to any problem such that the selected lower-level constraints define a convex
set for which it is easy (cheap) to compute the projection of an arbitrary point. The
codes are free for download in www.ime.usp.br/∼egbirgin/tango/. They are written in
Fortran 77 (double precision). Interfaces of Algencan with AMPL, Cuter, C/C++,
Python and R (language and environment for statistical computing) are available and
interfaces with Matlab and Octave are being developed.

For the practical implementation of Algorithm 3.1, we set τ = 0.5, γ = 10,
λ̄min = −1020, µ̄max = λ̄max = 1020, εk = 10−4 for all k, λ̄1 = 0, µ̄1 = 0 and ρ1 =
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max

{
10−6, min

{
10, 2|f(x0)|

‖h1(x0)‖2+‖g1(x0)+‖2

}}
. As stopping criterion we used max(‖h1(xk)‖∞, ‖σk‖∞) ≤

10−4. The condition ‖σk‖∞ ≤ 10−4 guarantees that, for all i = 1, . . . , p1, gi(xk) ≤
10−4 and that [µk+1]i = 0 whenever gi(xk) < −10−4. This means that, approxi-
mately, feasibility and complementarity hold at the final point. Dual feasibility with
tolerance 10−4 is guaranteed by (3.1) and the choice of εk. All the experiments were
run on a 3.2 GHz Intel(R) Pentium(R) with 4 processors, 1Gb of RAM and Linux
Operating System. Compiler option “-O” was adopted.

6.1. Testing the theory. In Discrete Mathematics, experiments should repro-
duce exactly what theory predicts. In the continuous world, however, the situation
changes because the mathematical model that we use for proving theorems is not
exactly isomorphic to the one where computations take place. Therefore, it is always
interesting to interpret, in finite precision calculations, the continuous theoretical re-
sults and to verify to what extent they are fulfilled.

Some practical results presented below may be explained in terms of a simple
theoretical result that was tangentially mentioned in the introduction: If, at Step 2 of
Algorithm 3.1, one computes a global minimizer of the subproblem and the problem
(2.1) is feasible, then every limit point is a global minimizer of (2.1). This property
may be easily proved using boundedness of the safeguarded Lagrange multipliers by
means of external penalty arguments. Now, algorithms designed to solve reasonably
simple subproblems usually include practical procedures that actively seek function
decrease, beyond the necessity of finding stationary points. For example, efficient
line-search procedures in unconstrained minimization and box-constrained minimiza-
tion usually employ aggressive extrapolation steps [9], although simple backtracking
is enough to prove convergence to stationary points. In other words, from good sub-
problem solvers one expects much more than convergence to stationary points. For
this reason, we conjecture that Augmented Lagrangian algorithms like Algencan

tend to converge to global minimizers more often than SQP-like methods. In any
case, these arguments support the necessity of developing global-oriented subproblem
solvers.

Experiments in this subsection were made using the AMPL interfaces of Algen-

can (considering all the constraints as upper-level constraints) and Ipopt. Presolve
AMPL option was disabled to solve the problems exactly as they are. The Algen-

can parameters and stopping criteria were the ones stated at the beginning of this
section. For Ipopt we used all its default parameters (including the ones related
to stopping criteria). The random generation of initial points was made using the
function Uniform01() provided by AMPL. When generating several random initial
points, the seed used to generate the i-th random initial point was set to i.

Example 1: Convergence to KKT points that do not satisfy MFCQ.

Minimize x1

subject to x2
1 + x2

2 ≤ 1,
x2

1 + x2
2 ≥ 1.

The global solution is (−1, 0) and no feasible point satisfies the Mangasarian-Fromovitz
Constraint Qualification, although all feasible points satisfy CPLD. Starting with 100
random points in [−10, 10]2, Algencan converged to the global solution in all the
cases. Starting from (5, 5) convergence occurred using 14 outer iterations. The final
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penalty parameter was 4.1649E-01 (the initial one was 4.1649E-03) and the final mul-
tipliers were 4.9998E-01 and 0.0000E+00. Ipopt also found the global solution in all
the cases and used 25 iterations when starting from (5, 5).

Example 2: Convergence to a non-KKT point.

Minimize x
subject to x2 = 0,

x3 = 0,
x4 = 0.

Here the gradients of the constraints are linearly dependent for all x ∈ IR. In spite
of this, the only point that satisfies Theorem 4.1 is x = 0. Starting with 100 ran-
dom points in [−10, 10], Algencan converged to the global solution in all the cases.
Starting with x = 5 convergence occurred using 20 outer iterations. The final penalty
parameter was 2.4578E+05 (the initial one was 2.4578E-05) and the final multipli-
ers were 5.2855E+01 -2.0317E+00 and 4.6041E-01. Ipopt was not able to solve the
problem in its original formulation because “Number of degrees of freedom is NIND
= -2”. We modified the problem in the following way

Minimize x1 + x2 + x3

subject to x2
1 = 0,

x3
1 = 0,

x4
1 = 0,

xi ≥ 0, i = 1, 2, 3,

and, after 16 iterations, Ipopt stopped near x = (0, +∞, +∞) saying “Iterates be-
come very large (diverging?)”.

Example 3: Infeasible stationary points [18, 34].

Minimize 100(x2 − x2
1)

2 + (x1 − 1)2

subject to x1 − x2
2 ≤ 0,

x2 − x2
1 ≤ 0,

−0.5 ≤ x1 ≤ 0.5,
x2 ≤ 1.

This problem has a global KKT solution at x = (0, 0) and a stationary infeasible
point at x = (0.5,

√
0.5). Starting with 100 random points in [−10, 10]2, Algencan

converged to the global solution in all the cases. Starting with x = (5, 5) convergence
occurred using 6 outer iterations. The final penalty parameter was 1.0000E+01 (the
initial one was 1.0000E+00) and the final multipliers were 1.9998E+00 and 3.3390E-
03. Ipopt found the global solution starting from 84 out of the 100 random initial
points. In the other 16 cases Ipopt stopped at x = (0.5,

√
0.5) saying “Convergence to

stationary point for infeasibility” (this was also the case when starting from x = (5, 5)).

Example 4: Difficult-for-barrier [15, 18, 47].

Minimize x1

subject to x2
1 − x2 + a = 0,

x1 − x3 − b = 0,
x2 ≥ 0, x3 ≥ 0.
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In [18] we read: “This test example is from [47] and [15]. Although it is well-posed,
many barrier-SQP methods (’Type-I Algorithms’ in [47]) fail to obtain feasibility for
a range of infeasible starting points.”

We ran two instances of this problem varying the values of parameters a and b
and the initial point x0 as suggested in [18]. When (a, b) = (1, 1) and x0 = (−3, 1, 1)
Algencan converged to the solution x̄ = (1, 2, 0) using 2 outer iterations. The final
penalty parameter was 5.6604E-01 (the initial one also was 5.6604E-01) and the final
multipliers were 6.6523E-10 and -1.0000E+00. Ipopt also found the same solution
using 20 iterations. When (a, b) = (−1, 0.5) and x0 = (−2, 1, 1) Algencan converged
to the solution x̃ = (1, 0, 0.5) using 5 outer iterations. The final penalty parameter
was 2.4615E+00 (the initial one also was 2.4615E+00) and the final multipliers were
-5.0001E-01 and -1.3664E-16. On the other hand, Ipopt stopped declaring conver-
gence to a stationary point for the infeasibility.

Example 5: Preference for global minimizers

Minimize
∑n

i=1 xi

subject to x2
i = 1, i = 1, . . . , n.

Solution: x∗ = (−1, . . . ,−1), f(x∗) = −n. We set n = 100 and ran Algencan and
Ipopt starting from 100 random initial points in [−100, 100]n. Algencan converged
to the global solution in all the cases while Ipopt never found the global solution.
When starting from the first random point, Algencan converged using 4 outer iter-
ations. The final penalty parameter was 5.0882E+00 (the initial one was 5.0882E-01)
and the final multipliers were all equal to 4.9999E-01.

6.2. Location problems. Here we will consider a variant of the family of loca-
tion problems introduced in [12]. In the original problem, given a set of np disjoint
polygons P1, P2, . . . , Pnp

in IR2 one wishes to find the point z1 ∈ P1 that minimizes
the sum of the distances to the other polygons. Therefore, the original problem for-
mulation is:

min
zi, i=1,...,np

1

np − 1

np∑

i=2

‖zi − z1‖2 subject to zi ∈ Pi, i = 1, . . . , np.

In the variant considered in the present work, we have, in addition to the np polygons,
nc circles. Moreover, there is an ellipse which has a non empty intersection with P1

and such that z1 must be inside the ellipse and zi, i = 2, . . . , np +nc must be outside.
Therefore, the problem considered in this work is

min
zi, i=1,...,np+nc

1

nc + np − 1

[
np∑

i=2

‖zi − z1‖2 +

nc∑

i=1

‖znp+i − z1‖2
]

subject to g(z1) ≤ 0,
g(zi) ≥ 0, i = 2, . . . , np + nc,
zi ∈ Pi, i = 1, . . . , np,
znp+i ∈ Ci, i = 1, . . . , nc,

where g(x) = (x1/a)2 + (x2/b)2 − c, and a, b, c ∈ IR are positive constants. Observe
that the objective function is differentiable in a large open neighborhood of the feasible
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region. To solve this family of problems, we will consider g(z1) ≤ 0 and g(zi) ≥ 0, i =
2, . . . , np +nc as upper-level constraints, and zi ∈ Pi, i = 1, . . . , np and znp+i ∈ Ci, i =
1, . . . , nc as lower-level constraints. In this way the subproblems can be efficiently
solved by the Spectral Projected Gradient method (SPG) [11, 12] as suggested by the
experiments in [12].

We generated 36 problems of this class, varying nc and np and choosing ran-
domly the location of the circles and polygons and the number of vertices of each
polygon. Details of the generation, including the way in which we guarantee empty
intersections (in order to have differentiability everywhere), may be found in [12]
and its related code (also available in www.ime.usp.br/∼egbirgin/tango/ ), where the
original problem was introduced. Moreover, details of the present variant of the
problem can be found within its fully commented Fortran 77 code also available in
www.ime.usp.br/∼egbirgin/tango/. In Table 6.1 we display the main characteristics
of each problem (number of circles, number of polygons, total number of vertices of
the polygons, dimension of the problem and number of lower-level and upper-level
constraints). Figure 6.1 shows the solution of a very small twelve-sets problem that
has 24 variables, 81 lower-level constraints and 12 upper-level constraints.

The 36 problems are divided in two sets of 18 problems: small and large problems.
We first solved the small problems with Algencan (considering all the constraints
as upper-level constraints) and Alspg. Both methods use the Fortran 77 formulation
of the problem (Alspg needs an additional subroutine to compute the projection
of an arbitrary point onto the convex set given by the lower-level constraints). In
Table 6.2 we compare the performance of both methods for solving this problem.
Both methods obtain feasible points and arrive to the same solutions. Due to the
performance of Alspg, we also solved the set of large problems using it. Table 6.3
shows its performance. A comparison against Ipopt was made and, while Ipopt was
able to find equivalent solutions for the smaller problems, it was unable to handle the
larger problems due to memory requirements.

Fig. 6.1. Twelve-sets very small location problem.

7. Final Remarks. In the last few years many sophisticated algorithms for
nonlinear programming have been published. They usually involve combinations of
interior-point techniques, sequential quadratic programming, trust regions, restora-
tion, nonmonotone strategies and advanced sparse linear algebra procedures. See,
for example [17, 28, 30, 31, 32, 37] and the extensive reference lists of these papers.
Moreover, methods for solving efficiently specific problems or for dealing with special
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Table 6.1

Location problems and their main features. The problem generation is based on a grid. The
number of city-circles (nc) and city-polygons (np) depend on the number of points in the grid, the
probability of having a city in a grid point (procit) and the probability of a city to be a polygon
(propol) or a circle (1 − propol). The number of vertices of a city-polygon is a random number
and the total number of vertices of all the city-polygons together is totnvs. Finally, the number
of variables of the problem is n = 2(nc + np), the number of upper-level inequality constraints is
p1 = nc + np and the number of lower-level inequality constraints is p2 = nc + totnvs. The total
number of constraints is p1 + p2. The central rectangle is considered here a “special” city-polygon.
The lower-level constraints correspond to the fact that each point must be inside a city and the
upper-level constraints come from the fact that the central point must be inside the ellipse and all
the others must be outside.

Problem nc np totnvs n p1 p2

1 28 98 295 252 126 323
2 33 108 432 282 141 465
3 33 108 539 282 141 572
4 33 109 652 284 142 685
5 35 118 823 306 153 858
6 35 118 940 306 153 975
7 35 118 1,057 306 153 1,092
8 35 118 1,174 306 153 1,209
9 35 118 1,291 306 153 1,326
10 35 118 1,408 306 153 1,443
11 35 118 1,525 306 153 1,560
12 35 118 1,642 306 153 1,677
13 35 118 1,759 306 153 1,794
14 35 118 1,876 306 153 1,911
15 35 118 1,993 306 153 2,028
16 35 118 2,110 306 153 2,145
17 35 118 2,227 306 153 2,262
18 35 118 2,344 306 153 2,379
19 3,029 4,995 62,301 16,048 8,024 65,330
20 4,342 7,271 91,041 23,226 11,613 95,383
21 6,346 10,715 133,986 34,122 17,061 140,332
22 13,327 22,230 278,195 71,114 35,557 291,522
23 19,808 33,433 417,846 106,482 53,241 437,654
24 29,812 50,236 627,548 160,096 80,048 657,360
25 26,318 43,970 549,900 140,576 70,288 576,218
26 39,296 66,054 825,907 210,700 105,350 865,203
27 58,738 99,383 1,241,823 316,242 158,121 1,300,561
28 65,659 109,099 1,363,857 349,516 174,758 1,429,516
29 98,004 164,209 2,052,283 524,426 262,213 2,150,287
30 147,492 245,948 3,072,630 786,880 393,440 3,220,122
31 131,067 218,459 2,730,798 699,052 349,526 2,861,865
32 195,801 327,499 4,094,827 1,046,600 523,300 4,290,628
33 294,327 490,515 6,129,119 1,569,684 784,842 6,423,446
34 261,319 435,414 5,442,424 1,393,466 696,733 5,703,743
35 390,670 654,163 8,177,200 2,089,666 1,044,833 8,567,870
36 588,251 979,553 12,244,855 3,135,608 1,567,804 12,833,106

constraints are often introduced. Many times, a particular algorithm is extremely
efficient for dealing with problems of a given type, but fails (or cannot be applied)
when constraints of a different class are incorporated. This situation is quite com-
mon in engineering applications. In the Augmented Lagrangian framework additional
constraints are naturally incorporated to the objective function of the subproblems,
which therefore preserve their constraint structure. For this reason, we conjecture
that the Augmented Lagrangian approach (with general lower-level constraints) will
continue to be used for many years.

This fact motivated us to improve and analyze Augmented Lagrangian methods
with arbitrary lower-level constraints. From the theoretical point of view our goal
was to eliminate, as much as possible, restrictive constraint qualifications. With
this in mind we used, both in the feasibility proof and in the optimality proof, the
Constant Positive Linear Dependence (CPLD) condition. This condition [41] has been
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Table 6.2

Performance of Algencan and Alspg in the set of small location problems.

Algencan Alspg

Problem OuIt InIt Fcnt Gcnt Time OuIt InIt Fcnt Gcnt Time f

1 7 127 1309 142 1.21 3 394 633 397 0.10 1.7564E+01
2 6 168 1921 181 1.15 3 614 913 617 0.16 1.7488E+01
3 6 150 1818 163 1.02 3 736 1127 739 0.21 1.7466E+01
4 9 135 972 154 0.63 3 610 943 613 0.18 1.7451E+01
5 5 213 2594 224 1.16 3 489 743 492 0.15 1.7984E+01
6 5 198 2410 209 1.21 3 376 547 379 0.12 1.7979E+01
7 5 167 1840 178 1.71 3 332 510 335 0.11 1.7975E+01
8 3 212 2548 219 1.34 3 310 444 313 0.11 1.7971E+01
9 3 237 3116 244 1.49 3 676 1064 679 0.25 1.7972E+01
10 3 212 2774 219 1.27 3 522 794 525 0.20 1.7969E+01
11 3 217 2932 224 1.46 3 471 720 474 0.19 1.7969E+01
12 3 208 2765 215 1.40 3 569 872 572 0.23 1.7968E+01
13 3 223 2942 230 1.44 3 597 926 600 0.25 1.7968E+01
14 3 272 3981 279 2.12 3 660 1082 663 0.29 1.7965E+01
15 3 278 3928 285 2.20 3 549 834 552 0.24 1.7965E+01
16 3 274 3731 281 2.52 3 565 880 568 0.26 1.7965E+01
17 3 257 3186 264 2.31 3 525 806 528 0.24 1.7963E+01
18 3 280 3866 287 2.39 3 678 1045 681 0.32 1.7963E+01

Table 6.3

Performance of Alspg on set of large location problems. The memory limitation (to gener-
ate and save the problems statement) is the only inconvenience for Alspg solving problems with
higher dimension than problem 36 (approximately 3× 106 variables, 1.5× 106 upper-level inequality
constraints, and 1.2×107 lower-level inequality constraints), since computer time is quite reasonable.

Problem Alspg f
OuIt InIt Fcnt Gcnt Time

19 8 212 308 220 3.46 4.5752E+02
20 8 107 186 115 2.75 5.6012E+02
21 9 75 149 84 3.05 6.8724E+02
22 7 80 132 87 5.17 4.6160E+02
23 7 71 125 78 7.16 5.6340E+02
24 8 53 106 61 8.72 6.9250E+02
25 8 55 124 63 8.00 4.6211E+02
26 7 63 127 70 12.56 5.6438E+02
27 9 80 155 89 19.84 6.9347E+02
28 8 67 138 75 22.24 4.6261E+02
29 7 54 107 61 27.36 5.6455E+02
30 9 95 179 104 51.31 6.9382E+02
31 7 59 111 66 39.12 4.6280E+02
32 7 66 120 73 63.35 5.6449E+02
33 9 51 113 60 85.65 6.9413E+02
34 7 58 110 65 79.38 4.6270E+02
35 7 50 104 57 107.27 5.6432E+02
36 10 56 133 66 190.59 6.9404E+02

proved to be a constraint qualification in [4] where its relations with other constraint
qualifications have been given.

We provided a family of examples (Location Problems) where the potentiality
of the arbitrary lower-level approach is clearly evidenced. This example represents
a typical situation in applications. A specific algorithm (SPG) is known to be very
efficient for a class of problems but turns out to be impossible to apply when additional
constraints are incorporated. However, the Augmented Lagrangian approach is able
to deal with the additional constraints taking advantage of the efficiency of SPG for
solving the subproblems. In this way, we were able to solve nonlinear programming
problems with more than 3,000,000 variables and 14,000,000 constraints in less than
five minutes of CPU time.

Open problems related to theory and implementation of practical Augmented
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Lagrangian methods may be found in the expanded report [3].

Acknowledgments. We are indebted to Prof. A. R. Conn, whose comments on
a first version of this paper guided a deep revision and to anonymous referee for many
constructive remarks.

REFERENCES
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